当前位置:文档之家› 壳牌气化炉构造说明

壳牌气化炉构造说明

壳牌气化炉构造说明
壳牌气化炉构造说明

主题:关于气化炉炉体构造的说明

1.气化炉

气化炉炉膛壳体内径为?4630,高~321450mm采用裙式支座支承。上部冷激段直径?3020,高~9550mm。

气化炉内件包括气化段、渣池、激冷段三个部分,它们由气化段园筒水冷壁、气化段锥顶、气化段锥底、渣池锥顶、渣池热筒壁、喷水环、渣斗、激冷管、喷嘴冷却锥、吹风管、正常冷激器和高速冷激器等14个部件组成。

气化炉的设计压力为5.2/F.V MPa, 设计温度3500C;操作压力4.2/4.0 MPa;压力容器壳体的设计温度>200 0C。为了保证气化关键设备使用寿命达到25年以上,设备设计和制造等方面均采取了相应措施。壳体腐蚀裕量5.0mm。

气化空间(包括圆筒膜式壁,炉顶、炉底传热面及其附件)和渣池的顶部渣屏表面,因该区域处于气化反应最高温度区,热流密度最大(达170~230kW/m·K),多数部位又与高温熔融炉渣接触,为了减少传热量,保持反应空间气化反应正常进行,减少内侧金属壁温的增值(基于减少结构内应力和腐蚀对选定材料金属实际壁温的要求和防止熔融炉渣的直接冲刷等),要求对其内壁受火面进行保护。通常采用设置销钉加衬耐火衬里的方法。但设置的耐火衬里层厚度应适当,过薄实施有困难且有可能达不到预期效果,过厚又将由于热阻增加引起气化炉壁凝固的渣层增厚而使排渣产生困难,严重时也有可能危及气化炉的正常操作。

对于气化反应空间其它不能实施耐火衬里保护的冷却传热部件,则有可能由于高热流密度的影响将加快其受火面的损坏。例如煤粉烧咀的锥形护罩,开工喷咀、点火烧咀和火焰观察孔的水夹套等。

为了形成气化空间、渣池和冷激管,气化炉内件采用了多种形式的膜式壁传热面。根据结构形状、载荷条件和制造的可能性,有的采用管-翅-管结构(如圆筒膜式壁和冷激管);有的采用光管制的螺旋管(如顶锥/冷激底传热面,渣池顶部的渣屏,煤烧咀的锥形护罩等);有的则采用双Ω管制的螺旋锥形传热面(如炉底锥形传热面)。为了制作出所需的形状,均采用了板(条)型或圆钢等连接件与管子直接焊接,且在这区域的内件(包括管子、连接板、棒/条)绝大多数选用了焊接性能较好、热传导性能较好的13CrMo44材料。为了保证这些部件达到预期的使用寿命,在操作状态下(特别是在高硫条件下)结构的最高壁温都希望不超过300℃。因此,控制膜式壁水/汽压力不超过某一特定值,保证金属壁的实际温度始终都能在材料腐蚀允许范围内就成了这种内件结构和用材长周期运行的先决条件。

材料方面基于H2S腐蚀考虑,对于使用不同煤种设计的气化炉,因其炉气中的H2S含量存在较大差异,对可能采用高硫煤种的气化炉膜式壁的水/汽压力应选用低一些(以满足要求的使用寿命为限);对能保证采用低硫煤种的气化炉膜式壁的水/汽压力可相应选用高一些。

——内件部分:

(1) 内件与高温气体接触部分(包括对流管束)均采用冷却效果较好的水冷壁结构。

(2) 内件选材充分考虑了工艺介质和气流的影响,主体材料(换热管)选用13CrMo44

材料,对渣池冷却段,考虑气氛潮湿和温度变化强烈,选用高Cr、Ni金属或镍基

合金材料。

(3) 对操作条件比较苛刻的关键部分,采取可靠的保护措施

a.气化反应段(温度1400~1600℃区域),采用14~20mm耐热衬里,以防炉渣直接

冲刷,降低热负荷。

b.局部气流冲刷严重部分采用镍基合金堆焊或增加管子壁厚。

c.换热面传热管留有较大的腐蚀裕量。

――承压壳体:

压力容器主体材料选用能抗氢腐蚀的SA387Cr.11 Cl.2材料。

与湿气氛接触的压力壳体(如气化炉底)采用SA387Cr.11 Cl.2+N08225复合板

制作。其它与气体接触的压力壳体均采用40mm耐热衬里保护,以使压力容器得

到一个安全备用反应时间,避免无法控制的操作失误(膜式壁破裂)造成压力

容器局部快速升温。

对无法进行衬里保护且可能存在冷凝腐蚀的接管内壁堆焊IG625防腐层。

气化炉为干煤气化的关键设备,内件部分设计及制造复杂本工程拟采用整

体引进。

表1. 气化炉内件主要传热面结构特征及采用数据(以湖北双环工程为例)

2.炉气输送管及蒸汽过热器

炉气输送管长~17000mm,壳体直径φ3020,水膜壁内径φ1432。一端与气化系统相接,另一端呈450角与蒸汽过热器相接。在蒸汽过热器上端设有气体返回室,气体返回室主要起炉气气流转向作用,因此内件除了起保护作用的水/汽能副产少量蒸汽外,其主要功能是形成气流转向通道。炉气输送管内水膜壁采用承插式接口。

过热器壳体直径φ3400,长~14200。采用立式结构。壳体的设计压力5.2 MPa, 设计温度350 0C。

过热器由一组过热段组成,蒸汽过热器采用同心的螺旋盘管,蒸汽过热器管束用高合金钢制作,管束通过特制吊架悬吊在壳体内。为防止炉灰在换热管上积累,在个圈盘管上设有气动敲击器,用以保证传热面的传热效率。

带有粉尘的炉气通过炉气输送管送到蒸汽过热器,输送管内件的主体结构则由 38×6.3异型管组成水膜壁,在内件设计中,由于内件分段和热膨胀设计需要,至少有三处的膜式壁连接需采用承插连接(外加膨胀节密封)结构。由于该处含有粉尘的气体流速较高(达6.5m/s),气体流动方向正对膜式壁端部弯头的顶部,冲刷作用较大,需采用堆焊耐热高合金材料(IG625)进行保护。

在炉气输送弯管处由于此处气流方向改变和重力作用,使气体中颗粒较粗的尘粒将较集中地沿输气管内侧下方的内表面运动。为了保护该表面不被冲刷损坏,设计上采取保护性措施。例如在下半部180°范围内设销钉衬耐火衬里材料。

由于该设备设计使用寿命达20年以上,而且使用环境恶劣,除了磨蚀外,还要考虑炉气成分以及H2S、的冷凝腐蚀、介质的冲刷腐蚀等。过热器的设计结构及选材复杂,水膜壁、螺旋管过热器的支撑方式、气体流速控制以及气动敲击器的设置对设备的使用寿命影响极大。本工程炉气输送及蒸汽过热器内件部分拟采用整体引进。

表2. 炉气输送管及蒸汽过热器内件主要传热面结构特征及采用数据(以大化工程为例)

3.合成气冷却器

合成气冷却器直径φ3400,长~25250mm。采用立式圆筒结构,恒力吊架浮动支撑。内设两组同心园螺旋管式换热管,上段长7000mm,下段长6750mm。采用悬吊支撑。

合成气冷却器壳体的设计压力5.2 MPa, 设计温度350 0C。

合成气冷却器由两组过换热段组成,采用同心的螺旋盘管,合成气冷却器管束用高合金钢制作,管束通过特制吊架悬吊在壳体内。为防止炉灰在换热管上积累,在个圈盘管上设有气动敲击器,用以保证传热面的传热效率。传热器外设有水膜壁结构。

合成气冷却器管束十字支架及其连接管的保护。由于支承合成气冷却器传热管束的需要,每个管束均设置了一组与气流方向正交的十字形支架,通过焊接连接支承在外围的圆筒形膜式壁上。对于这些管束支承件(支架)及其与管束每一传热圆筒相连的连接管(水通道),除采用特殊型式的通道通水进行降温保护外,对其受气流直接冲刷的部位(或整体)均采用了增厚措施以满足承载(压力载荷和支承重量)和冲刷腐蚀要求。对设在环境温度最高最上部管束的十字支承通过设置的吹灰装置也可同时起到减轻对十字支架的腐蚀和冲刷作用。

由于该设备设计使用寿命达20年以上,而且使用环境恶劣,除了磨蚀外,还要考虑炉气成分以及H2S、的冷凝腐蚀、介质的冲刷腐蚀等。合成气冷却器的设计结构及选材复杂,水膜壁、螺旋管过热器的支撑方式、气体流速控制以及气动敲击器的设置对设备的使用寿命影响极大。本工程合成气冷却器内件部分拟采用整体引进。

注1:表1、2、3为参考件。

注2:关于洞氮炉子我们没有第一手资料. 注3:关于BBE报价炉子我们还在研读之中.

壳牌气化炉构造说明

主题: 关于气化炉炉体构造的说明 1.气化炉 气化炉炉膛壳体内径为?4630,高~321450mm采用裙式支座支承。上部冷激段直径?3020,高~9550mm。 气化炉内件包括气化段、渣池、激冷段三个部分,它们由气化段园筒水冷壁、气化段锥顶、气化段锥底、渣池锥顶、渣池热筒壁、喷水环、渣斗、激冷管、喷嘴冷却锥、吹风管、正常冷激器与高速冷激器等14个部件组成。 气化炉的设计压力为5、2/F、V MPa, 设计温度3500C;操作压力4、2/4、0 MPa;压力容器壳体的设计温度>200 0C。为了保证气化关键设备使用寿命达到25年以上,设备设计与制造等方面均采取了相应措施。壳体腐蚀裕量5、0mm。 气化空间(包括圆筒膜式壁,炉顶、炉底传热面及其附件)与渣池的顶部渣屏表面,因该区域处于气化反应最高温度区,热流密度最大(达170~230kW/m·K),多数部位又与高温熔融炉渣接触,为了减少传热量,保持反应空间气化反应正常进行,减少内侧金属壁温的增值(基于减少结构内应力与腐蚀对选定材料金属实际壁温的要求与防止熔融炉渣的直接冲刷等),要求对其内壁受火面进行保护。通常采用设置销钉加衬耐火衬里的方法。但设置的耐火衬里层厚度应适当,过薄实施有困难且有可能达不到预期效果,过厚又将由于热阻增加引起气化炉壁凝固的渣层增厚而使排渣产生困难,严重时也有可能危及气化炉的正常操作。 对于气化反应空间其它不能实施耐火衬里保护的冷却传热部件,则有可能由于高热流密度的影响将加快其受火面的损坏。例如煤粉烧咀的锥形护罩,开工喷咀、点火烧咀与火焰观察孔的水夹套等。 为了形成气化空间、渣池与冷激管,气化炉内件采用了多种形式的膜式壁传热面。根据结构形状、载荷条件与制造的可能性,有的采用管-翅-管结构(如圆筒膜式壁与冷激管);有的采用光管制的螺旋管(如顶锥/冷激底传热面,渣池顶部的渣屏,煤烧咀的锥形护罩等);有的则采用双Ω管制的螺旋锥形传热面(如炉底锥形传热面)。为了制作出所需的形状,均采用了板(条)型或圆钢等连接件与管子直接焊接,且在这区域的内件(包括管子、连接板、棒/条)绝大多数选用了焊接性能较好、热传导性能较好的13CrMo44材料。为了保证这些部件达到预期的使用寿命,在操作状态下(特别就是在高硫条件下)结构的最高壁温都希望不超过300℃。因此,控制膜式壁水/汽压力不超过某一特定值,保证金属壁的实际温度始终都能在材料腐蚀允许范围内就成了这种内件结构与用材长周期运行的先决条件。 材料方面基于H2S腐蚀考虑,对于使用不同煤种设计的气化炉,因其炉气中的H2S含量存在较大差异,对可能采用高硫煤种的气化炉膜式壁的水/汽压力应选用低一些(以满足要求的使用寿命为限);对能保证采用低硫煤种的气化炉膜式壁的水/汽压力可相应选用高一些。 ——内件部分: (1) 内件与高温气体接触部分(包括对流管束)均采用冷却效果较好的水冷壁结构。

壳牌煤气化技术简介

主流煤气化技术及市场情况系列展示(之五) 壳牌煤气化技术 技术拥有单位:壳牌全球解决方案国际私有有限公司 壳牌是世界知名的国际能源公司之一。壳牌煤气化技术可以处理石油焦、无烟煤、烟煤、褐煤和生物质。气化炉的操作压力一般在,气化温度一般在1400~1700摄氏度。在此温度压力下,碳转化率一般会超过99%,冷煤气效率一般在80~83%。对于废热回收流程,合成气的大部分显热可由合成气冷却器回收用来生产高压或中压蒸汽;如配合采用低水气比催化剂的变化工艺,在变换单元消耗少量蒸汽即可保证变换深度要求,剩余大量蒸汽可送入全厂蒸汽管网,获得可观的经济效益。 目前,壳牌全球解决方案国际私有有限公司负责壳牌气化技术的技术许可,工艺设计以及技术支持。2007年壳牌成立了北京煤气化技术中心,2012年初,壳牌更是将其全球气化业务总部也从荷兰移师中国,这充分体现了壳牌对中国现代煤化工蓬勃发展的重视,同时壳牌也能更好地利用其全球气化技术能力,贴近市场,为中国客户提供更加快捷周到的技术支持。目前,在北京的壳牌煤气化技术团队可提供从研发、工程设计、培训、现场技术支持以及生产操作和管理的全方位技术支持和服务。 一、整体配套工艺 根据不同的煤质特性以及用户企业的不同生产需求和规划,壳牌开发了下面3种不同炉型: 壳牌废锅流程是当前工业应用经验最丰富的干粉气化技术。它的效率和工艺指标的先进性已经得到了验证和认可,而且在线率也在不断创造新的世界纪录,大部分客户已实现满负荷、长周期、安全、稳定运转。如果业主比较关注热效率,全厂能效和环保效益的话,采用壳牌废锅流程并配合已成功应用的低水气比变换技术应该是最合适稳妥的方案。 壳牌上行水激冷流程特别适合处理有积垢倾向的煤种;适合大型项目,此外投资低,可靠性高。对于比较关注在线率和低投资的业主,采用壳牌上行水激冷流程应该是最合适稳妥的方案。

壳牌煤气化

工艺原理  壳牌煤气化过程是在高温、加压条件下进行的,煤粉、氧气及少量蒸汽在加压条件下并流进入气化炉内,在极为短暂的时间内完成升温、挥发分脱除、裂解、燃烧及转化等一系列物理和化学过程。由于气化炉内温度很高,在有氧条件下,碳、挥发分及部分反应产物(H2和CO 等)以发生燃烧反应为主,在氧气消耗殆尽之后发生碳的各种转化反应,即气化反应阶段,最终形成以CO和H2为主要成分的煤气离开气化炉。 工艺流程 目前,壳牌煤气化装置从示范装置到大型工业化装置均采用废锅流程,激冷流程的壳牌煤气化工艺很快会推向市场。 原料煤经破碎由运输设施送至磨煤机,在磨煤机内将原料煤磨成煤粉(90%<100μm)并干燥,煤粉经常压煤粉仓、加压煤粉仓及给料仓,由高压氮气或二氧化碳气将煤粉送至气化炉煤烧嘴。来自空分的高压氧气经预热后与中压过热蒸汽混合后导入煤烧嘴。煤粉、氧气及蒸汽在气化炉高温加压条件下发生碳的氧化及各种转化反应。气化炉顶部约1500℃的高温煤气经除尘冷却后的冷煤气激冷至900 ℃左右进入合成气冷却器。经合成气冷却器回收热量副产高压、中压饱和蒸汽或过热蒸汽后的煤气进入干式除尘及湿法洗涤系统,处理后的煤气中含尘量小于1 mg/m3送后续工序。 湿洗系统排出的废水大部分经冷却后循环使用,小部分废水经闪蒸、沉降及汽提处理后送污水处理装置进一步处理。闪蒸汽及汽提气可作为燃料或送火炬燃烧后放空。 在气化炉内气化产生的高温熔渣,自流进入气化炉下部的渣池进行激冷,高温熔渣经激冷后形成数毫米大小的玻璃体,可作为建筑材料或用于路基。 技术特点 (1)煤种适应性广 对煤种适应性强,从褐煤、次烟煤、烟煤到无烟煤、石油焦均可使用,也可将2种煤掺混使用。对煤的灰熔点适应范围比其他气化工艺更宽,即使是较高灰分、水分、硫含量的煤种也能使用。 (2)单系列生产能力大 目前已投人生产运行的煤气化装置单台气化炉投煤量达到2000 t/d 以上。

带锯床使用手册

第一章操作安全须知 1.开机前检查是否有漏电等不安全隐患。 2.锯床运转时严禁开启两侧锯轮防护罩。 3.绝对不允许用手触摸运转中的带锯条。 4.严禁在带锯条运转的下方触摸工件。 5.折叠拆取带锯条要戴防护眼镜,手套。 6. 更换带锯条一定要将机器的电源切断。 第二章双金属带锯条简介 双金属带锯条是采用高性能高速钢齿部材料和优质弹簧钢带体材料,通过电子束真空焊接和特殊工艺加工制造而成。锯齿具有良好的红硬性,可切割各类黑色金属和有色金属,是一种节省原材料和降低能源消耗的新型锯削工具。

图一 如图一所示:齿尖刃部硬质材料高度仅1.2mm。 最常见的锯齿分齿为斜向分齿

图二 锯齿横向分齿,一个向左,一个向右,一个不分。 第三章双金属带锯条简要使用说明 为了达到最佳切削性能,锯齿的大小及切削刃形状的选择十分重要。要求所选齿形、齿距应与被锯切工件相匹配,实心材料选用有前倾角的带锯条;厚度在8毫米以下的型材、管材选用零度角的锯条(推荐选用PRO梯形齿);锯切实心铝材及不锈钢使用有前倾角的带锯条。 一.带锯条的安装 1.双金属带锯条带体柔软不易断裂,安装锯条后必须检查锯条的张紧度,若锯条张不紧易产生锯斜。检查方法:当导向支架调整锁紧后,将大拇指放到两支架内侧锯条的中间部位,用力推动锯条,锯条有一定的弹力就可以了。(双金属带锯条的最佳张力值在300N/mm2左右)

2.锯条安装完毕,开机观察锯条背部与锯轮边缘的间隙,最佳间隙为1mm左右为宜,锯条背部如磨擦到锯轮边缘会严重损坏锯条。 二.新锯条的磨合 1.新锯条使用必须进行磨合,这关系到锯条的使用寿命。未经磨合的锯条使用寿命达不到锯条正常使用寿命的一半。 2.第一刀要慢慢进给,切入材料20mm后,无异常状况后逐渐调整至正常切削率的50%左右,再逐步进入正常的锯切状态。(锯切速度请参照本书第16页《锯切参数选择》) 三.带锯条的巧用 充分磨合好的锯条,锯切面积达到4-5m2后,应逐渐递减进给量,这样能够延长锯条的使用寿命,还能增加切断面积呢。 四.带锯条的保护 锯带安装完,点动开关使锯带慢慢转动,观察锯带齿尖是否有擦伤及其它异常的摩擦。

热解气化炉技术

产品说明书 一、产品名称: 全自动内燃双解立式气化炉 二、产品功能简介: 1.热解气化炉自上而下依次分干燥层、热解干馏气化层、燃烧层、 燃烬层和灰化层五段组成。 2.废弃物在底层立体式炉排上由生物质燃烧器点火后燃烧,当燃 烧温度达到1000-1300度时,生物质燃烧器自动停止工作。 3.热量由燃烧层上升传递到热解干馏气化层、干燥层,热解气化 后的残留物(液态焦油、丙酮、复合碳氢化合物、固定碳、废弃物本身含有的无机灰土和惰性物质)进入燃烧层充分燃烧后,产生的热量提供热解干馏气化层和干燥层所需的热量。热解干馏气化干燥层挥发的水分以及在热解和气化反应过程中产生的一氧化碳、氢、气态烃类(甲烷等)可燃物组合成混合烟气。 4.燃烧层产生的残渣经燃烬层立体式炉排及炉底的空气配气口 供风富氧燃烧后进入到灰化层冷却,空气也同时得到预热,燃烬层的炉灰由排渣系统排出炉外。 5.由热解气化炉底部送入的预热空气给燃烬层和燃烧层提供必 须的助燃氧,空气在上行过程中经历不同的阶段不断消耗大量氧。 在热解干馏气化层形成贫氧或欠氧环境,满足了热解干馏气化的必要条件,并且能使参加反应的废弃物维持在贫氧或欠氧高温环境下足够的时间逐步消化。

6.热解干馏气化产生的混合烟气经处理后循环回燃烧层和炉底 热空气配气后吸入旋风燃烧器进行二次燃烧。旋风燃烧器产生的热量经管道热传导后加速热解干馏及上部干燥层垃圾干燥速度,提高了整体处理废弃物的效率,也降低了对废弃物含水率的要求。 废弃物在热解干馏气化炉内经热解后实现能量的二级分配,热解气体成分上升经处理后和热空气配气混合进入旋风燃烧器燃烧形成1000-1300度高温,促使炉内各反应层的物理化学过程连续稳定地进行。废弃物经投料干燥和热解干馏气化层燃烧层燃烬后出渣排渣形成向下的连续稳定地运行逐步稳定地消化。热解干馏气化炉连续正常地运转。 三、产品优特点: *内燃式双解立式气化炉被广泛应用于机械、建材、轻纺工业、石化、环保等多个领域。内燃式双解立式气化炉系统的核心设备热解气化炉,是以空气和水蒸汽的混合气体作为气化剂,以生活垃圾为原料在高温条件下发生氧化-还原反应,产生以烷类和H2为主要可燃成分的节能环保设备。针对我国垃圾的特点实现垃圾热解气化和富氧燃烧有机结合工艺结构使垃圾完全灰化。 *采用隔水套结构摈弃了传统热解炉采用耐火材料高温酸气风化经常维修的问题; *采用内衬上小下大的斜度结构摈弃了传统热解炉采用液压顶杆压实消除起拱偏烧的问题;

壳牌气化炉的现场组焊技术

石油化工建设10. 03 图1气化炉整体模型 1气化炉概况 近年来,随着煤化工的兴起,煤液化技术、煤制甲醇、油改煤在国内大批推进,其中壳牌气化炉(以下简称:气化炉)是采用最多的设备之一,如神华煤制油、中原大化50万t 甲醇装置、大唐多伦168万t 甲醇46万t 煤基烯烃均采用壳牌专利技术。壳牌气化炉一律为专利设备整体引进,并由外商进行总体设计,其壳体部分大致分由两个国家制造:西班牙、印度L &T 公司;内件部分由荷兰SEG 公司设计,分别由西班牙和L &T 公司制造;其结构形式为膜式水冷壁结构。1.1气化炉总体介绍 气化炉主要由壳体和内件组成。其中壳体分为反应器(Re-actor )+激(急)冷管(Quench Pipe )(位号:V1301),合成气冷却器(Syngas Cooler )+气体返回室(Gas Return Chamber )(位号:V1302),输气管(Transfer Duct )(位号:V1303)。内件分为渣池(位号:V1401)、激冷管中压蒸汽发生器(位号:E1301)、输气管中压蒸汽发生器(位号:E1302)、合成气冷却器中压蒸汽发生器(位号:E1303)、气化炉反应器中压蒸汽发生器(位号:E1320)以及气体返回室内的立管(主管)和斜管(支管)等七部分。1.2设备材料及设备规格 气化炉整体重量约1300t 。壳体主要材质为SA387GR11CL2;在反应器段、合成气冷却器段有一部分材质为复合材料SA387GR11CL2+NO8825;最大壁厚285mm ;壳体最大内径Φ4630mm ;需要现场组对焊缝处的壁厚为65~90mm ;整体长段50.2m 。气化炉整体模型如图1所示。1.3设备分段(以2000t 炉子为例) 为了满足设备内陆道路运输及组焊吊装要求,在初步设计期间,技术方案的讨论必须有制造厂商参加,他们必须充分考虑 管口方位、外壳外部尺寸等因素,并按照以下尺寸和重量极限进 行设计分段: (1)组件高度最高5.1m ;(2 )组件宽度最大7m ;(3)组件长度最长25.00m ;(4)组件重量 最大150t 。 具体的设备分段情况列表如表1、表2所示:(注大唐3000t 炉子分段的几何尺寸及重量略大些) 壳牌气化炉的现场组焊技术 ■肖晓磊 中国化学工程第十一建设公司河南开封 475002 摘 要通过与壳牌公司技术交流,借鉴国外压力容器组焊的先进经验,在国内中石化油改煤工程投料调试的经验基础上, 结合大型气化炉组焊技术的工程实例,阐述一项成熟的气化炉现场组焊技术。本文着重于描述施工程序(组装流程) 、组对与焊接、内件安装。对于无损检测、消除应力热处理、液压试验、衬里等仅做一般性介绍。关键词壳牌技术气化炉现场组对 焊接 中图分类号TG44 文献标识码B 文章编号1672-9323(2010)03-0035-08 35

GZ4230数控带锯床使用说明

XIELI GZ4230 数控带锯床电脑控制系统 用户手册 浙江协力机械工具有限公司

GZ4230 全自动数控带锯床 一、机床的主要用途 “协力”牌GZ4230卧式数控带锯床经我公司多年来的研发,集国内外同类产品之精华,结构合理,技术性能稳定,操作方便,主要用于大型钢铁集团、石油管道、水电机械、重型锻造、模具钢板等大型材料的锯切加工,具有锯口窄,省料节能、锯削精度高,生产效率高优点。本机通过锯条线速的无级变速,锯条线速度的自由变换特别适用于锯切大型材料的功效,节省锯条的使用成本。 二、机床的主要特征 1、人机界面取代传统控制面板模式,锯切参数数字设定,PLC可 编程控制器,灵活设定、转变锯切模式。 2、机床设置参数完成后, 通过机械、电气、液压,具有自动夹 紧、自动进刀、切割完毕自动快速上升(即退刀),自动送料 的功能,无需人工操作。 3、机床的切削进给,在给定的范围内,可进行无级调速。 4、工作进给采用液压送料,送料定位采用光栅尺控制,定位误差< 5、锯架的上升与下降运动采用镀硬铬圆柱,精度高。 6、锯带的线速度无级调速。

三、机床的主要技术参数 四、机床使用的主要配件说明 1、PLC可编程控制器采用世界名牌台达产品,性能稳定可靠。 2、主传动采用蜗轮减速机,由诸暨蜗轮箱厂生产,十多年来一直为锯床厂家配套。 3、液压件采用台湾朝田或上海朝田公司产品,该产品动作性能可靠,挤污染力强,价格性能较高。 4、电器元件选用西门子及德力西正泰等名牌产品。 5、锯条选用规格34××4210可根据材料选择齿型。 6、液压油的选用:石油基油——相当于ISO VG46的油液。工作油温范围:-17~70度,推荐用户使用海联46号抗磨液压油。 人机界面概述 本人机界面为目前世界先进的人机对话平台,具有操作简单,界面友好,外观美观,高速响应等优点。配合可编程逻辑控制器(PLC),光栅尺为您提供目前国内最先进的金属带锯床自动化控制系统。 一、启始画面

LPG气化炉资料

LPG气化炉资料 一般用户的在使用燃气过程中,有两种情况: 一是自然气化的钢瓶;(自然气化是指钢瓶中的液态液化石油气依靠自身显热和吸收外界环境热量而气化的过程。) 二是强制气化的钢瓶。(强制气化是用人为办法(安装气化器)对液化石油气进行气化。) 自然气化容易受外界温度及用量的影响,在使用过程中出现火力不足、压力不足、钢瓶结水结冰、气体用不完。怎样才能解决以上情况呢?现在有了液化气用的气化炉电加热式气化炉(器),把液化气钢瓶中的液相气体强制性气化,保证用气的稳定,流量充足,压力稳定! 燃气使用安全隐患: 目前,各行业使用液化石油气过程中,安全意识不强,普遍存在安全隐患或不足,以下列出部分,希望能够得到大家的重视: 1)石油气钢瓶分散直接供气,钢瓶摆放混乱,钢瓶摆放量多,火灾 危险性大,使用气化器可集中供气,减少钢瓶摆放数量。 2)中高压燃气管采用非燃气专用管件(镀锌管件)连接使用,漏点 多。 3)采用非燃气专用阀门及其它非燃气专用设备,事故隐患多。 4)存放钢瓶的瓶组间安全距离不够,通风效果差,存在安全隐患。 5)操作人员缺乏燃气安全使用相关知识,易由于操作失误引起事故。

气化器及配件使用时间太长,腐蚀严重。 LPG气化炉特点: 1、YGS系列气化器依托日本的先进技术、制作精良、性能优越、安全可靠;容量从50KG至300KG,适用于小区住宅和工商供气; 2、电控装置与电热器均采用防爆设计、防爆等级为Exdaa11AT6 3、YGS气化器外型有圆形和方型、整体结构坚固、安全耐用; 4、电控箱与气化器为一体结构,节省空间安装方便; 5、气化器检测压力为30kg/cm2,安全额定压力为18kg/cm2; 6、液相浮球阀可手工复位,在效地防止液态瓦斯渗出; 7、安全泄压阀可将超压气体自动排同,再自动关闭; 8、电子温控器对60-70水温自动调校,节约电能。 9、详细资料请咨询代理:壹伍捌壹伍捌伍壹玖叁肆 LPG瓶组站可省电,且有利于钢瓶残液的吸收,利用率可达到100%,像台湾旺旺雪饼工厂、香港嘉顿饼干、深圳机场、大海沙酒店、高尔夫球场等承建的气站。 中邦LPG气化炉,LPG中邦化气炉,LPG中邦气化器,绝无套牌能解决燃气管道结冰结霜压力不稳,燃烧火力不足的燃气气化炉气化器工厂、厨房等各行业的使用液化石油气过程中往往出现: ●火力不足、 ●压力不足、 ●钢瓶结水结冰、 ●钢瓶余气用不完的现象,造成燃料费用高等问题,给各工厂、酒

SHELL气化炉的工艺特点及现存问题

SHELL气化炉的工艺特点及现存问题 本文主要介绍了shell粉煤加压气化工艺的特点以及在运行过程中出现的问题。经过分析得出:shell工艺在煤种稳定的前提下,煤种适用范围才能广泛。但大部分shell气化炉用户无法满足此要求。壳牌气化炉在运行过程中,存在堵塞、堵渣、积灰、磨损和磨蚀、烧嘴罩泄露等问题需待解决。 标签:shell气化炉工艺特点存在问题 0 引言 随着我国经济持续快速稳定的发展,对能源的需求量逐年增加。而我国能源结构缺油、少气、多煤。据统计,我国一次能源消费中煤炭约占75%,在今后相当长的一段时间内煤炭仍是我国的主要能源,本世纪初,国家已经把煤炭的高效,洁净利用技术作为煤炭资源的利用的主要手段。因此,各种先进的煤气化技术在我国均有应用业绩。 为了保护环境,拓宽原料煤种的范围,提高煤炭的综合利用效率,增加气化炉的单炉生产能力,降低煤耗和氧耗,保证气化炉安全稳定运行,国内外研究人员先后成功的开发了一些列先进的煤气化工艺技术,具有代表性的主要有,鲁奇加压固定床气化(Lurgi)工艺,干法粉煤进料的加压气流床SCGP(Shell)气化工艺和Texaco、GSP工艺,常压流化床气化(灰熔聚)工艺。上述几种煤气化工艺中,Shell 粉煤加压气化工艺其技术经济性具有明显的优势和较强的竞争力,我公司采用了Shell煤气化工艺。 1 Shell气化原理及技术特点 原料煤经破碎机破碎后在热风干燥的磨机内磨制成100%<100m的煤粉,由粉煤贮罐,经粉煤喷吹罐,进入给煤罐,再由高压载气N2或者CO2送至气化炉喷嘴。来自空分的高压氧气经预热后与过热蒸汽混合送入喷嘴。煤粉、氧气和蒸汽在气化炉高温高压的条件下(气化温度约1400~1600℃)发生碳的部分氧化反应(碳转化率高达99%以上),生成CO+H2大于85%的高温煤气及一定量的飞灰,经废锅回收热量、干法除尘和湿法洗涤后的粗合成气送后序工段。 干法气化工艺具有如下技术特点: 1.1 采用干煤粉进料,加压N2/CO2输送,连续性好,气化炉操作稳定。 1.2 煤种适应性广,从褐煤、烟煤、无烟煤到石油焦均可气化,对煤的活性几乎没有要求,高灰熔点、高灰分、高水分、高含硫量的煤种同样也适应。 1.3 气化温度约1400~1600℃,碳转化率高达99%以上,产品气体洁净,不含重烃,甲烷含量极低,煤气中有效气体(CO+H2)达到85%左右。

气化炉安全操作规程标准范本

操作规程编号:LX-FS-A24380 气化炉安全操作规程标准范本 In The Daily Work Environment, The Operation Standards Are Restricted, And Relevant Personnel Are Required To Abide By The Corresponding Procedures And Codes Of Conduct, So That The Overall Behavior Can Reach The Specified Standards 编写:_________________________ 审批:_________________________ 时间:________年_____月_____日 A4打印/ 新修订/ 完整/ 内容可编辑

气化炉安全操作规程标准范本 使用说明:本操作规程资料适用于日常工作环境中对既定操作标准、规范进行约束,并要求相关人员共同遵守对应的办事规程与行动准则,使整体行为或活动达到或超越规定的标准。资料内容可按真实状况进行条款调整,套用时请仔细阅读。 1、操作人员必须经过培训合格后方可操作气化炉,其它人员不准操作本设备。 2、在使用过程中每1小时对气化炉进行查看,检查气化炉是否异常。 3、气化炉出现故障时必须停止使用(如出现水温超过70oC)。 4、非设备维修人员不准维修或拆卸气化炉任何部件。 5、室内气温超过20oC时,停止使用气化炉。 6、注水:从气化炉炉体上的入水口处加入无杂质的纯水直到炉体溢水管口溢水为止,如遇水位不

够,要及时将水补充满。 7、开炉操作: a 使用前先检查管道各连接处是否连接紧密牢固、管道是否存破损、气化炉的水位、电源、气化炉防爆箱体螺栓是否松动等 b打开电源开关。静等15分钟左右,观察水温表,确定水温表在50oC以上,方可慢慢开启气化炉液相进口阀门和气化炉出口阀门。(气化炉设计的温度一般在加热到70oC左右时,自动切断电源停止加热) 8、压力调节: a 慢慢打开调压器前的控制阀,并通过调压器上的调节螺丝使出口压力达到需要的设定值。(最大压力值?) b 设定完毕,打开高压器后的控制阀,并在气

连续式环保型气化炭化炉使用说明书完整版

连续式环保型气化炭化炉 使用说明书 河南三兄重工有限公司

连续式环保型气化炭化炉 一、用途特点: 连续式环保型气化炭化炉是将果壳、锯末、木屑、竹屑、稻壳、花生壳、果壳、棕榈壳等含碳的木质颗粒状物料(体积在3mm以上的如农作物秸秆、椰壳、树枝树皮粉碎成颗粒状也可),在炉内高温条件下进行干馏、无氧炭化并且炭化率高的理想设备。本机合理采用了物料在炭化过程中,产生的一氧化碳、甲烷、氧气等可燃气体回收、净化,循环燃烧的先进技术。即解决了普通炭化炉在炭化工程中产生的浓烟对环境的污染问题,又解决了设备所需的热能问题,充分做到了自供自给,提高了设备的连续性、经济性,充分利用农林剩余物,使其变废为宝,减轻了我国林业资源供求紧张的矛盾,为绿化环境多做贡献。 二、工作原理: 连续式环保型气化炭化炉生产线设备配置:生物质气化炉、烟气净化器、变频引风机、燃烧器、炭化炉、上料机、出料机等设备(详见附图)。本机采用了干馏炭化方式,充分利用在炭化过程中产生的一氧化碳、甲烷、氢气等可燃气体,通过烟气净化系统分离出木焦油、木酸液得到纯正的可燃气体,给炭化炉管道加热(温度一般控制在600℃左右)。炭化炉内部有四层管道从上至下,第一、二层为预热烘干管道,第三层为低温炭化管道,第四层为高温炭化管道。第一、二层设有独立的排气管主要排出水蒸气,管道利用炉内余热对物料进行烘干,水蒸气从排气管排出。第三、四层炭化管道对物料进行高温炭化,管道也设有独立的可燃气体回收管道,把炭化产生的烟气回收、净化、变成纯净的可燃气体对管道继续加热,达到循环往复加热炭化的效果。通过生物质气化炉前期造气,初次炭化点火气源由生物质气化炉供给。 三、技术参数: 生产过程中炭化温度500℃左右;最高温度可达600-900℃。根据原料不同设备单组产量300kg/h左右。设备双组产量600kg/h左右。 四、结构简图: 五、注意事项: 气化炭化炉在初次点燃及中途熄火时,一定要打开侧面关火门,以防炉内可燃气体太多,点燃时对人身安全造成危害。

壳牌煤气化问题

1、Shell煤气化技术开车问题分析 Shell粉煤加压气化工艺是荷兰壳牌公司开发的一种先进的煤气化技术,国内进口了十多套,其中三套(分别在岳阳,安庆、枝江)干煤粉气化炉,近一段时间开车。三套干煤粉气化炉刚开车时,出现了严重的问题(按供应商提供操作条件操作):Shell每台气化炉有点火烧嘴一个,开工烧嘴2个,煤粉喷嘴4个。在气化炉投料运行前需要对气化炉进行烘炉,烘炉是用两个开工烧嘴时进行的,用点火烧嘴对开工烧嘴进行点火。点火顺序:点火烧嘴—开工烧嘴—煤粉烧嘴;首先点着点火烧嘴,之后开工烧嘴投料,给气化炉升温和升压,当温度和压力达到了工艺要求的工况时,煤粉烧嘴进行化工投料,至此,气化炉进入化工运行阶段。岳阳,安庆,枝江三家使用Shell气化炉的企业在对点火烧嘴进行开车时都出现了同样的问题:点火不到10秒钟就将其点火烧嘴烧坏;该点火烧嘴的内喷头材质是铜,外壳为不锈钢incolly-800材料。燃料油从内喷头12个圆孔喷出,与氧气在内喷头与外壳之间的空隙混合,然后自12个槽型孔喷出,喷出之后进行燃烧。中心通冷却水,对点火烧嘴进行冷却。在点火烧嘴点火10秒钟后,点火烧嘴的外壳就如同气割一样被切割开了,严重损坏了。 问题①点火烧嘴易损坏,最短时间不大于10秒钟,最多使用不到二十次,厂家是否有改进的措施? ②点火烧嘴造价高昂、更换频繁,从技术上能否提高设备寿命? ③点火烧嘴是否实现了国产化?造价、寿命如何?。

2、SHELL气化炉、GE废锅气化炉和GE水冷激气化炉 ①气化炉运行负荷是否能够达到100%?,目前是多少? ②连续运行时间是多少?目前有没有突破两个月? ③维修项目有哪些?维修时间能否缩短?成本如何? 3、煤气化工艺中循环使用的洗涤灰水如何处理效果最佳? 4、壳牌煤气化工艺流程中的合成气反吹系统的反吹介质能否用洗涤后的粗合成气改为高温高压氮气?是否满足下游装置的工艺要求?对比节省工程投资是多少? 5、壳牌粉煤气化是一种先进成熟的洁净煤气技术,该技术的关键设备是由气化炉、输气管和合成冷却器三大件组成,其中气化炉又是核心,如何将气化炉、输气管和合成气冷却器等设备进行安全可靠合理的配置,实现高转化效率,长周期运行,节省投资? 6、废锅造价高,现在是否有降低造价的措施?尤其采用上行废锅形式,煤气激冷、余热回收、去除渣尘使这套系统变得庞大、复杂、昂贵;为了清除渣尘,采用庞大的陶瓷过滤装置,需要定期脉冲反吹。能否采用下行水激冷工艺设备? 7、气化炉高温排出的熔渣经激冷后成玻璃状颗粒,性质稳定,能否综合利用? 8、合成气中的粉尘含量的标准是多少?检测措施是什么?如果合成气粉尘超标将直接影响合成气的质量,对下游工艺流程有什么影响?

SCGP(壳牌)煤气化工艺

SCGP(壳牌)煤气化工艺 1、SCGP(壳牌)煤气化技术简介。 1.1工艺原理。 SCGP壳牌煤气化过程是在高温、加压条件下进行的,煤粉、氧气及少量蒸汽在加压条件下并流进入气化炉内,在极为短暂的时间内完成升温、挥发分脱除、裂解、燃烧及转化等一系列物理和化学过程。由于气化炉内温度很高,在有氧存在的条件下,碳、挥发分及部分反应产物(H2和CO等)以发生燃烧反应为主,在氧气消耗殆尽之后发生碳的各种转化反应,即过程进入到气化反应阶段,最终形成以CO和H2为主要成分的煤气离开气化炉。典型的SCGP煤气成分见表1。 1.2工艺流程。 目前,壳牌煤气化装置采用废锅流程,废锅流程的壳牌煤气化工艺简略流程见图1。 原料煤经破碎由运输设施送至磨煤机,在磨煤机内将原料煤磨成煤粉(90%<100μm)并干燥,煤粉经常压煤粉仓、加压煤粉仓及给料仓,由高压氮气或二氧化碳气将煤粉送至气化炉煤烧嘴。来自空分的高压氧气经预热后与中压过热蒸

汽混合后导入煤烧嘴。煤粉、氧气及蒸汽在气化炉高温加压条件下发生碳的氧化及各种转化反应。气化炉顶部约1500℃的高温煤气经除尘冷却后的冷煤气激冷至900℃左右进入合成气冷却器。经合成气冷却器回收热量后的煤气进入干式除尘及湿法洗涤系统,处理后的煤气中含尘量小于1mg/m3送后续工序。 湿洗系统排出的废水大部分经冷却后循环使用,小部分废水经闪蒸、沉降及汽提处理后送污水处理装置进一步处理。闪蒸汽及汽提气可作为燃料或送火炬燃烧后放空。 在气化炉内气化产生的高温熔渣,自流进入气化炉下部的渣池进行激冷,高温熔渣经激冷后形成数毫米大小的玻璃体,可作为建筑材料或用于路基。 1.3技术特点。 1.3.1煤种适应性广。 SCGP工艺对煤种适应性强,从褐煤、次烟煤、烟煤到无烟煤、石油焦均可使用,也可将2种煤掺混使用。对煤的灰熔点适应范围比其他气化工艺更宽,即使是较高灰分、水分、硫含量的煤种也能使用。 1.3.2单系列生产能力大。 煤气化装置单台气化炉投煤量达到2000t/d以上,生产能力更高的的煤气化装置也正在建设中。 1.3.3碳转化率高。 由于气化温度高,一般在1400~1600℃,碳转化率可高达99%以上。 1.3.4产品气体质量好。 产品气体洁净,煤气中甲烷含量极少,不含重烃,CO+H2体积分数达到90%以上。 1.3.5气化氧耗低。 与水煤浆气化工艺相比,氧耗低15%~25%,可降低配套空分装置投资和运行费用。 1.3.6热效率高。

江苏大学课程设计气化炉计算说明书word(仅供参考)

江苏大学课程设计气化炉计算说明书word (仅供参考) 其中涉及到的物料平衡和能量平衡参考: 江苏大学课程设计气化炉计算说明书excel (已上传到百度 文库) 一:气化炉本体主要参数的设计计算 初步设计该上吸式气化炉消耗的原料为G=600kg/h. 初步确认气化强度Φ为200kg/(m 2 ·h) 1. 实际气化所需空气量V A 由树皮的元素分析可知木屑中主要含有C 、H 、O 而N 、S 的含量可以忽略不计,则: a 、碳完全燃烧的反应: C + O 2= CO 2 12kg 22.4m 3 1kg 碳完全燃烧需要1.866N 氧气。 b 、氢燃烧的反应: 4H + O 2 = 2H 20 4.032kg 22.4m 3 1kg 氢燃烧需要5.55N 氧气。 因为原料中已经含有氧[O],相当于1kg 原料已经供给[O]×22.4/32=0.7[O]N 氧气,氧气占空气的21%,所以生物质原料完全燃烧所需的空气量: = (1.866[C]+5.55[H]-O.7[O]) 式中 V ——物料完全燃烧所需的理论空气量 m 3/kg C ——物料中碳元素含量 % H ——物料中氢元素含量 % V 1 0.21

O ——物料中氧元素含量 % 因此,可得 V= (1.866[C]+5.55[H]-O.7[0]) = (1.866×50.30% +5.55×5.83%-O.7×36.60%) =4.790(/kg) V 为理论上的木屑完全燃烧所需的空气量,考虑到实际过程中的空气泄漏或供给 不足等因素,加入过量空气系数α,取α=1.2,保证分配的二次通风使气化气得到完全燃烧。因此,实际需要通入的空气量V~ V~=αV=1.2×4.790=5.748(3 m /kg) 因此,总的进气量为5.748/kg 由上图取理论最佳当量比ε为0.3,计算实际气化所需空气量: V A =ε*V~=0.28*5.748=1.609m 3/kg 2.可燃气流量q 空气(气化剂)中N 2含量79%左右,气化生物质产生的燃气中N 2含量为55%左右,考虑到在该气化反应中N 2几乎很少发生反应,据此,拟燃气流量是气化剂(空气)流量的1.44倍,则可燃气流量q 为: q=G*V A *1.44=600*1.609*1.44=1390 m 3/h 3.产气率 V G V G =/G =1390/600 =2.317(/kg) 1 0.21 10.21 3 m 3 m q 3 m

浅析 SHELL 煤气化技术

·270·2016年7月 第8卷技术论坛工程技术 浅析SHELL煤气化技术 赵 野 神华鄂尔多斯煤制油分公司,内蒙古 鄂尔多斯 017209 摘 要:随着国内近年掀起的煤化工热潮,Shell煤气化工艺以其高效、安全和环保的特点,成为很多企业的首选工艺之一。本文介绍了Shell煤气化的工艺原理、特点,煤种的选择,气化炉炉温偏高和偏低的参数变化和影响,气化炉温度监测,煤烧嘴与烧嘴罩损坏泄漏的一般原因及影响,以及对Shell煤气化未来的展望。 关键词:壳牌煤气化;气化炉的特点;煤种;炉温;烧嘴罩 中图分类号:TQ546 文献标识码:A 文章编号:1671-5586(2016)64-0270-02 1 引言 能源和环境是人类赖以生存与发展的基础,然而当今世界正面临着能源短缺、环境污染和温室效应等诸多问题,如何实现人类社会、经济与环境的协调可持续发展,已经引起国际社会的普遍关注。人类必须在化石能源濒临枯竭和生存环境濒临崩溃之前,完成替代能源和相关技术的开发。我国是能源消耗大国,而且煤多油少气贫,那么煤转气转油将是未来发展的趋势,它将带动经济的发展,也是国家能源战略储备的一部分。壳牌煤气化技术的出现为洁净能源的开发指明方向,产品具有节能降耗,应用广泛的特点。以下是结合自己在工作中的实践和对壳牌煤气化的所知进行分析探讨。 2 SHELL煤气化的原理和特点 2.1 SHELL煤气化的工艺原理 Shell煤气化技术是目前世界上较为先进的第二代粉煤气化技术之一,气化过程也是在高温加压下进行的。其进料方式是将碎煤磨成0.1mm以下、水分2%以下的细粉,高压氮气通过特殊的喷嘴将粉煤送进炉膛,与被蒸汽稀释的氧气在气化炉内高温高压下气化形成合成气(CO+H2>90%)、飞灰和熔渣[1]。该技术工艺流程较简单,原煤经碎煤后送至磨煤机,磨成的细粉被热惰性气体干燥,由高压氮气将干煤粉送入气化炉,另外高压氧气和中压过热蒸汽混合后也由喷嘴喷入炉内。炉口约1400~1600℃的高温合成气离开气化炉顶部,与来自洗涤和除灰系统混合后200℃的合成气混合,被激冷到900℃后进入合成气冷却段冷却到340℃,然后再进入干式除灰系统和湿洗除灰系统。大部分熔渣被渣水激冷破碎成粒径平均接近1mm的玻璃球体。 2.2 SHELL煤气化的特点 第一,干粉进料,气化效率高。原料煤所含能量之中,大约80~83%以合成气形式回收,另外14%~16%以蒸汽形式回收,总的热效率可达98%左右。 第二,气化操作温度高。气化温度约在1400~1600℃,在高的气化温度下碳转化率高达99%,有效气体成份含量高,产品气体相对洁净,不含重烃,甲烷含量很低,煤气品质好[2]。 第三,氧耗低。与湿法进料水煤浆气化相比,氧气消耗低(15%~25%),原料制备系统简单,进料灵活,与之配套的空分装置投资可相对减少。 第四,加压操作,单炉生产能力大。目前已投入的单炉日处理煤量达到2000吨。 第五,气化炉结构较简单,内部为膜式水冷壁,无任何耐火砖,烧嘴寿命长,所以气化炉坚固耐用,操作可靠[3]。 第六,生产调幅能力强,连续运转周期长。采用对称式多烧嘴,混合效果好,提高了气化操作的可靠性和生产调幅能力。气化煤烧嘴设计保证寿命8000h。 第七,煤种适应性广。 第八,环保性能好。 3 SHELL煤气化工艺对煤种的选择 尽管壳牌煤气化炉适应的煤种很广,但也不是万能的,从技术经济的角度考虑对煤种还是有一定的要求。煤种特性对煤气化炉和相关的设备设计及操作密切相关。壳牌煤气化着重从水分、灰分、煤粉粒度、挥发份、反应活性、总硫、 灰熔点及灰组成来具体选择适合自己的煤。 4 SHELL煤气化炉温度 4.1 气化炉温度监测 气化炉蒸汽产量可以用来作为气化炉温度监测的主要参数,与此同时要对其渣型进行比对,保证对炉温进行正确判断,从而对气化温度进行调节,也可通过CO2和CH4量的变化对炉温进行监控。 气化炉蒸汽产量自动控制用于灰熔点和灰分正常波动时校正气化温度[4]。 图1 炉温偏高渣型 图2 炉温偏低渣型 4.2 气化炉温度波动 在气化炉操作过程中,炉温偏高,合成气中CO2含量升高、CH4含量降低、汽包小室副产蒸汽升高,煤粉燃烧后产生的煤渣成黄褐色晶体,针状物多(见图1所示),燃烧充分,渣的流动性强,炉壁不易挂渣,保温效果差,极易烧坏气化炉膜式水冷壁、烧嘴头以及烧嘴罩,降低了它们的使用寿命。 炉温过高煤粉燃烧后,液态熔渣还容易被合成气带到气化炉冷却段十字吊架处,随着温度的降低,熔渣容易凝固在换热器上,时间长了,换热器的前后压差将增大,SGC入口温度也会升高,气化炉压力增大,激冷气量明显下降,饱和蒸汽经过换热器时的换热效果差,过热蒸汽的温度将受到影响。如果SGC出口温度也升高,说明换热器堵的不是很厉害;反之,说明堵的很严重了。 炉温偏低,合成气中CO2含量降低、CH4含量升高、汽包小室副产蒸汽降低,煤粉燃烧后产生的煤渣成黑色小颗粒状(见图2所示),燃烧很不充分,渣的流动性差,炉壁挂渣较厚,传热效果差,下渣口很容易堵渣,给生产造成影响。 5 SHELL煤气化炉烧嘴罩的损坏泄漏 在气化炉运行过程中,导致烧嘴罩损坏泄漏的原因很多,也是诸多壳牌煤气化人多年要攻克的瓶颈,下面谈谈个人对此问题的理解,仅供参考。 5.1 烧嘴罩泄漏的直接原因 局部超温导致的烧蚀。制造烧嘴罩的材料为13CrMo4-5钢,其金相组织为铁素体/珠光体。烧嘴罩泄漏部位的金相组织为马氏体。金相学理论表明:超过840℃的高温可以导致铁素体/珠光体转变为马氏体,而马氏体恰好不耐高温。 5.2 烧嘴罩泄漏的根本原因 (1))粉煤烧嘴火苗长度偏低,低于设计值。导致粉煤烧嘴火苗的高温外焰(2500-3000℃)接近烧嘴罩。 (2))炉温整体偏高但波动很大。炉温过高时,渣的流动性变得非常好。因为烧嘴位置的原因,合成气和渣在炉膛内形成环流。此种情况在下渣口下方同样存在。渣的流动性太好,会有部分渣被气流带到渣裙和热裙的位置,并附着在 (下转第273 页)

壳牌气化炉用煤分析

煤气化近期用煤分析 一、近期用煤及调整情况 1、煤气化双炉在2017年2月7日及以前用煤主要为: 白羊墅贫瘦煤:东川蒙煤:瑞丰蒙煤=23%:14%:63%。 2、受配煤后煤质波动较大影响在2月8日开始双炉上煤按1:1加配了(汽运阳泉贫瘦煤:瑞丰蒙煤=20%:80%),因此煤气化上煤调整为: (白羊墅贫瘦煤:东川蒙煤:瑞丰蒙煤=23%:14%:63%):(汽运阳泉贫瘦煤:瑞丰蒙煤=20%:80%)=1:1。 3、因近期煤气化消耗较高,为排除相关煤粉指标(如CaO、热值等)对气化炉消耗的影响,自2月14日起煤气化上煤1#炉没变,2#炉改为: 阳泉贫瘦煤:东川大砭窑混蒙煤:大砭窑蒙煤=24%:40%:36% 4、1#炉因前一种煤用完,自2月18日起煤气化1#炉上煤改为: 阳泉贫瘦煤:瑞丰蒙煤:东川蒙煤=18%:64%:18% 二、煤质分析 1、灰分 根据下图1、2#炉用煤灰分可以看出(主要看中采),本月上旬灰分波动较大,上煤时调整为1:1后灰分趋于稳定;2#炉换煤后灰分较同期1#炉要稳定。

2、低位热值 从下图可以看出,双炉低位发热量变化同灰分变化相同,双炉上旬波动较大,中采热值在5700左右;中旬经过两次换煤后双炉热值都有所提高在5800左右。

3、硅铝比 从下图可以看出,本月上煤2月7日调整后硅铝比略有下降,从2.1降到2.0左右;2月14日2#炉第二次调整后从2.0涨到2.2左右;2月18日1#炉调整后硅铝比有所上涨。

4、CaO变化 从下图可以看出本月上旬双炉中采CaO含量基本在6%左右,但波动较大,经双炉上煤调整后波动有所好转;2#炉14日换煤后稳定在6%-7%;1#炉18日换煤后有上涨趋势(受数据较少只供参考)。

Shell煤气化工艺的评述和改进意见

Shell煤气化工艺的综述及流程改进 意见 戴进美 (湖南工学院材料与化学工程系应用化工专业0901班) 摘要:叙述了Shell煤气化技术的发展过程,介绍了Shell煤气化工艺和主要设备的特 点,回顾国内的装置建设情况,坦言一些存在的问题,并提出Shell工艺的改进意见:在为中国设计的制氢气、氨和甲醇化工装置中,将废锅流程改为激冷流程,町以明显降低投资,加快建设周期,提高开车速度,降低运行成本。 关键词:Shell 煤气化工艺废锅流程激冷流程 编者按:虽然Shell煤气化工艺是目前世界上较为先进的第二代煤气化工艺之 一,但是这种工艺不是十全十美的国内引进该枝术应用于氢、氨、醇生产的过程中将面临着很多困难,认识上有很多不足。本文作者结合多年的工程实践经验,坦言Shell煤气化工艺存在的一些问题,并提出Shell工艺的改进意见.可供业界同行参考。 Shell煤气化过程是目前世界上较为先进的第二代煤气化工艺之一。按学术上的分类,She[1煤气化属气流床气化。煤粉、氧气及少量水蒸气在加压条件下并流进入气化炉内,在极为短暂的时间内完成升温、挥发分脱除、裂解、燃烧及转化等一系列物理和化学过程,气化产物为以氢气和一氧化碳为主的合成气,二氧化碳的含量很少。 1 Shell煤气化技术的发展历程 自20世纪50年代起,壳牌公司就参与了气化技术的开发。当时,该公司开发r以油为原料的壳牌气化技术(SGP),至今已有150多套SGP没施得到技术转让。在积累油气化经验后,1972年开始在该公司的阿姆斯特丹研究院(KSLA)进行煤气化技术研究。1976年,煤气化工艺(SCGP)已达到一定水平并建立一座处理煤量为6t/d的试验厂,利用该装置一共试验了30多个不同的煤种。 1978年,在汉堡附近的哈尔堡炼油厂建设一座处理煤量为150t/d的工厂,公司利用这座装置进行了一系列成功的试验,至1983年该装置停止运转为止,累计运行了6l00h,其中包括超过1 000h的连续运转,顺利完成了工艺开发和过程优化的任务。 在汉堡中试装置成功运行的基础上,1987年,壳牌公司在美同休斯顿附近的DeerPark 石化巾心建设了一座规模较大的上厂,这庠命名为SCGP l的示范进煤量为每天250t高硫煤或每天400t高湿度、高灰褐煤,共积累了15000h的操作经验。SCGP1试验了约18种原料,

相关主题
文本预览
相关文档 最新文档