当前位置:文档之家› 爆炸应力波在各向同性损伤岩石中的衰减规律研究

爆炸应力波在各向同性损伤岩石中的衰减规律研究

爆炸应力波在各向同性损伤岩石中的衰减规律研究
爆炸应力波在各向同性损伤岩石中的衰减规律研究

 第21卷 第1期爆炸与冲击V ol.21,N o.1 2001年1月EXP LOSI ON AND SH OCK W AVES Jan.,2001 

文章编号:100121455(2001)0120076205

爆炸应力波在各向同性损伤岩石中的

衰减规律研究

崔新壮1,李卫民2,段祝平1,陈士海3

(11中国科学院力学研究所,北京 100080; 21山东省建设建工集团二公司,山东济南 250014;

31山东科技大学,山东泰安 271019)

摘要:通过对一维应力波在H opkins on压杆之间的试件内的衰减及折反射关系分析,导出了衰减率的表达式,然后对含损伤的岩石试件进行冲击实验,得到了衰减率与初始损伤的关系式,从而提供了一种测定衰减率的实验方法。通过应力等效模拟,得到了球面与柱面爆炸应力波的衰减规律。

关键词:爆炸应力波;损伤;衰减;H opkins on压杆

中图分类号:O34615 文献标识码:A

Ξ

1 引 言

天然岩体中含有大量的裂隙、节理等缺陷,损伤力学引入后,它们的尺寸、数目都可以用损伤来定量描述。在工程爆破中,我们发现这些缺陷对应力波有很大的衰减作用。研究爆炸应力波的衰减对研究动态应力场、损伤场及应力波防护工程的建设都有重要意义。

目前,在工程爆破中普遍采用的衰减公式是p=p0/ rα( r=r/r0,其中r0为药包半径,r为应力波与爆源的距离,α=2±ν/(1-ν)为衰减指数,其中ν为岩石的泊松比,p0为爆源处峰值压力)。如果岩体所含初始损伤是各向同性的,则由损伤力学可知,该岩体的泊松比将等于不含任何损伤的岩体的泊松比,也就是说爆炸应力波在两种岩体中的衰减指数是一样的。但这与实践相矛盾,因此应当探索更能反映实际情况的衰减公式。

通过实验,我们得到了平面一维应力波在损伤岩体中的衰减公式,经过应力等效模拟,推广到了球面与柱面波情形,理论上得到了柱面与球面爆炸应力波的衰减公式。

2 实 验

211 实验设计

实验用的装置有H opkins on压杆及声波测试仪,应变片分别贴在输入杆与输出杆的中间位置。为消除端面摩擦及惯性力的影响,试件选用小圆柱体,直径与钢杆直径相同,为40mm,长度为50mm,基体材料为水泥砂浆,采用425#水泥,砂粒直径不大于115mm,其质量配比为水泥∶砂∶水=1∶3∶0. 7,这种材料粘性较大,强度较高,特性类似于岩石,且试件易于加工,成本低。损伤模拟材料为塑料泡沫,该材料极轻,内有空气层,波阻抗极小,完全可以用来模拟裂隙,将其做成细条状,长度小于15mm,随机散放在基体中。根据加入该材料的多少,可得到含有不同损伤的试件,对它们进行实验,然后对实验结果进行比较,可以得到初始损伤对应力波衰减的影响规律[1]。根据公式D=1- v2/v2(其中v为应力波在均质试件中的传播速度, v为应力波在含损伤试件中的传播速度),用声波测试仪可测得每个试件的损伤值。

Ξ收稿日期:1999209201; 修回日期:2000207225

作者简介:崔新壮(1974— ),男,博士研究生。

212 实验中的理论推导

应力波的衰减包括几何衰减与物理衰减。在高应变率下,岩石应该看成是线粘弹性材料,而且此时的变形也并非是几何大变形,即在岩石中传播的高应变率波应为线性波,所以可采用线弹性波法来分析应力波衰减规律。而正是因为材料的粘性引起应力波的能量损失,即为物理衰减。虽然粘性会使波产生弥散,但不会影响波的速度,因为本文中的压缩应力波不会使试材料的弹性模量及密度有很大变化。

为了衡量一维应力波的衰减,引入衰减率η,其定义为单位应力通过单位长度的衰减[2],即

η=-(1/σ)d σ/d x

(1)对(1)式两边积分得

σ=σ0e -ηx (2)

式中:σ0为x =0处的扰动应力幅度。

因为冲击杆的截面积不大于输入杆的截面积,所以输入杆中传播的波是矩形波。设输入杆中输入矩形应力波的作用时间为τ,波长为λ,试件长度为l ,声速为c 1,那么τ=λ/c 1。如果应力波在试件中反射n 次后,应力波在试件输入端上刚好结束[3],令试件中的声速为c 2,那么有

τ=n l/c 2=λ/c 1

(3)上式又可化为

n =(c 2/c 1)(λ/l )(4)

而波长为冲击杆长度L 的两倍,所以(4)式又可化为n =2c 2L/(c 1l )(5)

如果输入杆上矩形应力波的幅值用σi 表示,并令q =2ρ2c 2/(ρ1c 1+ρ2c 2)

(6)式中:ρ1,ρ2分别为钢杆及试件的密度。

那么由应力波在试件内的折反射关系及(2)式,可得应力波在试件内传播的物理特征线图如图1所示

图1 考虑衰减时,应力波在试件内传播的物理特征线图

Fig.1 The physical characteristic line of stress wave propagating in the sam ple with attenuation considered

77第1期 崔新壮等:爆炸应力波在各向同性损伤岩石中的衰减规律研究

应力波发生n 次反射后,试件上任意点x 处的应力可求出。

当n 为偶数时

σx =q e -ηx σi +q (1-q )e -η(2l -x )σi +q (1-q )2e -η(2l +x )σi +q (1-q )3e -η(4l -x )σi +

q (1-q )4e -η(4l +x )σi +…+q (1-q )

n -1e -η(nl -x )σi =q[e -ηx +e ηx (1-q )-2ηl ]1-(1-q )n e -n η

l

1-(1-q )2e -2ηl σi (7) 当n 为奇数时

σx =q e

-ηx σi +q (1-q )e -η(2l -x )σi +q (1-q )2e -η(2l +x )σi +q (1-q )3e -η(4l -x )σi +q (1-q )4e -η(4l +x )σi +…+q (1-q )n -2e -η[(n -1)l -x ]σi +q (1-q )n -l e -η[(n-1)l +x ]σi

=q[e -ηx 1-(1-q )n +1e -(n +1)ηl 1-(1-q )2e -2ηl σi +q e ηx 1-(1-q )n -1e -(n -1)ηl 1-(1-q )2e

-2ηl (1-q )e -2ηl σi (8) 当n →∞时,不论为偶数、奇数,还是非整数,均可得到σx =q[e -ηx +e ηx (1-q )e -2ηl ]1-(1-q )2e -2ηl

σi (9) 若令η=0.5m -1,q =0.25,l =5cm ,σi =50MPa ,当n →∞

时,试件内的应力分布曲线如图2所示。由图可见:由于应力波在试件内的无限次折反射,试件内的应力将趋于线形平均化,而且不可能达到输入应力。实际上,人们在用H opkins on 压杆进行材料的动态性能及本构关系测试时,正是利用了这一现象,它已被许多实验所证实。

(9)式中,若令x =l ,那么σx 将成为试件右端的最大应力,恰好等于输出杆上应变片测得的峰值应力σt ,即

σt =q (2-q )e -ηl σi 1-(1-q )2e -2ηl (10)

对上式进行整理可得衰减率η=1l ln q 2(2-q )2+4f 2(1-q )2+q (2-q )

2f (11)

式中:f =σt /σi 为试件对应力的传递比。由(11)式可见,已知σi 、

σt 、l 、q ,即可求得衰减率η。

(11)式是在

n →∞的前提下得到的,由(6)式可知,在c 2/c 1为定值的条件下,要使n →∞,

图2 试件内最大应力分布曲线

Fig.2 Peak stress distributions in sam ples 图3 试件右端的理论与实际的σ2t 曲线Fig.3 Theoretic and recorded stress versus time

at the right end of sam ples

87爆 炸 与 冲 击 第21卷

必须使L μl ,这在实验中是做不到的。

但是若令η=0.5m -1,q =0.25,l =5cm ,σi =50MPa ,c 2=2.5km/s ,n =40,从理论上可得试件右端面B 处的σ2t 曲线(上升沿),如图3中实线所示。由图3可见,当n =20时,应力已经达到最大应力的90%以上,所以在实验中并不一定要求L μl ,只要L 比l 大到实验结果与实际值的差在误差范围内即可。在其它参数基本不变的情况下,根据(11)式,通过实验得到η≈0.5m -1的试件,应力波通过它在输出杆上的波形(上升沿)经平滑处理后如图3中的虚线所示,由图可见,它与理论曲线相差不是很大。

因为上述测定衰减率的方法实质上是根据试件右端面的受力平衡得到的,故笔者称其为端点法。图4 衰减率与初始损伤的回归曲线Fig.4 Attenuation rate versus initial damage

213 实验结果与分析

对25个含不同初始损伤的

试件分别进行了实验,利用

(11)式得到了各自的衰减率。

结果发现初始损伤与衰减率之间

符合一种线形关系。对结果进行

拟合,得到衰减率与初始损伤的

回归曲线,如图4所示。其关系

式符合下式

 η=0.8261D 0+0.1393(12)

式中:011393为D 0=0时的η

值,与初始损伤无关,只与试件的

性质有关;而018261是η与D 0的

比例系数,表示η对D 0的敏感程

度。3 平面一维爆炸应力波衰减规律的理论推广

已知平面一维应力波不存在几何衰减,而由点源发出的球面波以1/r 的比例作几何衰减,由线源发出的柱面波以1/r 1/2的比例作几何衰减。现在根据(2)式,将几何衰减与物理衰减综合起来考虑,那么

对球面应力波,有

σ=C e -ηr /r (13)

式中:C 为比例系数。

对柱面应力波,有

σ=C e -ηr /r 1/2(14)

以上两个式子都是把振源看成是无穷小的情况下得出来的,但是有一定尺寸的药包爆炸后其爆炸应力波的衰减规律又怎样呢?现以球形药包为例进行研究。

设球形药包的半径为r 0,爆炸后作用在岩石上的力为p 0(t ),为了得到其爆炸后应力波的衰减规律,在此需要做等效模拟。

假设有点爆炸源,爆炸后应力波传到r =r 0处时,应力σ=p 0(t ),那么由σ=C e -ηr /r 得

C =p 0(t )r 0e ηr 0(15)

这样一个点爆炸源与实际球形药包爆炸后在r ≥r 0的岩体内应力场是相同的,即假设的模型与实际模型是等效的,那么它们的应力波衰减规律也应该是一样的,都有

σ=C e -ηr /r =p 0(t )(r 0/r )e η(r 0-r )(16)

上式中的p 0(t )(r 0/r )为几何衰减,这与弹性动力学计算的从球腔出发的弹性波的衰减是一致的[4],说明了我们对应力波衰减规律的推导是正确的。

炸药爆炸产生的爆炸应力波会使岩石产生高应变率效应,在近区即粉碎区与裂纹区,它使岩石成97第1期 崔新壮等:爆炸应力波在各向同性损伤岩石中的衰减规律研究

为线粘弹性材料,而远区为弹性波区,所以我们将一维应力波推广至球面和柱面波时,几何衰减采用了线弹性波的衰减规律基本上能符合事实。

在(16)式两边对r求二阶导数,得

σ″=

p0(t)r0[rη

+1)2+1]

r3

eη(r0-r)(17) 可见σ″恒大于零,这说明随着应力波与爆源距离的逐渐增大,衰减越来越慢,这与实际情况相符。一般情况下,炸药爆炸后形成的冲击波衰减最快,应力波次之,弹性波衰减最慢。

同理,将柱形药包模拟为线源,则应力波衰减规律为

σ=p

(t)(r0/r)1/2eη(r0-r)(18) 上式中的p0(t)(r0/r)1/2为应力波的几何衰减,这与弹性动力学计算的从圆柱空腔出发的弹性波的衰减基本上一致。

由(16)式、(18)式可见,影响应力波衰减的因素有炸药性质、装药形状和岩石性质(包括岩石的非均质性、岩体内的空穴和裂隙等因素,集中反映在衰减率η上)。还可看出:球面波衰减最快,柱波次之,而平面波衰减最慢。所以说,群药包的应力波参数随距离的衰减,比单药包的慢,因为群药包的每个药包产生的柱面波或球面波统一成为一个波时,可把它看作平面波,而平面波能量的衰减只决定于岩石的性质,与波面的几何散度无关,衰减最慢。

4 结 论

通过分析得到了一种测定衰减率的方法,并利用它得到了试件的衰减率与初始损伤的关系,这具有重大的理论与工程意义。通过应力等效模拟得到的球状与柱状炸药爆炸产生的应力波的衰减表达式,能反映各种衰减因素的影响,可称得上是一种全息的应力波衰减表达式,能解决工程中许多急待解决的问题。但需要指出的是,不同的岩石损伤与衰减率的关系式并不同,必要时必须对常见的岩石进行类似的实验,然后整理成册,以备后用。

参考文献:

[1] 章根德1岩石对冲击载荷的动态响应[J]1爆炸与冲击,1982,2(2):1—91

[2] 赵统武1冲击动力学[M]1北京:冶金工业出版社,19961

[3] 张奇1应力波在节理处的传递过程[J]1岩土工程学报,1986,8(6):99—1051

[4] 杨桂通,张善元1弹性动力学[M]1北京:中国铁道出版社,19881

 

Stress W ave Attenuation in Isotropic Damaged R ocks

CUI X in2zhuang1,LI Wei2min2,DUAN Zhu2ping1,CHE N Shi2hai3

(1.Institute o f Mechanics,the Chinese Academy o f Science,Beijing 100080,China;

2.The Second Filial o f Constructive Ltd Co.o f Shandong Province,Jinan 250014,Shandong,China;

3.Shandong Univer sity o f Science and Technology,Taian 271019,Shandong,China) Abstract:An expression for stress wave attenuation rate was derived based on one dimensional wave propagation and interaction in sam ples between H opkins on bars.The relation between attenuation rate and initial damage was studied experimentally on damaged rocks.Als o the attenuation rules of spherical and cylindrical explosive stress waevs are derived based on stress equivalent method.

K ey w ords:explosive stress wave;damage;attenuation;H opkins on bar

08爆 炸 与 冲 击 第21卷

06 热应力作用下的岩石破裂过程分析

第25卷第10期岩石力学与工程学报V ol.25 No.10 2006年10月Chinese Journal of Rock Mechanics and Engineering Oct.,2006热应力作用下的岩石破裂过程分析 唐世斌1,唐春安1,2,朱万成3,王述红3,于庆磊3 (1. 大连理工大学土木水利学院,辽宁大连 116024;2. 大连大学材料破坏力学数值试验研究中心,辽宁大连 116622; 3. 东北大学岩石破裂与失稳中心,辽宁沈阳 110004) 摘要:热应力引起的岩石破裂称为岩石的热破裂,它是热和力之间相互耦合作用的结果。岩石热破裂研究的工程意义重大。根据岩体介质变形及其热力学的理论基础,充分考虑岩石的非均匀性和热固耦合作用,在原有的岩石破裂过程分析系统的基础上,建立了具有热固耦合作用的岩石热破裂分析模型。数值模型再现岩石的热破裂过程,并反映岩石热破裂的规律。运用数值模型,对含有单个内嵌颗粒的岩石试件在温度变化过程中的热开裂进行了数值模拟。研究结果表明:在温度升高过程中,如果内嵌颗粒的热膨胀系数大于基质的热膨胀系数,在基质内产生径向裂纹;如果内嵌颗粒的热膨胀系数小于基质热膨胀系数,便在基质内产生环向裂纹。数值模拟结果与试验结果有较好的一致性。RFPA2D-thermal模型为从细观力学角度上分析岩石的热破裂过程和机制提供了一种新的方法。 关键词:岩石力学;热应力;非均匀性;数值模拟;热开裂 中图分类号:TU 45;O 241 文献标识码:A 文章编号:1000–6915(2006)10–2071–08 NUMERICAL INVESTIGATION ON ROCK FAILURE PROCESS INDUCED BY THERMAL STRESS TANG Shibin1,TANG Chun′an1,2,ZHU Wancheng3,WANG Shuhong3,YU Qinglei3 (1. School of Civil and Hydraulic Engineering,Dalian University of Technology,Dalian,Liaoning116024,China; 2. Research Center for Numerical Tests on Material Failure,Dalian University,Dalian,Liaoning116622,China; 3. Center for Rock Instability and Seismicity Research,Northeastern University,Shenyang,Liaoning110004,China) Abstract: Rock failure induced by thermal stress is called thermal cracking. It is the result of thermal and mechanical coupling. Based on the basic theory of rock deformation and thermodynamics,considering the heterogeneity and the coupling of thermal and mechanics,a numerical model,RFPA2D-thermal code,is proposed. With this model,the temperature and stress fields can be determined. The most important is that the failure process of rock induced by thermal or external stress can be simulated. Using this numerical model,the failure progresses of a rock sample with an inlaid grain was modelled during the change of temperature. It turns out that during temperature increment,if the thermal expansion coefficient of the inlaid grain is larger than that of the surrounding media,radial-cracks will be generated in the surrounding media,and theta-cracks emerge if the thermal expansion coefficient of inlaid grain is smaller than that of the surrounding media. The results agree well with the experimental results. The RFPA2D-thermal model provides a new method for analyzing the thermal cracking of rock samples in microscopic view. Key words:rock mechanics;thermal stress;heterogeneity;numerical simulation;thermal cracking 收稿日期:2005–07–20;修回日期:2005–11–11 基金项目:国家自然科学基金资助项目(50504003) 作者简介:唐世斌(1980–),男,2003年毕业于东北大学采矿工程专业,现为博士研究生,主要从事热应力作用下的岩石破裂数值分析方面的研究工作。E-mail:tang_shibin@https://www.doczj.com/doc/fe11725264.html,

土木工程试验与量测技术B复习问答题集锦(含答案)

土木工程试验与量测技术B复习问答题集锦(含答案) 第一章绪论 1.学习该课程的目的和意义: 答:①重要手段——测试技术是从根本上保证岩土工程设计的精确性、代表性以及经济合理性的重要手段。 ②必备技术——室内试验、原位测试可提供基本设计数据,现场检测及监测可有效控制现场施工质量,确保施工安全和保护周边环境,为今后类似工程提供经验数据。 ③基本知识——岩土工程测试、检测与监测是从事岩土工程工作的人员所必需的基本知识,是从事理论研究的基本手段。 2.研究对象及其特点 答:研究对象是岩土体——古老而普通的建筑材料,可作为各类建筑物的天然地基和周边介质。结构物的确定主要取决于岩土体的具体工程性质。特点:力学性质复杂多变,具有很强的不确定性和变异性。 第二章:测试技术基础知识 1.什么是测试?什么是测试系统?测试系统有哪些测试环节? 答:测试是以确定量值为目的的一系列操作,也就是将被测试值与同种性质的标准量进行比较,确定被测试值对标准量的倍数。 测试系统是传感器与测试仪表、变换装置等的有机组合。测试系统包括了数据传输环节、数据处理环节、数据显示环节。如图示:被测对象→传感器→数据传输环节→数据处理环节→数据显示环节

2.传感器的定义、组成及各组成部分的作用。 答:传感器是指能感受规定的物理量,并按一定规律转换成可用输入信号的器件或装置。由敏感元件、转换元件、测试电路三部分组成。 ①敏感元件能直接感受(或响应)被测量,即将被测量通过敏感元件转换成与被测量有确定关系的非电量或其他量;②转换元件则将上述非电量转换成电参量;③测量电路作用是将转换元件输入的电参量经过处理转换成电压、电流或频率等可测电量,以便进行显示、记录、控制和处理的部分。 3.什么是传感器的静态特性、动态特性? 答:静态特性和动态特性可用来表征一个传感器性能的优劣。 静态特性是指当被测量的各个值处于稳定状态(静态测量下)时,传感器的输出值与输入值之间关系的数学表达式、曲线或数表。 动态特性是指被测量随时间变化时,传感器的输出值与输入值之间关系的数学表达式、曲线或数表。 4.传感器的静态特性参数有哪些?具体作用? 答:主要有灵敏度、线性度(直线度)、回程误差(迟滞性)。 ①灵敏度是稳态时传感器输出量y和输入量x之比,或输出量y 的增量和输入量x的增量之比;②线性度,是评价非线性程度的参数,传感器的输出-输入校准曲线与理论拟合曲线之间的最大偏差与传感器满量程输出之比;③回程误差,输入逐渐增加到某一值与输入逐渐减小到同一输入值时的输出值不相等,叫迟滞现象,回程误差表示这

岩石力学名词解释和简答题更新

岩石力学复习资料 一.名词解释(15分) 1.结构:矿物颗粒的形状、大小和联结方式所决定的结构特征。 2.构造:各种不同结构的矿物集合体的各种分布和排列方式。 3.岩石颗粒间的联结分为结晶联结和胶结联结两类。 4.质量密度(ρ)和重力密度(γ): 单位体积的岩石的质量称为岩石的质量密度。单位体积的岩石的重力称为岩石的重力密度(重度)。所谓单位体积就是包括孔隙体积在内的体积。 γ= W/V γ=ρg(kN /m3) 5.岩石的相对密度:岩石的干重量除以岩石的实体积(不包括岩石中孔隙体积)所得的量与1个大气压下4度纯水的重度之比值。 Gs ——岩石的相对密度; Ws ——干燥岩石的重量(kN); Vs ——岩石固体体积(m3); —4度时水的重度(10kN/m3)。 6.孔隙率:岩石试件内孔隙的体积占试件总体积的百分比。 7.孔隙比:岩石试件内孔隙的体积与岩石试件内固体矿物颗粒的体积之比。 8.含水率:天然状态下岩石中水的重量ωW 与岩石烘干重量Ws 之比。 9.渗透性:在水压力作用下,岩石的孔隙和裂隙透过水的能力。 w s s s V W G γ=w γ%100?=V V n V n n V V V V V e V V s V -=-==1%100?=s W W ωωw s d G n γγ-=1

10.膨胀性:岩石浸水后体积增大的性质。 11.崩解性:岩石与水相互作用时失去粘结性并变为完全丧失强度的松散物质的性质。 12.软弱性:岩石与水相互作用时强度降低的特性。 13.抗冻性:岩石抵抗冻融破坏的性能。 14.岩石的强度:岩石抵抗破坏的能力。岩石在荷载作用下,发生破坏时所承受的最大荷载应力就是岩石的强度。 15.岩石的单轴抗压(拉)强度:岩石在单轴压缩(拉伸)荷载作用下,所能承受的最大压(拉)应力。 16.岩石的抗剪强度:岩石抵抗剪切破坏的极限能力。 17.岩石的扩容: 岩石受外力作用后,发生非弹性的体积膨胀。 18.残余强度: 岩石完全破坏后所能承受的一个较小的应力值。 19.长期强度: 长期荷载作用下岩石的强度。 20.岩石的流变性:岩石应力应变关系随时间而变化的性质。 21.蠕变:当应力保持恒定时,应变随时间增长而增大的现象。 22.松弛: 当应变保持恒定时,应力随时间增长而逐渐减小的现象。 23.弹性后效: 当卸载时,弹性应变滞后于应力的现象。 24.卸荷裂隙:岩体表面某一部分被剥蚀掉,引起重力和构造应力的释放或调整,使得岩体向自由空间膨胀而产生的平行于地表面的张裂隙。 25.RQD: 岩石质量指标,是指钻探时岩芯的复原率,或称岩芯采取率。 %10010(?>=(岩芯进尺总长度) 的岩芯断块累计长度)L cm Lp RQD 2 )(rp mp v V V K =

电磁波的危害和防护

电磁波的危害和防护 随着经济的发展和物质文化生活水平的不断提高,各种家用电器——电视机、空调器、电脑、手机等已经成为现代都市家庭不可或缺的东西。然而,各种家用电器和电子设备在使用过程中会产生多种不同波长和频率的电磁波。在特定条件下,这些电磁波可能成为“电磁污染”,危害到人们的健康。 1 电磁污染危害人体的机理 电磁污染危害人体的机理主要是热效应、非热效应和累积效应等。 热效应:人体70%以上是水,水分子受到电磁波辐射后相互摩擦,导致体温升高,从而影响到体内器官的正常工作。 非热效应:人体的器官和组织都存在微弱的电磁场,一旦受到外界电磁场的干扰,处于平衡状态的微弱电磁场将遭到破坏,人体也会遭受损伤。 累积效应:热效应和非热效应对人体的伤害具有累积效应,其伤害程度会随时间和影响程度发生累积,久而久之会成为永久性病态。对于长期接触电磁波辐射的群体,即使电磁波功率很小、频率很低,也可能被诱发意想不到的病变。 2 电磁污染的危害

1998年世界卫生组织调查显示,电磁辐射对人体有五大影响:(1)电磁辐射是心血管疾病、糖尿病、癌突变的主要诱因之一; (2)电磁辐射会对人体生殖系统、神经系统和免疫系统造成直接伤害; (3)电磁辐射是造成孕妇流产、不育、畸胎等病变的诱发因素之一; (4)过量的电磁辐射直接影响儿童身体组织、骨骼发育,导致视力、肝脏造血功能下降,严重者可导致视网膜脱落; (5)电磁辐射可使男性性功能下降、女性内分泌紊乱。 3 电磁波的防护 3.1电磁环境标准及相关规定 为控制现代生活中电磁波对环境的污染,保护人们身体健康,1989年12月22日我国卫生部颁布了《环境电磁波卫生标准》( GB9175-88),规定居住区环境电磁波强度限制值:长、中、短波应小于lOV/m,超短波应小于5V/m,微波应小于10μW/cm2。我国有关部门还制订了《电视塔辐射卫生防护距离标准》,国家环保局也颁布了《电磁辐射环境保护管理办法》。

爆炸应力波

透波 1、一种壁厚渐变蜂窝宽带透波结构 采用介电常数渐变结构是一种有效实现宽带透波的方法。通过一种壁厚渐变六边形蜂窝结构实现,方法:根据蜂窝等效介电常数的近似计算公式和介质介电常数变化分布,计算出该渐变结构的几何参数。结果表明该结构在垂直入射和大入射角情况下,具有良好的宽带透波特性。介电常数渐变材料广泛应用于宽带透波、吸波材料设计领域。仿真结果表明该结构在垂直入射和大角度入射条件下较实心结构具有良好的宽带特性,同时通过仿真验证了该结构周期参数对透波性能的影响。结果表明,要使等效介电常数满足设计要求,该结构周期要远小于工作波长。然而由于加工工艺限制,周期无法无限变小。因此最好根据实际频率上限需要选择合适的周期。另外,由于该结构蜂窝孔暴露在外界环境可能在实际应用中带来不便,可以考虑通过对蜂窝孔填充低介电常数泡沫材料来避免。 2、对防电磁脉冲屏蔽室与隔震地板关系的看法 一些重要的指挥、通信房间既要防电磁脉冲又要隔震,关于计算机屏蔽室与隔震地板就在屏蔽室内部的争论。结论::屏蔽室应在隔震地板上安装制作。 3、空气冲击波作用于柔性防爆墙的透射和绕射效应分析_年鑫哲 为研究爆炸空气冲击波作用于柔性防爆墙后发生的透射和绕射现象及规律,采用数值模拟方法计算,分析了墙后发生的透射和绕射现象,比较了压力波形的变化特点,得到了墙后压力场变化分布规律。计算结果表明,柔性墙背后的压力存在两个主要峰值,分别为透射压力峰值和绕射压力峰值。 消波 1、双层介质抗暴炸震塌结构的性能研究 采用碎石土回填层与钢筋混凝土结构作为抗爆炸震塌结构,若选用低阻抗混凝土做回填层,具有较好的消波吸能性能。 2、沙墙吸能作用对爆炸冲击波影响的数值分析 数值模拟,沙墙的消波吸能作用。

岩石力学模拟题

《岩石力学》模拟题(补) 一.问答题 1. 岩石的流变模型的基本元件有哪几种?分别写出其本构关系。 答:流变模型有三个基本元件:弹性元件、塑性元件和粘性元件 (1)弹性元件:是一种理想的弹性体,其应力应变关系为: σ=K×ε σ——应力; K——弹性系数;ε——应变。 (2)塑性元件:物体所受的应力达到屈服极限时,便开始产生塑性变形,应力不增加,变形仍不断增加。本构方程为: 当σ<σs时,ε= 0 当σ≥σs时,ε→∞ σs——岩石屈服极限; (3)粘性元件:应力与应变速率成正比的元件: d σ= dt 2.岩石抗剪强度有哪几种测定方法?如何获得岩石的抗剪强度曲线? 答:岩石抗剪强度测定方法包括:直剪试验、倾斜压模剪切法试验和三轴试验。 (1)直剪试验是在试件上施加法向压力N,然后在水平方向逐级加水平剪应力T,直至达到最大值T max试件发生破坏为止。用一组岩样(4~6块),分别记录不同法向压力条件下的水平剪应力,得到σ~τ关系曲线,即为岩石的抗剪强度曲线。 (2)倾斜压模剪切法试验:将试件放在剪切夹具的两个钢制的倾斜压模之间,得到剪切面上的正应力和剪应力,试验时,用一组岩样(4~6块),分别记录不同剪切面与水平面夹角条件下,破坏面上的剪应力和正应力,得到的σ~τ关系曲线,即为岩石的抗剪强度曲线。 (3)三轴试验:用一组岩样(4~6块),分别记录不同围压σ3条件下,岩石试样破坏时的最大正应力σ1,在σ~τ关系曲线在得到不同的摩尔园,这些摩尔园的切线,即为岩石的抗剪强度曲线。 3.简述地应力的形成原因。 答:地应力的形成主要与地球的各种运动过程有关,其中包括(1)大陆板块边界受压引起的应力场,产生水平受压应力场,(2)地幔热对流引起的水平挤压应力,(3)由地心引力引起的重力应力场,(4)岩浆侵入引起的应力场,(5)地温梯度引起的应力场,(6)地表剥蚀产生的应力场。 4.简述露天矿边坡人工加固治理的方法。 答:边坡人工加固是对现有滑坡和潜在的不稳定边坡进行治理的一项有效措施,而且,它已发展成为提高设计边坡角、减少剥岩量、加速露天矿的开发速度,提高露天开采经济效益的一条途径。目前人工加固边坡的具体方法有:1)挡墙及混凝土护坡;2)抗滑桩;3)滑动面混凝土抗滑栓塞;4)锚杆及钢绳锚索;5)麻面爆破;6)压力灌浆。 5.什么叫蠕变、松弛、弹性后效和流变?不稳定蠕变一般包括几个阶段?每个阶段的特点是什么? 答:蠕变:当应力不变时,变形随时间增加而增加的现象。 松弛:当应变不变时,应力随时间的增加而减小的现象。 弹性后效:加载和卸载时,弹性应变滞后于应力的现象。

最新低应变考试题目及答案.pdf

2012.11.低应变现场考试提问题目及答案 1、低应变采样时间间隔应根据什么合理选择? 答:采样时间间隔应根据桩长、桩身波速、和频域分辨率合理选择。时域信号采样点数不宜少于1024点。 2、低应变数据采集时,设置采样间隔时要如何估算? 按照规范“时域信号分析的时间段长度应在2L/c时刻后延续不少于5ms;”的要求及一般仪器采集点数为1024的实际情况。(如仪器采集点数不同,应根据情况变化)采样间隔估计应由下式估算: {[(2L/V)*1000ms+5ms]/1024}*1000us其中L为桩长,V为估计桩的波速。 3、反射波法检测中,用加速度计测得的原始信号是什么曲线,实际显示的曲线是什 么曲线?。 答:实际测得的是加速度时程曲线,实际显示的是经过积分的速度时程曲线。 4、低应变完整性检测时,对于浅部缺陷一般要求什么样的锤击激振能量?什么 样的激振频率? 答:低应变完整性检测时,对于浅部缺陷一般要求小的锤击激振能量和高的激振频 率。 5、低应变完整性检测时,有利于桩底信号的获取时需要什么样的锤击能量?什么样 的激振频率? 答:低应变完整性检测时,有利于桩底信号获取时需要大的锤击能量和低的激振频 率。 6、通俗一点的说法,在选择低应变完整性检测激振锤时有什么原则? 答:小桩用小锤,打桩用大锤,小桩用硬锤大桩用软锤。实际上,小锤产生小的激 振能量,大锤桩产生大的激振能量,同时,硬的锤子产生较高的激振频率,软的锤 子产生较低的激振频率。

7、实心桩进行低应变完整性检测时,激振位置及传感器安装部位主要有什么要求?答:实心桩的激振点位置应选择在桩中心,测量传感器安装位置宜为距桩中心2/3半径处。 8、空心桩(管桩)进行低应变完整性检测时,激振位置及传感器安装部位主要有什么要求? 空心桩的激振点与测量传感器安装位置宜在同一水平面上,且与桩中心连线形成的 夹角宜为90°,激振点和测量传感器安装位置宜为桩壁厚的1/2处。 9、低应变完整性检测时,信号采集和筛选有什么主要要求? 答:根据桩径大小,桩心对称布置2~4个检测点;每个检测点记录的有效信号数不 宜少于3个。 10、对于锤击式预应力管桩,在进行低应变完整性检测时,除了常规需要收集的信 息外,尚应特别注意收集哪些信息便于对采集数据进行分析认识? 答:尚应特别注意收集接桩情况,收锤情况,总锤击数等此工艺特有的数据信息以 及观察管桩是否有开裂现象等,为以后分析低应变检测数据提供参考依据。 11、简述应力波反射法的原理。 答:用小扰动激振桩顶,使产生的应力波沿桩身传播,用仪器记录桩顶传感器安装 部位振动时程曲线,利用一维波动理论,根据桩身各阻抗变化界面反射信号,对桩 身完整性进行分析。 12、在低应变完整性检测时,如果根据桩底信号判断,桩的波速明显偏高,且超出 常识范围。这时,这个桩的实际桩长可能有什么样的偏差? 答:偏短了。 13、对于砼实心桩,当检测点距桩中心点多远处时,所受干扰相对较小;对空心桩, 当检测点与激振点平面夹角约为多少度时也有类似效果? 答:对于砼实心桩,检测点位于距桩中心2/3处所受干扰最少;对于空心桩,当检测点与激振点平面夹角为90度时也有类似效果。

岩石力学复习

一、名词解释 1、各向异性:岩石的全部或部分物理、力学性质随方向不同而表现出差异的性质。 2、软化系数:饱水岩样抗压强度与自然风干岩样抗压强度的比值。 3、初始碎胀系数:破碎后样自然堆积体积与原体积之比。 4、岩体裂隙度K:取样线上单位长度上的节理数。 5、本构方程:描述岩石应力与应变及其与应力速率、应变速率之间关系的方程(物理方程)。 6、平面应力问题:某一方向应力为0。(受力体在几何上为等厚薄板,如薄板梁、砂轮等) 7、平面应变问题:受力体呈等截面柱体,受力后仅两个方向有应变,此类问题在弹性力学中称为平面应变问题。 8、给定载荷:巷道围岩相对孤立,支架仅承受孤立围岩的载荷。 9、长时强度:作用时间为无限大时的强度(最低值)。 10、扩容现象:岩石破坏前,因微裂隙产生及内部小块体相对滑移,导致体积扩大的现象 11、支承压力:回采空间周围煤岩体内应力增高区的切向应力。 12、平面应力问题:受力体呈等厚薄板状,所受应力为平面应力,在弹性力学中称为平面应力问题。 13、给定变形:围岩与母体岩层存在力学联系,支架承受围岩变形而产生的压力,这种工作方式称为给定变形。 14、准岩体强度:考虑裂隙发育程度,经过修正后的岩石强度称为准岩体强度。 15、剪胀现象:岩石受力破坏后,内部断裂岩块之间相互错动增加内部空间在宏观上表现体积增大现象。 16、滞环:岩石属滞弹性体,加卸载曲线围成的环状图形,其面积大小表示因内摩擦等原因消耗的能量。 17、岩石的视密度:单位体积岩石(包括空隙)的质量。 18、扩容现象:岩石破坏前,因微裂隙产生及内部小块体相对滑移,导致体积扩大的现象。 19、岩体切割度Xe:岩体被裂隙割裂分离的程度: 20、弹性后效:停止加、卸载,应变需经一段时间达到应有值的现象。 21、粘弹性:岩石在发生的弹性变形具有滞后性,变形可缓慢恢复。 22、软岩(地质定义):单轴抗压强度小于25MPa的松散、破碎、软弱及风化膨胀类岩石。 23、砂土液化:饱水砂土在地震、动力荷载或其它物理作用下,受到强烈振动而丧失抗剪强度,使砂粒处于悬浮状态,致使地基失效的作用或现象。 24、混合溶蚀效应:不同成分或不同温度的水混合后,其溶蚀能力有所增强的效应。 25、卓越周期:地震波在地层中传播时,经过各种不同性质的界面时,由于多次反射、折射,将出现不同周期的地震波,而土体对于不同的地震波有选择放大的作用,某种岩土体总是对某种周期的波选择放大得突出、明显,这种被选择放大的波的周期即称为该岩土体的卓越周期。 26、工程地质问题:工程建筑物与工程地质条件之间所存在的矛盾或问题。 27、工程地质条件:与工程建筑有关的地质要素的综合,包括:地形地貌、岩土类型及其工程性质、地质结构、水文地质、物理地质现象和天然建筑材料六个方面。 28、滑坡:斜坡岩土体在重力等因素作用下,依附滑动面(带)产生的向坡外以水平运动为主的运动或现象。 29、振动液化:饱水砂、粉砂土在振动力的作用下,抗剪强度丧失的现象。 30、混合溶蚀效应:不同成分或不同温度的水混合后,其溶蚀性有所增强,这种增强的溶蚀效应叫做混合溶蚀效应。 31、基本烈度:指在今后一定时间(一般按100年考虑)和一定地区范围内一般场地条件下

电磁波传输损耗

电磁波传输损耗及远场区的场强预测 广播电视无线电波的频段较高,电磁波信号传输时以直射波为主,但是也存在反射、绕射和散射等。电磁波在空间传播时,向外传输的电磁波以球面波的形式向外发射,距离越大,球面半径就越大,单点的电磁信号就越小,空间损耗也就越大。另外,电磁波在空间传播的过程中会受到空气中的尘埃、水滴、水汽等物质的影响,造成反射和散射;电磁波在接近地表传输时,会由于地表不是绝对光滑,而是存在高低起伏、树木遮挡、建筑物遮挡、大型水面或湖面的影响,而产生反射、绕射等情况,这样,电磁波信号到达接收天线时就会由各种传播方式传播到的所有信号叠加而成。因为各个地区的地形存在很大差异,同一地区各个方向上的建筑物、树木、河流湖泊等情况也不尽相同,因此这种不是由于空间球面扩散而产生的损耗就是很难预测的;同时,由于各个区域的电磁覆盖情况都不一样,随之带来的电磁干扰情况也不一样,这就更为场强覆盖预测带来难度。 一、球面传播的电磁波的空间损耗

Pr :接收信号功率 Pt :发射信号功率 Gt :发射天线增益 Gr :接收天线增益 d :接收和发射天线之间的距离 λ:射频信号波长 有球面面积可计算得 自由空间传播路径损耗(发射天线和接收天线都为点源天线)可写为: 可以看出,传输距离越大,空间损耗越大,频率越高,传输损耗越大。 二、 实际电磁波的传播损耗 电磁波在空间传播时,都会受到空气中的粒子、地面建筑物、地面植被等其他物体的影响,而产生反射、折射、绕射、散射等。电磁波通常不会按照球面波的传输损耗到达接收天线。这样,实际电磁波的传播损耗,在自由空间传播路径损耗的基础上还要加上一些修正值。传播损耗按照性质分类可分为:经验模型、半经验模型、确定性模型。 MHZ mi MHZ Km r t fs f d f d d d P P dB L 1010222log 20log 2058.36log 20log 2045.324log 20)4(log 10log 10)(1010++=++=??????=??????-==λππλ()/24t r r t G G P P d πλ=

基于应力波衰减材料的目标层特征凸现方法

第40卷第2期 2018年4月探测与控制学报Journal of Detection &Control Vol .40No .2A p r .2018 一?收稿日期:2017-12-13作者简介:董灵飞(1990-),男,湖北黄梅人,硕士研究生,研究方向:目标与环境特性三E -mail :1002676409@qq .com 三基于应力波衰减材料的目标层特征凸现方法 董灵飞,戴黎红,李一蓉 (西安机电信息技术研究所,陕西西安710065) 摘一要:针对多层侵彻过载粘连信号成分复杂二信号处理方法从中提取穿层特征压力大的问题,提出基于应力波衰减材料的目标层特征凸现方法三该方法采用灌封硅橡胶+纳米SiO 2颗粒制备的材料填充至引信壳体内侧,能够将弹体高速侵彻多层硬目标过程中激发的应力波快速衰减,避免了应力波沿着弹体多次重复叠加造成侵彻过载的层间粘连,从而凸现侵彻过载的目标层特征三试验验证表明,同一发弹内采用该材料缓冲测得的侵彻过载层特征较未采用该材料缓冲的侵彻过载层特征明显三关键词:高速侵彻;多层硬目标;过载信号粘连;层特征凸现;应力波衰减;缓冲材料 中图分类号:TJ430.4一一一一文献标志码:A 一一一一文章编号:1008-1194(2018)02-0052-04 A Method on Revealin g Tar g et La y er Characteristic b y Stress Wave Attenuation Material DONG Lin g fei ,DAI Lihon g ,LI Ron g (Xi an Institute of Electromechanical Information Technolo gy ,Xi an 710065,China )Abstract :To solve the p roblem of identification difficult y of tar g et la y er which is caused b y p enetration overload interla y er adhesion ,a method of revealin g tar g et la y er characteristic based on the stress wave attenuation mate -rial was p ro p osed.The material is mixed b y silicone rubber and nano SiO 2p articles at a certain rate ,then fillin g in the new material inside fuze shell.The buffer la y er formed b y the new material could attenuate the stress wave ra p idl y which was g enerated durin g p ro j ectile p enetrated multi -la y er hard tar g et in hi g h s p eed.This could avoid stress wave multi p le times overla pp in g alon g the p ro j ectile which would cause p enetration overload inter -la y er adhesion ,so tar g et la y er characteristic became obvious.Test results indicated that in a same p ro j ectile the tar g et la y er characteristic of the p enetration overload measured b y acceleration sensor which is buffered b y the new material is clearer than which is no buffered. Ke y words :hi g h s p eed p enetration ;multila y er hard tar g et ;overload si g nal adhesion ;la y er characteristic revea -lin g ;stress wave attenuation ;buffer material 0一引言 侵彻弹在高速侵彻多层硬目标时,加速度传感 器测得的多层侵彻过载中会叠加大量的高频振 荡[1],导致多层侵彻过载出现层间粘连,计层起爆算法难以识别目标层数,无法在指定目标层起爆战斗 部三如何凸现多层侵彻过载的穿层特征,使计层起 爆算法准确识别目标层数一直是侵彻引信研究的热 点和难点三目前多采用信号处理方法来凸现多层侵彻过载的穿层特征,对测得的多层侵彻过载信号进行信号处理,从中提取包含穿层特征的信息,计层起爆算法根据提取的信息来识别目标层数三欧阳科等提出了基于加速度传感器和MEMS 开关信号融合的计层 起爆算法[2],该算法将加速度传感器信号和MEMS 开关信号分别与不同的窗函数在时域中卷积加权求和得到复合信号,然后根据得到的复合信号来判断弹丸侵彻过程中的穿层特征三王杰等提出了基于小波系数的粘连信号穿层特征提取方法[3],该方法利万方数据

Z1东大岩石破裂自然奖项目公示培训资料

Z1东大岩石破裂自然奖项目公示

推荐2016年度国家自然科学奖项目公示 一、项目名称 岩石破裂过程灾变机理与失稳前兆规律 二、推荐单位意见 矿山开采和岩石工程开挖引起的灾害造成大量的人员伤亡和财产损失。开采或岩石工程开挖诱发的许多工程灾害都与岩石破裂过程失稳有关,岩石破裂过程灾变机理与失稳前兆规律是认识灾害发生的机理和进行灾害预警的关键性理论与技术问题。本项研究从实验研究、数值模拟方法研究及其工程应用等方面,系统地研究了岩石破裂过程灾变机理与失稳前兆规律,创建了岩石破裂过程失稳的数值模拟方法RFPA,为岩体工程灾害研究提供了新的分析工具,推动了岩石破坏力学的发展;研究形成了以岩石微破裂监测与并行数值模拟相结合的工程岩体灾害预警新方法,在10余个典型或重大工程中得到成功应用,通过现场工程措施的实施,确保了岩石工程的安全,创造了可观的经济效益和社会效益。 该项目创建了岩石破裂过程失稳的数值模拟新方法,并为国内外同行广泛应用,在国际上具有重要的学术影响。发表20篇论著总计被他引3476次,其中被SCI-E他引541次、CPCI-S他引258次、CNKI他引2677次。包括原国际岩石力学学会主席C.Fairhurst教授、J.A.Hudson教授在内的1000多位国内外专家,都在公开出版物中给予了正面引用与评价。课题组为我国岩石力学界培养了第一个国际岩石力学学会Rocha奖获得者,实现了国际岩石力学学会设奖27年来我国零的突破。国内外学者应用岩石破裂过程分析系统RFPA获得硕士、博士学位

论文的达到60余篇。本项成果已在加拿大、瑞典、香港及国内30余所高校或研究机构得到应用,协助国内十余所高校挂牌成立了与岩石破坏机理分析相关的“数值实验室”,并在济钢张马屯铁矿突水、淮南矿业集团瓦斯突出、唐钢矿业公司突冒突涌、锦屏二级水电工程隧道施工岩爆等灾害的监测预警中得到应用,为确保岩石工程安全提供了新的手段,取得了较好的经济效益和社会效益。 特推荐国家自然科学奖一等奖。 三、项目简介 矿山开采或岩石工程开挖诱发的许多工程灾害都与岩石破裂过程失稳有关。本项研究从实验研究、数值模拟方法研究及其工程应用等诸方面,系统地研究了岩石破裂过程灾变机理与失稳前兆规律,创建了岩石破裂过程失稳的数值模拟方法RFPA,研究形成了以岩石微破裂监测与大规模高性能数值模拟相结合的工程岩体灾害预警新方法,通过现场工程措施的实施,为确保岩石工程安全提供了新的手段。该项目的主要研究及科学意义在于: (1)建立了岩石非线性统计损伤本构理论和岩石破裂失稳灾变模型,揭示了加载系统弹性回弹行为与岩石试样相互作用所带来的岩石破裂规律的复杂性,为研究岩爆等岩体工程动力灾害奠定了理论与实验基础,推动了岩石破坏力学的发展。 (2)基于“脆性破裂孕育在小变形之中”的深刻认识,提出了基于小变形和大位移原理的岩石破裂全过程分析学术思想,建立了用细观非均匀性模拟宏观非线性、用连续介质力学方法模拟非连续介质破裂问题的新型数值分析RFPA(Rock Failure Process Analysis)方法,为岩体工程灾害研究提供了新的分析工具。

岩石力学试题及答案

岩石力学试卷(闭卷) 一、填空题(每空1分,共20分) 1、沉积岩按结构可分为()、(),其中,可作为油气水在地下的良好储层的是(),不能储存流体,但是可作为油气藏的良好盖层的是()。 2、为了精确描述岩石的复杂蠕变规律,许多学者定义了一些基本变形单元,它们是()、()、 ()。 3、在水力压裂的加压过程中,井眼的切向或垂向的有效应力可能变成拉应力,当此拉应力达到地层的() 时,井眼发生破裂。此时的压力称为()。当裂缝扩展到()倍的井眼直径后停泵,并关闭液压系统,形成(),当井壁形成裂缝后,围岩被进一步连续地劈开的压力称为()。如果围岩渗透性很好,停泵后裂缝内的压力将逐渐衰减到()。 4、通常情况下,岩石的峰值应力及弹性模量随着应变率降低而(),而破坏前应变则随着应变率降低而()。 5、一般可将蠕变变形分成三个阶段:第一蠕变阶段或称();第二蠕变阶段或称();第三蠕 变阶段或称()。但蠕变并一定都出现这三个阶段。 6、如果将岩石作为弹性体看待,表征其变形性质的基本指标是()和()。 二、选择题(每题2分,共10分) 1、格里菲斯强度准则不能作为岩石的宏观破坏准则的原因是() A、该准则不是针对岩石材料的破坏准则 B、该准则没有考虑岩石的非均质的特性 C、该准则忽略了岩石中裂隙的相互影响 2、在地下,岩石所受到的应力一般为()。 A、拉应力 B、压应力 C、剪应力 3、一般情况下,岩石的抗拉强度()抗压强度。 A、等于 B、小于 C、大于 4、地层坍塌压力越高,井壁越()。 A、稳定 B、不稳定 C、无关 5、初始地应力主要包括() A、自重应力和残余应力 B、构造应力和残余应力 C、自重应力和构造应力 三、判断改错题(每题2分,共10分)

电磁波衰减

[吸收系数]absorption coefficient 又称“衰减系数”当电磁波进入岩石中时,由于涡流的热能损耗,将使电磁波的强度随进入距离的增加而衰减,这种现象又称为岩石对电磁波的吸收作用。吸收或衰减系数β的大小和电磁波角频率ω、岩石导电率σ、岩石导磁率μ、岩石 介电系数ε有关, 1 ) 1( 22 2 2 - + = δ ω σ με ω β 。在导体中则简化为:2 ωμσ β= 。 第十六章机械波和电磁波 振动状态的传播就是波动,简称波. 激发波动的振动系统称为波源 16-1机械波的产生和传播 1. 机械波产生的条件 (1)要有作机械振动的物体,亦即波源. (2)要有能够传播这种振动的介质 波源处质点的振动通过弹性介质中的弹性力,将振动传播开去,从而形成 机械波。 波动(或行波)是振动状态的传播,是能量的传播,而不是质点的传播。 ◆质点的振动方向和波的传播方向相互垂直,这种波称为横波. ◆质点的振动方向和波的传播方向相互平行,这种波称为纵波. 2.波阵面和波射线 ●在波动过程中,振动相位相同的点 连成的面称为波阵面(wave surface)●波面中最前面的那个波面称为波前(wave front)波面 波 线

●波的传播方向称为波线(wave line)或波射线平面波球面波 3. 波的传播速度 由媒质的性质决定与波源情况无关 ●液体和气体中纵波传播速度 B-介质体变弹性模量 ρ-介质密度 ● 在 固 体 G-介质切变模量 中 Y-介质杨氏模量 4.波长和频率 ●一个完整波的长度,称为波长.

●波传过一个波长的时间,叫作波的周期 ●周期的倒数称为频率. 振动曲线波形曲线图形 研究 对象某质点位移随时间变化规律 某时刻,波线上各质点位移随位置变 化规律 物理意义由振动曲线可知 周期T. 振幅A 初相φ0 某时刻方向参看下一时刻 由波形曲线可知该时刻各质点 位移,波长λ,振幅A 只有t=0 时刻波形才能提供初相 某质点方向参看前一质点 特征对确定质点曲线形状一定曲线形状随t 向前平移 16-2 平面简谐波波动方程 ●前进中的波动,称为行波. ●描述介质中各质点的位移随时间变化的数学函数式称为行波的波动表式(或波 动方程)

2016年公路水运试验检测人员继续教育-桩基检测应力波理论 试卷

第1题 应力波在杆身存在波阻抗增大、杆端处于自由情况下,在杆头实测杆身波阻抗增大位置的多次反射波是 A.反向 B.奇数次反射反向,偶数次反射同向 C.同向 D.奇数次反射同向,偶数次反射反向 答案:B 第2题 应力波在杆身存在波阻抗增大、杆端处于自由情况下,在杆头实测杆身波阻抗增大位置的多次反射波幅值比一次入射波幅值 A.相同 B.大 C.小 D.不确定 答案:C 第3题 应力波在杆身存在波阻抗增大、杆端处于自由情况下,在杆头实测杆身波阻抗增大位置的一次反射波幅值比入射波幅值 A.相同 B.大 C.小 D.不确定 答案:C 第4题 应力波在杆身存在波阻抗增大、杆端处于自由情况下,在杆头实测杆身波阻抗增大位置的一次反射波是 A.反向 B.奇数次反射反向,偶数次反射同向 C.同向 D.奇数次反射同向,偶数次反射反向 答案:A 第5题 在上行波中,质点运动的速度方向与所受力方向 A.一致 B.相反 C.有时一致,有时相反 D.垂直 答案:B

第6题 在下行波中,质点运动的速度方向与所受力方向 A.一致 B.相反 C.有时一致,有时相反 D.垂直 答案:A 第7题 质点速度的含义及数值范围 A.单位时间里质点在其平衡点附近运动时的位移变化量,一般只有几cm/s B.单位时间内振动传播的距离,一般会达到几km/s C.单位时间内振动传播的距离,一般只有几cm/s D.单位时间里质点在其平衡点附近运动时的位移变化量,一般只有几km/s 答案:A 第8题 机械振动是什么 A.物体(质点)在其平衡位置附近来回往复的运动 B.物体(质点)或系统在连续介质中的传播过程 C.引起应力波的外载荷 D.扰动与未扰动的分界面 答案:A 第9题 两列应力波相遇,在相遇区域内,应力波有什么特性 A.反射、透射 B.散射 C.叠加 D.弥散(衰减) 答案:C 第10题 波动是什么? A.物体(质点)在其平衡位置附近来回往复的运动 B.物体(质点)振动在空间的传播过程 C.引起应力波的外载荷 D.扰动与未扰动的分界面 答案:B 第11题

岩石力学名词解释

一.岩石的物理力学性质 1.岩体:位于一定地质环境中,在各种宏观地质界面(断层、节理、破碎带等)分割下形成的有一定结构的地质体。 由结构面与结构体组成的地质体。 2.岩石:是经过地质作用而天然形成的一种或多种矿物的集合体。具有一定结构构造的矿物(含结晶和非结晶的)集 合体。 3.岩(体)石力学:是力学的一个分支学科,是研究岩(体)石在各种力场作用下变形与破坏规律的理论及其实际应 用的一门基础学科。 4.结构面:指在地质历史发展过程中,岩体内形成的具有一定的延伸方向和长度,厚度相对较小的宏观地质界面或带。 5.岩石质量指标(RQD):指大于10cm的岩芯累计长度与钻孔进尺长度之比的百分数。 6.空隙指数:指在压力条件下,干燥岩石吸入水的重量与岩石干重量的比值。 7.软化性:软化性是指岩石浸水饱和后强度降低的性质。 8.软化系数:指岩石试件的饱和抗压强度与干燥状态下的抗压强度的比值。 9.膨胀性:是指岩石浸水后体积增大的性质。 10.单轴抗压强度:是指岩石试件在单轴压力下达到破坏的极限值。, ! 11.抗拉强度:是指岩石试件在单向拉伸条件下试件达到破坏的极限值。 12.抗剪强度:是指岩石抵抗剪切破坏的能力。 13.形状效应:在岩石试验中,由于岩石试件形状的不同,得到的岩石强度指标也就有所差异。这种由于形状的不同而 影响其强度的现象称为“形状效应”。 14.尺寸效应:岩石试件的尺寸愈大,则强度愈低,反之愈高,这一现象称为“尺寸效应”。 15.延性度:指岩石在达到破坏前的全应变或永久应变。 16.流变性:指在外界条件不变时,岩石应变或应力随时间而变化的性质。 17.蠕变:指在应力不变的情况下,岩石的变形随时间不断增长的现象。 18.应力松弛:是指当应变不变时,岩石的应力随时间增加而不断减小的现象。 19.弹性后效:是指在加荷或卸荷条件下,弹性应变滞后于应力的现象。 20.峰值强度:若岩石应力—应变曲线上出现峰值,峰值最高点的应力称为峰值强度。 21.长期强度:指长期荷载(应变速率小于10-6/s)作用下岩石的强度。 $ 22.扩容:在岩石的单轴压缩试验中,当压力达到一定程度以后,岩石中的破裂或微裂纹继续发生和扩展,岩石的体积 应变增量由压缩转为膨胀的力学过程,称之为扩容。 23.应变硬化:在屈服点以后(在塑性变形区),岩石(材料)的应力—应变曲线呈上升曲线,如要使之继续变形,需 要相应地增加应力,这种现象称之为应变硬化。 24.疲劳破坏:在循环荷载作用下,岩石会在比峰值应力低的应力水平下破坏的现象。 25.疲劳强度:是使岩石(材料)发生疲劳破坏时循环荷载的应力水平的大小(非定值)。 26.速率效应:是指在岩石试验中由于加载速率的不同而引起的岩石强度的变化现象。 27.延性流动:是指当应力增大到一定程度后,应力增大很小或保持不变时,应变持续不断增长而不出现破裂,也即是 有屈服而无破裂的延性流动。 28.脆性破坏:是指岩石在破坏前变形很小,出现急剧而迅速的破坏,且破坏后应力降很大。 29.延性破坏:是指岩石在破坏前发生了较大的永久塑性变形,并且破坏后应力降很小。 30.强度准则:表征岩石破坏时的应力状态和岩石强度参数之间的关系,一般可以表示为极限应力状态下的主应力间的 关系方程:σ1=f(σ2,σ3)或τ=f(σ)。 31.塑性变形:在外力撤去后不能够恢复的变形。2.岩体的力学性质及分类 ; 二.岩体的力学性质及分类 l.结构面:①指在地质历史发展过程中岩体内形成的具有一定的延伸方向和长度,厚度相对较小的宏观地质界面或带。 ②又称弱面或地质界面,是指存在于岩体内部的各种地质界面,包括物质分异面和不连续面,如假整合、不整合、 褶皱、断层、层面、节理和片理等。

相关主题
文本预览
相关文档 最新文档