当前位置:文档之家› 应用小波变换研究时间序列的周期性

应用小波变换研究时间序列的周期性

应用小波变换研究时间序列的周期性
应用小波变换研究时间序列的周期性

小波变换与傅里叶变换的对比异同

小波变换与傅里叶变换的对比、异同 一、基的概念 两者都是基,信号都可以分成无穷多个他们的和(叠加)。而展开系数就是基与信号之间的内积,更通俗的说是投影。展开系数大的,说明信号和基是足够相似的。这也就是相似性检测的思想。但我们必须明确的是,傅里叶是0-2pi 标准正交基,而小波是-inf到inf之间的基。因此,小波在实轴上是紧的。而傅里叶的基(正弦或余弦),与此相反。而小波能不能成为Reisz基,或标准稳定的正交基,还有其它的限制条件。此外,两者相似的还有就是PARSEVAL定理。(时频能量守恒)。 二、离散化的处理 傅里叶变换,是一种数学的精妙描述。但计算机实现,却是一步步把时域和频域离散化而来的。第一步,时域离散化,我们得到离散时间傅里叶变换(DTFT),频谱被周期化;第二步,再将频域离散化,我们得到离散周期傅里叶级数(DFS),时域进一步被周期化。第三步,考虑到周期离散化的时域和频域,我们只取一个周期研究,也就是众所周知的离散傅里叶变换(DFT)。这里说一句,DFT是没有物理意义的,它只是我们研究的需要。借此,计算机的处理才成为可能。所有满足容许性条件(从-INF到+INF积分为零)的函数,都可以成为小波。小波作为尺度膨胀和空间移位的一组函数也就诞生了。但连续取值的尺度因子和平移因子,在时域计算量和频域的混叠来说,都是极为不便的。用更为专业的俗语,叫再生核。也就是,对于任何一个尺度a和平移因子b的小波,和原信号内积,所得到的小波系数,都可以表示成,在a,b附近生成的小波,投影后小波系数的线性组合。这就叫冗余性。这时的连续小波是与正交基毫无关系的东西,它顶多也只能作为一种积分变换或基。但它的显微镜特点和相似性检测能力,已经显现出来了。为了进一步更好的将连续小波变换离散化,以下步骤是一种有效方法。第一步,尺度离散化。一般只将a二进离散化,此时b是任意的。这样小波被称为二进小波。第二步,离散b。怎么离散化呢?b取多少才合适呢?于是,叫小波采样定理的东西,就这样诞生了。也就是小波平移的最小距离(采样间隔),应该大于二倍小波基的最高频率(好像类似,记不清了)。所以b取尺度的整数倍就行了。也就是越胖的小波,对应频谱越窄,平移量应该越大,采样间隔越大。当然,第一二两步的频域理解,即在满足频域窗口中心是3倍的频域窗口半径的前提下,频域就在统计上是完美二分的。(但很多小波满足不了这个条件,而且频域窗口能量不?,所以只是近似二分的).这时的小波变换,称为离散二进小波变换.第三步,引入稳定性条件.也就是经过变换后信号能量和原信号能量有什么不等式关系.满足稳定性条件?后,也就是一个小波框架产生了可能.他是数值稳定性的保证.一个稍弱的稳定条件???,就是?

时间序列分析方法及应用7

青海民族大学 毕业论文 论文题目:时间序列分析方法及应用—以青海省GDP 增长为例研究 学生姓名:学号: 指导教师:职称: 院系:数学与统计学院 专业班级:统计学 二○一五年月日

时间序列分析方法及应用——以青海省GDP增长为例研究 摘要: 人们的一切活动,其根本目的无不在于认识和改造世界,让自己的生活过得更理想。时间序列是指同一空间、不同时间点上某一现象的相同统计指标的不同数值,按时间先后顺序形成的一组动态序列。时间序列分析则是指通过时间序列的历史数据,揭示现象随时间变化的规律,并基于这种规律,对未来此现象做较为有效的延伸及预测。时间序列分析不仅可以从数量上揭示某一现象的发展变化规律或从动态的角度刻画某一现象与其他现象之间的内在数量关系及其变化规律性,达到认识客观世界的目的。而且运用时间序列模型还可以预测和控制现象的未来行为,由于时间序列数据之间的相关关系(即历史数据对未来的发展有一定的影响),修正或重新设计系统以达到利用和改造客观的目的。从统计学的内容来看,统计所研究和处理的是一批有“实际背景”的数据,尽管数据的背景和类型各不相同,但从数据的形成来看,无非是横截面数据和纵截面数据两类。本论文主要研究纵截面数据,它反映的是现象以及现象之间的关系发展变化规律性。在取得一组观测数据之后,首先要判断它的平稳性,通过平稳性检验,可以把时间序列分为平稳序列和非平稳序列两大类。主要采用的统计方法是时间序列分析,主要运用的数学软件为Eviews软件。大学四年在青海省上学,基于此,对青海省的GDP十分关注。本论文关于对1978年到2014年以来的中国的青海省GDP(总共37个数据)进行时间序列分析,并且对未来的三年中国的青海省GDP进行较为有效的预测。希望对青海省的发展有所贡献。 关键词: 青海省GDP 时间序列白噪声预测

时间序列分析基于R——习题答案

第一章习题答案 略 第二章习题答案 2.1 (1)非平稳 (2)0.0173 0.700 0.412 0.148 -0.079 -0.258 -0.376 (3)典型的具有单调趋势的时间序列样本自相关图 2.2 (1)非平稳,时序图如下 (2)-(3)样本自相关系数及自相关图如下:典型的同时具有周期和趋势序列的样本自相关图

2.3 (1)自相关系数为:0.2023 0.013 0.042 -0.043 -0.179 -0.251 -0.094 0.0248 -0.068 -0.072 0.014 0.109 0.217 0.316 0.0070 -0.025 0.075 -0.141 -0.204 -0.245 0.066 0.0062 -0.139 -0.034 0.206 -0.010 0.080 0.118 (2)平稳序列 (3)白噪声序列 2.4 ,序列LB=4.83,LB统计量对应的分位点为0.9634,P值为0.0363。显著性水平=0.05 不能视为纯随机序列。 2.5 (1)时序图与样本自相关图如下

(2) 非平稳 (3)非纯随机 2.6 (1)平稳,非纯随机序列(拟合模型参考:ARMA(1,2)) (2)差分序列平稳,非纯随机 第三章习题答案 3.1 ()0t E x =,2 1 () 1.9610.7 t Var x ==-,220.70.49ρ==,220φ= 3.2 1715φ=,2115 φ= 3.3 ()0t E x =,10.15 () 1.98(10.15)(10.80.15)(10.80.15) t Var x += =--+++ 10.8 0.7010.15 ρ= =+,210.80.150.41ρρ=-=,3210.80.150.22ρρρ=-= 1110.70φρ==,2220.15φφ==-,330φ= 3.4 10c -<<, 1121,1,2 k k k c c k ρρρρ--?=? -??=+≥? 3.5 证明: 该序列的特征方程为:32 --c 0c λλλ+=,解该特征方程得三个特征根: 11λ=,2c λ=3c λ=-

基于傅里叶变换和小波变换的图像稀疏表示

基于二维傅里叶变换和小波变换的图像稀疏表示 一、基于二维傅里叶变换的图像稀疏表示 傅里叶变换是数字图像处理技术的基础,其通过在时空域和频率域来回切换图像,对图像的信息特征进行提取和分析。一幅静止的数字图像可以看成是矩阵,因此,数字图像处理主要是对包含数据的矩阵进行处理。 经过对图像进行二维离散傅里叶变换可以得到它的频谱,进而得到我们所需要的特征。二维离散傅里叶变换及逆变换可以表示为: 其中u=0,1,2,...,M-1和v=0,1,2,...,N-1。其中变量u和v用于确定它们的频率,频域系统是由F(u,v)所张成的坐标系,其中u和v用做(频率)变量。空间域是由f(x,y)所张成的坐标系。 傅立叶频谱图上我们看到的明暗不一的亮点,其意义是指图像上某一点与邻域点差异的强弱,即梯度的大小,也即该点的频率的大小(可以这么理解,图像中的低频部分指低梯度的点,高频部分相反)。一般来讲,梯度大则该点的亮度强,否则该点亮度弱。下图为cameraman原图像及其频谱分布图: cameraman原图像大小为256*256,其傅里叶变换频谱图大小为256*256。 图像从频域到时域的变换过程称为重构过程,通过峰值信噪比(PSNR)对图像进行评价,公式如下: PSNR=10*log10((2^n-1)^2/MSE)

MSE是原图像与处理后图像之间均方误差,n是每个采样值的比特数。通过取不同的大系数个数观察图像变化,单独取第1个大系数时: N=1 PSNR=12.2353所取频谱系数对应图 单独取第9个系数时: N=1 PSNR=6.3108第9个频谱系数对应图

N=2 PSNR= 13.1553所取频谱系数对应图 N=10 PSNR=15.4961 所取频谱系数对应图 N=50 PSNR=17.1111 所取频谱系数对应图

时间序列分析基于R——习题答案

第一章习题答案 第二章习题答案 2.1 (1)非平稳 (2)0.0173 0.700 0.412 0.148 -0.079 -0.258 -0.376 (3)典型的具有单调趋势的时间序列样本自相关图 Au+ocorreliil. i ons Correlation -1 M 7 6 5 4 3 2 1 0 I ; 3 4 5 6 7 9 9 1 1.00000■Hi ■ K. B H,J B ik L L1■* J.1 jA1-.IM L L* rn^rp ■ i>i?iTwin H'iTiii M[lrp i,*nfr 'TirjlvTilT'1 iBrp O.7QOO0■ill. Ii ill ■ _.ill?L■ ill iL si ill .la11 ■ fall■ 1 ■ rpTirp Tp和阳申■丽轉■晒?|?卉(ft 0.41212■强:料榊<牌■ 0.14343'■讯榊* -.07078■ -.25758, WWHOHHf ■ -.375761 marks two 总t and&rd errors 2.2 (1) 非平稳,时序图如下 (2) - ( 3)样本自相关系数及自相关图如下:典型的同时具有周期和趋势序列的样本自相关图

Ctorrelat ion LOOOOO n.A'7F1 0.72171 0.51252 Q,34982 0.24600 0.20309 0.?1021 0.26429 0.36433 0.49472 0.58456 0.60198 0.51841 Q ?菲晡 日 0.20671 0.0013& -,03243 -.02710 Q.01124 0,08275 0.17011 Autocorrel at ions raarka two standard errors 2.3 (1) 自相关系数为: 0.2023 0.013 0.042 -0.043 -0.179 -0.251 -0.094 0.0248 -0.068 -0.072 0.014 0.109 0.217 0.316 0.0070 -0.025 0.075 -0.141 -0.204 -0.245 0.066 0.0062 -0.139 -0.034 0.206 -0.010 0.080 0.118 (2 )平稳序列 (3) 白噪声序列 2.4 LB=4.83 , LB 统计量对应的分位点为 0.9634 , P 值为0.0363。显著性水平 :-=0.05,序列 不能视为纯随机序列。 2.5 (1) 时序图与样本自相关图如下 AuEocorreI ati ons 弗卅制iti 电卅栅冷卅樹 側樹 榊 惟 1 ■ liihCidi iliihQriHi il>LljU_nll Hnlidiili Hialli iT ,, T^,, T^s ?T* iTijTirr ,^T 1 IT * -i> ■> - ■ ■ *畑** ? ■ ■ 耶曲邯 ? ■ ■ ■ >|{和怦I {册卅KHi 笊出恸 mrpmrp 山!rpEHi erp . 卑*寧* a 1 *

【免费下载】小波分析及其应用

科技文献检索作业 卷 试 料 小波分析及其应用 测控技术1103 雷创新

小波分析及其应用 1.小波分析的概念和特点 1.1小波理论的发展概况 20世纪80年代逐渐发展和兴起的小波分析(wavelctanalysis)是20世纪 数学领域中研究的重要杰出成果之一。小波分析理论作为数学界中一种比较成熟的理论基础,应用到了各种领域的研究当中,推动了小波分析在各工程应用中的发展。它作为一种新的现代数字信号处理算法,汲取了现代分析学中诸如样条分析、傅立叶分析、数值分析和泛函分析等众数学多分支的精华部分,替代了工程界中一直应用的傅立叶变换,它是一种纯频域分析方法,不能在时频同时具有局部化特性。而小波分析中的多尺度分析思想,犹如一台变焦照相机,可以由粗及精逐步观察信号,在局部时频分析中具有很强的灵活性,因此有“数学显微镜”的美称。它能自动随着频率增加而调节成窄的“时窗”和宽的“频窗”,又随着频率降低而调节成宽的“时窗”和窄的“频窗”以适应实际分析需要。另外,小波变换在经过适当离散后可以够成标准正交基或正交系,这些在理论和应用上都具有十分重要的意义,因此,小波分析在各个领域得到了高度的重视并取得了许多重要的成果。 小波变换作为一种数学理论和现代数字信号处埋方法在科学技术界引起了越来越多专家学者的关注和重视。在数学家看来,基于小波变换的小波分析技术是当今数值分析、泛函分析、调和分析等半个多世纪以来发展最完美的结晶,是正在发展中的新的数学分支。在工程领域,特别是在信号处理、图像处理、机器视觉、模糊识别、语音识别、流体力学、量子物理、地震勘测、电磁学、CT成像、机械故障诊断与监控等领域,它被认为是近年来在工具及方法上的重大突破。然而,小波分析虽然在众多领域中已经取得了一定的成果,但是,有专家预言小波分析理论的真正高潮并没有到来。首先,小波分析尚需进一步完善,除一维小波分析理论比较成熟以外,向量小波和多维小波则需要进行更加深入的研究与讨论;其次,针对不同情况选择不同的小波基函数,实现的效果是有差别性的这一问题,对最优小波基函数的选取方法有待进一步研究。在今后数年中,小波理论将成为科技工作者经常使用的又一锐利数学工具,极大地促进科技进步及各个领域工程应用的新发展。 小波分析的概念最早是在1974年由法国地质物理学家 J.Morlet提出的,并通过物理直观和信号处理的实际经验建立了反

《时间序列分析及应用:R语言》读书笔记

《时间序列分析及应用:R语言》读书笔记 姓名:石晓雨学号:1613152019 (一)、时间序列研究目的主要有两个:认识产生观测序列的随机机制,即建立数据生成模型;基于序列的历史数据,也许还要考虑其他相关序列或者因素,对序列未来的可能取值给出预测或者预报。通常我们不能假定观测值独立取自同一总体,时间序列分析的要点是研究具有相关性质的模型。 (二)、下面是书上的几个例子 1、洛杉矶年降水量 问题:用前一年的降水量预测下一年的降水量。 第一幅图是降水量随时间的变化图;第二幅图是当年降水量与去年降水量散点图。 win.graph(width=4.875, height=2.5,pointsize=8) #这里可以独立弹出窗口 data(larain) #TSA包中的数据集,洛杉矶年降水量 plot(larain,ylab='Inches',xlab='Year',type = 'o') #type规定了在每个点处标记一下 win.graph(width = 3,height = 3,pointsize = 8) plot(y = larain,x = zlag(larain),ylab = 'Inches',xlab = 'Previous Year Inches')#zlag 函数(TSA包)用来计算一个向量的延迟,默认为1,首项为NA

从第二幅图看出,前一年的降水量与下一年并没有什么特殊关系。 2、化工过程 win.graph(width = 4.875,height = 2.5,pointsize = 8) data(color) plot(color,ylab = 'Color Property',xlab = 'Batch',type = 'o') win.graph(width = 3,height = 3,pointsize = 8) plot(y = color,x = zlag(color),ylab = 'Color Property',xlab = 'Previous Batch Color Property') len <- length(color) cor(color[2:len],zlag(color)[2:len])#相关系数>0.5549 第一幅图是颜色属性随着批次的变化情况。

基于时间序列模型的中国GDP增长预测分析

第33卷 第178期2012年7月 财经理论与实践(双月刊) THE THEORY AND PRACTICE OF FINANCE AND ECONOMICS Vol.33 No.178 Jul. 2012 ·信息与统计· 基于时间序列模型的中国GDP增长预测分析 何新易 (南通大学商学院,江苏南通 226019)* 摘 要:作为度量一个国家或地区所有常住单位在一定时期之内所生产和所提供的最终产品或服务的重要总量指标,如果能够对GDP做出正确的预测,必然可以有效引导宏观经济健康发展,为高层管理部门提供决策依据。选用适合短期预测的ARIMA模型对中国1952~2010年的GDP进行计量建模分析,预测结果认为未来五年中国的经济增长仍将处于一个水平较高的上升通道。 关键词:时间序列模型;GDP;预测 中图分类号:F234 文献标识码: A 文章编号:1003-7217(2012)04-0096-04 一、引 言 作为度量一个国家或地区所有常住单位在一定时期之内所生产和所提供的最终产品或服务的重要总量指标,国内生产总值(Gross Domestic Product,GDP)对于判断经济态势运行、衡量经济综合实力、正确制定经济政策等诸多方面,以及在经济研究实际工作中,均起着不可替代的重要作用。 熊志斌(2011)深入分析了时间序列模型与神经网络(NN)模型的优势和劣势,按照两种模型的预测特性,在比较的基础之上,分别构建了ARIMA模型和NN模型,并根据一定算法对两种模型进行了集成。将GDP时间序列的数据结构,根据在非线性空间和线性空间的预测优势,进一步分解为线性非线性残差和自相关主体两部分,即首先用ARIMA分析技术构建线性主体模型,然后用NN模型估计非线性残差,再对序列的整个预测结果进行最终集成。仿真实证结果表明:与单一模型相比,集成模型的预测准确率显著提高,进行GDP预测当然使用集成模型更为有效[1]。桂文林和韩兆洲(2011)认为由于迄今为止,包括季度GDP在内的经季节调整之后的经济数据,中国政府尚未进行公布,不但无法进行国际之间的横向比较,也不利于监测中国宏观经济态势。本文运用1996年第1季度至2009年第4季度的中国实际GDP数据,构建了状态空间模型,使用卡尔曼滤波迭代算法对季节调整模型状态向量的 各分量,进行了最优平滑、预测和估计,并使用极大似然方法估计了超参数。经过对GDP的主要季节和趋势特征的分析,计算出了环比增长率指标来监测和分析经济走势,并与国际通用的TRAMO-SEATS季节调整模型进行了对比,以便鉴别趋势拐点,制定相关的经济政策[2]。高帆(2010)运用1952~2008年的上海GDP增长率数据,实证研究其内在变动机制,将GDP增长率分解为纯生产率效应、纯劳动投入效应、纯生产结构效应、纯劳动结构效应,并分析了这四种效应之间的交互影响。结果表明:在上海GDP增长率提高的四种效应之中,纯生产率效应起到了关键作用。上海GDP增长率自1978年改革开放之后,在整体上对纯生产率效应的依赖度趋于增强。在1978~1989年期间,纯劳动结构效应是GDP增长的主要因素,由于市场化改革的进一步加大,劳动力跨部门流转在很大程度上得以实现。在1990~2008年期间,纯生产率效应是GDP增长的主要因素,正是由于在此历史阶段,由于资本深化进一步加速,从而有效提高了部门劳动生产率。基于实证的研究结论,可以针对性地制定出今后上海市经济实现持续增长的若干宏观政策[3]。腾格尔和何跃(2010)利用中国季度GDP数据分别构建了ARIMA和ARCH模型,同时利用GMDH自组织方法尝试建模,经过Bon-ferroni-Dunn检验,表明与单一模型相比,组合模型的拟合能力更强。研究表明,基于GMDH组合的GDP模 *收稿日期: 2012-02-12 作者简介: 何新易(1966—),男,湖北武汉人,南通大学商学院副教授,经济学博士,研究方向:宏观国民经济问题、中国企业集团融资和投资。

《小波分析及其应用》word版

现代数字信号处理作业 小波分析及其应用 电研111 梁帅

小波分析及其应用 1.小波分析的概念和特点 1.1小波理论的发展概况 20世纪80年代逐渐发展和兴起的小波分析(wavelctanalysis)是20世纪数学领域中研究的重要杰出成果之一。小波分析理论作为数学界中一种比较成熟的理论基础,应用到了各种领域的研究当中,推动了小波分析在各工程应用中的发展。它作为一种新的现代数字信号处理算法,汲取了现代分析学中诸如样条分析、傅立叶分析、数值分析和泛函分析等众数学多分支的精华部分,替代了工程界中一直应用的傅立叶变换,它是一种纯频域分析方法,不能在时频同时具有局部化特性。而小波分析中的多尺度分析思想,犹如一台变焦照相机,可以由粗及精逐步观察信号,在局部时频分析中具有很强的灵活性,因此有“数学显微镜”的美称。它能自动随着频率增加而调节成窄的“时窗”和宽的“频窗”,又随着频率降低而调节成宽的“时窗”和窄的“频窗”以适应实际分析需要。另外,小波变换在经过适当离散后可以够成标准正交基或正交系,这些在理论和应用上都具有十分重要的意义,因此,小波分析在各个领域得到了高度的重视并取得了许多重要的成果。 小波变换作为一种数学理论和现代数字信号处埋方法在科学技术界引起了越来越多专家学者的关注和重视。在数学家看来,基于小波变换的小波分析技术是当今数值分析、泛函分析、调和分析等半个多世纪以来发展最完美的结晶,是正在发展中的新的数学分支。在工程领域,特别是在信号处理、图像处理、机器视觉、模糊识别、语音识别、流体力学、量子物理、地震勘测、电磁学、CT成像、机械故障诊断与监控等领域,它被认为是近年来在工具及方法上的重大突破。然而,小波分析虽然在众多领域中已经取得了一定的成果,但是,有专家预言小波分析理论的真正高潮并没有到来。首先,小波分析尚需进一步完善,除一维小波分析理论比较成熟以外,向量小波和多维小波则需要进行更加深入的研究与讨论;其次,针对不同情况选择不同的小波基函数,实现的效果是有差别性的这一问题,对最优小波基函数的选取方法有待进一步研究。在今后数年中,小波理论将成为科技工作者经常使用的又一锐利数学工具,极大地促进科技进步及各个领域工程应用的新发展。 小波分析的概念最早是在1974年由法国地质物理学家J.Morlet提出的,并通过物理直观和信号处理的实际经验建立了反演公示,但当时该理论未能得到数学家的认可。1986年法国数学家YMcyer偶尔构造出一个真正的小波基,并与

详解傅里叶变换与小波变换

详解傅里叶变换与小波变化 希望能简单介绍一下小波变换,它和傅立叶变换的比较,以及它在移动平台做motion detection的应用。如果不做特殊说明,均以离散小波为例子。考虑到我以前看中文资料的痛苦程度,我会尽量用简单,但是直观的方式去介绍。有些必要的公式是不能少的,但我尽量少用公式,多用图。另外,我不是一个好的翻译者,所以对于某些实在翻译不清楚的术语,我就会直接用英语。我并不claim我会把整个小波变换讲清楚,这是不可能的事,我只能尽力去围绕要点展开,比如小波变换相对傅立叶变换的好处,这些好处的原因是什么,小波变换的几个根本性质是什么,背后的推导是什么。我希望达到的目的就是一个小波变换的初学者在看完这个系列之后,就能用matlab或者别的工具对信号做小波变换的基本分析并且知道这个分析大概是怎么回事。 要讲小波变换,我们必须了解傅立叶变换。要了解傅立叶变换,我们先要弄清楚什么是”变换“。很多处理,不管是压缩也好,滤波也好,图形处理也好,本质都是变换。变换的是什么东西呢?是基,也就是basis。如果你暂时有些遗忘了basis的定义,那么简单说,在线性代

数里,basis是指空间里一系列线性独立的向量,而这个空间里的任何其他向量,都可以由这些个向量的线性组合来表示。那basis在变换里面啥用呢?比如说吧,傅立叶展开的本质,就是把一个空间中的信号用该空间的某个basis的线性组合表示出来,要这样表示的原因,是因为傅立叶变换的本质,是。小波变换自然也不例外的和basis有关了。再比如你用Photoshop去处理图像,里面的图像拉伸,反转,等等一系列操作,都是和basis的改变有关。 既然这些变换都是在搞基,那我们自然就容易想到,这个basis的选取非常重要,因为basis的特点决定了具体的计算过程。一个空间中可能有很多种形式的basis,什么样的basis比较好,很大程度上取决于这个basis服务于什么应用。比如如果我们希望选取有利于压缩的话,那么就希望这个basis能用其中很少的向量来最大程度地表示信号,这样即使把别的向量给砍了,信号也不会损失很多。而如果是图形处理中常见的线性变换,最省计算量的完美basis就是eigenvector basis了,因为此时变换矩阵T对它们的作用等同于对角矩阵(Tv_n= av_n,a是eigenvalue)。总的来说,抛开具体的应用不谈,所有的basis,我们都希望它们有一个共同的特点,那就是,容易计算,用最简单的方式呈现最多的信号特性。 好,现在我们对变换有了基本的认识,知道他们其实就是在搞基。当然,搞基也是分形式的,不同的变换,搞基的妙处各有不同。接下来先看看,傅立叶变换是在干嘛。

基于时间序列序列分析优秀论文

梧州学院 论文题目基于时间序列分析梧州市财政 收入研究 系别数理系 专业信息与计算科学 班级 09信息与计算科学 学号 200901106034 学生姓名胡莲珍 指导老师覃桂江 完成时间

摘要 梧州市财政收入主要来源于基金收入,地方税收收入和非税收收入等几方面。近年来梧州市在自治区党委、自治区政府和市委的正确领导下,全市广大干部群众深入贯彻落实科学发展观,抢抓机遇,开拓进取,克难攻坚,使得全市经济连续几年快速发展,全市人民的生活水平也大幅度提高,但伴随着发展的同时也存在一些问题,本文主要通过研究分析梧州财政收入近几年的状况,根据采用时间序列分析中的一次简单滑动平均法研究分析梧州市财政收入和支出的情况,得到的结果是梧州市财政收入呈现下降状态,而财政支出却逐年上涨,这种状况将导致梧州市人民生活水平下降,影响梧州市各方面的发展。给予一些有益于梧州市财政发展的建议。本文首先介绍主要运用的时间序列分析的概念及其一次简单滑动平均法的方法,再用图表说明了梧州市财政近几年的财政收入和支出状况,然后建立模型,分析由时间序列分析方法得出的对2012年财政收入状况的预测结果,最后,鉴于提高梧州市财政收入的思想,给予了一些合理性建议,比如:积极实施工业强县战略,壮大工业主导财源;大力发展第三产业,强化地方财源建设;完善公共财政支出机制,着力构建和谐社会。 关键词:梧州市;财政收入;时间序列分析;建立模型;建议

Based onThe Time Series Analysis of Wuzhou city Finance Income Studies Abstract Wuzhou city, fiscal revenue mainly comes from fund income, local tax revenue and the tax revenue etc. Wuzhou city in recent years in the autonomous region party committee, the government of the autonomous region and the municipal party committee under the correct leadership, the cadres and masses thoroughly apply the scientific outlook on development, catch every opportunity, pioneering and enterprising, g hard, make the crucial economic rapid development for several years, the people's living standard has also increased significantly, but with the development at the same time, there are also some problems, this paper mainly through the research and analysis the condition of wuzhou fiscal revenue in recent years, according to the time series analysis of a simple moving average method research and analysis of financial income and expenditure wuzhou city, the result obtained is wuzhou city, fiscal revenue decline present condition, and fiscal spending is rising year by year, the situation will lead to wuzhou city, the people's living standards decline, influence all aspects of wuzhou city development. Give some Suggestions on the development of the financial benefit wuzhou city. This paper first introduces the main use of the time series analysis of the concept and a simple moving average method method, reoccupy chart illustrates the wuzhou city, in recent years the financial revenue and expenditure situation, then set a model, analysis the time series analysis method to draw 2012 fiscal income condition prediction results, finally, in view of wuzhou city, improve the financial income thoughts, give some advice, for instance: rationality vigorously implement the strategy of industrial county, strengthen the industry leading financial sources, A vigorous development of the third industry, and to strengthen the construction of local revenue;

小波变换及其应用_李世雄

现代数学讲座 小波变换及其应用 李世雄 (安徽大学数学系 合肥 230039) 科学技术的迅速发展使人类进入了信息时代。在信息社会中人们在各种领域中都会涉及各种信号(语音,音乐,图像,金融数据,……)的分析、加工、识别、传输和存储等问题。长期以来,傅里叶变换一直是处理这方面问题最重要的工具,并且已经发展了一套内容非常丰富并在许多实际问题中行之有效的方法。但是,用傅里叶变换分析处理信号的方法也存在着一定的局限性与弱点,傅里叶变换提供了信号在频率域上的详细特征,但却把时间域上的特征完全丢失了。小波变换是80年代后期发展起来的新数学分支,它是傅里叶变换的发展与扩充,在一定程度上克服了傅里叶变换的弱点与局限性。本文从信号分析与处理的角度来介绍小波变换的基本理论与应用,使具有微积分基础的读者通过本文能对这一新的数学分支有一初步了解。小波变换在函数论、微分方程、数值计算等方面也有着重要的应用,有兴趣的读者可参看[1][4]。 (一)从傅里叶变换谈起 数学中经常用变换这一技巧将问题由繁难化为简易,初等数学中用对数将较繁难的乘除法化为简易的加减法就是很典型的一个例子。而傅里叶变换(简称FT )则是利用积分将一个函数f (t )(-∞

小波变换与傅里叶变换的对比异同

小波变换与傅里叶变换 的对比异同 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

小波变换与傅里叶变换的对比、异同 一、基的概念 两者都是基,信号都可以分成无穷多个他们的和(叠加)。而展开系数就是基与信号之间的内积,更通俗的说是投影。展开系数大的,说明信号和基是足够相似的。这也就是相似性检测的思想。但我们必须明确的是,傅里叶是0-2pi标准正交基,而小波是-inf到inf之间的基。因此,小波在实轴上是紧的。而傅里叶的基(正弦或余弦),与此相反。而小波能不能成为Reisz基,或标准稳定的正交基,还有其它的限制条件。此外,两者相似的还有就是PARSEVAL 定理。(时频能量守恒)。 二、离散化的处理 傅里叶变换,是一种数学的精妙描述。但计算机实现,却是一步步把时域和频域离散化而来的。第一步,时域离散化,我们得到离散时间傅里叶变换(DTFT),频谱被周期化;第二步,再将频域离散化,我们得到离散周期傅里叶级数(DFS),时域进一步被周期化。第三步,考虑到周期离散化的时域和频域,我们只取一个周期研究,也就是众所周知的离散傅里叶变换(DFT)。这里说一句,DFT是没有物理意义的,它只是我们研究的需要。借此,计算机的处理才成为可能。所有满足容许性条件(从-INF到+INF积分为零)的函数,都可以成为小波。小波作为尺度膨胀和空间移位的一组函数也就诞生了。但连续取值的尺度因子和平移因子,在时域计算量和频域的混叠来说,都是极为不便的。用更为专业的俗语,叫再生核。也就是,对于任何一个尺度a和平移因子b的小波,和原信号内积,所得到的小波系数,都可以表示成,在a,b附近生成的小波,投影后小波系数的线性组合。这就叫冗余性。这时的连续小波是与正交基毫无关系的东西,它顶多也只能作为一种积分变换或基。但它的显微镜特点和相似性检测能力,已经显现出来了。为了进一步更好的将连续小波变换离散化,以下步骤是一种有效方法。第一步,尺度离散化。一般只将a二进离散化,此时b 是任意的。这样小波被称为二进小波。第二步,离散b。怎么离散化呢b取多少才合适呢于是,叫小波采样定理的东西,就这样诞生了。也就是小波平移的最小距离(采样间隔),应该大于二倍小波基的最高频率(好像类似,记不清了)。所以b取尺度的整数倍就行了。也就是越胖的小波,对应频谱越窄,平移量应该越大,采样间隔越大。当然,第一二两步的频域理解,即在满足频域窗口中心是3倍的频域窗口半径的前提下,频域就在统计上是完美二分的。(但很多小波满足不了这个条件,而且频域窗口能量不,所以只是近似二分的).这时的小波变换,称为离散二进小波变换.第三步,引入稳定性条件.也就是经过变换后信号能量和原信号能量有什么不等式关系.满足稳定性条件后,也就是一个小波框架产生了可能.他是数值稳定性的保证.一个稍弱的稳定条件,就是

小波变换在研究工作中的应用前景

小波变换的应用前景 首先介绍下什么是小波变换,小波变换是近年来在图象处理中受到十分重视的新技术,面向图象压缩、特征检测以及纹理分析的许多新方法,如多分辨率分析、时频域分析、金字塔算法等,都最终归于小波变换(wavelet transforms)的范畴中。线性系统理论中的傅立叶变换是以在两个方向上都无限伸展的正弦曲线波作为正交基函数的。对于瞬态信号或高度局部化的信号(例如边缘),由于这些成分并不类似于任何一个傅立叶基函数,它们的变换系数(频谱)不是紧凑的,频谱上呈现出一幅相当混乱的构成。这种情况下,傅立叶变换是通过复杂的安排,以抵消一些正弦波的方式构造出在大部分区间都为零的函数而实现的。为了克服上述缺陷,使用有限宽度基函数的变换方法逐步发展起来了。这些基函数不仅在频率上而且在位置上是变化的,它们是有限宽度的波并被称为小波(wavelet)。基于它们的变换就是小波变换。 传统的信号理论,是建立在Fourier分析基础上的,而Fourier变换作为一种全局性的变化,其有一定的局限性。在实际应用中人们开始对Fourier变换进行各种改进,小波分析由此产生了。小波分析是一种新兴的数学分支,它是泛函数、Fourier分析、调和分析、数值分析的最完美的结晶;在应用领域,特别是在信号处理、图像处理、语音处理以及众多非线性科学领域,它被认为是继Fourier 分析之后的又一有效的时频分析方法。小波变换与Fourier变换相比,是一个时间和频域的局域变换因而能有效地从信号中提取信息,通过伸缩和平移等运算功能对函数或信号进行多尺度细化分析(Multiscale Analysis),解决了Fourier变换不能解决的许多困难问题。 并且,小波变换是由法国从事石油信号处理的工程师J.Morlet在1974年首先提出的,通过物理的直观和信号处理的实际需要经验的建立了反演公式,当时未能得到数学家的认可。正如1807年法国的热学工程师J.B.J.Fourier提出任一函数都能展开成三角函数的无穷级数的创新概念未能得到认可一样。幸运的是,早在七十年代,A.Calderon表示定理的发现、Hardy空间的原子分解和无条件基的深入研究为小波变换的诞生做了理论上的准备,而且J.O.Stromberg还构造了历史上非常类似于现在的小波基;1986年著名数学家Y.Meyer偶然构造出一个真正的小波基,并与S.Mallat合作建立了构造小波基的统一方法--多尺度分析之后,小波分析才开始蓬勃发展起来,其中比利时女数学家I.Daubechies撰写的《小波十讲(Ten Lectures on Wavelets)》对小波的普及起了重要的推动作用。与Fourier 变换、视窗Fourier变换(Gabor变换)相比,具有良好的时频局部化特性能,因而能有效的从信号中提取资讯,通过伸缩和平移等运算功能对函数或信号进行多尺度细化分析(Multiscale Analysis),解决了Fourier变换不能解决的许多困难问题,因而小波变化被誉为“数学显微镜”,它是调和分析发展史上里程碑式的进展。 与Fourier变换相比,小波变换是空间(时间)和频率的局部变换,因而能有效地从信号中提取信息。通过伸缩和平移等运算功能可对函数或信号进行多尺度的细化分析,解决了Fourier变换不能解决的许多困难问题。小波变换联系了应用数学、物理学、计算机科学、信号与信息处理、图像处理、地震勘探等多个学科。数学家认为,小波分析是一个新的数学分支,它是泛函分析、Fourier分析、样调分析、数值分析的完美结晶;信号和信息处理专家认为,小波分析是时间—尺度分析和多分辨分析的一种新技术,它在信号分析、语音合成、图像识别、计算

相关主题
文本预览
相关文档 最新文档