当前位置:文档之家› 变频器控制电机设计..

变频器控制电机设计..

变频器控制电机设计..
变频器控制电机设计..

浙江工业职业技术学院

互联技术及智能制造课程设计

2017年5月20日

互联技术及智能制造

课程设计任务书

课程互联技术及智能制造

题目罗克韦尔变频器的电机控制

专业15计算机信息管理姓名学号

专业15计算机信息管理姓名学号

主要内容:

通过电脑PC端控制,要实现电动机的正反转切换,需利用接触器等装置对电源进行换相切换。利用变频器的调速控制转动时,需改变变频器内部逆转电路功率器件,即可达到对输出的换相目的,很容易实现电动机的正反切换。

M850PLC变频器可设定转动速度,以及转动方向的控制。

通过电脑PC端装有Project206-Connected Components编程软件控制变频器的程序,再在变频器上设置相对的数据(P46=5,P47=15)。

当按下-IO-EM-D1-02自定义控制按钮时,电机正转运行频率为40HZ(注意不可转太快)按下-IO-EM-D1-04控制按钮时,延时2S,电机反转运行频率为40HZ,最后按下停止控制按钮,电机运行停止。

电脑上设置自己控制台上的电脑IP地址,便是控制自己的变频器转动,相对应的,输入机房其他电脑IP地址,便可控制其他PC端电脑的变频器转动频率。

基本要求:

在电脑PC端利用软件Project206-Connected Components编写将线路图连接好后,准备设置变频器各参数。

设置变频器参数设置模式将(P-46=5,P-47=15)

软件上设置对应的IP地址

通过电脑编写程序

调试。

参考资料:

2017年月日

目录

1、罗克韦尔自动化产品系列控制器概述 (1)

2、M850PLC及变频器控制技术介绍 (2)

2.1可编程序控制器的分类 (1)

2.2 PLC的结构及特点 (2)

3、控制内容 (3)

3.1输入寄存器 (1)

3.2输出寄存器 (2)

4、设计内容........................................................................ 错误!未定义书签。

4.1变频器调速原理 (3)

4.2 变频器的基本结构.............................................. 错误!未定义书签。

4.3 PLC的程序........................................................... 错误!未定义书签。

4.4 PLC的外部接线图 (5)

5、结论(实现过程) (7)

6、心得体会 (8)

参考文献 (9)

1.罗克韦尔自动化系列控制器概述

Micro800系列控制器是罗克韦尔自动化公司全新推出的新一代微型PLc,此系列控制器具有超过21种模块化插件,控制器的点数从10点到48点不等,可以实现高度灵活的硬件配置,在提供足够的控制能力的同时,满足用户的基本应用,并且便于安装和维护。

不同型号控制器之间的模块化插件可以共用,内置RS-232、RS-485、USB和Ethermet/IP等通信接口,有强大的通信功能。免费的编程软件支持功能块一体化编程,并可使用通用的USB编程电缆,给编程人员带来了极大的便利;系统还可以提供完整的机器控制方案。Micro800共有4个系列的控制器,分别为Micro810、Micro820、Micro830和Micro850。

2、PLC控制技术介绍

M850PLC变频器原理(Variable-frequency Drive,VFD),是应用变频技术与微电子技术,通过改变电机工作电源频率方式来控制交流电动机的电力控制设备。

变频器(Variable-frequency Drive,VFD)是应用变频技术与微电子技术,通过改变电机工作电源频率方式来控制交流电动机的电力控制设备。

我们使用的电源分为交流电源和直流电源,一般的直流电源大多是由交流电源通过变压器变压,整流滤波后得到的。交流电源在人们使用电源中占总使用电源的95%左右。

无论是用于家庭还是用于工厂,单相交流电源和三相交流电源,其电压和频率均按各国的规定有一定的标准,如我国大陆规定,直接用户单相交流电压为220V,三相交流电线电压为380V,频率为50Hz,其它国家的电源电压和频率可能与我国的电压和频率不同,如有单相100V/60Hz,三相200V/60Hz 等等,标准的电压和频率的交流供电电源叫工频交流电。

通常,把电压和频率固定不变的工频交流电变换为电压或频率可变的交流电的装置称作“变频器”。

为了产生可变的电压和频率,该设备首先要把电源的交流电变换为直流电(DC),这个过程叫整流。

一般逆变器是把直流电源逆变为一定频率和一定电压的逆变电源。对于逆变

电源频率和电压可调的逆变器我们称为变频器。

变频器输出的波形是模拟正弦波,主要是用在三相异步电动机调速用,又叫变频调速器。

可编程控制器(PLC)是以微处理器为基础,综合了计算机技术、自动控制技术和通信技术发展起来的一种通用的工业自动控制装置。它具有体积小、功能强、灵活通用与维护方便等一系列的优点。

特别是它的高可靠性和较强的适应恶劣环境的能力,受到用户的青睐。因此在冶金、化工、交通、电力等领域获得了广泛的应用,成为了现代工业控制的三大支柱之一。可编程控制器是一种存储器控制器,支持控制系统工作的程序存放在存储器中利用程序来实现控制逻辑,完成控制任务。

在可编程控制器构成的控制系统中,要实现一个控制任务,首先要针对具体的被控对象,分析它对控制系统的要求,然后编制出相应的控制程序,利用编程器将控制程序写入可编程控制器的程序存储器中。系统运行时,可编程控制器依次读取程序存储器中的程序语句,对它们的内容加以解释并执行。

现代PLC已经成为真正的工业控制设备。

2.1 可编程序控制器的分类

PLC的种类很多,其实现的功能、内存容量、控制规模、外型等方面均存在较大的差异。因此,PLC的分类没有一个严格的统一标准,而是按照结构形式、控制规模、实现的功能进行大致的分类。

2.2 PLC的结构及特点

PLC实质是一种专用于工业控制的计算机,其硬件结构基本上与微型计算机相同1、中央处理单元(CPU) 中央处理单元(CPU)是PLC的控制中枢。它按照PLC 系统程序赋予的功能接收并存储从编程器键入的用户程序和数据;检查电源、存储器、I/O以及警戒定时器的状态,并能诊断用户程序中的语法错误。当PLC投入运行时,首先它以扫描的方式接收现场各输入装置的状态和数据,并分别存入I/O映象区,然后从用户程序存储器中逐条读取用户程序,经过命令解释后按指令的规定执行逻辑或算数运算的结果送入I/O映象区或数据寄存器内。等所有的用户程序执行完毕之后,最后将I/O映象区的各输出状态或输出寄存器内的数据传送到相应的输出装置,如此循环运行,直到停止运行。

为了进一步提高PLC的可靠性,近年来对大型PLC还采用双CPU构成冗余系统,或采用三CPU的表决式系统。这样,即使某个CPU出现故障,整个系统仍能正常运行。

3.1输入寄存器

输入寄存器可按位进行寻址,每一位对应一个开关量,其值反映了开关量的状态,其值的改变由输入开关量驱动,并保持一个扫描周期。CPU可以读其值,但不可以写或进行修改。

3.2输出寄存器

输出寄存器每一位都表明了PLC在下一个时间段的输出值,而程序循环执行开始时的输出寄存器的值,表明的是上一时间段的真实输出值。在程序执行过程中,CPU可以读其值,并作为条件参加控制,还可以修改其值,而中间的变换仅仅影响寄存器的值。只有程序执行到一个循环的尾部时的值才影响下一时间段的输出,即只有最后的修改才对输出接点的真实值产生影响出寄存器。

4.1 变频器调速原理

变频调速是通过改变电机定子绕组供电的频率来达到调速的目的。

n=60f(1-S)/P

对于成品电机,其磁极对数p已经确定,转差率s变化不大,故电机的转速n与电机的频率f成正比,因此改变输入电源的频率就可以改变电机的同步转速,进而达到电机调试的目的。

4.2变频器的基本结构

变频器通常分为4部分:整流单元、高容量电容、逆变器和控制器。

整流单元:将工作频率固定的交流电转换为直流电。

高容量电容:存储转换后的电能。

逆变器:由大功率开关晶体管阵列组成电子开关,将直流电转化成不同频率、宽度、幅度的方波。

控制器:按设定的程序工作,控制输出方波的幅度与脉宽,使叠加为近似正弦波的交流电,驱动交流电动机。

4.3 PLC的程序

当可编程逻辑控制器投入运行后,其工作过程一般分为三个阶段,即输入采样、用户程序执行和输出刷新三个阶段。完成上述三个阶段称作一个扫描周期。在整个运行期间,可编程逻辑控制器的CPU以一定的扫描速度重复执行上述三个阶段

一、输入采样阶段

在输入采样阶段,可编程逻辑控制器以扫描方式依次地读入所有输入状态和数据,并将它们存入I/O映象区中的相应的单元内。输入采样结束后,转入用户程序执行和输出刷新阶段。在这两个阶段中,即使输入状态和数据发生变化,I/O 映象区中的相应单元的状态和数据也不会改变。因此,如果输入是脉冲信号,则该脉冲信号的宽度必须大于一个扫描周期,才能保证在任何情况下,该输入均能被读入。

可编程逻辑控制器

可编程逻辑控制器

二、用户程序执行阶段

在用户程序执行阶段,可编程逻辑控制器总是按由上而下的顺序依次地扫描用户程序(梯形图)。在扫描每一条梯形图时,又总是先扫描梯形图左边的由各触点构成的控制线路,并按先左后右、先上后下的顺序对由触点构成的控制线路进行逻辑运算,然后根据逻辑运算的结果,刷新该逻辑线圈在系统RAM存储区中对应位的状态;或者刷新该输出线圈在I/O映象区中对应位的状态;或者确定是否要执行该梯形图所规定的特殊功能指令。

即,在用户程序执行过程中,只有输入点在I/O映象区内的状态和数据不会发生变化,而其他输出点和软设备在I/O映象区或系统RAM存储区内的状态和数据都有可能发生变化,而且排在上面的梯形图,其程序执行结果会对排在下面的凡是用到这些线圈或数据的梯形图起作用;相反,排在下面的梯形图,其被刷新的逻辑线圈的状态或数据只能到下一个扫描周期才能对排在其上面的程序起作用。

在程序执行的过程中如果使用立即I/O指令则可以直接存取I/O点。即使用I/O指令的话,输入过程影像寄存器的值不会被更新,程序直接从I/O模块取值,输出过程影像寄存器会被立即更新,这跟立即输入有些区别。

三、输出刷新阶段

当扫描用户程序结束后,可编程逻辑控制器就进入输出刷新阶段。在此期间,CPU按照I/O映象区内对应的状态和数据刷新所有的输出锁存电路,再经输出电路驱动相应的外设。这时,才是可编程逻辑控制器的真正输出。

4.4 PLC的外部连线图

(4-12)5、结论

变频调速是最有发展前途的一种交流调速方式。目前,变频器在各个行业都有广泛的应用。变频器的出现,使交流电动机得调速得和直流电动机一样方便,并可由计算机联网控制,因此得到了广泛的应用,其发展前景广阔。变频器发展至今,不断进行更新发展,向专用型方向发展,向人性化方向发展,易用性不断提高,功率结构模块化,智能化。

通过变频器控制电机的的应用与设计,使我们对PLC、特殊功能模块、变频器以及各硬件设备之间的连接、软件编程、监控和实际工程控制要求等知识有了更深入的理解。熟悉实际工程项目的开发设计,体会工程设计的复杂与困难。

学习的过程,让我们对于变频器,原来变频器调速的,是通过变频调速,还可以调节电压,电流,这些都是通过变频,改变频

率可以改变那么多东西。而这次接线发现现在对于接线很熟练了,好像有了一种孰能生巧的感觉了,变频器的接线和plc相似,而这次实训是我最认真的一次,也是最后一次了。经过这次变频器实训使我掌握了使用变频器的基本方法及基本连接,电路的检测与调试达到电动机的正反转控制,懂了变频调速的原理。

6、心得体会

通过本次课程设计,对Micro850系列PLC的特点有了深刻的理解。利用了Micro850系列PLC的特点,对按钮、开关等输入/输出进行控制,实现了变频器在控制作用下的变频调速。

在本次课程设计的实践环节,我深刻地理解和掌握了电机控制及可编程控制器(PLC)的理论知识和手动技能。参阅了大量的控制和可编程控制器(PLC)系统设计的书籍资料,查询了大量的图表、程序和数据,使得课程设计的方案和数据更加详实和准确,力求科学严谨,使得本次以变频器控制为主题的课程设计精益求精。

经历自己设计实验和查阅资料,让我了解了更多关于罗克韦尔和Micro850系列PLC方面的资料,构思了大概的选型和注意事项,并自己动手实验,参照一些编程试着去编一个程序,而我选择了变频器的电机控制,通过以往编程的思路和老师的点拨,使我们借鉴了许多经验和技巧,遇到的问题,通过不断问同学,反复的思考,调试,终于编出了调用子程序来达到程序控制的目的。我们学习的不仅是科学的方法,还包括用什么样的态度去对待这门课程,并且让自理论性和实践性在自身得到充分的发挥,用细心严谨的态度去认识事物。

此次课程设计让我们收获颇丰,在课程设计的过程中,即加深了同学之间的沟通,又学到了罗克韦尔的一些知识。毕竟了解的知识还是有限的,但我会在以后的学习中了解更多。

参考文献

[1]李海发.《电机学》[M].北京:科学出版社,2001

[2]汤蕴璆.《电机学(下册)》(第2版).北京:机械工业出版社,1990

[3] 周励志.《实用电工计算手册》[M].西安:西安交通大学出版社,1993

[4]祝富林.电机引用技术[J].北京:电子世界,1995,(12)

[5]唐介.《电机与拖动》[M].北京:高等教育出版社,2003

[6]彭介华.电子技术课程设计指导[J].北京:高等教育出版社,1997

附录

课程设计成绩评价表

指导教师:年月日

MM440变频器控制电动机PLC课程设计报告书

燕山大学 课程设计说明书 题目: PLC与变频器实现电机正反转控制 学院 (系):电气工程学院 年级专业: 11级计算机控制1班 学号: 学生: 指导教师:海滨爽 教师职称:

目录 目录﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍4 摘要﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍5 第一章概述﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍6 1. 1PLC和MM440变频器控制电动机的发展前景﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍6 1.2变频器的分类﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍7 1.3本课题的意义﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍8 第二章应用器件的介绍 2.1 PLC的工作原理和结构﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍9 2.2 变频器的工作原理及其组成结构﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍11 2. 3 A/D转换器工作原理﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍12 第三章相关参数的设置﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍13 3.1 MM440快速调制参数设置﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍13 3. 2 MM440数字输入控制端口参数﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍15 3. 3 PLC数字量模拟量的输入输出约定﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ 20 3. 4 恢复出厂设置﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍20 第四章硬件电路和软件电路的设计﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍15 4.1总体结构设计图﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍16 4.2外部设备的接线图﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍19 4.3软件编程设计﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍20 ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍20 3.4.2 ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍21 第四章总结﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍26 附录﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍27 参考文献﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍30

变频器驱动的电机和普通电机的区别

一、普通异步电动机都是按恒频恒压设计的,不可能完全适应变频调速的要求。以下为变频器对电机的影响 1、电动机的效率和温升的问题 不论那种形式的变频器,在运行中均产生不同程度的谐波电压和电流,使电动机在非正弦电压、电流下运行。拒资料介绍,以目前普遍使用的正弦波PWM 型变频器为例,其低次谐波基本为零,剩下的比载波频率大一倍左右的高次谐波分量为:2u+1(u为调制比)。 高次谐波会引起电动机定子铜耗、转子铜(铝)耗、铁耗及附加损耗的增加,最为显著的是转子铜(铝)耗。因为异步电动机是以接近于基波频率所对应的同步转速旋转的,因此,高次谐波电压以较大的转差切割转子导条后,便会产生很大的转子损耗。除此之外,还需考虑因集肤效应所产生的附加铜耗。这些损耗都会使电动机额外发热,效率降低,输出功率减小,如将普通三相异步电动机运行于变频器输出的非正弦电源条件下,其温升一般要增加10%--20%。 2、电动机绝缘强度问题 目前中小型变频器,不少是采用PWM的控制方式。他的载波频率约为几千到十几千赫,这就使得电动机定子绕组要承受很高的电压上升率,相当于对电动机施加陡度很大的冲击电压,使电动机的匝间绝缘承受较为严酷的考验。另外,由PWM变频器产生的矩形斩波冲击电压叠加在电动机运行电压上,会对电动机对地绝缘构成威胁,对地绝缘在高压的反复冲击下会加速老化。 3、谐波电磁噪声与震动 普通异步电动机采用变频器供电时,会使由电磁、机械、通风等因素所引起的震动和噪声变的更加复杂。变频电源中含有的各次时间谐波与电动机电磁部分的固有空间谐波相互干涉,形成各种电磁激振力。当电磁力波的频率和电动机机体的固有振动频率一致或接近时,将产生共振现象,从而加大噪声。由于电动机工作频率范围宽,转速变化范围大,各种电磁力波的频率很难避开电动机的各构件的固有震动频率。 4、电动机对频繁启动、制动的适应能力 由于采用变频器供电后,电动机可以在很低的频率和电压下以无冲击电流的方式启动,并可利用变频器所供的各种制动方式进行快速制动,为实现频繁启动和制动创造了条件,因而电动机的机械系统和电磁系统处于循环交变力的作用下,给机械结构和绝缘结构带来疲劳和加速老化问题。 5、低转速时的冷却问题 首先,异步电动机的阻抗不尽理想,当电源频率较底时,电源中高次谐波所引起的损耗较大。其次,普通异步电动机再转速降低时,冷却风量与转速的三次方成比例减小,致使电动机的低速冷却状况变坏,温升急剧增加,难以实现恒转矩输出。 二、变频电动机的特点 1、电磁设计 对普通异步电动机来说,再设计时主要考虑的性能参数是过载能力、启动性能、效率和功率因数。而变频电动机,由于临界转差率反比于电源频率,可以在

变频器控制电机转速

变频器是怎样控制电机转速 变频器主要由整流(交流变直流)、滤波、再次整流(直流变交流)、制动单元、驱动单元、检测单元微处理单元等组成的。 1. 电机的旋转速度为什么能够自由地改变? *1: r/min 电机旋转速度单位:每分钟旋转次数,也可表示为rpm. 例如:2极电机 50Hz 3000 [r/min] 4极电机 50Hz 1500 [r/min] 结论:电机的旋转速度同频率成比例 本文中所指的电机为感应式交流电机,在工业中所使用的大部分电机均为此类型电机。感应式交流电机(以后简称为电机)的旋转速度近似地确决于电机的极数和频率。由电机的工作原理决定电机的极数是固定不变的。由于该极数值不是一个连续的数值(为2的倍数,例如极数为2,4,6),所以一般不适和通过改变该值来调整电机的速度。 另外,频率能够在电机的外面调节后再供给电机,这样电机的旋转速度就可以被自由的控制。 因此,以控制频率为目的的变频器,是做为电机调速设备的优选设备。 n = 60f/p n: 同步速度 f: 电源频率 p: 电机极对数 结论:改变频率和电压是最优的电机控制方法 如果仅改变频率而不改变电压,频率降低时会使电机出于过电压(过励磁),导致电机可能被烧坏。因此变频器在改变频率的同时必须要同时改变电压。输出频率在额定频率以上时,电压却不可以继续增加,最高只能是等于电机的额定电压。 例如:为了使电机的旋转速度减半,把变频器的输出频率从50Hz改变到25Hz,这时变频器的输出电压就需要从400V改变到约200V 2. 当电机的旋转速度(频率)改变时,其输出转矩会怎样?

*1: 工频电源 由电网提供的动力电源(商用电源) *2: 起动电流 当电机开始运转时,变频器的输出电流 变频器驱动时的起动转矩和最大转矩要小于直接用工频电源驱动 电机在工频电源供电时起动和加速冲击很大,而当使用变频器供电时,这些冲击就要弱一些。工频直接起动会产生一个大的起动起动电流。而当使用变频器时,变频器的输出电压和频率是逐渐加到电机上的,所以电机起动电流和冲击要小些。 通常,电机产生的转矩要随频率的减小(速度降低)而减小。减小的实际数据在有的变频器手册中会给出说明。 通过使用磁通矢量控制的变频器,将改善电机低速时转矩的不足,甚至在低速区电机也可输出足够的转矩。 3. 当变频器调速到大于50Hz频率时,电机的输出转矩将降低 通常的电机是按50Hz电压设计制造的,其额定转矩也是在这个电压范围内给出的。因此在额定频率之下的调速称为恒转矩调速. (T=Te, P<=Pe) 变频器输出频率大于50Hz频率时,电机产生的转矩要以和频率成反比的线性关系下降。 当电机以大于50Hz频率速度运行时,电机负载的大小必须要给予考虑,以防止电机输出转矩的不足。 举例,电机在100Hz时产生的转矩大约要降低到50Hz时产生转矩的1/2。 因此在额定频率之上的调速称为恒功率调速. (P=Ue*Ie) 4. 变频器50Hz以上的应用情况 大家知道, 对一个特定的电机来说, 其额定电压和额定电流是不变的。 如变频器和电机额定值都是: 15kW/380V/30A, 电机可以工作在50Hz以上。 当转速为50Hz时, 变频器的输出电压为380V, 电流为30A. 这时如果增大输出频率到60H z, 变频器的最大输出电压电流还只能为380V/30A. 很显然输出功率不变. 所以我们称之为恒功率调速. 这时的转矩情况怎样呢?

PLC与变频器控制电机(DOC)

渤海船舶职业学院毕业设计(论文) 题目:变频器与PLC控制电机运行 年级专业:电气工程(船舶电气)系 姓名:刘俊亮学号:11G31502 论文完成时间:2014/5/21

摘要 随着生活水平逐渐提高,节能环保的观念越来越深入人心。回望过去30年在变频器上的研发,总结我们投入变频器运用于各行业的实际运用中,随着高性能微解决器的运用以及河南变频器维修掌握技巧的开展,变频器的性能价钱比越来越高,体积越来越小,很多技术先进的公司一直以进步牢靠性为追求完成变频器,为使其更小型轻量化、高性能化和多功用化以及无公害化而做着新的挑战。变频器性能的优劣,一要看其输出交换电压的谐波对电机的影响,二要看对电网的谐波净化和输出功率因数,三要看自身的能量损耗(即效力)如何。变频器还在一直的进步,各厂家都在寻求卓着,这也才是推进行业开展的前提,只有企业永远向前看,行业自但是然会更好。变频器是静止掌握体系中的功率变换器。当今的静止掌握体系是蕴含多种学科的技巧范畴,总的开展趋向是:驱动的交换化,功率变换器的高频化,掌握的数字化、智能化和网络化。因而,变频器作为体系的主要功率变换部件,供给可控的高性能变压变频的交换电源而得到迅猛开展。 于此同时PLC的发展也是非常令人惊讶的,20世纪70年代初出现了微处理器。人们很快将其引入可编程控制器,使PLC增加了运算、数据传送及处理等功能,完成了真正具有计算机特征的工业控制装置。此时的PLC为微机技术和继电器常规控制概念相结合的产物20世纪70年代初出现了微处理器。人们很快将其引入可编程控制器,使PLC增加了运算、数据传送及处理等功能,完成了真正具有计算机特征的工业控制装置。此时的PLC为微机技术和继电器常规控制概念相结合的产物。个人计算机发展起来后,为了方便和反映可编程控制器的功能特点,可编程序控制器定名为Programmable Logic Controller(PLC)。 20世纪末期,可编程控制器的发展特点是更加适应于现代工业的需要。这个时期发展了大型机和超小型机、诞生了各种各样的特殊功能单元、生产了各种人机界面单元、通信单元,使应用可编程控制器的工业控制设备的配套更加容易。 关键词:工作原理,运行方式,基本操作

变频器是怎样控制电机转速的

变频器是怎样控制电机转速的 变频器主要由整流(交流变直流)、滤波、再次整流(直流变交流)、制动单元、驱动单元、检测单元微处理单元等组成的。 1. 电机的旋转速度为什么能够自由地改变? 电机旋转速度单位:r/min 每分钟旋转次数,也可表示为rpm. 例如:2极电机50Hz 3000 [r/min] 4极电机50Hz 1500 [r/min] 结论:电机的旋转速度同频率成比例 感应式交流电机(以后简称为电机)的旋转速度近似地确决于电机的极数和频率。由电机的工作原理决定电机的极数是固定不变的。由于该极数值不是一个连续的数值(为2的倍数,例如极数为2,4,6),所以一般不适和通过改变该值来调整电机的速度。 另外,频率能够在电机的外面调节后再供给电机,这样电机的旋转速度就可以被自由的控制。 因此,以控制频率为目的的变频器,是做为电机调速设备的优选设备。 n = 60f/p n: 同步速度 f: 电源频率 p: 电机极对数 结论:改变频率和电压是最优的电机控制方法 如果仅改变频率而不改变电压,频率降低时会使电机出于过电压(过励磁),导致电机可能被烧坏。因此变频器在改变频率的同时必须要同时改变电压。输出频率在额定频率以上时,电压却不可以继续增加,最高只能是等于电机的额定电压。例如:为了使电机的旋转速度减半,把变频器的输出频率从50Hz改变到25Hz,这时变频器的输出电压就需要从400V改变到约200V 2. 当电机的旋转速度(频率)改变时,其输出转矩会怎样? 变频器驱动时的起动转矩和最大转矩要小于直接用工频电源驱动 电机在工频电源供电时起动和加速冲击很大,而当使用变频器供电时,这些冲击就要弱一些。工频直接起动会产生一个大的起动起动电流。而当使用变频器时,变频器的输出电压和频率是逐渐加到电机上的,所以电机起动电流和冲击要小些。 通常,电机产生的转矩要随频率的减小(速度降低)而减小。减小的实际数据在有的变频器手册中会给出说明。

三相的异步电动机变频调速系统设计的及仿真

天津职业技术师范大学 课程设计说明书题目:三相异步电动机变频调速系统设计及仿真 指导老师: 班级:机检1112班 组员

天津工程师范学院 课程设计任务书 机械工程学院机检1112 班学生 课程设计课题: 三相异步电动机变频调速系统设计及仿真 一、课程设计工作日自 2015 年 1 月 12 日至 2015 年 1 月 23 日 二、同组学生: 三、课程设计任务要求(包括课题来源、类型、目的和意义、基本要求、完成时 间、主要参考资料等): 1、目的和意义 交流调速是一门重要的专业必修课,它具有很强的实践性。为了加深对所学课程(模拟电子技术、数字电子技术、电机与拖动、电力电子变流技术等)的理解以及灵活应用所学知识去解决实际问题,培养学生设计实际系统的能力,特开设为期一周的课程设计。 2、具体内容 写出设计说明书,内容包括: (1)各主要环节的工作原理; (2)整个系统的工作原理(包括启动、制动以及逻辑切换过程); (3)调节器参数的计算过程。 2.画出一张详细的电气原理图; 3.采用Matlab中的Simulink软件对整个调速系统进行仿真研究,对计算得到的调节 器参数进行校正,验证设计结果的正确性。将Simulink仿真模型,以及启动过程中的电流、转速波形图附在设计说明书中。 4、考核方式 1.周五采用口试方式进行考核(以小组为单位),成绩按百分制评定。其中小组分数占60%,个人成绩占40%(包括口试情况和上交材料内容); 2.每天上午8:30--11:30在综合楼226房间答疑。 五、参考文献 1、陈伯时.电力拖动自动控制系统----运动控制系统(第3版).机械工业出版社,2003 指导教师签字:教研室主任签字:

变频器控制电机的参数设置

变频器控制电机的参数设置 变频器的参数设定在调试过程中是十分重要的。由于参数设定不当,不能满足生产的需要,导致起动、制动的失败,或工作时常跳闸,严重时会烧毁功率模块IGBT 或整流桥等器件。变频器的品种不同,参数量亦不同。 一般单一功能控制的变频器约50~60个参数值,多功能控制的变频器有200个以上的参数。但不论参数多或少,在调试中是否要把全部的参数重新调正呢?不是的,大多数可不变动,只要按出厂值就可,只要把使用时原出厂值不合适的予以重新设定就可,例如外部端子操作、模拟量操作、基底频率、最高频率、上限频率、下限频率、启动时间、制动时间(及方式)、热电子保护、过流保护、载波频率、失速保护和过压保护等是必须要调正的。当运转不合适时,再调整其他参数。 现场调试常见的几个问题处理 起动时间设定原则是宜短不宜长,具体值见下述。 过电流整定值OC过小,适当增大,可加至最大150%。经验值1.5~2s/kW,小功率取大些;大于30kW,取>2s/kW。按下起动键*RUN,电动机堵转。说明负载转矩过大,起动力矩太小(设法提高)。这时要立即按STOP停车,否则时间一长,电动机要烧毁的。 因电机不转是堵转状态,反电热E=0,这时,交流阻抗值Z=0,只有直流电阻很小,那么,电流很大是很危险的,就要跳闸OC动作。制动时间设定原则是宜长不宜短,易产生过压跳闸OE。 对水泵风机以自由制动为宜,实行快速强力制动易产生严重“水锤”效应。起动频率设定对加速起动有利,尤以轻载时更适用,对重载负荷起动频率值大,造成起动电流加大,在低频段更易跳过电流OC,一般起动频率从0开始合适。起动转矩设定对加速起动有利,尤以轻载时更适用,对重载负荷起动转矩值大,造成起动电流加大,在低频段更易跳过电流OC,一般起动转矩从0开始合适。 基底频率设定基底频率标准是50Hz时380V,即V/F=380/50=7.6。但因重载负荷(如挤出

PLC控制电机变频调速系统的设计样本

题目1: 19.PLC控制电机变频调速系统的设计 一、任务详情 1.1背景 调速系统快速性、稳定性、动态性能好是工业自动化生产中基本要求。在科学研究和生产实践的诸多领域中调速系统占有着极为重要的地位特别是在国防、汽车、冶金、机械、石油等工业中, 具有举足轻重的作用。调速控制系统的工艺过程复杂多变, 具有不确定性, 因此对系统要求更为先进的控制技术和控制理论。 可编程控制器( PLC) 可编程控制器是一种工业控制计算机, 是继续计算机、自动控制技术和通信技术为一体的新型自动装置。它具有抗干扰能力强, 价格便宜, 可靠性强, 编程简朴, 易学易用等特点, 在工业领域中深受工程操作人员的喜欢, 因此PLC 已在工业控制的各个领域中被广泛地使用。 变频调速已被公认为是最理想、最有发展前景的调速方式之一, 采用变频器构成变频调速传动系统的主要目的, 一是为了满足提高劳动生产率、改进产品质量、提高设备自动化程度、提高生活质量及改进生活环境等要求; 二是为了节约能源、降低生产成本。用户根据自己的实际工艺要求和运用场合选择不同类型的变频器。 1.2任务要求 经过PLC控制变频器, 使三相异步电动机按图1-1所示的曲

线运行, 并可经过触摸屏远程控制电机的启动、停止, 可对电机启动时间、减速时间设定调整, 同时要求经过触摸屏实时显示数字电机转速、频率, 显示转速图。电机运行可分为三个部分: 第一部分要求电机起动后在60s内从0( r/min) 线性增加到 1022( r/min) ; 第二部分是进入恒转速运行阶段, 运行时间为120s, 转速恒定为1022( r/min) ; 第三部分是当恒速到了规定时间, 进入减速阶段, 电机转速要求在40s内降到0( r/min) 。 1460 1285 1022 电 机 转 速 r/min 图2 异步电动机运行曲线图 图1-1异步电动机运行曲线图 二、方案设计 2.1电路构造思路 选用EM AM06作为smart 200plc的扩展模块给予模拟量信 号。经过计算, 将1022转速转换为对应数字量18837.5输入, 并 对应分配到各个时间所需加的信号。接入触摸屏控制启动停止, 复位。详细主电路图见图2.2.1 2.2电气控制主电路图 PLC 控制电机变频调速控制系统主电路图见图1-2

PLC与变频器控制电机

目录 1实训的目的 (1) 2变频器控制电机 (3) 2.1变频器的工作原理3 2.2变频器控制电机的正反转4 2.3变频器控制电机多段运行6 2.4变频器控制三台电机8 3PLC控制设计 (10) 3.1PLC的简介10 3.2PLC控制电机的正反转12 3.3PLC控制电机多段运行13 3.4PLC控制步进电机16 4设计体会 (24) 参考文献 (25)

1实训的目的 自二十世纪六十年代美国推出可编程逻辑控制器(Programmable Logic Controller,PLC)取代传统继电器控制装置以来,PLC得到了快速发展,在世界各地得到了广泛应用。同时,PLC的功能也不断完善。随着计算机技术、信号处理技术、控制技术网络技术的不断发展和用户需求的不断提高,PLC在开关量处理的基础上增加了模拟量处理和运动控制等功能,PLC实质是一种专用于工业控制的计算机,其硬件结构基本上与微型计算机相同。今天的PLC不再局限于逻辑控制,在运动控制、过程控制等领域也发挥着十分重要的作用。电气控制在生产生活中广泛应用,例如PLC控制电梯,电机的运行,PLC还可以控制音乐喷泉。 变频器是运动控制系统中的功率变换器。变频器是利用电力半导体器件的通断作用将工频电源变换为另一频率的电能控制装置,能实现对交流异。当今的运动控制系统是包含多种学科的技术领域,总的发展趋势是:驱动的交流化,功率变换器的高频化,控制的数字化、智能化和网络化。因此,变频器作为系统的重要功率变换部件,提供可控的高性能变压变频的交流电源而得到迅猛发展。现在变频器多余PLC配合使用,例如PLC通过变频器控制电机的正反转、变频运行等等。 如今PLC与变频器控制已经广泛应用于我们的生活中,为了对PLC与变频器的控制不陌生,就有了实训,这次试训的目的是熟悉PLC和变频器,以及他们相互配合使用控制电机的正反装以及电机的多段运行,还有PLC对步进电机的控制的电路设计和程序设计。在实训的过程中,还可以将以前所学的关于PLC的只是进行加深巩固实践的目的就是运用所学专业技术基础课及专业课知识,进行控制系统设计及综合实验,使学生在综合运用专业理论方面得到实际锻炼。通过实践,培养学生理论联系实际的能力,独立进行工程设计的能力。

PLC控制电机变频调速系统的设计

题目1:控制电机变频调速系统的设计 一、任务详情 1.1背景 调速系统快速性、稳定性、动态性能好是工业自动化生产中基本要求。在科学研究和生产实践的诸多领域中调速系统占有着极为重要的地位特别是在国防、汽车、冶金、机械、石油等工业中,具有举足轻重的作用。调速控制系统的工艺过程复杂多变,具有不确定性,因此对系统要求更为先进的控制技术和控制理论。 可编程控制器(PLC)可编程控制器是一种工业控制计算机,是继续计算机、自动控制技术和通信技术为一体的新型自动装置。它具有抗干扰能力强,价格便宜,可靠性强,编程简朴,易学易用等特点,在工业领域中深受工程操作人员的喜欢,因此PLC已在工业控制的各个领域中被广泛地使用。 变频调速已被公认为是最理想、最有发展前景的调速方式之一,采用变频器构成变频调速传动系统的主要目的,一是为了满足提高劳动生产率、改善产品质量、提高设备自动化程度、提高生活质量及改善生活环境等要求;二是为了节约能源、降低生产成本。用户根据自己的实际工艺要求和运用场合选择不同类型的变频器。 任务要求 通过PLC控制变频器,使三相异步电动机按图1-1所示的曲线运行,并可通过触摸屏远程控制电机的启动、停止,可对电机启动时间、减速时间设定调整,同时要求通过触摸屏实时显示数字电机转速、频率,显示转速图。电机运行可分为三个部分:第一部分要求电机起动后在60s内从0(r/min)线性增加到1022(r/min);第二部分是进入恒转速运行阶段,运行时间为120s,转速恒定为1022(r/min);第三部分是当恒速到了规定时间,进入减速阶段,电机转速要求在40s内降到0(r/min)。 图1-1异步电动机运行曲线图 二、方案设计 电路构造思路 选用EM AM06作为smart 200plc的扩展模块给予模拟量信号。通过计算,将1022转速转换为对应数字量输入,并对应分配到各个时间所需加的信号。接入触摸屏控制启动停止,复位。详细主电路图见图电气控制主电路图

PLC与变频器控制电机多段速

电气工程系统设计报告书 题 目 基于 PLC 、变频器控制电机的多段速 院 部 名 称 机电工程学院 专 业 电气工程及其自动化 班 级 11电气(一)班 组 长 姓 名 周 颖 同 组 学 生 静 洪润娜 设 计 地 点 工科楼 设 计 学 时 2周 指 导 教 师 旭明等 金陵科技学院教务处制 成绩

目录 一、设计任务和要求 (1) 二、设计思路 (1) 三、系统硬件设计 (1) 3.1 PLC (1) 3.2变频器 (3) 3.3 I/O接线图设计 (9) 四、系统软件设计 (10) 4.1 系统流程图 (10) 4.2 程序编制步骤 (10) 五、调试过程与结果 (14) 六、总结与体会 (14) 七、参考资料 (14) 八、附录 (15)

一、设计任务和要求 电气工程系统设计是考察学生利用大学学过的专业知识,进行综合的系统方案设计并最终完成系统硬件连接和软件调试,能够使学生对电气工程与自动化的专业知识进行综合应用,培养学生的自主学习能力、工程实践能力、创新能力和团队协作能力,撰写一篇符合规的设计说明书或技术总结报告文档,并参加答辩,为后续的毕业设计奠定基础。 要求完成的工作量包括: 1)搭建所设计的系统硬件电路,完成系统调试,实现设计功能,并在验收 现场演示运行效果。 2)设计结束,对设计成果进行五分钟PPT汇报,并参与答辩。 3)设计结束,上交开题报告书及技术报告等相关设计材料。 二、设计思路 本系统主要由控制信号、控制台、PLC、变频器、三相电动机组成,由图可知,本文通过PLC控制变频器达到变频调速的目的,从而实现交流电机的正转、起停、加速、减速控制以及速度的调节,并且能够在在控制台上进行操作,控制电机调速。 用PLC、变频器设计一个电动机的七速运行的控制系统。 其控制要求如下: 按下起动按钮,电动机以15Hz速度正传,按下功能2速键后转为20Hz速度运行,按下功能3速键转为35Hz速度运行,按下4速键转为40Hz速度运行,按下5速键变为55Hz速度运行,按下6速键变为60Hz速度运行,按下7速键以频率为75Hz速度运行,也可进行减速调节,按停止按钮,电动机即停止。 三、系统硬件设计 3.1 PLC 基本结构: 本次实践采用的PLC型号为FX3U—64M。可编程逻辑控制器实质是一种专

变频器控制异步电动机的系统设计

第4章变频器控制异步电动机的系统设计 实现电能与机械能相互转换的电工设备总称为电机。电机是利用电磁感应原理实现电能与机械能的相互转换。把机械能转换成电能的设备称为发电机,而把电能转换成机械能的设备叫做电动机。 在生产上主要用的是交流电动机,特别三相异步电动机,因为它具有结构简单、坚固耐用、运行可靠、价格低廉、维护方便等优点。它被广泛地用来驱动各种金属切削机床、起重机、锻压机、传送带、铸造机械、功率不大的通风机及水泵等。所以本系统采用的是三相交流异步电动机。 对于各种电动机我们应该了解下列几个方面的问题:(1)基本构造;(2)工作原理;(3)表示转速与转矩之间关系的机械特性;(4)起动、调速及制动的基本原理和基本方法;(5)应用场合和如何正确使用。 4.1 三相异步电动机的结构与工作原理 4.1.1 三相异步电动机的构造 三相异步电动机的两个基本组成部分为定子(固定部分)和转子(旋转部分)。此外还有端盖、风扇等附属部分,如图5-1所示。 图5-1 三相电动机的结构示意图 (1)定子

定子定子铁心 由厚度为0.5mm的,相互绝缘的硅钢片叠成,硅钢片 内圆上有均匀分布的槽,其作用是嵌放定子三相绕组 AX、BY、CZ。 定子绕组 三组用漆包线绕制好的,对称地嵌入定子铁心槽内的 相同的线圈。这三相绕组可接成星形或三角形。 机座机座用铸铁或铸钢制成,其作用是固定铁心和绕组 (2)转子 三相异步电动机的转子由三部分组成: 转子转子铁心 由厚度为0.5mm的,相互绝缘的硅钢片叠成,硅钢片 外圆上有均匀分布的槽,其作用是嵌放转子三相绕组。转子绕组 转子绕组有两种形式: 鼠笼式-- 鼠笼式异步电动机。 绕线式-- 绕线式异步电动机。 转轴转轴上加机械负载 鼠笼式电动机由于构造简单,价格低廉,工作可靠,使用方便,成为了生产上应用得最广泛的一种电动机。 为了保证转子能够自由旋转,在定子与转子之间必须留有一定的空气隙,中小型电动机的空气隙约在0.2~1.0mm之间。 4.1.2 三相异步电动机的转动原理 (1)基本原理 为了说明三相异步电动机的工作原理,我们做如下演示实验,如图5-2所示。

变频器是怎样控制电机转速的

变频器是怎样控制电机 转速的 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

变频器是怎样控制电机转速的 变频器主要由整流(交流变直流)、滤波、再次整流(直流变交流)、制动单元、驱动单元、检测单元微处理单元等组成的。 1.电机的旋转速度为什么能够自由地改变 电机旋转速度单位:r/min每分钟旋转次数,也可表示为rpm. 例如:2极电机50Hz3000[r/min] 4极电机50Hz1500[r/min] 结论:电机的旋转速度同频率成比例 感应式交流电机(以后简称为电机)的旋转速度近似地确决于电机的极数和频率。由电机的工作原理决定电机的极数是固定不变的。由于该极数值不是一个连续的数值(为2的倍数,例如极数为2,4,6),所以一般不适和通过改变该值来调整电机的速度。 另外,频率能够在电机的外面调节后再供给电机,这样电机的旋转速度就可以被自由的控制。 因此,以控制频率为目的的变频器,是做为电机调速设备的优选设备。 n=60f/p n:同步速度 f:电源频率 p:电机极对数 结论:改变频率和电压是最优的电机控制方法 如果仅改变频率而不改变电压,频率降低时会使电机出于过电压(过励磁),导致电机可能被烧坏。因此变频器在改变频率的同时必须要同时改变电压。输出频率在额定频率以上时,电压却不可以继续增加,最高只能是等于电机的额定电压。 例如:为了使电机的旋转速度减半,把变频器的输出频率从50Hz改变到 25Hz,这时变频器的输出电压就需要从400V改变到约200V 2.当电机的旋转速度(频率)改变时,其输出转矩会怎样 变频器驱动时的起动转矩和最大转矩要小于直接用工频电源驱动 电机在工频电源供电时起动和加速冲击很大,而当使用变频器供电时,这些冲击就要弱一些。工频直接起动会产生一个大的起动起动电流。而当使用变频器时,变频器的输出电压和频率是逐渐加到电机上的,所以电机起动电流和冲击要小些。

变频器控制电机转速的方法

变频器控制电机转速的 方法 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

变频器主要由整流(交流变直流)、滤波、逆变(直流变交流)、制动单元、驱动单元、检测单元微处理单元等组成的。 1. 电机的旋转速度为什么能够自由地改变 电机旋转速度单位:r/min 每分钟旋转次数,也可表示为rpm. 例如:2极电机 50Hz 3000 [r/min] 4极电机 50Hz 1500 [r/min] 结论:电机的旋转速度同频率成比例 感应式交流电机(以后简称为电机)的旋转速度近似地确决于电机的极数和频率。由电机的工作原理决定电机的极数是固定不变的。由于该极数值不是一个连续的数值(为2的倍数,例如极数为2,4,6),所以一般不适合通过改变该值来调整电机的速度。 另外,频率能够在电机的外面调节后再供给电机,这样电机的旋转速度就可以被自由的控制。 因此,以控制频率为目的的变频器,是做为电机调速设备的优选设备。 n = 60f/p n: 同步速度 f: 电源频率 p: 电机极对数 如果仅改变频率而不改变电压,频率降低时会使电机处于过电压(过励磁),导致电机可能被烧坏。因此变频器在改变频率的同时必须要同时改变电压。输出频率在额定频率以上时,电压却不可以继续增加,最高只能是等于电机的额定电压。

例如:为了使电机的旋转速度减半,把变频器的输出频率从50Hz改变到25Hz,这时变频器的输出电压就需要从400V改变到约200V。 2. 当电机的旋转速度(频率)改变时,其输出转矩会怎样 变频器驱动时的起动转矩和最大转矩要小于直接用工频电源驱动。 电机在工频电源供电时起动和加速冲击很大,而当使用变频器供电时,这些冲击就要弱一些。工频直接起动会产生一个大的起动起动电流。而当使用变频器时,变频器的输出电压和频率是逐渐加到电机上的,所以电机起动电流和冲击要小些。 通常,电机产生的转矩要随频率的减小(速度降低)而减小。减小的实际数据在有的变频器手册中会给出说明。 通过使用磁通矢量控制的变频器,将改善电机低速时转矩的不足,甚至在低速区电机也可输出足够的转矩。 3. 当变频器调速到大于50Hz频率时,电机的输出转矩将降低 通常的电机是按50Hz电压设计制造的,其额定转矩也是在这个电压范围内给出的。因此在额定频率之下的调速称为恒转矩调速。 (T=Te, P<=Pe) 变频器输出频率大于50Hz频率时,电机产生的转矩要以和频率成反比的线性关系下降。 当电机以大于50Hz频率速度运行时,电机负载的大小必须要给予考虑,以防止电机输出转矩的不足。 举例:电机在100Hz时产生的转矩大约要降低到50Hz时产生转矩的1/2。因此在额定频率之上的调速称为恒功率调速。(P=Ue*Ie) 4. 变频器50Hz以上的应用情况

变频器控制电机运行的方式图文全解(强烈建议收藏)-民熔

变频器控制电机运行的方式-民熔 当变频器主电路接好电源线之后,要控制电动机的运行,还需要给有关端子接上外围接控制电路,并且将变频器的启动方式参数设为外部操作模式。 变频器控制电动机运转,常见的有两种方式,分别是开关控制方式和继电器控制方式: 一、开关控制的正转控制电路

开关控制的转控制电路如下图所示,它是依靠手动操作变频器STF端子外接开关SA,来对电动机进行正转控制。 电路工作原理说明如下: 1、启动准备:按下按钮SB2,接触器KM线圈得电,KM常开辅助触点和主触点均闭合,常开辅助触点闭合锁定KM线圈得电自锁,KM主触点闭合为变频器接通主电源。 2、正转控制:按下变频器STF端子外接开关SA,STF、SD端子接通,相当于STF端子输、输入正转控制信号,变频器U、V、W端子输出正转电源电压,驱动电动机正向运转。调节端子外电位器R,变频器输出电源频率会发生改变,电动机转速也随之变化。

3、变频器异常保护:若变频器运行期间出现异常或故障,变频器B、C端子间内部等效的常闭开关断开,接触器KM线圈失电,KM主触点断开,切断变频器输入电源,对变频器进行保护。 4、停转控制:在变频器正常工作时,将开关SA断开,STF、SD端子断开,变频器停止输出电源,电动机停转。 若要切断变频器输入主电源,可按下按钮SB1,接触器KM线圈失电,KM主触点断开,变频器输入电源被切断。 二、继电器控制的正转控制电路 继电器控制的正转控制电路如下图所示 电路工作原理说明如下:

1、启动准备:按下按钮SB2,接触器KM线圈得电,KM主触点和两个常开辅助触点均闭合,KM主触点闭合为变频器接通主电源,一个KM常开辅助触点闭合,锁定KM线圈得电,另一个KM常开辅助触点闭合,为继电器K中间A线圈得电作准备。 2、正转控制:按下按钮SB4,继电器KA线圈得电,3 个KA常开触点均闭合,一个常开触点闭合锁定KA线圈得电,一个常开触点闭合将按钮SB1短接,还有一个常开触点闭合将STF、SD端子接通,相当于STF端子输入正转控制信号,变翻器U、V、W端子输出正转电源电压,驱动电动机正向运转。调节端子外接的电位器R,变频器的输出电源频率会发生改变,电动机转速也随之变化。 3、变频器异常保护:若变频器异常期间出现故障,变频器B、C端子之间内部等效的常闭开关断开,接触器KM线圈失电,KM主触点断开,切断变频器输入人电源,对变频器进行保护,同时继电器KA线圈也失电,3个KA常开触点均断开。 4、停转控制:在变频器正常工作时,按下按钮SB3,KA线圈失电,KA 3个常开触点均断开,其中一个KA常开触点断开使STF、SI)端子连接切断,变频器停止输出电源,电动机停转。 在变频器运行时,若要切断变频器输入主电源,须先对变频器进行停转控制,再按下按钮SB1,接触器KM线圈失电,KM主触点断开,变频器输入电源被切断,

异步电动机变频调速系统的设计与仿真..

} 异步电动机变频调速系统的设计与仿真 1. 异步电动机概述 交流电动机,主要指笼式异步电动机和同步电动机。它主要用于不需要变速的电力传动系统中,其原因是:1)不论是异步电动机还是同步电动机,唯有改变定子供电频率调速最为方便,而且可以获得优异的调速特性。而大容量的变频电源却在长时期内没有得到很好的解决。(2)异步电动机和直流电动机不同,它只有一个供电回路定子绕组,致使其速度控制比较困难,不像直流电动机那样通过控制电枢电压或控制励磁电流均可方便地控制电动机的转速。 然而,自20世纪50年代末开始,电气传动领域中进行着一场重要的技术革命一将原来只用于恒速传动的交流电动机实现速度控制,以取代制造复杂、价格昂贵和维护麻烦的直流电动机。随着电力电子器件及微电子技术的不断进步以及现代控制理论向交流电气传动领域的渗透,现在从数百瓦的伺服系统到数万千瓦的特大功率高速传动系统;从一般要求的小范围调速传动到高精度、快响应和大范围的调速传动;从单机传动到多机协调运转,几乎都可采用交流调速传动。交流调速传动的客观发展趋势己表明,它完全可以直流传动相媲美、相抗衡,并有取代的趋势。 异步电机可以采用调压调速、改变极对数调速、串电阻调速、变频调速等。在交流调速诸多方式中,变频调速是最有发展前途的一种交流调速方式,也是交流调速的基础和主干内容。变频装置有交一直一交系统和交一交系统两大类。交一直一交系统在传统电压型和电流型变频器的基础上正向着脉宽调制(PWM)型变频器和多重化技术方向发展,而交一交变频器应用于低速大容量可逆系统有上升趋势现代电力电子、微电子技术和计算机技术的飞速发展,以及控制理论的完善、各种工具的日渐成熟,尤其是专用集成电路、DSP和FPGA近年来令人瞩目的发展,促进了交流调速的不断发展。目前异步电机变频调速控制己经成为一门集电机、电力电子、自动化、计算机控制和数字仿真为一体的新兴学科。 2. 异步电机数学模型 异步电机的动态数学模型是一个高阶、非线性、强耦合的多变量系统。基于稳态数学模型的异步电机调速系统虽然能够在一定范围内实现平滑调速,要实现

普通电机 加个变频器也可以实现变频控制吗

普通电机加个变频器也可以实现变频控制吗?它和变频电机用法有什么区别 悬赏分:0 |解决时间:2010-1-9 08:01 |提问者:周罩军 最佳答案 普通感应电机可以实现变频控制,与变频电机用法没有差别。但因为其仅按工频设计,相对变频电机,存在效率低、温升高、绝缘容易老化、噪声和振动、冷却差等问题。具体分析如下: 一、普通异步电动机都是按恒频恒压设计的,不可能完全适应变频调速的要求。 以下为变频器对电机的影响 1、电动机的效率和温升的问题 不论那种形式的变频器,在运行中均产生不同程度的谐波电压和电流,使电动机在非正弦电压、电流下运行。高次谐波会引起电动机定子铜耗、转子铜(铝)耗、铁耗及附加损耗的增加,最为显著的是转子铜(铝)耗。因为异步电动机是以接近于基波频率所对应的同步转速旋转的,因此,高次谐波电压以较大的转差切割转子导条后,便会产生很大的转子损耗。除此之外,还需考虑因集肤效应所产生的附加铜耗。这些损耗都会使电动机额外发热,效率降低,输出功率减小,如将普通三相异步电动机运行于变频器输出的非正弦电源条件下,其温升一般要增加10%--20%。 2、电动机绝缘强度问题 目前中小型变频器,不少是采用PWM的控制方式。他的载波频率约为几千到十几千赫,这就使得电动机定子绕组要承受很高的电压上升率,相当于对电动机施加陡度很大的冲击电压,使电动机的匝间绝缘承受较为严酷的考验。另外,由PWM变频器产生的矩形斩波冲击电压叠加在电动机运行电压上,会对电动机对地绝缘构成威胁,对地绝缘在高压的反复冲击下会加速老化。 3、谐波电磁噪声与震动 普通异步电动机采用变频器供电时,会使由电磁、机械、通风等因素所引起的震动和噪声变的更加复杂。变频电源中含有的各次时间谐波与电动机电磁部分的固有空间谐波相互干涉,形成各种电磁激振力。当电磁力波的频率和电动机机体的固有振动频率一致或接近时,将产生共振现象,从而加大噪声。由于电动机工作频率范围宽,转速变化范围大,各种电磁力波的频率很难避开电动机的各构件的固有震动频率。 4、电动机对频繁启动、制动的适应能力

MM变频器控制电动机PLC课程设计

M M变频器控制电动机 P L C课程设计 The Standardization Office was revised on the afternoon of December 13, 2020

燕山大学 课程设计说明书 题目: PLC与变频器实现电机正反转控制 学院 (系):电气工程学院 年级专业: 11级计算机控制1班 学号: 学生姓名: 指导教师:李海滨刘爽 教师职称:

目录 目录﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍错误!未定义书签。 摘要﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍错误!未定义书签。 第一章概述﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍错误!未定义书签。 1. 1PLC和MM440变频器控制电动机的发展前景﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍错误!未定义书签。 1.2变频器的分类﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍错误!未定义书签。 1.3本课题的意义﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍错误!未定义书签。 第二章应用器件的介绍 2.1 PLC的工作原理和结构﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍错误!未定义书签。 2.2 变频器的工作原理及其组成结构﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍错误!未定义书签。 2. 3 A/D转换器工作原理﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ 错误!未定义书签。 第三章相关参数的设置﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍错误!未定义书签。 3.1 MM440快速调制参数设置﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍错误!未定义书签。 3. 2 MM440数字输入控制端口参数﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍错误!未定义书签。 3. 3 PLC数字量模拟量的输入输出约定﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍错误!未定义书签。 3. 4 恢复出厂设置﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍20 第四章硬件电路和软件电路的设计﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍错误!未定义书签。 总体结构设计图﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍错误! 未定义书签。 外部设备的接线图﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍错误! 未定义书签。 软件编程设计﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍错误! 未定义书签。 ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍错误!未定义书签。 3.4.2 ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍

变频器控制电机转速的工作原理

变频器控制电机转速的工作原理 变频器主要由整流(交流变直流)、滤波、再次整流(直流变交流)、制动单元、驱动单元、检测单元微处理单元等组成的。 本文中所指的电机为感应式交流电机,在工业中所使用的大部分电机均为此类型电机。感应式交流电机(以后简称为电机)的旋转速度近似地确决于电机的极数和频率。由电机的工作原理决定电机的极数是固定不变的。由于该极数值不是一个连续的数值(为2的倍数,例如极数为2,4,6),所以一般不适和通过改变该值来调整电机的速度。 另外,频率能够在电机的外面调节后再供给电机,这样电机的旋转速度就可以被自由的控制。 因此,以控制频率为目的的变频器,是做为电机调速设备的优选设备。 结论:改变频率和电压是最优的电机控制方法 如果仅改变频率而不改变电压,频率降低时会使电机出于过电压(过励磁),导致电机可能被烧坏。因此变频器在改变频率的同时必须要同时改变电压。输出频率在额定频率以上时,电压却不可以继续增加,最高只能是等于电机的额定电压。 工频电源:由电网提供的动力电源(商用电源) 起动电流:当电机开始运转时,变频器的输出电流 变频器驱动时的起动转矩和最大转矩要小于直接用工频电源驱动 电机在工频电源供电时起动和加速冲击很大,而当使用变频器供电时,这些冲击就要弱一些。工频直接起动会产生一个大的起动起动电流。而当使用变频器时,变频器的输出电压和频率是逐渐加到电机上的,所以电机起动电流和冲击要小些。 通常,电机产生的转矩要随频率的减小(速度降低)而减小。减小的实际数据在有的变频器手册中会给出说明。 通过使用磁通矢量控制的变频器,将改善电机低速时转矩的不足,甚至在低速区电机也可输出足够的转矩。 1. 当变频器调速到大于50Hz频率时,电机的输出转矩将降低 通常的电机是按50Hz电压设计制造的,其额定转矩也是在这个电压范围内给出的。因此在额定频率之下的调速称为恒转矩调速. (T=Te, P<=Pe) 变频器输出频率大于50Hz频率时,电机产生的转矩要以和频率成反比的线性关系下降。 当电机以大于50Hz频率速度运行时,电机负载的大小必须要给予考虑,以防止电机输出转矩的不足。 举例,电机在100Hz时产生的转矩大约要降低到50Hz时产生转矩的1/2。

相关主题
文本预览
相关文档 最新文档