当前位置:文档之家› 高考数学二轮核心题点保温训练:专题1.3 突破充要条件的综合性问题

高考数学二轮核心题点保温训练:专题1.3 突破充要条件的综合性问题

高考数学二轮核心题点保温训练:专题1.3 突破充要条件的综合性问题
高考数学二轮核心题点保温训练:专题1.3 突破充要条件的综合性问题

专题1.3 突破充要条件的综合性问题

1.甲:x ≠2或y ≠3;乙:x +y ≠5,则( )

A .甲是乙的充分不必要条件

B .甲是乙的必要不充分条件

C .甲是乙的充要条件

D .甲既不是乙的充分条件,也不是乙的必要条件

答案 B

解析 “甲?乙”,即“x ≠2或y ≠3”?“x +y ≠5”,其逆否命题为:“x +y =5”?“x =2且y =3”显然不正确.同理,可判断命题“乙?甲”为真命题.所以甲是乙的必要不充分条件.

2.设命题p :|4x -3|≤1;命题q :x 2-(2a +1)x +a (a +1)≤0,若綈p 是綈q 的必要不充分条件,则实数a 的取值范围是( )

A.???

?0,12 B.????0,12

C .(-∞,0)∪????12,+∞

D .(?? 答案 A

解析 綈p :|4x -3|>1;

綈q :x 2-(2a +1)x +a (a +1)>0,

解得綈p :x >1或x <12

;綈q :x >a +1或x 1或?????

a <12,a +1≥1,

即0≤a ≤12. 3.设a >0且a ≠1,则“函数f (x )=a x 在R 上是减函数”是“函数g (x )=(2-a )x 3在R 上是增函数”的( )

A .充分不必要条件

B .必要不充分条件

C .充分必要条件

D .既不充分也不必要条件

答案 A

解析 由题意知函数f (x )=a x 在R 上是减函数等价于0

∴“函数f(x)=a x在R上是减函数”是“函数g(x)=(2-a)x3在R上是增函数”的充分不必要条件.

4.(2014·湖北)设U为全集,A,B是集合,则“存在集合C使得A?C,B??U C”是“A∩B=?”的()

A.充分不必要条件B.必要不充分条件

C.充要条件D.既不充分也不必要条件

答案 C

解析若存在集合C使得A?C,B??U C,则可以推出A∩B=?;

若A∩B=?,由Venn图(如图)可知,存在A=C,同时满足A?C,B??U C.

故“存在集合C使得A?C,B??U C”是“A∩B=?”的充要条件.

5.设平面α与平面β相交于直线m,直线a在平面α内,直线b在平面β内,且b⊥m,则“α⊥β”是“a⊥b”的()

A.充分不必要条件B.必要不充分条件

C.充分必要条件D.既不充分也不必要条件

答案 A

解析当α⊥β时,由于α∩β=m,b?β,b⊥m,由面面垂直的性质定理知,b⊥α.

又∵a?α,∴b⊥a.∴“α⊥β”是“a⊥b”的充分条件.

而当a?α且a∥m时,∵b⊥m,∴b⊥a.

而此时平面α与平面β不一定垂直,

∴“α⊥β”不是“a⊥b”的必要条件,故选A.

6.“m=-1”是“直线l1:2x-my=2m-1与直线l2:x+2my=m-2垂直”的() A.充分不必要条件

B.必要不充分条件

C.充分必要条件

D.既不充分也不必要条件

答案 A

解析若m=-1,则直线l1、l2垂直;

若直线l1、l2垂直,则有m=±1,

所以“m=-1”是“直线l1:2x-my=2m-1与直线l2:x+2my=m-2垂直”的充分不必要条件.选A.

7.给定两个命题p,q.若綈p是q的必要而不充分条件,则p是綈q的()

A .充分不必要条件

B .必要不充分条件

C .充要条件

D .既不充分也不必要条件

答案 A

解析 由题意知:綈p ?q ?(逆否命题)p ?綈q .

8.已知下列各组命题,其中p 是q 的充分必要条件的是( )

A .p :m ≤-2或m ≥6;q :y =x 2+mx +m +3有两个不同的零点

B .p :f (-x )f (x )

=1;q :y =f (x )是偶函数 C .p :cos α=cos β;q :tan α=tan β

D .p :A ∩B =A ;q :A ?U ,B ?U ,?U B ??U A

答案 D

解析 对于A ,由y =x 2+mx +m +3有两个不同的零点,可得Δ=m 2-4(m +3)>0,从而可得m <-2或m >6.所以p 是q 的必要不充分条件;

对于B ,由f (-x )f (x )=1?f (-x )=f (x )?y =f (x )是偶函数,但由y =f (x )是偶函数不能推出f (-x )f (x )

=1,例如函数f (x )=0,所以p 是q 的充分不必要条件;

对于C ,当cos α=cos β=0时,不存在tan α=tan β,反之也不成立,所以p 是q 的既不充分也不必要条件;

对于D ,由A ∩B =A ,知A ?B ,所以?U B ??U A ;

反之,由?U B ??U A ,知A ?B ,即A ∩B =A .

所以p ?q .

综上所述,p 是q 的充分必要条件的是D.

9.在直角坐标系中,点(2m +3-m 2,2m -32-m

)在第四象限的充分必要条件是________. 答案 -1

或2

2m +3-m 2>0,2m -32-m

<0?-10),命题q :实数m 满足方程x 2m -1+y 2

2-m =1表示的焦点在y 轴上的椭圆,且p 是q 的充分不必要条件,a 的取值范围为________.

答案 ????13,38

解析 由a >0,m 2-7am +12a 2<0,得3a

即命题p :3a 0.

由x 2m -1+y 2

2-m

=1表示焦点在y 轴上的椭圆, 可得2-m >m -1>0,解得1

, 即命题q :1

. 因为p 是q 的充分不必要条件,

所以????? 3a >1,4a ≤32或?????

3a ≥1,4a <32,

解得13≤a ≤38, 所以实数a 的取值范围是????13,38.

11.给出下列命题:

①“数列{a n }为等比数列”是“数列{a n a n +1}为等比数列”的充分不必要条件;

②“a =2”是“函数f (x )=|x -a |在区间[2,+∞)上为增函数”的充要条件;

③“m =3”是“直线(m +3)x +my -2=0与直线mx -6y +5=0互相垂直”的充要条件; ④设a ,b ,c 分别是△ABC 三个内角A ,B ,C 所对的边,若a =1,b =3,则“A =30°”是“B =60°”的必要不充分条件.

其中,真命题的序号是________.

答案 ①④

解析 对于①,当数列{a n }是等比数列时,易知数列{a n a n +1}是等比数列;但当数列{a n a n +1}是等比数列时,数列{a n }未必是等比数列,如数列1,3,2,6,4,12,8显然不是等比数列,而相应的数列3,6,12,24,48,96是等比数列,因此①正确.对于②,当a ≤2时,函数f (x )=|x -a |在区间[2,+∞)上是增函数,因此②不正确.对于③,当m =3时,相应的两条直线垂直;反过来,当这两条直线垂直时,不一定能得出m =3,也可能得出m =0,因此③不正确.对于

④,由题意,得b a =sin B sin A =3,当B =60°时,有sin A =12

,注意到b >a ,故A =30°;但当A =30°时,有sin B =32,B =60°或B =120°,因此④正确. 12.下面有四个关于充要条件的命题:①“向量b 与非零向量a 共线”的充要条件是“有且只有一个实数λ使得b =λa ”;②“函数y =x 2+bx +c 为偶函数”的充要条件是“b =0”;③“两个事件为互斥事件”是“这两个事件为对立事件”的充要条件;④设φ∈R ,则“φ=0”是“f (x )=cos(x +φ)(x ∈R )为偶函数”的充分不必要条件.其中,真命题的序号是________. 答案 ①②④

解析 由共线向量定理,知命题①为真.当b =0时,y =x 2+bx +c =x 2+c 显然为偶函数,

反之,y=x2+bx+c是偶函数,则(-x)2+b(-x)+c=x2+bx+c恒成立,就有bx=0恒成立,得b=0,因此②为真.对立事件是互斥事件的特殊情形,所以③为假.在④中,若φ=0,则f(x)=cos x是偶函数.但是若f(x)=cos(x+φ)(x∈R)是偶函数,则φ=π也成立,故“φ=0”是“f(x)=cos(x+φ)(x∈R)为偶函数”的充分不必要条件.

2020高考数学专题复习----立体几何专题

空间图形的计算与证明 一、近几年高考试卷部分立几试题 1、(全国 8)正六棱柱 ABCDEF -A 1B 1C 1D 1E 1F 1 底面边长为 1, 侧棱长为 2 ,则这个棱柱的侧面对角线 E 1D 与 BC 1 所成的角是 ( ) A 、90° B 、60° C 、45° D 、30° [评注]主要考查正六棱柱的性质,以及异面直线所成角的求法。 2、(全国 18)如图,正方形ABCD 、ABEF 的边长都是 1,而且 平面 ABCD 、ABEF 互相垂直,点 M 在 AC 上移动,点 N 在 BF C 上移动,若 CM=NB=a(0

的底面是边长为a的正方形,PB⊥面ABCD。 (1)若面PAD与面ABCD所成的二面角为60°, 求这个四棱锥的体积; (2)证明无论四棱锥的高怎样变化,面PAD与面 PCD所成的二面角恒大于90°。 [评注]考查线面关系和二面角概念,以及空间想象力和逻辑推理能力。 4、(02全国文22)(一)给出两块面积相同的正三角形纸片,要求用其中一块剪拼成一个正三棱锥模型,使它们的全面积都与原三角形面积相等,请设计一种剪拼法,分别用虚线标示在图(1)(2)中,并作简要说明。 (3) (1)(2) (二)试比较你剪拼的正三棱锥与正三棱柱的体积的大小。(三)如果给出的是一块任意三角形的纸片,如图(3)要求剪拼成一个直三棱柱模型,使它的全面积与给出的三角形面积相等,请设计一种剪拼方法,用虚线标出在图3中,并作简要说明。

高考数学数列大题训练答案版

高考数学数列大题训练 1. 已知等比数列432,,,}{a a a a n 中分别是某等差数列的第5项、第3项、第2项,且1,641≠=q a 公比 (Ⅰ)求n a ;(Ⅱ)设n n a b 2log =,求数列.|}{|n n T n b 项和的前 解析: (1)设该等差数列为{}n c ,则25a c =,33a c =,42a c =Q 533222()c c d c c -==- ∴2334()2()a a a a -=-即:223111122a q a q a q a q -=- ∴12(1)q q q -=-,Q 1q ≠, ∴121, 2q q ==,∴1164()2n a -=g (2)121log [64()]6(1)72n n b n n -==--=-g ,{}n b 的前n 项和(13)2n n n S -= ∴当17n ≤≤时,0n b ≥,∴(13)2 n n n n T S -== (8分) 当8n ≥时,0n b <,12789n n T b b b b b b =+++----L L 789777()()2n n n S b b b S S S S S =-+++=--=-L (13)422 n n -=- ∴(13)(17,)2(13)42(8,)2 n n n n n T n n n n -?≤≤∈??=?-?-≥∈??**N N 2.已知数列}{n a 满足递推式)2(121≥+=-n a a n n ,其中.154=a (Ⅰ)求321,,a a a ; (Ⅱ)求数列}{n a 的通项公式; (Ⅲ)求数列}{n a 的前n 项和n S 解:(1)由151241=+=-a a a n n 及知,1234+=a a 解得:,73=a 同理得.1,312==a a (2)由121+=-n n a a 知2211+=+-n n a a

高考数学大题练习

高考数学大题 1.(12分)已知向量a =(sin θ,cos θ-2sin θ),b =(1,2) (1)若a ⊥b ,求tan θ的值; (2)若a ∥b ,且θ为第Ⅲ象限角,求sin θ和cos θ的值。 2.(12分)在如图所示的几何体中,EA ⊥平面ABC ,DB ⊥平面ABC ,AC ⊥BC ,且AC=BC=BD=2AE ,M 是AB 的中点. (I)求证:CM ⊥EM: (Ⅱ)求DE 与平面EMC 所成角的正切值. 3.(13分)某地区为下岗人员免费提供财会和计算机培训,以提高 下岗人员的再就业能力,每名下岗人员可以选择参加一项培训、参加 两项培训或不参加培训.已知参加过财会培训的有60%,参加过计算机培训的 有75%.假设每个人对培训项目的选择是相互独立的,且各人的选择相互之间没有影响. (Ⅰ)任选1名下岗人员,求该人参加过培训的概率; (Ⅱ)任选3名下岗人员,求这3人中至少有2人参加过培训的概率. 4.(12分) 在△ABC 中,∠A .∠B .∠C 所对的边分别为a .b .c 。 若B A cos cos =a b 且sinC=cosA (1)求角A .B .C 的大小; (2)设函数f(x)=sin (2x+A )+cos (2x- 2C ),求函数f(x)的单调递增区间,并指出它相邻两对称轴间的距离。 5.(13分)已知函数f(x)=x+x a 的定义域为(0,+∞)且f(2)=2+22,设点P 是函数图象上的任意一点,过点P 分别作直线y=x 和y 轴的垂线,垂足分别为M ,N. (1)求a 的值; (2)问:|PM|·|PN|是否为定值?若是,则求出该定值, 若不是,则说明理由: (3)设O 为坐标原点,求四边形OMPN 面积的最小值。 6.(13分)设函数f(x)=p(x-x 1)-2lnx,g(x)=x e 2(p 是实数,e 为自然对数的底数) (1)若f(x)在其定义域内为单调函数,求p 的取值范围; (2)若直线l 与函数f(x),g(x)的图象都相切,且与函数f(x)的图象相切于点(1,0),求p 的值; (3)若在[1,e]上至少存在一点x 0,使得f(x 0)>g(x 0)成立,求p 的取值范围.

高考数学前三道大题练习

1 A B C D S E F N B 高考数学试题(整理三大题) (一) 17.已知0αβπ<<4,为()cos 2f x x π? ?=+ ?8??的最小正周期,1tan 14αβ????=+- ? ????? ,, a (cos 2)α=, b ,且?a b m =.求 2 2cos sin 2() cos sin ααβαα ++-的值. 18. 在一次由三人参加的围棋对抗赛中,甲胜乙的概率为0.4,乙胜丙的概率为0.5,丙胜 甲的概率为0.6,比赛按以下规则进行;第一局:甲对乙;第二局:第一局胜者对丙; 第三局:第二局胜者对第一局败者;第四局:第三局胜者对第二局败者,求: (1)乙连胜四局的概率; (2)丙连胜三局的概率. 19.四棱锥S -ABCD 中,底面ABCD 为平行四边形,侧面SBC ⊥底面ABCD 。已知∠ABC =45°,AB =2,BC=22,SA =SB =3。 (Ⅰ)证明:SA ⊥BC ; (Ⅱ)求直线SD 与平面SAB 所成角的大小; (二) 17.在ABC △中,1tan 4A =,3 tan 5 B =. (Ⅰ)求角C 的大小; (Ⅱ)若ABC △ 18. 每次抛掷一枚骰子(六个面上分别标以数字1,2,3,4,5,6). (I )连续抛掷2次,求向上的数不同的概率; (II )连续抛掷2次,求向上的数之和为6的概率; (III )连续抛掷5次,求向上的数为奇数恰好出现3次的概率。 19. 如图,在四棱锥S-ABCD 中,底面ABCD 为正方形,侧棱SD ⊥底面ABCD ,E 、F 分别是 AB 、SC 的中点。 求证:EF ∥平面SAD ; (三) 17.已知ABC △的面积为3,且满足06AB AC ≤≤,设AB 和AC 的夹角为θ. (I )求θ的取值范围;(II )求函数2()2sin 24f θθθ?? =+ ??? π的最大值与最小值. 18. 某商场举行抽奖促销活动,抽奖规则是:从装有9个白球、1个红球的箱子中每次随机地摸出一个球,记下颜色后放回,摸出一个红球获得二得奖;摸出两个红球获得一等奖.现有甲、乙两位顾客,规定:甲摸一次,乙摸两次.求 (1)甲、乙两人都没有中奖的概率; (2)甲、两人中至少有一人获二等奖的概率. 19. 在Rt AOB △中,π 6 OAB ∠= ,斜边4AB =.Rt AOC △可以通过Rt AOB △以直线AO 为轴旋转得到,且二面角B AO C --是直二面角.动点D 的斜边AB 上. (I )求证:平面COD ⊥平面AOB ; (II )当D 为AB 的中点时,求异面直线AO 与CD 所成角 的大小; (III )求CD 与平面 AOB 所成角的最大值 (四) 17.已知函数2 π()2sin 24f x x x ??=+ ???,ππ42x ??∈???? ,. (I )求()f x 的最大值和最小值; (II )若不等式()2f x m -<在ππ42 x ??∈???? ,上恒成立,求实数m 的取值范围. 18. 甲、乙两班各派2名同学参加年级数学竞赛,参赛同学成绩及格的概率都为0.6,且参赛同学的成绩相互之间没有影响,求: (1)甲、乙两班参赛同学中各有1名同学成绩及格的概率; (2)甲、乙两班参赛同学中至少有1名同学成绩及格的概率. 19. 如图,在四棱锥O ABCD -中,底面ABCD 四边长为1的菱形, 4 ABC π ∠= , OA ABCD ⊥底面, 2OA =,M 为OA 的中点,N 为BC 的中点。 (Ⅰ)证明:直线MN OCD 平面‖; (Ⅱ)求异面直线AB 与MD 所成角的大小; (Ⅲ)求点B 到平面OCD 的距离。 O C A D B E

高考数学立体几何中探索性问题

立体几何中探索性问题 立体几何中的探索性问题立意新颖,形式多样,近年来在高考中频频出现,而空间向量在解决立体几何的探索性问题中扮演着举足轻重的角色,它是研究立体几何中的探索性问题的一个有力工具,应用空间向量这一工具,为分析和解决立体几何中的探索性问题提供了新的视角、新的方法. 【例1】(2018?全国三模)如图,在三棱柱111ABC A B C -中,侧面11ABB A 是矩形,90BAC ∠=?,1AA BC ⊥, 124AA AC AB ===,且11BC AC ⊥. (1)求证:平面1ABC ⊥平面11A ACC ; (2)设D 是11A C 的中点,判断并证明在线段1BB 上是否存在点E ,使得//DE 平面1ABC .若存在,求二面角1E AC B --的余弦值. 【解答】证明:(1)在三棱柱111ABC A B C -中,侧面11ABB A 是矩形,1AA AB ∴⊥, 又1AA BC ⊥,AB BC B =,1AA ∴⊥平面ABC ,1A A AC ∴⊥. 又1A A AC =,11AC AC ∴⊥.又11 BC AC ⊥,111BC AC C =,1 AC ∴⊥平面1ABC , 又1A C ?平面11A ACC ,∴平面1ABC ⊥平面11A ACC . (2)当E 为1B B 的中点时,连接AE ,1EC ,DE ,如图,取1A A 的中点F ,连接EF ,FD , //EF AB ,1//DF AC ,又EF DF F =,1AB AC A =, ∴平面//EFD 平面1ABC ,则有//DE 平面1ABC . 设点E 到平面1ABC 的距离为d , AB AC ⊥,且1AA AB ⊥,AB ∴⊥平面11A ACC ,1AB AC ∴⊥, ∴1 1 22 BAC S =?= 1A A AC ⊥,AB AC ⊥,AC ∴⊥平面11A ABB , 11//AC AC ,11AC ∴⊥平面11ABB , ∴111 1118 2243323 C ABE ABE V S AC -?=??=????=, 由118 3 E ABC C ABE V V --== ,解得1 88 3 33ABC d S =? == 以A 为原点,AB 为x 轴,AC 为y 轴,1AA 为z 轴,建立空间直角坐标系,

最新高考数学压轴题专题训练(共20题)[1]

1.已知点)1,0(F ,一动圆过点F 且与圆8)1(2 2 =++y x 内切. (1)求动圆圆心的轨迹C 的方程; (2)设点)0,(a A ,点P 为曲线C 上任一点,求点A 到点P 距离的最大值)(a d ; (3)在10<

3.已知点A (-1,0),B (1,0),C (- 5712,0),D (5712 ,0),动点P (x , y )满足AP →·BP → =0,动点Q (x , y )满足|QC →|+|QD →|=10 3 ⑴求动点P 的轨迹方程C 0和动点Q 的轨迹方程C 1; ⑵是否存在与曲线C 0外切且与曲线C 1内接的平行四边形,若存在,请求出一个这样的平行四边形,若不存在,请说明理由; ⑶固定曲线C 0,在⑵的基础上提出一个一般性问题,使⑵成为⑶的特例,探究能得出相应结论(或加强结论)需满足的条件,并说明理由。 4.已知函数f (x )=m x 2+(m -3)x +1的图像与x 轴的交点至少有一个在原点右侧, ⑴求实数m 的取值范围; ⑵令t =-m +2,求[1 t ];(其中[t ]表示不超过t 的最大整数,例如:[1]=1, [2.5]=2, [-2.5]=-3) ⑶对⑵中的t ,求函数g (t )=t +1t [t ][1t ]+[t ]+[1t ]+1的值域。

高考数学专题04 立体几何的探索性问题(第三篇)(原卷版)

备战2020年高考数学大题精做之解答题题型全覆盖高端精品 第三篇 立体几何 专题04 立体几何的探索性问题 【典例1】【2020届江苏巅峰冲刺卷】 如图,在四棱锥P ABCD 中,P A ⊥平面ABCD ,∠ABC =∠BAD =90°,AD =AP =4,AB =BC =2,M 为PC 的中点. (1)求异面直线AP ,BM 所成角的余弦值; (2)点N 在线段AD 上,且AN =λ,若直线MN 与平面PBC 所成角的正弦值为4 5 ,求λ的值. 【典例2】【2020届江西省赣州市高三上学期期末考试】 如图,在平行四边形ABCD 中,2,4,60AB AD BAD ?==∠=,平面EBD ⊥平面ABD ,且 ,EB CB ED CD ==.

(1)在线段EA 上是否存在一点F ,使//EC 平面FBD ,证明你的结论; (2)求二面角A EC D --的余弦值. 【典例3】【北京市昌平区2020届高三期末】 如图,在四棱锥P ABCD -中,P A ⊥平面ABCD ,CD ⊥AD ,BC ∥AD ,1 2 BC CD AD == . (Ⅰ)求证:CD ⊥PD ; (Ⅰ)求证:BD ⊥平面P AB ; (Ⅰ)在棱PD 上是否存在点M ,使CM ∥平面P AB ,若存在,确定点M 的位置,若不存在,请说明理由. 【典例4】【2019届陕西省西安中学高三下学期第十二次重点考试】 在三棱锥P—ABC 中,PB ⊥平面ABC ,AB ⊥BC ,AB=PB =2,BC E 、G 分别为PC 、P A 的中点.

(1)求证:平面BCG ⊥平面P AC ; (2)假设在线段AC 上存在一点N ,使PN ⊥BE ,求 AN NC 的值; (3)在(2)的条件下,求直线BE 与平面PBN 所成角的正弦值 【典例5】【浙江省丽水市2020届模拟】 如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,AD BC ∥,90ABC ∠=?,1AB BC ==,2PA AD ==. (1)求证:CD ⊥平面PAC ; (2)在棱PC 上是否存在点H ,使得AH ⊥平面PCD ?若存在,确定点H 的位置;若不存在,说明理由. 【典例6】【江苏省苏州市实验中学2020届高三月考】 直四棱柱1111ABCD A B C D -中,2AB BC ==,90ABC ∠=?, E 、 F 分别为棱AB 、11B C 上的点,2AE EB =,112C F FB =.求证: (1)//EF 平面11AAC C ; (2)线段AC 上是否存在一点G ,使面EFG ⊥面11AAC C .若存在,求出AG 的长;若不存在,请说明理由. 【典例7】【山东省临沂市2019年普通高考模拟】 如图,底面ABCD 是边长为3的正方形,平面ADEF ⊥平面ABCD ,AF ∥DE ,AD ⊥DE ,AF =DE =

2020高考数学专题训练16

六) 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 1.满足条件?≠?M ≠?{0,1,2}的集合共有( ) A .3个 B .6个 C .7个 D .8个 2.等差数列}{n a 中,若39741=++a a a ,27963=++a a a ,则前9项的和9S 等于( ) A .66 B .99 C .144 D .297 3.函数)1(log 2-=x y 的反函数图像是( ) A B C D 4.已知函数)cos()sin()(??+++=x x x f 为奇函数,则?的一个取值为( ) A .0 B .4 π - C .2π D .π 5.从10种不同的作物种子中选出6种放入6个不同的瓶子中展出,如果甲、乙两种种 子不能放入第1号瓶内,那么不同的放法共有( ) A .4 82 10A C 种 B .5 91 9A C 种 C .5 91 8A C 种 D .5 81 8A C 种 6.函数512322 3 +--=x x x y 在[0,3]上的最大值、最小值分别是( ) A .5,-15 B .5,-4 C .-4,-15 D .5,-16 7.已知9)222(-x 展开式的第7项为4 21 ,则实数x 的值是( ) A .31- B .-3 C .4 1 D .4 8.过球面上三点A 、B 、C 的截面和球心的距离是球半径的一半,且AB =6,BC =8, AC =10,则球的表面积是( ) A .π100 B .π300 C . π3100 D .π3 400 9.给出下面四个命题:①“直线a 、b 为异面直线”的充分非必要条件是:直线a 、b 不相交;②“直线l 垂直于平面α内所有直线”的充要条件是:l ⊥平面α;③“直线a ⊥b ”的充分非必要条件是“a 垂直于b 在平面α内的射影”;④“直线α∥平面β”的必要非充分条件是“直线a 至少平行于平面β内的一条直线”.其中正确命题的个数是( )

高考文科数学数列经典大题训练(附答案)

1.(本题满分14分)设数列{}n a 的前n 项和为n S ,且34-=n n a S (1,2,)n =, (1)证明:数列{}n a 是等比数列; (2)若数列{}n b 满足1(1,2,)n n n b a b n +=+=,12b =,求数列{}n b 的通项公式. 2.(本小题满分12分) 等比数列{}n a 的各项均为正数,且212326231,9.a a a a a +== 1.求数列{}n a 的通项公式. 2.设 31323log log ......log ,n n b a a a =+++求数列1n b ?? ???? 的前项和. 3.设数列{}n a 满足21112,32n n n a a a -+=-= (1) 求数列{}n a 的通项公式; (2) 令n n b na =,求数列的前n 项和n S

4.已知等差数列{a n}的前3项和为6,前8项和为﹣4. (Ⅰ)求数列{a n}的通项公式; (Ⅱ)设b n=(4﹣a n)q n﹣1(q≠0,n∈N*),求数列{b n}的前n项和S n. 5.已知数列{a n}满足,,n∈N×. (1)令b n=a n+1﹣a n,证明:{b n}是等比数列; (2)求{a n}的通项公式.

1.解:(1)证:因为34-=n n a S (1,2,)n =,则3411-=--n n a S (2,3,)n =, 所以当2n ≥时,1144n n n n n a S S a a --=-=-, 整理得14 3 n n a a -= . 5分 由34-=n n a S ,令1n =,得3411-=a a ,解得11=a . 所以{}n a 是首项为1,公比为4 3 的等比数列. 7分 (2)解:因为14 ()3 n n a -=, 由1(1,2,)n n n b a b n +=+=,得114 ()3 n n n b b -+-=. 9分 由累加得)()()(1231`21--++-+-+=n n n b b b b b b b b =1)34(33 41)34(1211 -=--+--n n , (2≥n ), 当n=1时也满足,所以1)3 4 (31-=-n n b . 2.解:(Ⅰ)设数列{a n }的公比为q ,由23269a a a =得32 34 9a a =所以21 9 q =。有条件可知a>0,故13 q =。 由12231a a +=得12231a a q +=,所以113 a =。故数列{a n }的通项式为a n =1 3n 。 (Ⅱ )111111log log ...log n b a a a =+++ (12...) (1) 2 n n n =-++++=- 故 12112()(1)1 n b n n n n =-=--++ 12111111112...2((1)()...())22311 n n b b b n n n +++=--+-++-=-++

高考热点问题和解题策略之探索性问题

二、探索性问题 近年来,随着社会主义经济建设的迅速发展,要求学校由“应试教育”向“素质教育”转化,培养全面发展的开拓型、创造型人才。在这种要求下,数学教学中开放型问题随之产生。于是,探索性问题成了近几年来高考命题中的热点问题,它既是高等学校选拔高素质人材的需要,也是中学数学教学培养学生具有创造能力、开拓能力的任务所要求的。实际上,学生在学习数学知识时,知识的形成过程也是观察、分析、归纳、类比、猜想、概括、推证的探索过程,其探索方法是学生应该学习和掌握的,是今后数学教育的重要方向。 一般地,对于虽给出了明确条件,但没有明确的结论,或者结论不稳定,需要探索者通过观察、分析、归纳出结论或判断结论的问题(探索结论);或者虽给出了问题的明确结论,但条件不足或未知,需要解题者寻找充分条件并加以证明的问题(探索条件),称为探索性问题。此外,有些探索性问题也可以改变条件,探讨结论相应发生的变化;或者改变结论,探讨条件相应发生的变化;或者给出一些实际中的数据,通过分析、探讨解决问题。 探索性问题一般有以下几种类型:猜想归纳型、存在型问题、分类讨论型。 猜想归纳型问题是指在问题没有给出结论时,需要从特殊情况入手,进行猜想后证明其猜想的一般性结论。它的思路是:从所给的条件出发,通过观察、试验、不完全归纳、猜想,探讨出结论,然后再利用完全归纳理论和要求对结论进行证明。其主要体现是解答数列中等与n有关数学问题。 存在型问题是指结论不确定的问题,即在数学命题中,结论常以“是否存在”的形式出现,其结果可能存在,需要找出来,可能不存在,则需要说明理由。解答这一类问题时,我们可以先假设结论不存在,若推论无矛盾,则结论确定存在;若推证出矛盾,则结论不存在。代数、三角、几何中,都可以出现此种探讨“是否存在”类型的问题。 分类讨论型问题是指条件或者结论不确定时,把所有的情况进行分类讨论后,找出满足条件的条件或结论。此种题型常见于含有参数的问题,或者情况多种的问题。 探索性问题,是从高层次上考查学生创造性思维能力的新题型,正确运用数学思想方法是解决这类问题的桥梁和向导,通常需要综合运用归纳与猜想、函数与方程、数形结合、分类讨论、等价转化与非等价转化等数学思想方法才能得到解决,我们在学习中要重视对这一问题的训练,以提高我们的思维能力和开拓能力。 Ⅰ、再现性题组: 1.是否存在常数a、b、c,使得等式1·22+2·32+…+n(n+1)2=n n() +1 12 (an2+ bn+c)对一切自然数n都成立?并证明你的结论。(89年全国理) 2.已知数列 81 13 22 · · , 82 35 22 · · …, 8 2121 22 · · n n n ()() -+ ,…。S n 为其前n项和,求 S 1、S 2 、S 3 、S 4 ,推测S n 公式,并用数学归纳法证明。(93年全国理) 【简解】1题:令n=1、2、3代入已知等式列出方程组,解得a=3、b=11、c=10, 猜测a、b、c的值对所有的n∈N都成立,再运用数学归纳法进行证明。(属于是否存在型问题,也可属于猜想归纳型问题) 2题:计算得到S 1= 8 9 、S 2 = 24 25 、S 3 = 48 49 、S 4 = 80 81 ,观察后猜测S n = () () 211 21 2 2 n n +- + , 再运用数学归纳法进行证明。 Ⅱ、示范性题组:

高考数学专题训练试题7

第一部分 专题二 第1讲 等差数列、等比数列 (限时60分钟,满分100分) 一、选择题(本大题共6个小题,每小题6分,共36分) 1.(精选考题·北京高考)在等比数列{a n }中,a 1=1,公比|q |≠1.若a m =a 1a 2a 3a 4a 5, 则m =( ) A .9 B .10 C .11 D .12 解析:由题知a m =|q |m -1=a 1a 2a 3a 4a 5=|q |10,所以m =11. 答案:C 2.(精选考题·广元质检)已知数列{a n }满足a 1=2,a n +1=1+a n 1-a n (n ∈N *),则连乘积a 1a 2a 3…aa 精选考题的值为( ) A .-6 B .3 C .2 D .1 解析:∵a 1=2,a n +1=1+a n 1-a n ,∴a 2=-3,a 3=-12,a 4=13,a 5= 2,∴数列{a n }的周期为4,且a 1a 2a 3a 4=1, ∴a 1a 2a 3a 4…aa 精选考题=aa 精选考题=a 1a 2=2×(-3)=-6. 答案:A 3.设等差数列{a n }的前n 项和为S n ,若2a 8=6+a 11,则S 9=( ) A .54 B .45

C .36 D .27 解析:根据2a 8=6+a 11得2a 1+14d =6+a 1+10d ,因此a 1+4d =6,即a 5=6.因此S 9=9(a 1+a 9) 2 =9a 5=54. 答案:A 4.已知各项不为0的等差数列{a n },满足2a 3-a 2 7+2a 11=0,数 列{b n }是等比数列,且b 7=a 7,则b 6b 8=( ) A .2 B .4 C .8 D .16 解析:因为a 3+a 11=2a 7,所以4a 7-a 27=0,解得a 7=4,所以 b 6b 8=b 27=a 2 7=16. 答案:D 5.(精选考题·福建高考)设等差数列{a n }的前n 项和为S n .若a 1=-11,a 4+a 6=-6,则当S n 取最小值时,n 等于( ) A .6 B .7 C .8 D .9 解析:设等差数列{a n }的公差为d , ∵a 4+a 6=-6,∴a 5=-3, ∴d =a 5-a 1 5-1=2, ∴a 6=-1<0,a 7=1>0, 故当等差数列{a n }的前n 项和S n 取得最小值时,n 等于6. 答案:A 6.(精选考题·陕西高考)对于数列{a n },“a n +1>|a n |(n =1,2…)”

2021新高考数学二轮总复习专题突破练18 立体几何中的翻折问题及探索性问题含解析

专题突破练18立体几何中的翻折问题及探索性问 题 1.(2020河北石家庄5月检测,18)如图1,在Rt△ABC中,∠C=90°,BC=AC=4,D,E分别是AC,AB边上的中点,将△ADE沿DE折起到△A1DE的位置,使A1C=A1D,如图 2. (1)求证:平面A1CD⊥平面A1BC; (2)求直线A1C与平面A1BE所成角的正弦值. 2. (2020贵州贵阳适应性训练,19)如图,在四棱锥P-ABCD中,四边形ABCD为正方形,且平面PAD⊥平面ABCD,F为棱PD的中点. (1)在棱BC上是否存在一点E,使得CF∥平面PAE?并说明理由; (2)若PA=PD=AB,求直线AF与平面PBC所成角的正弦值.

3.(2020浙江台州模拟,19)如图,在直三棱柱ABC-A1B1C1中,∠ACB=90°,AC=BC=3,AA1=2.以AB,BC 为邻边作平行四边形ABCD,连接DA1和DC1. (1)求证:A1D∥平面BCC1B1; (2)在线段BC上是否存在点F,使平面DA1C1与平面A1C1F垂直?若存在,求出BF的长;若不存在,请说明理由. 4.(2020云南昆明一中模拟,19)图1是由边长为4的正六边形AEFBCD,矩形DCGH组成的一个平面图形,将其沿AB,DC折起得几何体ABCD-EFGH,使得CG⊥AD,且平面EFGH∥平面ABCD,如图2.

(1)证明:在图2中,平面ACG⊥平面BCG; (2)设M为图2中线段CG上一点,且CM=1,若直线AG∥平面BMD,求图2中的直线BM与平面AHB 所成角的正弦值. 5.(2020北京通州一模,18)如图1,已知四边形ABCD为菱形,且∠A=60°,取AD中点为E.现将四边形EBCD沿BE折起至EBHG,使得∠AEG=90°,如图2. (1)求证:AE⊥平面EBHG; (2)求二面角A-GH-B的余弦值; (3)若点F满足=λ,当EF∥平面AGH时,求λ的值.

高三数学 高考大题专项训练 全套 (15个专项)(典型例题)(含答案)

1、函数与导数(1) 2、三角函数与解三角形 3、函数与导数(2) 4、立体几何 5、数列(1) 6、应用题 7、解析几何 8、数列(2) 9、矩阵与变换 10、坐标系与参数方程 11、空间向量与立体几何 12、曲线与方程、抛物线 13、计数原理与二项式分布 14、随机变量及其概率分布 15、数学归纳法

高考压轴大题突破练 (一)函数与导数(1) 1.已知函数f (x )=a e x x +x . (1)若函数f (x )的图象在(1,f (1))处的切线经过点(0,-1),求a 的值; (2)是否存在负整数a ,使函数f (x )的极大值为正值?若存在,求出所有负整数a 的值;若不存在,请说明理由. 解 (1)∵f ′(x )=a e x (x -1)+x 2 x 2, ∴f ′(1)=1,f (1)=a e +1. ∴函数f (x )在(1,f (1))处的切线方程为 y -(a e +1)=x -1, 又直线过点(0,-1),∴-1-(a e +1)=-1, 解得a =-1 e . (2)若a <0,f ′(x )=a e x (x -1)+x 2 x 2 , 当x ∈(-∞,0)时,f ′(x )>0恒成立,函数在(-∞,0)上无极值;当x ∈(0,1)时,f ′(x )>0恒成立,函数在(0,1)上无极值. 方法一 当x ∈(1,+∞)时,若f (x )在x 0处取得符合条件的极大值f (x 0), 则???? ? x 0>1,f (x 0)>0,f ′(x 0)=0, 则0 0000 2 00 201,e 0,e (1)0,x x x a x x a x x x ? > +> -+ = ? ①②③ 由③得0 e x a =-x 20 x 0-1,代入②得-x 0x 0-1+x 0 >0, 结合①可解得x 0>2,再由f (x 0)=0 e x a x +x 0>0,得a >-02 0e x x , 设h (x )=-x 2 e x ,则h ′(x )=x (x -2)e x , 当x >2时,h ′(x )>0,即h (x )是增函数, ∴a >h (x 0)>h (2)=-4 e 2.

高考数学大题训练及解析

高考数学大题训练及解析 1.三角知识(命题意图:在三角形中,考查三角恒等变换、正余弦定理及面积公式的应用) (本小题满分12分)在△ABC 中,角A 、B 、C 所对的边分别为a ,b ,c ,已知 sin C 2=104. (1)求cos C 的值; (2)若△ABC 的面积为3154,且sin 2A +sin 2 B =1316sin 2 C ,求a ,b 及c 的值. 解 (1)因为sin C 2=10 4, 所以cos C =1-2sin 2C 2=-1 4. (2)因为sin 2 A +sin 2 B =1316sin 2 C ,由正弦定理得 a 2+ b 2=13 16c 2,① 由余弦定理得a 2 +b 2 =c 2 +2ab cos C ,将cos C =-14代入,得ab =38c 2 , ② 由S △ABC =3154及sin C =1-cos 2C =15 4,得ab =6,③ 由①②③得?????a =2,b =3,c =4,或???? ?a =3,b =2,c =4.

经检验,满足题意. 所以a =2,b =3,c =4或a =3,b =2,c =4. 2.数列(命题意图:考查数列基本量的求取,数列前n 项和的求取,以及利用放缩法解决数列不等式问题等.) (本小题满分12分)已知数列{a n }中,a 1=1,其前n 项的和为S n ,且满 足a n =2S 2n 2S n -1 (n ≥2). (1)求证:数列???? ?? 1S n 是等差数列; (2)证明:当n ≥2时,S 1+12S 2+13S 3+…+1n S n <3 2. 证明 (1)当n ≥2时,S n -S n -1=2S 2n 2S n -1 , S n -1-S n =2S n S n -1,1S n -1 S n -1=2, 从而???? ?? 1S n 构成以1为首项,2为公差的等差数列. (2)由(1)可知,1S n =1 S 1 +(n -1)×2=2n -1, ∴S n =1 2n -1 , ∴当n ≥2时,1n S n =1n (2n -1)<1 n (2n -2) =12·1n (n -1)=12? ????1n -1-1n 从而S 1+12S 2+13S 3+…+1n S n

高考数学必考知识点:数列问题篇

高考数学必考知识点:数列问题篇 ?高考数学之数列问题的题型与方法 数列是高中数学的重要内容,又是学习高等数学的基础。高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏。有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。探索性问题是高考的热点,常在数列解答题中出现。本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法。 近几年来,高考关于数列方面的命题主要有以下三个方面;(1)数列本身的有关知识,其中有等差数列与等比数列的概念、性质、通项公式及求和公式。(2)数列与其它知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合。(3) 数列的应用问题,其中主要是以增长率问题为主。试题的难度有三个层次,小题大都以基础题为主,解答题大都以基础题和中档题为主,只有个别地方用数列与几何的综合与函数、不等式的综合作为最后一题难度较大。 知识整合 1.在掌握等差数列、等比数列的定义、性质、通项公式、前n项和公式的基础上,系统掌握解等差数列与等比数列综合

题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题; 语文课本中的文章都是精选的比较优秀的文章,还有不少名 家名篇。如果有选择循序渐进地让学生背诵一些优秀篇目、精彩段落,对提高学生的水平会大有裨益。现在,不少语文教师在分析课文时,把文章解体的支离破碎,总在文章的技巧方面下功夫。结果教师费劲,学生头疼。分析完之后,学生收效甚微,没过几天便忘的一干二净。造成这种事倍功半的尴尬局面的关键就是对文章读的不熟。常言道“书读百遍,其义自见”,如果有目的、有计划地引导学生反复阅读课文,或细读、默读、跳读,或听读、范读、轮读、分角色朗读,学生便可以在读中自然领悟文章的思想内容和写作技巧,可以在读中自然加强 语感,增强语言的感受力。久而久之,这种思想内容、写作技巧和语感就会自然渗透到学生的语言意识之中,就会在写作 中自觉不自觉地加以运用、创造和发展。2.在解决综合题和探索性问题实践中加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力, “教书先生”恐怕是市井百姓最为熟悉的一种称呼,从最初的门馆、私塾到晚清的学堂,“教书先生”那一行当怎么说也算是让国人景仰甚或敬畏的一种社会职业。只是更早的“先生”

2020高考数学专题训练4

1A .{1,2} B . {3,4} C . {1} D . {-2,-1,0,1,2} 2.函数y=2cos 2x+1(x ∈R )的最小正周期为 ( ) A .2π B .π C .π2 D .π4 3.从4名男生和3名女生中选出4人参加某个座谈会,若这4人中必须既有男生又有女生,则不同的选法共有( ) A .140种 B .120种 C .35种 D .34种 4.一平面截一球得到直径是6cm 的圆面,球心到这个平面的距离是4cm ,则该球的体积是( ) A .33π100cm B . 33π208cm C . 33π500cm D . 33 π3416cm 5.若双曲线1822 2=-b y x 的一条准线与抛物线x y 82=的准线重合,则双曲线的离心率为 ( ) A .2 B .22 C . 4 D .24 6.某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用右侧的条形图表示. 根据条形图可得这50名学生这一天平均每人的课外阅读时间为 ( ) A .0.6小时 B .0.9小时 C .1.0小时 D .1.5小时 7.4)2(x x +的展开式中x 3的系数是( ) A .6 B .12 C .24 D .48 8.若函数)1,0)((log ≠>+=a a b x y a 的图象过两 点(-1,0)和(0,1),则( ) A .a =2,b=2 B .a = 2 ,b=2 C .a =2,b=1 D .a = 2 ,b= 2 9.将一颗质地均匀的骰子(它是一种各面上分 别标有点数1,2,3,4,5,6的正方体玩具)先后抛掷3次,至少出现一次6点向上的概率是( ) A .5216 B .25216 C .31216 D .91216 10.函数13)(3+-=x x x f 在闭区间[-3,0]上的最大值、最小值分别是( ) A .1,-1 B .1,-17 C .3,-17 D .9,-19 11.设k>1,f(x)=k(x-1)(x ∈R ) . 在平面直角坐标系xOy 中,函数y=f(x)的图象与x 轴交于 A 点,它的反函数y=f -1(x)的图象与y 轴交于 B 点,并且这两个函数的图象交于P 点. 已知 四边形OAPB 的面积是3,则k 等于 ( ) A .3 B .3 2 C .4 3 D .65 12.设函数)(1)(R x x x x f ∈+-=,区间M=[a ,b](a

高考数学《数列》大题训练50题含答案解析

一.解答题(共30小题) 1.(2012?上海)已知数列{a n}、{b n}、{c n}满足.(1)设c n=3n+6,{a n}是公差为3的等差数列.当b1=1时,求b2、b3的值; (2)设,.求正整数k,使得对一切n∈N*,均有b n≥b k; (3)设,.当b1=1时,求数列{b n}的通项公式. 2.(2011?重庆)设{a n}是公比为正数的等比数列a1=2,a3=a2+4. (Ⅰ)求{a n}的通项公式; (Ⅱ)设{b n}是首项为1,公差为2的等差数列,求数列{a n+b n}的前n项和S n. 3.(2011?重庆)设实数数列{a n}的前n项和S n满足S n+1=a n+1S n(n∈N*). (Ⅰ)若a1,S2,﹣2a2成等比数列,求S2和a3. (Ⅱ)求证:对k≥3有0≤a k≤. 4.(2011?浙江)已知公差不为0的等差数列{a n}的首项a1为a(a∈R)设数列的前n 项和为S n,且,,成等比数列. (Ⅰ)求数列{a n}的通项公式及S n; (Ⅱ)记A n=+++…+,B n=++…+,当a≥2时,试比较A n与B n的大小. 5.(2011?上海)已知数列{a n}和{b n}的通项公式分别为a n=3n+6,b n=2n+7(n∈N*).将集合{x|x=a n,n∈N*}∪{x|x=b n,n∈N*}中的元素从小到大依次排列,构成数列c1,c2,c3,…,c n,… (1)写出c1,c2,c3,c4;

(2)求证:在数列{c n}中,但不在数列{b n}中的项恰为a2,a4,…,a2n,…; (3)求数列{c n}的通项公式. 6.(2011?辽宁)已知等差数列{a n}满足a2=0,a6+a8=﹣10 (I)求数列{a n}的通项公式; (II)求数列{}的前n项和. 7.(2011?江西)(1)已知两个等比数列{a n},{b n},满足a1=a(a>0),b1﹣a1=1,b2﹣a2=2,b3﹣a3=3,若数列{a n}唯一,求a的值; (2)是否存在两个等比数列{a n},{b n},使得b1﹣a1,b2﹣a2,b3﹣a3.b4﹣a4成公差不为0的等差数列若存在,求{a n},{b n}的通项公式;若不存在,说明理由. 8.(2011?湖北)成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列{b n}中的b3、b4、b5. (I)求数列{b n}的通项公式; (II)数列{b n}的前n项和为S n,求证:数列{S n+}是等比数列. 9.(2011?广东)设b>0,数列{a n}满足a1=b,a n=(n≥2) (1)求数列{a n}的通项公式; (4)证明:对于一切正整数n,2a n≤b n+1+1. 10.(2011?安徽)在数1 和100之间插入n个实数,使得这n+2个数构成递增的等比数列,将这n+2个数的乘积计作T n,再令a n=lgT n,n≥1.

相关主题
文本预览
相关文档 最新文档