当前位置:文档之家› 电路中的能量问题(解析版)

电路中的能量问题(解析版)

电路中的能量问题(解析版)
电路中的能量问题(解析版)

电路中的能量问题

1.电功、电功率、焦耳定律和热功率

内容

表达式 电功 电路中电场力移动电荷做的功

W =qU =UIt 电功率 单位时间内电流做的功,表示电流做功的快慢 P =W

t =UI

焦耳 定律 电流通过导体产生的

热量跟电流的二次方成正

比,跟导体的电阻及通电时间成正比 Q =I 2Rt 热功率

单位时间内的发热量

P =Q t

I 2R

2. 电功和电热的处理方法

无论在纯电阻电路还是在非纯电阻电路中,发热功率都是I 2r .处理非纯电阻电路的计算问题时,要善于从能量转化的角度出发,紧紧围绕能量守恒定律,利用“电功=电热+其他能量”寻找等量关系求解.

3.电源的功率 (1)电路中的功率分配

P 总=P 出+P 内,即EI =UI +I 2r 。 (2)输出功率与闭合电路总电流的关系 P 出

=EI -I 2r ,当

I =E 2r 时,P 出有最大值,为P m =E 24r

。 若外电路是纯电阻电路,则有 P 出

=I 2R =

E 2R R +r

2=

E 2

R -r 2

R

+4r 。

由上式可以看出

当R =r 时,输出功率最大,P m =E 2

4r

当R >r 时,随着R 的增大,P 出减小 当R

4.电源的效率 η=P 出P 总

×100%=U E ×100%

纯电阻电路中η=R R +r

×100%=1

1+r R

×100%

因此R 越大,η越大;当R =r ,电源有最大输出功率时,效率仅为50%。

4. 对闭合电路功率的两点认识

(1)闭合电路是一个能量转化系统,电源将其他形式的能转化为电能.内外电路将电能转化为其他形式的能,EI=P内+P外就是能量守恒定律在闭合电路中的体现.

(2)外电阻的阻值向接近内阻的阻值方向变化时,电源的输出功率变大.

易错提示

(1)在非纯电阻电路中,欧姆定律不再适用,不能用欧姆定律求电流,应用P=UI求电流。

(2)在非纯电阻电路中,电功大于电热,即W>Q,这时电功只能用W=UIt计算,电热只能用Q=I2Rt 计算,两式不能通用。

(3)由能量守恒定律得W=Q+E,E为其他形式的能。对电动机来说,输入的功率P入=IU,发热的功率P热=I2r,输出的功率即机械功率P机=P入-P热=UI-I2r。

【典例1】在如图7-1-2所示电路中,电源电动势为12 V,电源内阻为1.0 Ω,电路中的电阻R0为1.5 Ω,小型直流电动机M的内阻为0.5 Ω.闭合开关S后,电动机转动,电流表的示数为2.0 A.则以下判断中正确的是().

A.电动机的输出功率为14 W

B.电动机两端的电压为7.0 V

C.电动机的发热功率为4.0 W

D.电源输出的电功率为24 W

【答案】 B

【典例2】一电动自行车动力电源上的铭牌标有“36 V、10 Ah”字样。假设工作时电源(不计内阻)的输入电压恒为36 V,额定输出功率180 W。由于电动机发热造成能量损耗(其他损耗不计),电动自行车的效率为80%,则下列说法正确的是()

A. 额定工作电流为10 A

B. 动力电源充满电后总电量为3.6×103 C

C. 电动自行车电动机的内阻为7.2 Ω

D. 电动自行车保持额定功率行驶的最长时间是2 h

【答案】D

【跟踪短训】

1.如图所示,用输出电压为1.4 V,输电电流为100 mA的充电器对内阻为2 Ω的镍-氢电池充电.下列说法正确的是().

A.电能转化为化学能的功率为0.12 W

B.充电器输出的电功率为0.14 W

C.充电时,电池消耗的热功率为0.12 W

D.充电器把0.14 W的功率储存在电池内

【答案】AB

【解析】充电器对电池的充电功率为P总=UI=0.14 W,电池充电时的热功率为P热=I2r=0.02 W,所以转化为化学能的功率为P化=P总-P热=0.12 W,因此充电器把0.12 W的功率储存在电池内,故A、B 正确,C、D错误.

2.一只电饭煲和一台洗衣机并联接在输出电压220 V的交流电源上(其内电阻可忽略不计),均正常工作.用电流表分别测得通过电饭煲的电流是5.0 A,通过洗衣机电动机的电流是0.50 A,则下列说法中正确的是().

A.电饭煲的电阻为44 Ω,洗衣机电动机线圈的电阻为440 Ω

B.电饭煲消耗的电功率为1 555 W,洗衣机电动机消耗的电功率为155.5 W

C.1 min内电饭煲消耗的电能为6.6×104 J,洗衣机电动机消耗的电能为6.6×103 J

D.电饭煲发热功率是洗衣机电动机发热功率的10倍

【答案】 C

【解析】一只电饭煲和一台洗衣机并联接在输出电压为220 V的电源上,电饭煲可视为纯电阻,电饭煲的电阻为R=U/I=44 Ω,洗衣机主要元件是电动机,不能利用欧姆定律计算线圈的电阻,选项A错误;电饭煲消耗的电功率为P=UI=220×5 W=1 100 W,洗衣机电动机消耗的电功率为P=UI=110 W,选项B错误;1 min内电饭煲消耗的电能为Pt=1 100 W×60 s=6.6×104 J,洗衣机电动机消耗的电能为Pt=110

W×60 s=6.6×103 J,选项C正确.电饭煲发热功率是I2R=52×44 W=1 100 W,根据题述不能计算出洗衣机电动机内阻和发热功率,选项D错误.

3.如图所示,电源电动势E=12 V,内阻r=3 Ω,R0=1 Ω,直流电动机内阻R0′=1 Ω,当调节滑动变阻器R1时可使甲电路输出功率最大,调节R2时可使乙电路输出功率最大,且此时电动机刚好正常工作(额定输出功率为P0=2 W),则R1和R2的值分别为().

A.2 Ω,2 ΩB.2 Ω,1.5 Ω

C.1.5 Ω,1.5 ΩD.1.5 Ω,2 Ω

【答案】 B

【典例3】已知电源内阻r=2 Ω,灯泡电阻R L=2 Ω,R2=2 Ω,滑动变阻器R1的最大阻值为3 Ω,如图所示,将滑片P置于最左端,闭合开关S1、S2,电源的输出功率为P0,则()

A.滑片P向右滑动,电源输出功率一直减小

B.滑片P向右滑动,电源输出功率一直增大

C.断开S2,电源输出功率达到最大值

D.滑片P置于最右端时,电源输出功率仍为P0

【答案】 D

【解析】闭合开关S1、S2,外电路总电阻R=R1+R并=R1+1 Ω,当R=r=2 Ω时,电源输出功率最大,根据电源输出功率与外电路电阻的关系图像(如图所示)可知,

滑片P从最左端向右滑动,外电路总电阻从4 Ω减小到1 Ω,电源输出功率先增大再减小,故A、B错误;滑片P在最左端时,断开S2,外电路总电阻R=R1+R2=5 Ω≠r,电源的输出功率不是最大,故C错

误;当滑片P 在最左端时,R =R 1+R 并=4 Ω,电流I =E R +r =E 6(A),电源的输出功率为P 0,则P 0=I 2R =

E 2

9(W);当滑片在最右端时,R ′=R 并=1 Ω,电流I ′=E R ′+r =E 3(A),电源的输出功率为P ′=I ′2R ′=E 2

9(W)=P 0,

故D 正确。

【典例4】在纯电阻电路中,当用一个固定的电源(设E 、r 是定值)向变化的外电阻供电时,关于电源的输出功率P 随外电阻R 变化的规律如图所示。下列判断中正确的是( )

A. 当R =r 时,电源有最大的输出功率

B. 电源内阻消耗的功率随外电阻R 的增大而增大

C. 电源的功率P 总随外电阻R 的增大而增大

D. 电源的效率η随外电阻R 的增大而增大 【答案】AD 【解析】

【跟踪短训】

1. 如图所示的电路中,电源的电动势和内阻

保持不变,下列说法中正确的是( )

A. 闭合电路中,电流总是从电势高的地方流向电势低的地方

B. 越大,路端电压越大

C. 越大,电源的输出功率越大

D. 阻值不同,电源的输出功率可能相同

【答案】

BD

2.如图所示,闭合开关S后,A灯与B灯均发光,当滑动变阻器的滑片P向左滑动时,以下说法中正确的是().

A.A灯变亮

B.B灯变亮

C.电源的输出功率可能减小

D.电源的总功率增大

【答案】AC

【解析】滑动变阻器的滑片P向左滑动,R的阻值增大,外电路的总电阻增大,由闭合电路欧姆定

律知,干路的电流I=E

R外+r

减小,则B灯变暗,路端电压U=E-Ir增大,灯泡A两端的电压U A=U-U B

增大,A灯变亮,则A选项正确,B选项错误;电源的输出功率P外=

E2

R外+2r+r2

R外

可能减小,电源的总功率P=EI减小,则C选项正确、D选项错误.

课后作业

1.一白炽灯泡的额定功率与额定电压分别为36 W与36 V。若把此灯泡接到输出电压为18 V的电源两

端,则灯泡消耗的电功率( )

A .等于36 W

B .小于36 W ,大于9 W

C .等于9 W

D .小于9 W

【答案】B

2.(多选)一台电动机的线圈电阻与一只电炉的电阻相同,都通过相同的电流,在相同时间内( ). A .电炉放热与电动机放热相等 B .电炉两端电压小于电动机两端电压 C .电炉两端电压等于电动机两端电压 D .电动机消耗的功率大于电炉的功率 【答案】 ABD

【解析】 电炉属于纯电阻,电动机属于非纯电阻,对于电炉有:U =IR ,放热Q =I 2Rt ,消耗功率P =I 2R ,对于电动机有:U >IR ,放热Q =I 2Rt ,消耗功率P =UI >I 2R .

3.(多选)下列关于电功、电功率和焦耳定律的说法中正确的是( ). A .电功率越大,电流做功越快,电路中产生的焦耳热一定越多 B .W =UIt 适用于任何电路,而

W =I 2Rt =

U 2

R

t 只适用于纯电阻的电路 C .在非纯电阻的电路中,UI >I 2R D .焦耳热Q =I 2Rt 适用于任何电路 【答案】 BCD

【解析】 电功率公式P =W t ,功率越大,表示电流做功越快.对于一段电路,有P =IU ,I =P

U ,焦耳

热Q =????P U 2

Rt ,可见Q 与P 、U 、t 都有关.所以,P 越大,Q 不一定越大,A 不对.W =UIt 是电功的定义式,适用于任何电路,而I =U

R 只适用于纯电阻的电路,B 对.在非纯电阻的电路中,电流所做的功=焦耳

热+其他形式的能,所以W >Q ,即UI >I 2R ,C 正确.Q =I 2Rt 是焦耳热的定义式,适用于任何电路中产生的焦耳热,D 正确.

4.电子产品制作车间里常常使用电烙铁焊接电阻器和电容器等零件,技术工人常将电烙铁和一个灯泡串联使用,灯泡还和一只开关并联,然后再接到市电上(如图7-1-11所示),下列说法正确的是( ).

A .开关接通时比开关断开时消耗的总电功率大

B .开关接通时,灯泡熄灭,只有电烙铁通电,可使消耗的电功率减小

C .开关断开时,灯泡发光,电烙铁也通电,消耗的总功率增大,但电烙铁发热较少

D .开关断开时,灯泡发光,可供在焊接时照明使用,消耗总功率不变 【答案】 A

【解析】 开关接通时,灯泡被短路,灯泡熄灭,电路的总电阻变小,电路的总功率P =U 2

R 变大,电烙

铁的功率变大.

5.两个电池1和2的电动势E 1>E 2,它们分别向同一电阻R 供电,电阻R 消耗的电功率相同。比较供电时电池1和2内部消耗的电功率P 1和P 2及电池的效率η1和η2的大小,则有( )

A .P 1>P 2,η1>η2

B .P 1>P 2,η1<η2

C .P 1

η2

D .P 1

【答案】B

6. 如图所示,电阻R 和电动机串联接到电路中,已知电阻R 跟电动机线圈的电阻相等,开关闭合后,电动机正常工作,设电阻R 和电动机两端的电压分别为U 1和U 2;经过时间t ,电流通过电阻R 做功为W 1,产生的热量为Q 1;电流通过电动机做功为W 2,产生的热量为Q 2,则有( )

A .U 1=U 2,Q 1

B .W 1

C .W 1

D .U 1>U 2,Q 1=Q 2

【答案】B

【解析】 电阻R 和电动机串联,流过两用电器的电流相同。电阻R 跟电动机线圈的电阻相等,由焦耳定律可知两者产生的热量相等,即Q 1=Q 2。电动机正常工作时为非纯电阻用电器,消耗的电能绝大部分转化为机械能,所以电流通过电动机做的功要大于电流通过电阻R 做的功,即W 1

7.电池对用电器供电时,是其它形式能(如化学能)转化为电能的过程;对充电电池充电时,可看做是这一过程的逆过程。现用充电器为一手机锂电池充电,等效电路如图所示。已知充电器电源的输出电压

为U ,输出电流为I ,手机电池的电动势为E ,内阻为r 。下列说法正确的是

A. 充电器的输出电功率为2EI I r -

B. 电能转化为化学能的功率为2UI I r +

C. 电能转化为化学能的功率为2UI I r -

D. 充电效率为100U

E

?% 【答案】C

8.如图所示,玩具电动机、电流表、开关盒电池组成闭合电路.闭合开关S ,发现电动机启动时电流表的读数比正常工作时的读数要大;当正常运转后用手轻触电动机转轴,使转速逐渐变慢,发现电流表读数逐渐变大,则以下说法中正确的是( )

A. 电动机启动时产生的反电动势较小,因此电流表的读数较大

B. 用手轻触电动机产生的反电动势较大,因此电流表的读数较大

C. 用手轻触使电动机停止转动,这时电动机消耗功率最小

D. 为防止电动机烧坏,在启动时可以先加较小电压,达到一定转速后再改为额定电压 【答案】AD

点晴:本题关键明确电动机转动产生反电动势,阻碍电流,反电动势与原电动势越接进,电流越小。 9.如图所示的电路,电源电动势为12V ,内阻恒定且不可忽略.初始时刻,电路中的电流等于I 0,且观察到电动机正常转动.现在调节滑动变阻器使电路中的电流减小为I 0的一半,观察到电动机仍在转动.不考虑温度对电阻的影响,下列说法正确的是( )

A. 电源的热功率减为初始时的一半

B. 电源的总功率减为初始时的一半

C. 电动机的热功率减为初始时的一半

D. 变阻器的功率减为初始时的四分之一 【答案】B

【解析】AC 、电源的内阻和电动机的内阻不变,根据公式

知:电路中的电流减小为的一半,

则电源的热功率减为初始时的,电动机的热功率减为初始时的,故A 、C 错误;

B 、根据P =EI 知:电路中的电流减小为的一半,而电源的电动势不变,则电源的总功率减为初始时的一半,故B 正确;

D 、电路中的电流减小为的一半,说明变阻器接入电路的电阻增大,所以由知变阻器的功率大

于初始时的,故D 错误;

故选B 。

10. 一辆电动观光车蓄电池的电动势为E ,内阻不计,当空载的电动观光车以大小为v 的速度匀速行驶时,流过电动机的电流为I ,电动车的质量为m ,电动车受到的阻力是车重的k 倍,忽略电动观光车内部的摩擦,则( ).

A .电动机的内阻为R =E

I

B .电动机的内阻为R =E I -kmgv

I 2

C .电动车的工作效率η=kmgv

EI

D .电动机的发热效率η=EI -kmgv

EI

【答案】 BCD

【解析】 根据能量守恒定律,EI =I 2R +kmgv ,所以电动机的内阻为R =E I -kmgv

I 2,选项A 错误、B

正确;电动车的工作效率等于输出功率与总功率之比,即η=kmgv

EI ,所以C 正确;电动机的发热效率η=

EI -kmgv

EI

,D 正确. 11. 如图所示的电路中,电源电动势为12 V ,内阻为2 Ω,四个电阻的阻值已在图中标出。闭合开关S ,下列说法正确的有( )

A .路端电压为10 V

B .电源的总功率为10 W

C .a 、b 间电压的大小为5 V

D .a 、b 间用导线连接后,电路的总电流为1 A 【答案】AC

12.如图所示的电路中,两平行金属板之间的带电液滴处于静止状态,电流表和电压表均为理想电表,由于某种原因灯泡L 的灯丝突然烧断,某余用电器均不会损坏,则下列说法正确的是( )

A .电流表、电压表的读数均变小

B .电源内阻消耗的功率变大

C .液滴将向上运动

D .电源的输出功率变大

【答案】C

13.如图所示电路,电源电动势为E,串联的固定电阻为R2,滑动变阻器的总电阻为R1,电阻大小关系为R1=R2=r,则在滑动触头从a端移动到b端的过程中,下列描述中正确的是().

A.电路中的总电流先减小后增大

B.电路的路端电压先增大后减小

C.电源的输出功率先增大后减小

D.滑动变阻器R1上消耗的功率先减小后增大

【答案】AB

【解析】在滑动触头从a端移动到b端的过程中,R1接入电路的电阻(实际上是R aP与R bP的并联电阻)先增大后减小,所以电路中的总电流先减小后增大,电路的路端电压先增大后减小,A、B正确;题中R外总大于电源内阻,外电路电阻R外越接近电源内阻,电源输出功率越大,滑动触头从a端移动到b端的过程中,R1接入电路的电阻先增大后减小,电源的输出功率先减小后增大,C错误;将R2+r视为电源内阻,在滑动触头从a端移动到b端的过程中,外电阻R1接入电路的电阻先增大后减小,滑动变阻器R1上消耗的功率先增大后减小,D错误.

14.如图所示是一提升重物用的直流电动机工作时的电路图.电动机内电阻r=0.8 Ω,电路中另一电阻R=10 Ω,直流电压U=160 V,电压表示数U V=110 V.试求:

(1)通过电动机的电流;

(2)输入电动机的电功率;

(3)若电动机以v=1 m/s匀速竖直向上提升重物,求该重物的质量?(g取10 m/s2)

【答案】(1)5 A(2)550 W(3)53 kg

物理 电磁感应中的能量问题 基础篇

物理总复习:电磁感应中的能量问题 【考纲要求】 理解安培力做功在电磁感应现象中能量转化方面所起的作用。 【考点梳理】 考点、电磁感应中的能量问题 要点诠释: 电磁感应现象中出现的电能,一定是由其他形式的能转化而来的,具体问题中会涉及多种形式能之间的转化,如机械能和电能的相互转化、内能和电能的相互转化。分析时应当牢牢抓住能量守恒这一基本规律,分析清楚有哪些力做功就可以知道有哪些形式的能量参与了相互转化,如有摩擦力做功,必然有内能出现;重力做功就可能有机械能参与转化;安培力做负功就是将其他形式的能转化为电能,做正功就是将电能转化为其他形式的能,然后利用能量守恒列出方程求解。 电能求解的主要思路: (1)利用克服安培力做功求解:电磁感应中产生的电能等于克服安培力所做的功。 (2)利用能量守恒求解:机械能的减少量等于产生的电能。 (3)利用电路特征求解:通过电路中所产生的电流来计算。 【典型例题】 类型一、根据能量守恒定律判断有关问题 例1、如图所示,闭合线圈abcd用绝缘硬杆悬于O点,虚线表示有界磁场B,把线圈从图示位置释放后使其摆动,不计其它阻力,线圈将() A.往复摆动 B.很快停在竖直方向平衡而不再摆动 C.经过很长时间摆动后最后停下 D.线圈中产生的热量小于线圈机械能的减少量 【思路点拨】闭合线圈在进出磁场的过程中,磁通量发生变化,闭合线圈产生感应电流,其机械能转化为电热,根据能量守恒定律机械能全部转化为内能。 【答案】B 【解析】当线圈进出磁场时,穿过线圈的磁通量发生变化,从而在线圈中产生感应电流,机械能不断转化为电能,直至最终线圈不再摆动。根据能量守恒定律,在这过程中,线圈中产生的热量等于机械能的减少量。 【总结升华】始终抓住能量守恒定律解决问题,金属块(圆环、闭合线圈等)在穿越磁场时有感应电流产生,电能转化为内能,消耗了机械能,机械能减少,在磁场中运动相当于力学部分的光滑问题,不消耗机械能。上述线圈所出现的现象叫做电磁阻尼。用能量转化和守恒定律解决此类问题往往十分简便。磁电式电流表、电压表的指针偏转过程中也利用了电磁阻尼现象,所以指针能很快静止下来。 举一反三 【变式】光滑曲面与竖直平面的交线是抛物线,如图所示,抛物线的方程是y=x2,下半部处在一个水平方向的匀强磁场中,磁场的上边界是y=a的直线(图中的虚线所示).一个小金属块从抛物线上y=b(b>a)处以速度v沿抛物线下滑.假设抛物线足够长,金属块沿抛物线下滑后产生的焦耳热总量是( )

一种压电能量收集装置设计

一种压电能量收集装置的设计 研究现状: 压电能量收集模式将压电材料铺设于道路路而结构中,利用压电效应将道路上交通荷载产生的部分机械能转化为电能,继而将产生的电能收集、处理、利用。自从1880年代居里兄弟发现压电效应至今,经过100多年的研究积淀,针对压电材料性能及应用研究己日趋成熟。由于其优良的能量转换能力,压电能量收集系统受到了全球科研机构及企业的普遍关注。 2008年以色列的Innowattech公司与海法理工学院共同研发了应用于道路工程的压电能量收集系统(Innowattech Piezo Electric Venerator,IPEV)。图1,2分别为IPEV的概念模型和现场试验照片。采用该能量收集系统,交通量为600 }eh " h 1的一条双车道道路上能产生0. 4 MW " km 以上的电量,可支持400 ^} 600户家庭的日常用电;且随着交通量、车载的增加,收集的电能也随之增加;IPEV的使用不会增加车辆单位油耗;其使用寿命约为30年。然而,该技术尚处于对外保密阶段,不能给中国研究者提供直接参考。 Lee等口6〕研究了路而动态荷载作用下基于压电效应的能量转化影响因素及其之间的关系;Ye等o;〕提出了一种基于遗传算法的压电换能器自动优化方法,通过该方法设计的换能器可以根据实时路而振动数据自动调节内部频率以收集更多的能量;曹秉刚等mo研发了一种利用公路系统振动能量压电发电的方法和系统;林伟等口月设计了一种应用于沥青混凝土路而的堆叠式压电自发电能量采集与照明装置;Zhao等基于有限元对应用于沥青路而进行能量收集的钱式压电能量收集器参数进行了分析优化,在20 Hz, 0. 7 MPa交通荷载的作用下,按照其设计的钱式换能器,计算机模拟单个钱式压电能量收集器可产出功率为1.2mW的电能;Ky-missis在麻省理工学院将压电晶体置于鞋内,研究出一种发电鞋。测定发现压电晶体产生的峰值电能为80mW ; Rastega等开发了一种可应用于多种平台的针

2019版必修3第十二章电路中的能量转化

电路中的能量转化 如图 12.1-3 ,当电动机接上电源后,会带动风扇转 动,这里涉及哪些功率?功率间的关系又如何? 【例题】一台电动机,线圈的电阻是0.4 Ω, 当它两端所加的电压为220V 时,通过的电流是 5A。这台电动机发热的功率与对外做功的功率各 是多少?分析本题涉及三个不同的功率:电动机消 耗的电功率 P 电、电动机发热的功率 P 热和对外做 功转化为机械能的功率 P 机。三者之间遵从能量守恒定律,即 P 电= P机+ P热解由焦耳定律可知,电动机发热的功率为 P热 =I2R=52×0.4W=10W电动机消耗的电功率为 P电= UI= 220× 5W= 1100W 根据能量守恒定律,电动机对外做功的功率为 P机= P电- P热= 1100W -10W =1090W 这台电动机发热的功率为10W,对外做功的功率为 1090W 。 练习与应用 1.试根据串、并联电路的电流、电压特点推导:串联电路和并联电路各导体消耗的电功率与它们的电阻有什么关系?

2.电饭锅工作时有两种状态:一种是锅内的水烧干以前的加热状 态,另一种是水烧干以后的保温状 态。图 12.1-4 是电饭锅的电路图, R1是电阻, R2是加热用的电 阻丝。( 1)自动开关 S接通和断开时,电饭锅分别处于哪种状 在保态?说明理由。(2 )要使电饭锅温状态下的功率是加热状态的 一半, R1R2 应该是多少?

3.四个定值电阻连成图 12.1-5 所示的电路。 RA 、 RC 的规格为 “ 10V4W ”,RB 、RD 的规格为“ 10V2W ”。请按消耗功率大小的顺序 排列这四个定值电阻,并说明理由。 4.如图 12.1-6 ,输电线路两端的电压 U 为 220V ,每条输电线的电阻 R 为 5Ω,电热水器 A 的电 阻 RA 为 30 Ω。求电热水器 A 上的电压和它消耗的功率。如果再并联一个电阻 RB 为 40Ω的电热水壶 B , 则 电热水器 和电热水壶消耗的功率各是多少? 闭合电路的欧姆定律练习与应用 1.某个电动势为 E 的电源工作时,电流为 I ,乘积 EI 的单位是什么?从电动势的意义来考 虑, EI 表 示 什么? 2.小张买了一只袖珍手电筒, 里面有两节干电池。 他取出手电筒中的小灯泡, 看到上面标有“ 2.2V0.25A ” 的字样。小张认为,产品设计人员的意图是使小灯泡在这两节干电池的供电下正常发光。由此,他 推算出了每节干电池的内阻。如果小张的判断是正确的,那么内阻是多少? 提示:串联电池组的电动势等于各个电池的电动势之和,内阻等于各个电池的内阻之和。 3.许多人造地球卫星都用太阳电池供电(图 12.2-7 )。太阳电池由许多片电池板组成。某电池板不接 负载时的电压是 600μV ,短路电流是 30 μA 。这块电池板的内阻是多少? 4.电源的电动势为 4.5V 、外电阻为 4.0Ω时,路端电压为 4.0V 。如果在外电 路并联一个 6.0Ω的电阻,路端电压是多少?如果 6.0Ω的电阻串联在外电 路中,路端电压又是多少? 5.现有电动势为 1.5V 、内阻为 1.0Ω的电池多节,准备用几节这样的电池串联起来对一个工作电压为 6.0V 、工作电流为 0.1A 的用电器供电。问:最少需要用几节这种电池?电路还需要一个定值电阻来 分压,请计算这个电阻的阻值。 6.图 12.2-8 是汽车蓄电池供电简化电路图。当汽车启动S 闭合,电动机工作,车

第37课时 闭合电路中的能量转化 含容电路 故障分析(A)

第37课时 闭合电路中的能量转化 含容电路 故障分析(A 卷) 考测点导航 1、电源的功率和效率。 ⑴功率:①电源的功率(电源的总功率)P E =EI ②电源的输出功率P 出=UI ③电源内部消耗的功率P r =I 2 r ⑵电源的效率:%100?= ε η··I U I 2、根据能量的转化和守恒定律,在闭合电路中应有 ,即内出总P P P += 2I I U I r ε=+··· 3、电源的输出功率(在纯电阻电路中) 电源输出功率随外电阻变化的图线如图37—A--1所示,而当外电路电阻等于内电阻时,电源的输 出功率最大。即r P r R m 42 ε= =时当 4、恒定电流中有关电容器问题,在中学阶段一般只研究稳态情况,电容器的“隔直”性质决定了恒定电流电路中含有电容器的支路具有断路的特点。 5、关于电路的故障的分析与排除 电路出现的故障有两个原因:(1)短路;(2)断路(包括接线断或接触不良、电器损坏等情况)。 一般检测故障用电压表. 如果电压表示数为0,说明电压表上无电流通过,可能在并联路段之外有断路,或并联段内有短路.如果电压表有示数,说明电压表上有电流通过,则在并联段之外无断路,或并联段内无短路. 典型题点击 1、(2003江苏)在如图37—A--2所示的电路中,电源的电 动势ε=3.0V ,内阻r =1.0Ω, 电阻R 1=10Ω,R 2=10Ω,R 3=30Ω,R 4=35Ω;电容器的电容C =uF ,电容器原来不带电.求接通电键K 后流过R 4的总电量。(本题主要考查闭合电路中的电容问题) 2、如图37—A--3所示理想伏特表和安培表与电阻R 1、R 2、R 3连接的电路中,已知:R 3=4Ω,安 培表读数为0.75A ,伏特表读数为2V ,由于某一电阻断路,使安培表读数为0.8A ,而伏特表读数为3.2V 。(1)哪一只电阻发生断路。(2)电源电动势和内阻各为多大? (本题主要考查闭合电路的欧姆定律和故障问题的处理) 3、如图37—A--4,电源电动势=9.0V 内阻r=1.0Ω R 1=0.5Ω,求R 2 阻值多大时, (1) 电源输出的电功率 最大?最大输出功率是多少? 此时效率? (2)电阻R 1的电功率最大?最大电功率是多少? (3)滑动变阻器R 2的电功率最大? 最大电功率是多少?(本题主要考查纯电阻电路的电功率的计算,注意考虑等效电源的处理) 4、在图37—A--5所示电路中,ε为电源电动势,r 为电源内阻,R 1为可变电阻,R 0、R 2、R 3、R 皆为固定电阻,当调大R 1时,试定 性推论R 2、R 3、R 0及R 上的功率将如何变化?(本题主要考查电压、电流、电阻和欧姆定律,考查推理能力) 新活题网站 一、选择题 1、将两个阻值不同的电阻R 1、R 2分别单独与同一电源连接,如果在相同的时间内,R 1、R 2发出的热量相同,则电源内阻为[ ] (A ) 12 2 R R + (B )1212R R R R + (C (D ) 12 12 R R R R + (本题主要考查闭合电路的欧姆定律中的电热问题,本题还可以从U —I 图象上来理解) 2、电源的电动势和内阻都保持一定,在外电路的电阻逐渐减小的过程中,下面说法中正确的是 [ ] (A)电源的路端电压一定逐渐变小 (B)电源的输出功率一定逐渐变小 (C)电源内部消耗的功率一定逐渐变大 (D)电源的供电效率一定逐渐变小 (本题主要考查闭合电路的欧姆定律中的动态变化分析问题及有关基本概念) 3、如图37—A--6所示,A 、B 两盏电灯完全相同,当滑动变阻器的滑头向左移动时,则[ ] (A )A 灯变亮,B 灯变亮 (B )A 灯变暗,B 灯变亮 (C )A 灯变亮,B 灯变暗 (D )A 灯变暗,B 灯变暗 (本题主要考查闭合电路的欧姆定律中的动态变化分 析中的功率问题) 图37—A--4 图37—A--1 图37—A--5 图37—A--2 图37—A--3 图37—A--6

高中物理 电磁感应现象中的能量问题

电磁感应现象中的能量问题 能的转化与守恒,是贯穿物理学的基本规律之一。从能量的观点来分析、解决问题,既是学习物理的基本功,也是一种能力。 电磁感应过程中产生的感应电流在磁场中必定受到安培力的作用,因此,要维持感应电流的存在,必须有“外力”克服安培力做功。此过程中,其他形式的能量转化为电能。当感应电流通过用电器时,电能又转化为其他形式的能量。“外力”克服安培力做了多少功,就有多少其他形式的能转化为电能。同理,安培力做功的过程,是电能转化为其它形式能的过程。安培力做了多少功,就有多少电能转化为其它形式的能。 认真分析电磁感应过程中的能量转化、熟练地应用能量转化和守恒定律是求解较复杂的电磁感应问题的常用方法,下面就几道题目来加以说明。 一、安培力做功的微观本质 1、安培力做功的微观本质 设有一段长度为L、矩形截面积为S的通电导体,单位体积中含有的自由电荷数为n,每个自由电荷的电荷量为q,定向移动的平均速率为v,如图所示。 所加外磁场B的方向垂直纸面向里,电流方向沿导体水平向右,这个电流是由于自由电子水平向左定向运动形成的,外加磁场对形成电流的运动电荷(自由电子)的洛伦兹力使自由电子横向偏转,在导体两侧分别聚集正、负电荷,产生霍尔效应,出现了霍尔电势差,即在导体内部出现方向竖直向上的横向电场。因而对在该电场中运动的电子有电场力f e的作用,反之自由电子对横向电场也有反作用力-f e作用。场强和电势差随着导体两侧聚集正、负电荷的增多而增大,横向电场对自由电子的电场力f e也随之增大。当对自由电子的横向电场力f e增大到与洛伦兹力f L相平衡时,自由电子没有横向位移,只沿纵向运动。导体内还有静止不动的正电荷,不受洛伦兹力的作用,但它要受到横向电场的电场力f H的作用,因而对横向电场也有一个反作用力-f H。由于正电荷与自由电子的电量相等,故正电荷对横向电场的反作用-f H和自由电子对横向电场的反作用力-f e相互抵消,此时洛伦兹力f L与横向电场力f H相等。正电荷是导体晶格骨架正离子,它是导体的主要部分,整个导体所受的安培力正是横向电场作用在导体内所有正电荷的力的宏观表现,即F=(nLS)f H=(nLS)f L。 由此可见,安培力的微观本质应是正电荷所受的横向电场力,而正电荷所受的横向电场力正是通过外磁场对自由电子有洛伦兹力出现霍尔效应而实现的。

LinearLTC压电能量收集电源方案

Linear LTC3588-1压电能量收集电源方案 关键字:电源管理,能量收集器,DC/DC转换器Linear 公司的LTC3588-1是压电能量收集电源,集成了低噪音全波整流和高效降压转换器,组成完整的能量收集解决方案,最适合高输出阻抗的能量源如压电传感器.输入电压2.7V-20V,输出电流高达100mA,可选输出电压1.8V, 2.5V, 3.3V和3.6V,可用于压电能量收集,电-机械能量收集,无线HVAC传感器,轮胎压里传感器,遥控光开关,毫微瓦降压稳压器.本文介绍LTC3588-1主要特性,方框图以及多种应用电路图,包括 100mA压电能量收集电源电路图, 最小尺寸的1.8V低压输入压电能量收集电源电路图, 电场能量和热电能量收集器电路图等. LTC3588-1: Piezoelectric Energy Harvesting Power Supply The LTC.3588-1 integrates a low-loss full-wave bridge rectifier with a high efficiency buck converter to form a complete energy harvesting solution optimized for high output impedance energy sources such as piezoelectric transducers. An ultralow quiescent current

undervoltage lockout (UVLO) mode with a wide hysteresis window allows charge to accumulate on an input capacitor until the buck converter can effi ciently transfer a portion of the stored charge to the output. In regulation, the LTC3588-1 enters a sleep state in which both input and output quiescent currents are minimal. The buck converter turns on and off as needed to maintain regulation. Four output voltages, 1.8V, 2.5V, 3.3V and 3.6V, are pin selectable with up to 100mA of continuous output current; however, the output capacitor may be sized to service a higher output current burst. An input protective shunt set at 20V enables greater energy storage for a given amount of input capacitance. LTC3588-1主要特性: 950nA Input Quiescent Current (Output in Regulation – No Load) 450nA Input Quiescent Current in UVLO

12-1电路中能量转化练习题

12-1电路中能量转化 1.关于电功,下列说法中正确的有( ) A .电功的实质是静电力所做的功 B .电功是电能转化为其他形式能的量度 C .静电力做功使金属导体内的自由电子运动的速率越来越大 D .电流通过电动机时的电功率和热功率相等 2.关于四个公式①P =UI ;②P =I 2R ;③P =U 2R ;④P =W t ,下列叙述正确的是( ) A .公式①④适用于任何电路的电功率的计算 B .公式②适用于任何电路的热功率的计算 C .公式①②③适用于任何电路电功率的计算 D .以上均不正确 3.两个精制电阻,用锰铜电阻丝绕制而成,电阻上分别标有“100 Ω,10 W ”和“20 Ω,40 W ”,则它们的额定电流之比为( ) A.5∶5 B.10∶20 C.5∶10 D .1∶2 000 4.额定电压、额定功率均相同的电风扇、电烙铁和日光灯,各自在额定电压下正常工作了相同的时间.比较它们产生的热量,结果是( ) A .电风扇最多 B .电烙铁最多 C .日光灯最多 D .一样多 5.额定电压都是110 V ,额定功率P A =100 W ,P B =40 W 的灯泡两盏,若接在电压为220 V 的电路上,使两盏灯泡均能正常发光,且消耗功率最小的电路是( )

6.两盏额定功率相同的灯泡A和B,其额定电压U A>U B,则下列说法正确的是() A.两灯正常发光时,灯泡的电流I A>I B B.两灯电阻R A

基于压电材料的振动能量收集试验研究

第27卷第3期2010年6月 现代电力 M oder n Electr ic P ower Vol127No13 June2010 文章编号:100722322(2010)0320070205文献标识码:A 基于压电材料的振动能量收集试验研究 任思源,何青 (华北电力大学能源动力与机械工程学院,北京102206) Experimental S tudy on Vibration Energy Collection Based on Piezoelectric Material Ren Siyuan,H e Q ing (School of Energy,P ower and Mechanical Engineering,North China Elect ric Power Univer sity,Beijing102206,China) 摘要:针对设备状态监测与故障诊断实时监测的要求,以应用于无线传感器网络节点供电为目的,根据材料的压电特性及其等效电模型,设计出将振动能转化成电能的能量收集的试验系统。该试验系统由压电片、振动台、整流转换、充电电路以及可充电锂离子电池等组成。以整流电路、开关控制部分,结合超级电容,设计出基于压电材料的振动能综合转换收集试验方案,制作出小型设备,通过试验验证其应用的可行性,记录并分析试验数据。试验表明,振动能量能够被有效地转化为电能并先储存于超级电容中,后由开关系统控制充电芯片实现断续充电,将电能储存至锂电池中。 关键词:压电材料;振动;能量收集;超级电容;锂电池 Abstract:Based on the piezoelectric characteristics and e2 quivalent electrical model of the material,an experimental system has been designed to convert the energy of vibration into the elect ric power.The experimental system takes the real time requirement of condition monitoring and faults di2 agnosis as background and aims at the application of the power supply for wireless sensor network nodes.It consists of piezoelectric ceramics,vibration shaker,rectifier con2 verter,charge circuit,Lithium battery,etc.,the experi2 mental scheme is accomplished to convert and collect the vi2 brat ion energy of the piezoelectric material with synthesizing rectifier,switching part and super capacitor.A small device has been analyzed and verified with experiments and the re2 corded data.The experiment shows that vibration energy can be converted to electrical energy and then electrical en2 ergy is stored in Super Capacitor,intermittently charged through switching part into charge chip,and stored in a lith2 ium battery. Key w ords:piezoelectric;vibration;energy harvesting; Super Capacitor;Lithium Battery 0引言 随着无线设备的广泛应用,其供电问题受到人们的广泛关注。在许多使用电池供电的场合,电池的频繁更换不仅会增加使用费用,而且会造成环境污染,特别在一些人类无法到达、无法接触的特殊场合,其电池更换更难。另外在设备监测与故障诊断的应用中,电池电量用完且又无法及时更换会造成严重的后果[1]。为解决这些问题,人们开始考虑把周围环境中的能量,如化学能、光能及机械振动能等,转换成电能收集并存储起来。 在工矿、电力、石油等行业内部,大型机械设备的应用极为广泛。与此同时,随着联合能量收集技术的发展,大型机械设备的振动能量收集利用也随之广泛发展起来。 研究人员目前已经开发出从振动中收集能量的装置。这些装置可采用电磁式、静电式或压电式将机械运动转换为电能。这3种机电转换方式的能量贮存密度比较如表1所示。而且,现在一些公司开始生产振动能量转换器,每一种转换器各有优缺点。一般来说,静电式转换器需要保持一很小的空气间隙,且功率密度较低,电磁转换器常常输出电压低,而压电式转换器却要依赖于较脆的陶瓷[2]。依据理论、仿真和实验,对大部分应用来说,3种转换器中压电式转换器是最有潜力的。 表1能量贮存密度比较 类型实际最大值/(mJ#cm-3)理论最大值/(mJ#cm-3) 压电式3514335 静电式444 电磁式2418400 本文所介绍的是一种基于压电片的压电振动能量收集技术试验,该能量收集技术试验是由振动台作为动力源,压电片产生电流可以存放在超级电容

19电磁感应中的能量问题和电路

第十九讲:电磁感应中的能量问题和电路 一、动生电动势和微观能量转化机制 【例1】 (1)如图1所示,固定于水平面上的金属框架abcd ,处在竖直向下 的匀强磁场中。金属棒MN 沿框架以速度v 向右做匀速运动。框架的ab 与dc 平行,bc 与ab 、dc 垂直。MN 与bc 的长度均为l ,在运动过程中MN 始终与bc 平行,且与框架保持良好接触。磁场的磁感应强度为B 。 a. 请根据法拉第电磁感应定律t Φ E ??= ,推导金属棒MN 中的感应电动势E ; b. 在上述情景中,金属棒MN 相当于一个电源,这时的非静电力与棒中自由电子所受洛伦兹力有关。请根据电动势的定义,推导金属棒MN 中的感应电动势E 。 (2)为进一步研究导线做切割磁感线运动产生感应电动势的过程,现构建如下情景: 如图2所示,在垂直于纸面向里的匀强磁场中,一内壁光滑长为l 的绝缘细管MN ,沿纸面以速度v 向右做匀速运动。在管的N 端固定一个电量为q 的带正电小球(可看做质点)。某时刻将小球释放,小球将会沿管运动。已知磁感应强度大小为B ,小球的重力可忽略。在小球沿管从N 运动到M 的过程中,求小球所受各力分别对小球做的功。 二、能量流动和电路分析 【例2】图中MN 和PQ 为竖直方向的两平行长直金属导轨,间距l 为0.40m ,电阻不计。导轨所在平面与磁感应强度B 为0.50T 的匀强磁场垂直。质量m 为6.0×10-3 kg 、电阻为1.0Ω的金属杆ab 始终垂直于导轨,并与其保持光滑接触。导轨两端分别接有滑动变阻器和阻值为3.0Ω的电阻R 1。当杆ab 达到稳定状态时以速率v 匀速下滑,整个电路消耗的电功率P 为0.27W ,重力加速度取10m/s 2,试求速率v 和 滑动变阻器接入电路部分的阻值R 2。 图1 图2 B a P

电磁感应中的动力学和能量问题(教师版)

专题 电磁感应中的动力学和能量问题 一、电磁感应中的动力学问题 1.电磁感应与动力学、运动学结合的动态分析,分析方法是: 导体受力运动产生感应电动势→感应电流→通电导线受安培力→合外力变化→加速度变化→速度变化→感应电动势变化→……周而复始地循环,直至达到稳定状态. 2.分析动力学问题的步骤 (1)用电磁感应定律和楞次定律、右手定则确定感应电动势的大小和方向. (2)应用闭合电路欧姆定律求出电路中感应电流的大小. (3)分析研究导体受力情况,特别要注意安培力方向的确定. (4)列出动力学方程或平衡方程求解. 3.两种状态处理 (1)导体处于平衡态——静止或匀速直线运动状态. 处理方法:根据平衡条件——合外力等于零,列式分析. (2)导体处于非平衡态——加速度不为零. 处理方法:根据牛顿第二定律进行动态分析或结合功能关系分析. 二、电磁感应中的能量问题 1.电磁感应过程的实质是不同形式的能量转化的过程.电磁感应过程中产生的感应电流在磁场中必定受到安培力作用,因此要维持感应电流存在,必须有“外力”克服安培力做功.此过程中,其他形式的能转化为电能,“外力”克服安培力做多少功,就有多少其他形式的能转化为电能;当感应电流通过用电器时,电能又转化为其他形式的能.可以简化为下列形式: 其他形式的能 如:机械能 ――→安培力做负功电能 ――→电流做功其他形式的能 如:内能 同理,安培力做功的过程,是电能转化为其他形式的能的过程,安培力做多少功就有多少电能转化为其他形式的能. 2.电能求解的思路主要有三种 (1)利用克服安培力做功求解:电磁感应中产生的电能等于克服安培力所做的功; (2)利用能量守恒求解:机械能的减少量等于产生的电能; (3)利用电路特征求解:通过电路中所产生的电能来计算. 例1 如图所示,MN 、PQ 为足够长的平行金属导轨,间距L =0.50 m ,导轨平面与水平面间夹角θ=37°,N 、Q 间连接一个电阻R =5.0 Ω,匀强磁场垂直于导轨平面向上,磁感应强度B =1.0 T .将一根质量为m =0.050 kg 的金属棒放在导轨的ab 位置,金属棒及导轨的电阻不计.现由静止释放金属棒,金属棒沿导轨向下运动过程中始终与导轨垂直,且与导轨接触良好.已知金属棒与导轨间的动摩擦因数μ=0.50,当金属棒滑行至cd 处时,其速度大小开始保持不变,位置cd 与ab 之间的距离s =2.0 m .已知g =10 m/s 2,sin 37°=0.60,cos 37°=0.80.求: (1)金属棒沿导轨开始下滑时的加速度大小; (2)金属棒到达cd 处的速度大小; (3)金属棒由位置ab 运动到cd 的过程中,电阻R 产生的热量. 解析 (1)设金属棒开始下滑时的加速度大小为a ,则 mg sin θ-μmg cos θ=ma a =2.0 m/s 2 (2)设金属棒到达cd 位置时速度大小为v 、电流为I ,金属棒受力平衡,有mg sin θ=BIL + μmg cos θ I =BL v R 解得v =2.0 m/s (3)设金属棒从ab 运动到cd 的过程中,电阻R 上产生的热量为Q ,由能量守恒, 有mgs sin θ=12 m v 2+μmgs cos θ+Q 解得Q =0.10 J 突破训练1 如图所示,相距为L 的两条足够长的平行金属导轨,与水平面的夹角为θ,导轨上固定有质量为m 、电阻为R 的两根相同的导体棒,导体棒MN 上方轨道粗糙、下方轨

小型光伏电池在能量收集中的应用

小型光伏电池在能量收集中的应用 作者:Jeff Gruetter 上网时间:2010年12月08日所属类别: 电源管理I 电源管理I 技术方案 关键字: 光伏电池DC/DC 无线传感器能量收集 超低功率解决方案可用于众多的无线系统,包括交通运输基础设施、医疗设备、轮胎压力检测、工业检测、楼宇自动化和贵重物品追踪。此类系统通常在其服役生涯的大部分时间里都处于待机睡眠模式,仅需极低的μW级功率。当被唤醒时,传感器将测量诸如压力、温度或机械偏转等参数并以无线的方式把这些数据传送至一个远程控制系统。整个测量、处理和传送时间通常只有几十ms,但在此短暂期间内有可能需要几百mW的功率。由于这些应用的占空比很低,因此必须收集的平均功率也会相对较低。电源可能就是一节电池而已。然而,电池将不得不以某种方式进行再充电,最终还得更换。在许多此类应用中,实际更换电池的成本之高使其缺乏可行性。这使得环境能量源成为了一种更具吸引力的替代方案。 新兴的毫微功率无线传感器应用 就楼宇自动化而言,诸如占有传感器、温度自动调节器和光控开关等系统能够免除通常所需的电源或控制线路,而代之以一个机械或能量收集系统。除了可以免除首先进行线路安装(或在无线应用中定期更换电池)的需要之外,这种替代方法还能减低有线系统往往存在的例行维护成本。 类似地,运用能量收集技术的无线网络能够将一幢建筑物内任何数目的传感器链接到一起,以通过在建筑物内无人居住时关断非紧要区域的供电来降低采暖、通风和空调(HV AC)以及照明成本。 典型的能量收集配置或无线传感器节点由4个模块组成(见图1)。它们是:1、一个环境能量源,比如:太阳能电池;2、一个用于给节点的其余部分供电的功率转换组件;3、一个将节点链接到现实世界的感测组件以及一个计算组件(由微处理器或微控制器组成,负责处理测量数据并将这些数据存贮到存储器中);4、一个由短程无线单元组成的通信组件,用于实现与相邻节点及外部世界的无线通信。 环境能量源的实例包括连接到某个发热源(例如:HV AC管道)的热电发生器(TEG)或热电堆,抑或是连接至某个机械振动源(如:窗玻璃)及太阳能电池的压电换能器。在存在发热源的情况下,紧凑的热电器件(常被称为“换能器”)能够将很小的温差转换为电能。而当存在机械振动或应变时,则压电器件能够用来把很小的振动或应变差转换为电能。最后,在存在光源的场合中,光伏电池在峰值日照条件下每平方厘米的面积能产生50W以上的电功率,而在室内照明条件下则可产生高达100μW的电功率。

闭合电路中的能量转化

闭合电路中的能量转化 教学目标 1.理解电路中的能量转化情况,即在电路中哪部分发生由什么能转化成什么能的问题.加深对能的转化和守恒定律的认识. 2.掌握分析、计算电路中功率及能量的转化的方法. 教学重点、难点分析 1.对电路中各部分做功情况(什么力做功)、能量转换情况(什么能之间的转化)的分析、理解. 2.认清电源输出功率与效率的联系与区别. 3.对非纯电阻电路中能量转化问题的理解、应用. 教学过程设计 教师活动 一、电路中的功与能 能的转化和守恒定律是自然界普遍适用的规律.在电路中能量是怎么转化的?请参照图3-4-1所示电路回答并举例. 学生活动 答:电源是把其它能转化为电能的装置.内阻和用电器是电能转化为热能等其它形式能的装置.如化学电池将化学能转化成电能,而电路中发光灯泡是将电能转化成光、热能. 对于一个闭合电路,它的能量应该是守恒的,但又在不同形式间转化,通过什么方式完成呢?(请结合电动势和电压的定义回答)

答:做功.在电源部分,非静电力做正功W非=q ,将其它形式的能转化成电能.而 内阻上电流做功,将电能转化成内能W内=qU′(U′为内阻上的电势降),在外电路部分,电流做功W外=qU(U为路端电压),电能转化成其它形式的能. 这些功与能量间的定量关系如何? 总结:可见,整个电路中的能量循环转化,电源产生多少电能,电路就消耗多少,收支平衡.答:W非=W内+W外 或q =qU′+qU 二、电功与电热 这部分知识初中学过,可以列出一些问题,让学生回答,教师补充说明即可. 如图3-4-2所示,用电器两端电压U,电流I. 回答:(1)时间t内,电流对用电器做功; (2)该用电器的电功率; (3)若用电器电阻为R,时间t内该用电器产生的热量; (4)该用电器的热功率; (5)电功与电热是否相等?它们的大小关系如何?为什么? 答: (1)W=UIt (2)P=W/t=UI (3)Q=I2Rt(焦尔定律) (4)P热=Q/t=I2R (5)若电路为纯电阻电路,则

电磁感应中的能量问题

电磁感应中的能量问题 【考点解读】 1.本专题是运动学、动力学、恒定电流、电磁感应和能量等知识的综合应用,高考既以选择题的形式命题,也以计算题的形式命题。 2.学好本专题,可以极大地培养同学们数形结合的推理能力和电路分析能力,针对性的专题强化,可以提升同学们解决数形结合、利用动力学和功能关系解决电磁感应问题的信心。 3.用到的知识有:左手定则、安培定则、右手定则、楞次定律、法拉第电磁感应定律、闭合电路欧姆定律、平衡条件、牛顿运动定律、函数图象、动能定理和能量守恒定律等。 【考点精讲】 1.题型简述 电磁感应过程的实质是不同形式的能量转化的过程,而能量的转化是通过安培力做功来实现的.安培力做功的过程,是电能转化为其他形式的能的过程;外力克服安培力做功的过程,则是其他形式的能转化为电能的过程。 2.解题的一般步骤 (1)确定研究对象(导体棒或回路); (2)弄清电磁感应过程中,哪些力做功,哪些形式的能量相互转化; (3)根据能量守恒定律或功能关系列式求解。 3.求解电能应分清两类情况 (1)若回路中电流恒定,可以利用电路结构及W =UIt 或Q =I 2Rt 直接进行计算。 (2)若电流变化,则 ①利用安培力做功求解:电磁感应中产生的电能等于克服安培力所做的功(理解发电机和电动机能量转化的区别); ②利用能量守恒求解:若只有电能与机械能的转化,则减少的机械能等于产生的电能; ③常用电量求法,R Blx n R S B n R n t I q =?=?Φ=?=,有时会用它求金属杆的位移。 还有时会用动量定理求电量,这两种方法经常结合使用。(一般在高三综合应用中使用) 4.物理术语焦耳热和摩擦热 ①电流通过电阻做功,将电能转化为内能,过程中产生的热量称为焦耳热(Rt I Q 2 =); ②系统克服一对动摩擦力做功,将机械能转化为内能,过程中产生的热量称为摩擦热(x F Q ?=μ)。 例1 如图1所示,间距为L 的平行且足够长的光滑导轨由两部分组成.倾斜部分与水平部分平滑相连,倾角为θ,在倾斜导轨顶端连接一阻值为r 的定值电阻.质量为m 、电阻也为r 的金属杆MN 垂直导轨跨放在导轨上,在倾斜导轨区域加一垂直导轨平面向下、磁感应强度

(完整word版)电磁感应中的动力学和能量问题(一)

电磁感应中的动力学与能量问题(一) 制卷:田军 审卷:张多升 使用时间:第三周周一 班级: 姓 名: 考点一 电磁感应中的动力学问题分析 1.安培力的大小 由感应电动势E =Blv ,感应电流I =E R 和安培力公式F =BIl 得F =B 2l 2v R . 2.安培力的方向判断(如右图) 3.处理此类问题的基本方法: (1)用法拉第电磁感应定律和楞次定律求出感应电动势的大小 和方向; (2)求回路中的电流的大小和方向; (3)分析导体的受力情况(含安培力); (4)列动力学方程或平衡方程求解。 4.电磁感应现象中涉及的具有收尾速度的问题,关键要抓好受力情况和运动情况的动态分析 5.两种状态及处理方法 (1)平衡状态(静止状态或匀速直线运动状态):根据平衡条件(合外力等于零)列式分析; (2)非平衡状态(a 不为零):根据牛顿第二定律进行动态分析或结合功能关系分析。 考点二 电磁感应中的能量问题分析 1.过程分析 (1)电磁感应现象中产生感应电流的过程,实质上是能量的转化过程. (2)电磁感应过程中产生的感应电流在磁场中必定受到安培力的作用,因此,要维持感应电流的存在,必须有“外力”克服安培力做功,将其他形式的能转化为电能.“外力”克服安培力做了多少功,就有多少其他形式的能转化为电能. (3)当感应电流通过用电器时,电能又转化为其他形式的能.安培力做功的过程,或通过电阻发热的过程,是电能转化为其他形式能的过程.安培力做了多少功,就有多少电能转化为其他形式的能. 2.求解思路 (1)若回路中电流恒定,可以利用电路结构及W =UIt 或Q =I 2Rt 直接进行计算. (2)若电流变化,则:①利用安培力做的功求解:电磁感应中产生的电能等于克服安 培力所做的功;②利用能量守恒求解:若只有电能与机械能的转化,则机械能的减 少量等于产生的电能. 巩固练习 1.如上图所示,在一匀强磁场中有一U 形导线框abcd ,线框处于水平面内,磁场与线框平面垂直,R 为一定值电阻,ef 为垂直于ab 的一根导体杆,它可以在ab 、cd 上无摩擦地滑动.杆ef 及线框中导线的电阻都可不计.开始时,给ef 一个向右的初速度,则( ) A.ef 将减速向右运动,但不是匀减速 B.ef 将匀减速向右运动,最后停止 C.ef 将匀速向右运动 D.ef 将做往返运动 2.如图所示,匀强磁场存在于虚线框内,矩形线圈竖直下落.如果线圈中受到的磁场 力总小于其重力,则它在1、2、3、4位置时的加速度关系为( ) A.a 1>a 2>a 3>a 4 B.a 1=a 2=a 3=a 4 C.a 1=a 3>a 2>a 4 D.a 4=a 2>a 3>a 1 3.如图所示,两根和水平方向成α角的光滑平行的金属轨道,上端接有可变电阻R ,下端足够长,空间有垂直于轨道平面的匀强磁场,磁感应强度为B ,一质量为m 的金属杆从轨道上 由静止滑下,经过足够长的时间后,金属杆的速度会达到最大值v m ,则( ) A.如果B 增大,v m 将变大 B.如果α增大,v m 将变大 C.如果R 增大,v m 将变大 D.如果m 减小,v m 将变大

第二章 6 焦耳定律 电路中的能量转化

6 焦耳定律 电路中的能量转化 一、电功 电功率 1.电功 (1)定义:电场力移动电荷所做的功,简称电功. (2)公式:W =UIt ,此式表明电场力在一段电路上所做的功等于这段电路两端的电压U 与电路中的电流I 和通电时间t 三者的乘积. (3)单位:焦耳,符号是J. 常用的单位:千瓦时(kW·h),也称“度”,1 kW·h =3.6×106 J. (4)电流做多少功,就表示有多少电能转化为其他形式的能. 2.电功率 (1)电流所做的功与做这些功所用时间的比值叫做电功率,它在数值上等于单位时间内电流所做的功. (2)公式:P =W t =UI . (3)单位:瓦特,符号是W,1 W =1 J/s. 二、焦耳定律 热功率 1.焦耳定律 (1)内容:电流通过电阻产生的热量跟电流的二次方成正比,跟电阻值成正比,跟通电时间成正比. (2)表达式:Q =I 2Rt . 2.热功率 (1)定义:电阻通电所产生的热量与产生这些热量所用时间的比值.它在数值上等于单位时间内电阻通电所产生的热量. (2)表达式:P 热=I 2R . (3)物理意义:表示电流发热快慢的物理量. 三、电路中的能量转化 1.电源是把其他形式的能转化为电能的装置.电源提供的能量一部分消耗在外电路上,电能转化为其他形式的能;一部分消耗在内电路上,电能转化为内能. 2.能量关系:电源提供的能量等于内、外电路消耗的能量之和,即:EIt =UIt +I 2rt . 功率关系:电源提供的电功率等于内、外电路消耗的电功率之和,即:EI =UI +I 2r . 对于外电路是纯电阻的电路,其能量关系和功率关系分别为:EIt =I 2Rt +I 2rt ,EI =I 2R +I 2r . 当外电路短路时:I 0E =I 02r ,即发生短路时,电源释放的能量全部在内电路上转化成内能,这种状态很危险.

相关主题
文本预览
相关文档 最新文档