当前位置:文档之家› 本科毕业设计__基于matlab的小波分析在图像处理中的应用

本科毕业设计__基于matlab的小波分析在图像处理中的应用

本科毕业设计__基于matlab的小波分析在图像处理中的应用
本科毕业设计__基于matlab的小波分析在图像处理中的应用

基于Matlab 的小波分析在图像处理中的应用

摘要:本文先介绍了小波分析得基本理论,包括连续小波变换、离散小波变换和小波包分析。小波变换具有时频局部化的特点,因此不但能对图像提供较精确的时域定位,也能提供较精确的频域定位。经过小波变换的图像具有频谱划、方向选择、多分辨率分析和天然塔式数据结构特点。基于小波变换这些特性,讨论了MATLAB 语言环境下图像压缩,图像去噪,图像融合,图像分解,图像增强的基本方法。

关键词:小波分析;图像压缩;图像去噪;图像融合;图像分解;图像增强

1 引言

小波分析诞生于20世纪80年代, 被认为是调和分析即现代Fourier 分析发展的一个崭新阶段。众多高新技术以数学为基础,而小波分析被誉为“数学显微镜”,这就决定了它在高科技研究领域重要的地位。目前, 它在模式识别、图像处理、语音处理、故障诊断、地球物理勘探、分形理论、空气动力学与流体力学上的应用都得到了广泛深入的研究,甚至在金融、证券、股票等社会科学方面都有小波分析的应用研究。

在传统的傅立叶分析中,信号完全是在频域展开的,不包含任何时频的信息,这对于某些应用来说是很恰当的,因为信号的频率的信息对其是非常重要的。但其丢弃的时域信息可能对某些应用同样非常重要,所以人们对傅立叶分析进行了推广,提出了很多能表征时域和频域信息的信号分析方法,如短时傅立叶变换,Gabor 变换,时频分析,小波变换等。其中短时傅立叶变换是在傅立叶分析基础上引入时域信息的最初尝试,其基本假定在于在一定的时间窗内信号是平稳的,那么通过分割时间窗,在每个时间窗内把信号展开到频域就可以获得局部的频域信息,但是它的时域区分度只能依赖于大小不变的时间窗,对某些瞬态信号来说还是粒度太大。换言之,短时傅立叶分析只能在一个分辨率上进行。所以对很多应用来说不够精确,存在很大的缺陷。

而小波分析则克服了短时傅立叶变换在单分辨率上的缺陷,具有多分辨率分析的特点,在时域和频域都有表征信号局部信息的能力,时间窗和频率窗都可以根据信号的具体形态动态调整,在一般情况下,在低频部分(信号较平稳)可以采用较低的时间分辨率,而提高频率的分辨率,在高频情况下(频率变化不大)可以用较低的频率分辨率来换取精确的时间定位。

本文介绍了小波变换的基本理论,并介绍了一些常用的小波函数,它们的主要性质包括紧支集长度、滤波器长度、对称性、消失矩等,都做了简要的说明。然后研究了小波分析在图像处理中的应用,包括图像压缩,图像去噪,图像融合,图像分解,图像增强等。

2 小波分析的基本理论

2.1 连续小波变换

定义:设)()(2R L t ∈ψ,其傅立叶变换为)(?ωψ

,当)(?ωψ满足允许条件(完全重构条件或恒等分辨条件)

?=R

d C ωωωψ

ψ2

)(?< ∞ (1)

时,我们称)(t ψ为一个基本小波或母小波。将母函数)(t ψ经伸缩和平移后得 )(

1)(,a

b

t a

t b a -=

ψψ 0;,≠∈a R b a (2) 称其为一个小波序列。其中a 为伸缩因子,b 为平移因子。对于任意的函数)()(2R L t f ∈的连续小波变换为

dt a

b

t t f a f b a W R

b a f )(

)(,),(2

/1,->==

-ψψ (3) 其重构公式(逆变换)为

??∞

∞-∞

∞--=

d a d b a

b t b a W a C t f f

)(),(11

)(2ψψ

(4) 由于基小波)(t ψ生成的小波)(,t b a ψ在小波变换中对被分析的信号起着观测窗的作用,所以

)(t ψ还应该满足一般函数的约束条件

?

-dt t )(ψ〈∞ (5)

故)(?ωψ

是一个连续函数。这意味着,为了满足完全重构条件式,)(?ωψ在原点必须等于0,即

0)()0(?==?∞

∞-dt t ψψ

(6) 为了使信号重构的实现在数值上是稳定的,处理完全重构条件外,还要求小波)(t ψ的傅立叶变化满足下面的稳定性条件:

∑∞

∞--≤≤B A j 2

)2(?ωψ

(7) 式中0〈A ≤B 〈∞。

2.2 离散小波变换

在实际运用中,尤其是在计算机上实现时,连续小波必须加以离散化。因此,有必要讨论连续小波)(,t b a ψ和连续小波变换),(b a W f 的离散化。需要强调指出的是,这一离散化都是针对连续的尺度参数a 和连续平移参数b 的,而不是针对时间变量t 的。这一点与我们以前习惯的时间离散化不同。在连续小波中,考虑函数:

)()(2

/1,a

b t a t b a -=-ψψ

这里R b ∈,+∈R a ,且0≠a ,ψ是容许的,为方便起见,在离散化中,总限制a 只

取正值,这样相容性条件就变为 ∞<=?

∞ωω

ωψ

ψd C 0

)(? (8) 通常,把连续小波变换中尺度参数a 和平移参数b 的离散公式分别取作j a a 0=,

0b ka b j =,这里Z j ∈,扩展步长10≠a 是固定值,为方便起见,总是假定10>a (由于m

可取正也可取负,所以这个假定无关紧要)。所以对应的离散小波函数)(,t k j ψ即可写作

)()()(002/00

002

/0

,kb t a a a b ka t a t j j j

j j k j -=-=---ψψψ (9) 而离散化小波变换系数则可表示为

>=<=?

∞∞

-k j k j k j f dt t t f C ,*,,,)()(ψψ (10)

其重构公式为

∑∑∞

∞-∞

∞-=)()(,,t C C t f k j k j ψ (11)

C 是一个与信号无关的常数。然而,怎样选择0a 和0b ,才能够保证重构信号的精度呢?显然,网格点应尽可能密(即0a 和0b 尽可能小),因为如果网格点越稀疏,使用的小波函数)(,t k j ψ和离散小波系数k j C ,就越少,信号重构的精确度也就会越低。

2.3 小波包分析

短时傅立叶变换对信号的频带划分是线性等间隔的。多分辨分析可以对信号进行有效

的时频分解,但由于其尺度是按二进制变化的,所以在高频频段其频率分辨率较差,而在低频频段其时间分辨率较差,即对信号的频带进行指数等间隔划分(具有等Q 结构)。小波包分析能够为信号提供一种更精细的分析方法,它将频带进行多层次划分,对多分辨率分析没有细分的高频部分进一步分解,并能够根据被分析信号的特征,自适应地选择相应频带,使之与信号频谱相匹配,从而提高了时-频分辨率,因此小波包具有更广泛的应用价值。

关于小波包分析的理解,我们这里以一个三层的分解进行说明,其小波包分解树如图

AAA3 DAA3 ADA3 DDA3 AAD3 DAA3 ADD3 DDD3

AA2 DA2 AD2 DD2 A1 D1 S

图1 小波包分解树

图1中,A 表示低频,D 表示高频,末尾的序号数表示小波分解的层树(也即尺度数)。分解具有关系:

S=AAA3+DAA3+ADA3+DDA3+AAD3+DAA3+ADD3+DDD3

3 常用小波基介绍

(1)Haar 小波

Haar 于1990年提出一种正交函数系,定义如下:

??

?

??-=011

H ψ 其它12/12/10<≤≤≤x x (12)

这是一种最简单的正交小波,即

0)()(=-?

-dx n x t ψψ ,2,1±±=n …

(2)Daubechies (dbN )小波系

该小波是Daubechies 从两尺度方程系数{}k h 出发设计出来的离散正交小波。一般简写为dbN ,N 是小波的阶数。小波ψ和尺度函数吁中的支撑区为2N-1。?的消失矩为N 。除N =1外(Haar 小波),dbN 不具对称性〔即非线性相位〕;dbN 没有显式表达式(除N =1外)。但{}k h 的传递函数的模的平方有显式表达式。假设∑-=+-=1

01)(N k k k N k y C y P ,其中,k N k C +-1为二

项式的系数,则有

)2

(sin )2

(cos )(2

2

2

ω

ωP m N = (13)

其中 ∑-=-=

120

02

1

)(N k ik k

e

h m ω

ω

(3)Biorthogonal (biorNr.Nd )小波系

Biorthogonal 函数系的主要特征体现在具有线性相位性,它主要应用在信号与图像的重构中。通常的用法是采用一个函数进行分解,用另外一个小波函数进行重构。Biorthogonal 函数系通常表示为biorNr.Nd 的形式:

Nr=1 Nd=1,3,5 Nr=2 Nd=2,4,6,8 Nr=3 Nd=1,3,5,7,9 Nr=4 Nd=4 Nr=5 Nd=5 Nr=6 Nd=8

其中,r 表示重构,d 表示分解。 (4)Coiflet (coifN )小波系

coiflet 函数也是由Daubechies 构造的一个小波函数,它具有coifN (N=1,2,3,4,5)这一系列,coiflet 具有比dbN 更好的对称性。从支撑长度的角度看,coifN 具有和db3N 及

sym3N 相同的支撑长度;从消失矩的数目来看,coifN 具有和db2N 及sym2N 相同的消失矩数目。

(5)SymletsA (symN )小波系

Symlets 函数系是由Daubechies 提出的近似对称的小波函数,它是对db 函数的一种改进。Symlets 函数系通常表示为symN (N=2,3,…,8)的形式。

(6)Morlet (morl )小波

Morlet 函数定义为x Ce x x

5cos )(2

/2

-=ψ,它的尺度函数不存在,且不具有正交性。

(7)Mexican Hat (mexh )小波

Mexican Hat 函数为

2/24

/12)1(3

2)(x e x x ---=

ψπ (14) 它是Gauss 函数的二阶导数,因为它像墨西哥帽的截面,所以有时称这个函数为墨西哥帽函数。墨西哥帽函数在时间域与频率域都有很好的局部化,并且满足

0)(=?

-dx x ψ

由于它的尺度函数不存在,所以不具有正交性。 (8)Meyer 小波

Meyer 小波函数ψ和尺度函数?都是在频率域中进行定义的,是具有紧支撑的正交小波。

???

?

??

???--=ψ--0))123(2cos()2())123(2sin()2()(?2/2/12

/2/1ωπυππωπυππωωωj j e

e ]

3

8,32[3

8343432ππωπ

ωππωπ?≤

≤≤≤ (15) 其中,)(a υ为构造Meyer 小波的辅助函数,且有

??

???

??-=--0))123(2cos()2()2()(?2/12/1ωπυπππωφ 3

434323

2πωπωππω>≤≤≤

(16) 4 小波分析在图像处理中的应用

4.1 小波分析用于图像压缩

4.1.1 基于小波变换的图像局部压缩

基于离散余弦变换的图像压缩算法,其基本思想是在频域对信号进行分解,驱除信号

点之间的相关性,并找出重要系数,滤掉次要系数,以达到压缩的效果,但该方法在处理过程中并不能提供时域的信息,在我们比较关心时域特性的时候显得无能为力。

但是这种应用的需求是很广泛的,比如遥感测控图像,要求在整幅图像有很高压缩比的同时,对热点部分的图像要有较高的分辨率,例如医疗图像,需要对某个局部的细节部分有很高的分辨率,单纯的频域分析的方法显然不能达到这个要求,虽然可以通过对图像进行分快分解,然后对每块作用不同的阈值或掩码来达到这个要求,但分块大小相对固定,有失灵活。

在这个方面,小波分析就优越的多,由于小波分析固有的时频特性,我们可以在时频两个方向对系数进行处理,这样就可以对我们感兴趣的部分提供不同的压缩精度。

下面我们利用小波变化的时频局部化特性,举一个局部压缩的例子,可以通过这个例子看出小波变换在应用这类问题上的优越性。

load wbarb

%使用sym4小波对信号进行一层小波分解

[ca1,ch1,cv1,cd1]=dwt2(X,'sym4');

codca1=wcodemat(ca1,192);

codch1=wcodemat(ch1,192);

codcv1=wcodemat(cv1,192);

codcd1=wcodemat(cd1,192);

%将四个系数图像组合为一个图像

codx=[codca1,codch1,codcv1,codcd1]

%复制原图像的小波系数

rca1=ca1;

rch1=ch1;

rcv1=cv1;

rcd1=cd1;

%将三个细节系数的中部置零

rch1(33:97,33:97)=zeros(65,65);

rcv1(33:97,33:97)=zeros(65,65);

rcd1(33:97,33:97)=zeros(65,65);

codrca1=wcodemat(rca1,192);

codrch1=wcodemat(rch1,192);

codrcv1=wcodemat(rcv1,192);

codrcd1=wcodemat(rcd1,192);

%将处理后的系数图像组合为一个图像

codrx=[codrca1,codrch1,codrcv1,codrcd1]

%重建处理后的系数

rx=idwt2(rca1,rch1,rcv1,rcd1,'sym4');

subplot(221);image(wcodemat(X,192)),colormap(map);title('原始图像');

subplot(222);image(codx),colormap(map);title('一层分解后各层系数图像');

subplot(223);image(wcodemat(rx,192)),colormap(map);title('压缩图像');

subplot(224);image(codrx),colormap(map);title('处理后各层系数图像');

%求压缩信号的能量成分

per=norm(rx)/norm(X)

per =1.0000

%求压缩信号与原信号的标准差

err =586.4979

原始图像

50

100

150

200

250

50100150200250

一层分解后各层系数图像

100

200

300

400

500

20406080100120

压缩图

50

100

150

200

250

50100150200250

处理后各层系数图像

100200300400500

20406080100120

图2 利用小波变换的局部压缩图像

从图1可以看出,小波域的系数表示的是原图像各频率段的细节信息,并且给我们提供了一种位移相关的信息表述方式,我们可以通过对局部细节系数处理来达到局部压缩的效果。

在本例中,我们把图像中部的细节系数都置零,从压缩图像中可以很明显地看出只有中间部分变得模糊(比如在原图中很清晰的围巾的条纹不能分辨),而其他部分的细节信息仍然可以分辨的很清楚。

最后需要说明的是本例只是为了演示小波分析应用在图像局部压缩的方法,在实际的应用中,可能不会只做一层变换,而且作用阈值的方式可能也不会是将局部细节系数全部清除,更一般的情况是在N 层变换中通过选择零系数比例或能量保留成分作用不同的阈值,实现分片的局部压缩。而且,作用的阈值可以是方向相关的,即在三个不同方向的细节系数上作用不同的阈值。

4.1.2 利用二维小波分析进行图像压缩

二维小波分析用于图像压缩是小波分析应用的一个重要方面。它的特点是压缩比高,压缩速度快,压缩后能保持图像的特征基本不变,且在传递过程中可以抗干扰。小波分析用于图像压缩具有明显的优点。

下面给出一个图像信号(即一个二维信号,文件名为wbarb.mat ),利用二维小波分析对图像进行压缩。一个图像作小波分解后,可得到一系列不同分辨率的子图像,不同分辨率的子图像对应的频率是不相同的。高分辨率(即高频)子图像上大部分点的数值都接近于0,越是高频这种现象越明显。对一个图像来说,表现一个图像最主要的部分是低频部分,所以一个最简单的压缩方法是利用小波分解,去掉图像的高频部分而只保留低频部分。图像压缩可按如下程序进行处理。

load wbarb;

subplot(221);image(X);colormap(map) title('原始图像');

disp('压缩前图像X的大小:');

whos('X')

%对图像用bior3.7小波进行2层小波分解

[c,s]=wavedec2(X,2,'bior3.7');

%提取小波分解结构中第一层低频系数和高频系数

ca1=appcoef2(c,s,'bior3.7',1);

ch1=detcoef2('h',c,s,1);

cv1=detcoef2('v',c,s,1);

cd1=detcoef2('d',c,s,1);

%分别对各频率成分进行重构

a1=wrcoef2('a',c,s,'bior3.7',1);

h1=wrcoef2('h',c,s,'bior3.7',1);

v1=wrcoef2('v',c,s,'bior3.7',1);

d1=wrcoef2('d',c,s,'bior3.7',1);

c1=[a1,h1;v1,d1];

%显示分解后各频率成分的信息

subplot(222);image(c1);

axis square

title('分解后低频和高频信息');

%下面进行图像压缩处理

%保留小波分解第一层低频信息,进行图像的压缩

%第一层的低频信息即为ca1,显示第一层的低频信息

%首先对第一层信息进行量化编码

ca1=appcoef2(c,s,'bior3.7',1);

ca1=wcodemat(ca1,440,'mat',0);

%改变图像的高度

ca1=0.5*ca1;

subplot(223);image(ca1);colormap(map);

axis square

title('第一次压缩');

disp('第一次压缩图像的大小为:');

whos('ca1')

%保留小波分解第二层低频信息,进行图像的压缩,此时压缩比更大%第二层的低频信息即为ca2,显示第二层的低频信息

ca2=appcoef2(c,s,'bior3.7',2);

%首先对第二层信息进行量化编码

ca2=wcodemat(ca2,440,'mat',0);

%改变图像的高度

ca2=0.25*ca2;

subplot(224);image(ca2);colormap(map);

axis square

title('第二次压缩');

disp('第二次压缩图像的大小为:');

输出结果如下所示: 压缩前图像X 的大小:

Name Size Bytes Class

X 256x256 524288 double array Grand total is 65536 elements using 524288 bytes 第一次压缩图像的大小为:

Name Size Bytes Class

ca1 135x135 145800 double array Grand total is 18225 elements using 145800 bytes 第二次压缩图像的大小为:

Name Size Bytes Class

ca2 75x75 45000 double array Grand total is 5625 elements using 45000 bytes

图像对比如图所示。可以看出,第一次压缩提取的是原始图像中小波分解第一层的低频信息,此时压缩效果较好,压缩比较小(约为1/3):第二次压缩是提取第一层分解低频部分的低频部分(即小波分解第二层的低频部分),其压缩比较大(约为1/12),压缩效果在视觉上也基本过的去。这是一种最简单的压缩方法,只保留原始图像中低频信息,不经过其他处理即可获得较好的压缩效果。在上面的例子中,我们还可以只提取小波分解第3、4、…层的低频信息。从理论上说,我们可以获得任意压缩比的压缩图像。

原始图像

50100150200250

50100150200250

分解后低频和高频信息100200300400500

100200300400500

第一次压缩

20406080100120

20406080100

120

第二次压缩

20

40

60

204060

图3 利用二维小波分析进行图像压缩

下面再给出用wdenemp 函数对一个图像(文件名tire.mat )进行压缩的程序。 %装入一个二维信号

load tire; %显示图像

subplot(221);image(X);colormap(map) title('原始图像');

%下面进行图像压缩

%对图像用db3小波进行2层小波分解 [c,s]=wavedec2(X,2,'db3');

%使用wavedec2函数来实现图像的压缩 [thr,sorh,keepapp]=ddencmp('cmp','wv',X); %输入参数中选择了全局阈值选项‘gbl ’,用来对所有高频系数进行相同的阈值量化处理 [Xcomp,cxc,lxc,perf0,perfl2]=wdencmp('gbl',c,s,'db3',2,thr,sorh,keepapp); %将压缩后的图像与原始图像相比较,并显示出来 subplot(222);image(Xcomp);colormap(map) title('压缩图像'); axis square

disp('小波分解系数中置0的系数个数百分比:'); perf0

disp('压缩后图像剩余能量百分比:'); perfl2

输出结果如下所示:

小波分解系数中置0的系数个数百分比: perf0 =49.1935

压缩后图像剩余能量百分比: perfl2 =99.9928 图像对比如图所示:

原始图像

50100150200

50100150200

压缩图像

50100150200

50

100

150

200

图4 利用二维小波分析对图像进行压缩

利用二维小波变换进行图像压缩时,小波变换将图像从空间域变换到时间域,它的作用与以前在图像压缩中所用到的离散余弦(DCT )、傅立叶变换(FFT )等的作用类似。但是要很好的进行图像的压缩,需要综合的利用多种其他技术,特别是数据的编码与解码算法等,所以利用小波分析进行图像压缩通常需要利用小波分析和许多其他相关技术共同完成。

4.1.3 基于小波包变换的图像压缩

小波分析之所以在信号处理中有着强大的功能,是基于其分离信息的思想,分离到各个小波域的信息除了与其他小波域的关联,使得处理的时候更为灵活。全局阈值化方法作用的信息粒度太大,不够精细,所以很难同时获得高的压缩比和能量保留成分,在作用的

分层阈值以后,性能明显提高,因为分层阈值更能体现信号固有的时频局部特性。

但是小波分解仍然不够灵活,分解出来的小波树只有一种模式,不能完全地体现时频局部化信息。而压缩的核心思想既是尽可能去处各小波域系数之间的信息关联,最大限度体现时频局部化的信息,因此,实际的压缩算法多采用小波包算法,而小波树的确定则是根据不同的信息论准则,以达到分解系数表达的信息密度最高。

下面我通过一个例子来说明小波包分析在图像压缩中的应用,并给出性能参数以便于同基于小波分析的压缩进行比较。

load julia

%求颜色索引表长度 nbc=size(map,1);

%得到信号的阈值,保留层数,小波树优化标准 [thr,sorh,keepapp,crit]=ddencmp('cmp','wp',X) %通过以上得到的参数对信号进行压缩

[xd,treed,perf0,perfl2]=wpdencmp(X,sorh,4,'sym4',crit,thr*2,keepapp); %更改索引表为pink 索引表 colormap(pink(nbc));

subplot(121);image(wcodemat(X,nbc));title('原始图像');

subplot(122);image(wcodemat(xd,nbc));title('全局阈值化压缩图像'); xlabel(['能量成分',num2str(perfl2),'%','零系数成分',num2str(perf0),'%']); plot(treed);

得到的压缩结果如图所示

原始图像

100200300

50100150200250全局阈值化压缩图像

能量成分99.7346%零系数成分85.81%

100200300

50

100

150

200

250

图5 基于小波包分析的图像压缩

压缩过程中使用的最优小波树如图6所示

Tree Decomposition

(0,0)

(1,0)

(1,1)(1,2)

(1,3)

(2,0)

(2,1)(2,2)

(2,3)

(3,0)

(3,1)(3,2)

(3,3)

(4,0)(4,1)(4,2)(4,3)

50100150

-10

10

20

30

40

50

60

70

80

data for node:

图6 最优小波树

这两个命令是Matlab 小波工具箱提供的自动获取阈值和自动使用小波包压缩的命令,后者将分解阈值化和重建综合起来。在将小波包用于信号压缩的过程中,ddencmp 命令返回的最优小波树标准都是阈值化标准。根据这个标准确定的最优小波树可以使得压缩过程的零系数成分最高,并且自动降低计算量。

最后需要说明的一点,对高频成分很多的图像,小波包的分解细节信息的特点尤其能发挥其优势。图像压缩是应用非常广泛的一类问题,所以其机器实现效率是至关重要的,在实际的应用中,如JPEG2000,一般不采用通常的mallat 算法做小波分解,而是应用特定的双正交小波,利用其滤波器分布规则的特性,用移位操作来实现滤波操作。

4.2 小波分析用于图像去噪

对二维图像信号的去噪方法同样适用于一维信号,尤其是对于几何图像更适合。二维模型可以表述为

s(i,j)=f( i,j)+δ·e(i,j) i,j=0,1,…,m-1

其中,e 是标准偏差不变的高斯白噪声。二维信号用二维小波分析的去噪步骤有3步: (1)二维信号的小波分解。选择一个小波和小波分解的层次N ,然后计算信号s 到第N 层的分解。

(2)对高频系数进行阈值量化。对于从1到N 的每一层,选择一个阈值,并对这一层的高频系数进行软阈值量化处理。

(3)二维小波的重构。根据小波分解的第N 层的低频系数和经过修改的从第一层到第N 层的各层高频系数计算二维信号的小波重构。

在这3个步骤中,重点是如何选取阈值和阈值的量化 下面给出一个二维信号(文件名为detfinger.mat ),并利用小波分析对信号进行去噪处理。Matlab 的去噪函数有ddencmp ,wdencmp 等,其去噪过程可以按照如下程序进行。

load tire

%下面进行早声的产生

init=3718025452; rand('seed',init);

Xnoise=X+18*(rand(size(X)));

%显示原始图像及它的含噪声的图像 colormap(map);

subplot(2,2,1);image(wcodemat(X,192)); title('原始图像X') axis square

subplot(2,2,2);image(wcodemat(X,192)); title('含噪声的图像Xnoise'); axis square

%用sym5小波对图像信号进行二层的小波分解 [c,s]=wavedec2(X,2,'sym5'); %下面进行图像的去噪处理

%使用ddencmp 函数来计算去噪的默认阈值和熵标准 %使用wdencmp 函数来实现图像的压缩

[thr,sorh,keepapp]=ddencmp('den','wv',Xnoise);

[Xdenoise,cxc,lxc,perf0,perfl2]=wdencmp('gbl',c,s,'sym5',2,thr,sorh,keepapp); %显示去噪后的图像

subplot(223);image(Xdenoise); title('去噪后的图像'); axis square

输出结果从图中3个图像的比较可以看出,Matlab 中的ddencmp 和wdencmp 函数可以有效地进行去噪处理。

原始图像X

50100150200

50100150

200

含噪声的图像X noise 50100150200

50100150

200

去噪后的图像

5010015020050100150

200

图7 去噪一

再给定一个有较大白噪声的图像。由于图像所含的噪声主要是白噪声,而且主要集中在图像的高频部分,所以我们可以通过全部滤掉图像中的高频部分实现图像的去噪。具体去噪过程可按照如下程序进行。

load wmandril; %画出原始图像

subplot(221);image(X);colormap(map); title('原始图像'); axis square

%产生含噪图像

init=2055615866;randn('seed',init) x=X+38*randn(size(X)); %画出含噪图像

subplot(222);image(x);colormap(map); title('含噪声图像'); axis square;

%下面进行图像的去噪处理

%用小波函数sym4对x 进行2层小波分解 [c,s]=wavedec2(x,2,'sym4');

%提取小波分解中第一层的低频图像,即实现了低通滤波去噪 a1=wrcoef2('a',c,s,'sym4'); %画出去噪后的图像 subplot(223);image(a1); title('第一次去噪图像'); axis square;

%提取小波分解中第二层的低频图像,即实现了低通滤波去噪 %相当于把第一层的低频图像经过再一次的低频滤波处理 a2=wrcoef2('a',c,s,'sym4',2); %画出去噪后的图像

subplot(224);image(a2);title('第二次去噪图像'); axis square;

输出结果如图:

原始图像

20406080100120

20406080100120

含噪声图像

20406080100120

20406080100120

第一次去噪图像20406080100120

20406080100120

第二次去噪图像20406080100120

20406080100120

图8 去噪二

从上面的输出结果可以看出,第一次去噪已经滤去了大部分的高频噪声,但从去噪图像与原始图像相比可以看书,第一次去噪后的图像中还是含有不少的高频噪声;第二次去噪是在第一次去噪的基础上,再次滤去其中的高频噪声。从去噪的结果可以看出,它具有

较好的去噪效果。

下面再给出定一个喊有较少噪声的facets.mat 图像。由于原始图像中只喊有较少的高频噪声,如果按照上一个例子把高频噪声全部滤掉的方法将损坏图像中固有的高频有用信号。因此这幅图像适合采用小波分解系数阈值量化方法进行去噪处理。

load facets;

%画出原始图像

subplot(221);image(X);colormap(map); title('原始图像'); axis square

%产生含噪声图像

init=2055615866;randn('seed',init) x=X+10*randn(size(X)); %画出含噪声图像

subplot(222);image(X);colormap(map); title('含噪声图像'); axis square

%下面进行图像的去噪处理

%用小波画数coif3对x 进行2层小波分解 [c,s]=wavedec2(x,2,'coif3');

%提取小波分解中第一层的低频图像,即实现了低通滤波去噪 %设置尺度向量n n=[1,2]

设置阈值向量p p=[10.12,23.28];

%对三个方向高频系数进行阈值处理 nc=wthcoef2('h',c,s,n,p,'s'); nc=wthcoef2('v',c,s,n,p,'s'); nc=wthcoef2('d',c,s,n,p,'s');

%对新的小波分解结构[nc ,s]进行重构 xx=waverec2(nc,s,'coif3'); %画出重构后图像的波形

subplot(223);image(X);colormap(map); title('去噪后的图像'); axis square

输出结果如图

原始图像

50100150200250

50100150200250

含噪声图像

50100150200250

50100150200250

去噪后的图像

50100150200250

50100150200250

图像检索系统的设计与实现本科生毕业设计论文

毕业设计(论文)说明书 题目:图像检索系统的设计与实现

毕业设计(论文)任务书题目:图像检索系统的设计与实现

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

一、原始依据(包括设计或论文的工作基础、研究条件、应用环境、工作目的等。) 随着互联网的飞速发展,网络上的图片信息呈爆炸式增长,这使得人们在网上找到所需的图片越来越困难,图片检索技术成为当今非常热门的研究话题。 图像检索一直是信息检索领域的一个主流问题,涉及到图像处理、图像分割、模式识别及机器学习等多个方面。检索的智能化和自动化是图像检索的目标。 目前主流的图像检索方法大致可以分为两大类,即基于文本的图像检索(TBIR)和基于内容的图像检索(CBIR)。在检索原理上,无论是基于文本的图像检索还是基于内容的图像检索,主要包括三方面:一方面对用户需求的分析和转化,形成可以检索索引数据库的提问;另一方面,收集和加工图像资源,提取特征,分析并进行标引,建立图像的索引数据库;最后一方面是根据相似度算法,计算用户提问与索引数据库中记录的相似度大小,提取出满足阈值的记录作为结果,按照相似度降序的方式输出。 而搜集图片和建立索引又是实现图像检索技术的非常重要的一个环节。网络爬虫程序就是用来搜集网页和图片的程序。 本文的研究重点在于使用网络爬虫框架Heritrix进行扩展,从网络上下载所需网页及图片并利用HTMLParser进行网页分析和图片相关信息提取。完成上述工作后,再将图片的目录位置和提取的信息存入数据库。并建立一个图片检索系统的Web工程,实现检索功能。开发语言为Java, 开发工具为MyEclipse和MySQL及Tomcat. 二、参考文献 [1]Ritendra Datta, Dhiraj Joshi, Jia Li et al. Image Retrieval: Ideas, Influences, and Trends of the New Age[J].ACM Comput. Surv. 40, 2, Article 5 .April 2008. [2]李晓明,闫宏飞,王继民. 搜索引擎-原理,技术与系统[M].北京:科学出版社,2004. [3]马自萍.形状和颜色特征的混合图像检索[D].银川:北方民族大学,2010.7. [4]陈剑雄,张蓓.简析图像检索中的CBIR技术[J].情报探索(第7期),2010.7. [5]Rafael C.Gonzalez and Richard E.Woods.Digital Image Processing Second Edition [M].Prentice Hall, 2003-3. [6]沈兰荪,张箐,李晓光。图像检索与压缩域处理技术的研究[M].北京:人名邮电出版 社,2008.12. [7]周明全,耿国华,韦娜.基于内容图像检索技术[M].北京:清华大学出版社,2007.7. [8]李向阳, 庄越挺, 潘云鹤. 基于内容的图像检索技术与系统[J]. 计算机研究与发展

基于小波变换的图像处理.

基于小波变换的数字图像处理 摘要:本文先介绍了小波分析的基本理论,为图像处理模型的构建奠定了基础,在此基础上提出了小波分析在图像压缩,图像去噪,图像融合,图像增强等图像处理方面的应用,最后在MATLAB环境下进行仿真,验证了小波变化在图像处理方面的优势。 关键词:小波分析;图像压缩;图像去噪;图像融合;图像增强 引言 数字图像处理是利用计算机对科学研究和生产中出现的数字化可视化图像 信息进行处理,作为信息技术的一个重要领域受到了高度广泛的重视。数字化图像处理的今天,人们为图像建立数学模型并对图像特征给出各种描述,设计算子,优化处理等。迄今为止,研究数字图像处理应用中数学问题的理论越来越多,包括概率统计、调和分析、线性系统和偏微分方程等。 小波分析,作为一种新的数学分析工具,是泛函分析、傅立叶分析、样条分析、调和分析以及数值分析理论的完美结合,所以小波分析具有良好性质和实际应用背景,被广泛应用于计算机视觉、图像处理以及目标检测等领域,并在理论和方法上取得了重大进展,小波分析在图像处理及其相关领域所发挥的作用也越来越大。在传统的傅立叶分析中,信号完全是在频域展开的,不包含任何时频的信息,其丢弃的时域信息可能对某些应用同样非常重要,所以人们对傅立叶分析进行了推广,提出了很多能表征时域和频域信息的信号分析方法,如短时傅立叶变换,Gabor变换,时频分析,小波变换等。但短时傅立叶分析只能在一个分辨率上进行,所以对很多应用来说不够精确,存在很大的缺陷。而小波分析则克服了短时傅立叶变换在单分辨率上的缺陷,在时域和频域都有表征信号局部信息的能力,时间窗和频率窗都可以根据信号的具体形态动态调整。 本文介绍了小波变换的基本理论,并介绍了一些常用的小波函数,然后研究了小波分析在图像处理中的应用,包括图像压缩,图像去噪,图像融合,图像增强等,本文重点在图像去噪,最后用Matlab进行了仿真[1]。

数字图像处理毕业论文

毕业论文声明 本人郑重声明: 1.此毕业论文是本人在指导教师指导下独立进行研究取得的成果。除了特别加以标注地方外,本文不包含他人或其它机构已经发表或撰写过的研究成果。对本文研究做出重要贡献的个人与集体均已在文中作了明确标明。本人完全意识到本声明的法律结果由本人承担。 2.本人完全了解学校、学院有关保留、使用学位论文的规定,同意学校与学院保留并向国家有关部门或机构送交此论文的复印件和电子版,允许此文被查阅和借阅。本人授权大学学院可以将此文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本文。 3.若在大学学院毕业论文审查小组复审中,发现本文有抄袭,一切后果均由本人承担,与毕业论文指导老师无关。 4.本人所呈交的毕业论文,是在指导老师的指导下独立进行研究所取得的成果。论文中凡引用他人已经发布或未发表的成果、数据、观点等,均已明确注明出处。论文中已经注明引用的内容外,不包含任何其他个人或集体已经发表或撰写过的研究成果。对本文的研究成果做出重要贡献的个人和集体,均已在论文中已明确的方式标明。 学位论文作者(签名): 年月

关于毕业论文使用授权的声明 本人在指导老师的指导下所完成的论文及相关的资料(包括图纸、实验记录、原始数据、实物照片、图片、录音带、设计手稿等),知识产权归属华北电力大学。本人完全了解大学有关保存,使用毕业论文的规定。同意学校保存或向国家有关部门或机构送交论文的纸质版或电子版,允许论文被查阅或借阅。本人授权大学可以将本毕业论文的全部或部分内容编入有关数据库进行检索,可以采用任何复制手段保存或编汇本毕业论文。如果发表相关成果,一定征得指导教师同意,且第一署名单位为大学。本人毕业后使用毕业论文或与该论文直接相关的学术论文或成果时,第一署名单位仍然为大学。本人完全了解大学关于收集、保存、使用学位论文的规定,同意如下各项内容:按照学校要求提交学位论文的印刷本和电子版本;学校有权保存学位论文的印刷本和电子版,并采用影印、缩印、扫描、数字化或其它手段保存或汇编本学位论文;学校有权提供目录检索以及提供本学位论文全文或者部分的阅览服务;学校有权按有关规定向国家有关部门或者机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入学校有关数据库和收录到《中国学位论文全文数据库》进行信息服务。在不以赢利为目的的前提下,学校可以适当复制论文的部分或全部内容用于学术活动。 论文作者签名:日期: 指导教师签名:日期:

数字图像处理系统毕业设计论文

毕业设计说明书基于ARM的嵌入式数字图像处理系统 设计 学生姓名:张占龙学号: 0905034314 学院:信息与通信工程学院 专业:测控技术与仪器 指导教师:张志杰 2013年 6月

摘要 简述了数字图像处理的应用以及一些基本原理。使用S3C2440处理器芯片,linux内核来构建一个简易的嵌入式图像处理系统。该系统使用u-boot作为启动引导程序来引导linux内核以及加载跟文件系统,其中linux内核与跟文件系统均采用菜单配置方式来进行相应配置。应用界面使用QT制作,系统主要实现了一些简单的图像处理功能,比如灰度话、增强、边缘检测等。整个程序是基于C++编写的,因此有些图像变换的算法可能并不是最优化的,但基本可以满足要求。在此基础上还会对系统进行不断地完善。 关键词:linnux 嵌入式图像处理边缘检测 Abstract This paper expounds the application of digital image processing and some basic principles. The use of S3C2440 processor chip, the Linux kernel to construct a simple embedded image processing system. The system uses u-boot as the bootloader to boot the Linux kernel and loaded with file system, Linux kernel and file system are used to menu configuration to make corresponding configuration. The application interface is made using QT, system is mainly to achieve some simple image processing functions, such as gray, enhancement, edge detection. The whole procedure is prepared based on the C++, so some image transform algorithm may not be optimal, but it can meet the basic requirements. On this basis, but also on the system constantly improve. Keywords:linux embedded system image processing edge detection

电子科技大学-数字图像处理-课程设计报告

电子科技大学 数字图像处理课程设计 课题名称数字图像处理 院(系)通信与信息工程学院 专业通信工程 姓名 学号 起讫日期 指导教师

2015年12月15日 目录 摘要: (03) 课题一:图像的灰度级分辨率调整 (04) 课题二:噪声的叠加与频域低通滤波器应用 (06) 课题三:顶帽变换在图像阴影校正方面的应用 (13) 课题四:利用Hough变换检测图像中的直线 (15) 课题五:图像的阈值分割操作及区域属性 (20) 课题六:基于MATLAB?的GUI程序设计 (23)

结束语: (36) 参考文献: (37)

基于MATLAB?的数字图像处理课题设计 摘要 本文首先对数字图像处理的相关定义、概念、算法与常用变换进行了介绍;并通过七个课题实例,借助MATLAB?的图像处理工具箱(Computer Vision System Toolbox)对这些案例逐一实现,包括图像的灰度值调整、图像噪声的叠加、频域低通滤波器、阈值分割、Hough变换等,常用的图像变化与处理;然后通过MATLAB?的GUI程序设计,对部分功能进行模块化整合,设计出了数字图像处理的简易软件;最后给出了软件的帮助文件以及该简易程序的系统结构和m代码。 关键词:灰度值调整噪声图像变换 MATLAB? GUI设计

课题一:图像的灰度级分辨率调整 设计要求: 128,64,32,16,8,4,2,并在同一个figure窗将图像的灰度级分辨率调整至{} 口上将它们显示出来。 设计思路: 灰度级分辨率又称色阶,是指图像中可分辨的灰度级的数目,它与存储灰度级别所使用的数据类型有关。由于灰度级度量的是投射到传感器上的光辐射值的强度,所以灰度级分辨率又称为辐射计量分辨率。随着图像灰度级分辨率的的逐渐降低,图像中所包含的颜色数目将变得越来越少,从而在颜色维度造成图像信息量的退化。 MATLAB?提供了histeq函数用于图像灰度值的改变,调用格式如下: J = histeq(I,n) 其中J为变换后的图像,I为输入图像,n为变换的灰度值。依次改变n的值为 128、64、32、16、8、4、2 就可以得到灰度值分辨率为128、64、32、16、8、4、2 的输出图像。利用MATLAB?的subplot命令可以将不同灰度的图像放在同一个figure中方便对比。 课题实现: 该思路的MATLAB?源代码如下: in_photo=imread('lena.bmp'); %读入图片“lena.bmp”,位置在matlab当前工作区路径下D:\TempProject\Matlab\Works for i = [128,64,32,16,8,4,2] syms(['out_photo',num2str(i)]); %利用for循环定义7个变量,作为不同灰度值分辨率的输出变量 eval(['out_photo',num2str(i), '=histeq(in_photo,i)',';']); %histeq函数用于改变图像灰度值,用eval函数给变量循环赋值

小波变换的几个典型应用

第六章小波变换的几个典型应用 6.1 小波变换与信号处理 小波变换作为信号处理的一种手段,逐渐被越来越多领域的理论工作者和工程技术人员所重视和应用,并在许多应用中取得了显著的效果。同传统的处理方法相比,小波变换取得了质的飞跃,在信号处理方面具有更大的优势。比如小波变换可以用于电力负载信号的分析与处理,用于语音信号的分析、变换和综合,还可以检测噪声中的未知瞬态信号。本部分将举例说明。 6.1.1 小波变换在信号分析中的应用 [例6-1] 以含躁的三角波与正弦波的组合信号为例具体说如何利用小波分析来分析信号。已知信号的表达式为 应用db5小波对该信号进行7层分解。xiaobo0601.m 图6-1含躁的三角波与正弦波混合信号波形 分析: (1)在图6-2中,逼近信号a7是一个三角波。 (2)在图6-3中细节信号d1和d2是与噪声相关的,而d3(特别是d4)与正弦信号相关。 图6-2 小波分解后各层逼近信号 图6-3 小波分解后各层细节信号 6.1.2 小波变换在信号降躁和压缩中的应用 一、信号降躁 1.工程中,有用信号一般是一些比较平稳的信号,噪声通常表现为高频信号。2.消躁处理的方法:首先对信号进行小波分解,由于噪声信号多包含在具有较高频率的细节中,我们可以利用门限、阈值等形式对分解所得的小波系数进行处理,然后对信号进行小波重构即可达到对信号的消躁目的。 小波分析进行消躁处理的3种方法: (1)默认阈值消躁处理。该方法利用ddencmp生成信号的默认阈值,然后利用wdencmp函数进行消躁处理。 (2)给定阈值消躁处理。在实际的消躁处理过程中,阈值往往可通过经验公式获得,且这种阈值比默认阈值的可信度高。在进行阈值量化处理时可利用函数wthresh。 (3)强制消躁处理。该方法时将小波分解结构中的高频系数全部置为0,即滤掉所有高频部分,然后对信号进行小波重构。方法简单,消躁后信号比较平滑,但易丢失信号中的有用成分。 小波阈值去噪方法是目前应用最为广泛的小波去噪方法之一。 3.信号降噪的准则: 1.光滑性:在大部分情况下,降噪后的信号应该至少和原信号具有同等的光滑性。

基于Matlab的数字图像处理系统毕业设计论文

论文(设计)题目: 基于MATLAB的数字图像处理系统设计 姓名宋立涛 学号201211867 学院信息学院 专业电子与通信工程 年级2012级 2013年6月16日

基于MATLAB的数字图像处理系统设计 摘要 MATLAB 作为国内外流行的数字计算软件,具有强大的图像处理功能,界面简洁,操作直观,容易上手,而且是图像处理系统的理想开发工具。 笔者阐述了一种基于MATLAB的数字图像处理系统设计,其中包括图像处理领域的大部分算法,运用MATLAB 的图像处理工具箱对算法进行了实现,论述了利用系统进行图像显示、图形表换及图像处理过程,系统支持索引图像、灰度图像、二值图像、RGB 图像等图像类型;支持BMP、GIF、JPEG、TIFF、PNG 等图像文件格式的读,写和显示。 上述功能均是在MA TLAB 语言的基础上,编写代码实现的。这些功能在日常生活中有很强的应用价值,对于运算量大、过程复杂、速度慢的功能,利用MATLAB 可以既能快速得到数据结果,又能得到比较直观的图示。 关键词:MATLAB 数字图像处理图像处理工具箱图像变换

第一章绪论 1.1 研究目的及意义 图像信息是人类获得外界信息的主要来源,近代科学研究、军事技术、工农业生产、医学、气象及天文学等领域中,人们越来越多地利用图像信息来认识和判断事物,解决实际问题,由此可见图像信息的重要性,数字图像处理技术将会伴随着未来信息领域技术的发展,更加深入到生产和科研活动中,成为人类生产和生活中必不可少的内容。 MATLAB 软件不断吸收各学科领域权威人士所编写的实用程序,经过多年的逐步发展与不断完善,是近几年来在国内外广泛流行的一种可视化科学计算软件。MATLAB 语言是一种面向科学与工程计算的高级语言,允许用数学形式的语言来编写程序,比Basic、Fortan、C 等高级语言更加接近我们书写计算公式的思维方式,用MATLAB 编写程序犹如在演算纸上排列出公式与求解问题一样。它编写简单、编程效率高并且通俗易懂。 1.2 国内外研究现状 1.2.1 国内研究现状 国内在此领域的研究中具有代表性的是清华大学研制的数字图像处理实验开发系统TDB-IDK 和南京东大互联技术有限公司研制的数字图像采集传输与处理实验软件。 TDB-IDK 系列产品是一款基于TMS320C6000 DSP 数字信号处理器的高级视频和图像系统,也是一套DSP 的完整的视频、图像解决方案,该系统适合院校、研究所和企业进行视频、图像方面的实验与开发。该软件能够完成图像采集输入程序、图像输出程序、图像基本算法程序。可实现对图像信号的实时分析,图像数据相对DSP独立方便开发人员对图像进行处理,该产品融合DSP 和FPGACPLD 两个高端技术,可以根据用户的具体需求合理改动,可以分析黑白和彩色信号,可以完成图形显示功能。 南京东大互联技术有限公司研制的数字图像采集传输与处理实验软件可实现数字图像的采集、传输与处理。可利用软件及图像采集与传输设备,采集图像并实现点对点的数字图像传输,可以观察理解多种图像处理技术的效果和差别,

(完整版)基于matlab的数字图像处理毕业设计论文

优秀论文审核通过 未经允许切勿外传 摘要 数字图像处理是一门新兴技术,随着计算机硬件的发展,数字图像的实时处理已经成为可能,由于数字图像处理的各种算法的出现,使得其处理速度越来越快,能更好的为人们服务。数字图像处理是一种通过计算机采用一定的算法对图形图像进行处理的技术。数字图像处理技术已经在各个领域上都有了比较广泛的应用。图像处理的信息量很大,对处理速度的要求也比较高。MATLAB强大的运算和图形展示功能,使图像处理变得更加的简单和直观。本文介绍了MATLAB 语言的特点,基于MATLAB的数字图像处理环境,介绍了如何利用MATLAB及其图像处理工具箱进行数字图像处理,并通过一些例子来说明利用MATLAB图像处理工具箱进行图像处理的方法。主要论述了利用MATLAB实现图像增强、二值图像分析等图像处理。关键词:MATLAB,数字图像处理,图像增强,二值图像

Abstract Digital image processing is an emerging technology, with the development of computer in various areas on the processing speed requirement is relatively ),线性量化(liner quantization ),对数量化,MAX 量化,锥形量化(tapered quantization )等。 3. 采样、量化和图像细节的关系 上面的数字化过程,需要确定数值N 和灰度级的级数K 。在数字图像处理中,一般都取成2的整数幂,即: (2.1) (2.2) 一幅数字图像在计算机中所占的二进制存储位数b 为: *log(2)**()m N N b N N m bit == (2.3) 例如,灰度级为256级(m=8)的512×512的一幅数字图像,需要大约210万个存储位。随着N 和m 的增加,计算机所需要的存储量也随之迅速增加。 由于数字图像是连续图像的近似,从图像数字化的过程可以看到。这种近似的程度主要取决于采样样本的大小和数量(N 值)以及量化的级数K(或m 值)。N 和K 的值越大,图像越清晰。 2.2 数字图像处理概述 2.2.1 基本概念 数字图像处理(Digital Image Processing)是通过计算机对图像进行去除噪声、增强、复原、分割、提取特征等处理的方法和技术。数字图像处理的产生和迅速发展主要受三个因素的影响:一是计算机的发展;二是数学的发展(特别是离散数学理论的创立和完善);三是广泛的农牧业、林业、环境、军事、工业和医学等方面的应用需求的

(完整版)基于数字图像处理的车牌识别本科毕业论文

本科生毕业论文(设计) 题目: 基于数字图像处理的车牌识别设 计 姓 名: 周金鑫 学 院: 数理与信息工程学院 专 业: 电子信息工程 班 级: 111 学

号: 指导教师: 刘纯利职称: 教授 2014 年 12 月 24 日 安徽科技学院教务处制 目录 摘要 ....................................................................关键词 .................................................................. 1、设计目的 ............................................................. 2、设计原理: ............................................................ 3、设计步骤: ............................................................ 4、实行方案 ............................................................. 4.1. 总体实行方案:................................................... 4.2. 各模块的实现:................................................... 4.2.1输入待处理的原始图像: ....................................... 4.2.2图像的灰度化并绘制直方图: ...................................

小波变换在图像处理中的应用毕业论文概述

本科生毕业设计(论文) 题目:小波变换在图像处理中的应用姓名: 学号: 系别: 专业: 年级: 指导教师: 年月日

小波变换在图像处理中的应用 独创性声明 本毕业设计(论文)是我个人在导师指导下完成的。文中引用他人研究成果的部分已在标注中说明;其他同志对本设计(论文)的启发和贡献均已在谢辞中体现;其它内容及成果为本人独立完成。特此声明。 论文作者签名:日期: 关于论文使用授权的说明 本人完全了解华侨大学厦门工学院有关保留、使用学位论文的规定,即:学院有权保留送交论文的印刷本、复印件和电子版本,允许论文被查阅和借阅;学院可以公布论文的全部或部分内容,可以采用影印、缩印、数字化或其他复制手段保存论文。保密的论文在解密后应遵守此规定。 论文作者签名:指导教师签名:日期:

华侨大学厦门工学院毕业设计(论文) 小波变换在图像处理中的应用 摘要 近年来小波变换技术已广泛地应用于图像处理中。小波分析的基本理论包括小波包分析、连续小波变换、离散小波变换。小波变换是一种新的多分辨分析的方法,具有多分辨率和时频局部化的特性,可以同时进行时域和频域分析。因此不但能对图像提供较精确的时域定位,也能提供较精确的频域定位。经过小波变换的图像具有方向选择、多分辨率分析的特点。小波变换基于这些良好特性,在数字图像处理领域中取得良好的实际效果。本文基于小波变换研究了图像压缩、图像增强、图像去噪、图像融合、图像分解、图像重构等方法,并利用MATLAB进行仿真验证,最后,用GUI实现了人机交互,简单、易操作、美观。 关键词:小波变换,图像处理,增强,压缩,融合,去噪,分解,重构

小波变换在图像处理中的应用 The Application of Wavelet Transform in Image Processing Abstract In recent years, the technique of wavelet transform has been widely used in image processing. The basic theory of wavelet analysis, wavelet packet analysis including the continuous wavelet transform, discrete wavelet transform. Wavelet transform is a multiresolution analysis is a new method, has the characteristics of multi-resolution and time-frequency localization, both in time domain and frequency domain analysis. It can not only provide accurate positioning of the image in time domain, frequency domain can provide accurate positioning. After image wavelet transform has the characteristic of direction, multi resolution analysis. Based on the good properties of wavelet transform, obtain good actual effect in the field of digital image processing. In this paper, based on the wavelet transform of the image compression, image enhancement, image denoising, image fusion, image decomposition, image reconstruction method, and simulated by MATLAB software, finally, using GUI to achieve human-computer interaction, simple, easy operation, beautiful appearance. Keywords: Wavelet Transform, Image Processing, Enhancement, Compression, Denoising, Fusion,Decompo- sition, Reconstruction

研究生《小波理论及应用》复习题

2005年研究生《小波理论及应用》复习题 1. 利用正交小波基建立的采样定理适合于:紧支集且有奇性(函数本身或其导数不连续)的函数(频谱无限的函数)。Shannon 采样定理适合于频谱有限的信号。 2. 信号的突变点在小波变换域常对于小波变换系数模极值点或过零点。并且信号奇异性大小同小波变换的极值随尺度的变化规律相对立。只有在适当尺度下各突变点引起的小波变化才能避免交迭干扰,可以用于信号的去噪、奇异性检测、图象也缘提取、数据压缩等。 3. 信号在一点的李氏指数表征了该点的奇异性大小,α越大,该点的光滑性越小,α越小,该点的奇异性越大。光滑点(可导)时,它的1≥α;如果是脉冲函数,1-=α;白噪声时0≤α。 4. 做出三级尺度下正交小波包变换的二进数图,小波包分解过程?说明小波基与小波包基的区别? 5. 最优小波包基的概念:给定一个序列的代价函数,然后在小波包基中寻找使代价函数最小的基――最优基。 6. 双通道多采样率滤波器组的传递函数为: ()()()()()()()()()()()()()z X z G z G z H z H z X z G z G z H z H z Y z Y z Y -??????-++??????+=+=∧∧∧∧212121请根据此式给出理想重建条件: 为了消除映象()z X -引起的混迭:()()()()0=-+-∧ ∧z G z G z H z H

为了使()z Y 成为()z X 的延迟,要求:()()()()k CZ z G z G z H z H -∧∧=+ (C,K 为任一常数) 7. 正交镜像对称滤波器()()n h n g ,的()jw e G 与()jw e H 以2π=w 为轴左右对称。如果知道QMF 的()n h ,能否确定()()()n h n g n g ∧ ∧,,? ()()()n h n g n 1-= ,()()()n g n h n 1--=∧ , ()()()n h n g n 1-=∧ 8. 试列出几种常用的连续的小波基函数 Morlet 小波,Marr 小波,Difference of Gaussian (DOG ),紧支集样条小波 9. 试简述海森堡测不准原理,说明应用意义? 10. 从连续小波变换到离散小波变换到离散小波框架-双正交小波变换-正交变换、紧支集正交小波变换,其最大的特点是追求变换系数的信息冗余小,含有的信息量越集中。 11. 解释紧支集、双正交、正交小波、紧支集正交小波、光滑性、奇异性。 12. 已知共轭正交滤波器组(CQF )()n h 请列出()()()n g n h n g ∧ ∧,,。 ()()() ()()()()()()???????-=--=-=---=∧∧n h n N g n g n N h n h n N h n g n n 11 13. 共轭正交滤波器()()n g n h ,的()jw e G 与()jw e H 的关系与QMF 情况

图像处理毕业设计题目

图像处理毕业设计题目 篇一:数字图像处理论文——各种题目 长春理工大学——professor——景文博——旗下出品1基于形态学运算的星空图像分割 主要内容: 在获取星图像的过程中,由于某些因素的影响,获得的星图像存在噪声,而且星图像的背景经常是不均匀的,为星图像的分割造成了极大的困难。膨胀和腐蚀是形态学的两个基本运算。用形态学运算对星图像进行处理,补偿不均匀的星图像背景,然后进行星图像的阈值分割。 要求: 1> 图像预处理:对原始星空图像进行滤波去噪处理; 2> 对去噪后的图像进行形态学运算处理; 3> 选取自适应阈值对形态学运算处理后的图像进行二值化; 4> 显示每步处理后的图像; 5> 对经过形态学处理后再阈值的图像和未作形态学处理后再阈值的图像进行对比分析。 待分割图像直接分割图像处理后的分割图像2基于数字图像处理的印刷电路板智能检测方法 主要内容: 通过对由相机实时获取的印刷电路板图像进行焊盘识

别,从而提高电子元件的贴片质量,有效提高电路板的印刷效率。要求: 1> 图像预处理:将原始彩色印刷电路板图像转成灰度图像,对灰度图像进行背景平滑和滤波去噪; 2> 对去噪后的图像进行图像增强处理,增强边缘提取的效果。 3> 对增强后的图像进行边缘提取(至少两种以上的边缘提取算法); 4> 显示每步处理后的图像(原始电路板图像可自行查找); 5> 图像处理后要求能对每个焊盘进行边缘提取,边缘清晰。 3静止背景下的移动目标视觉监控 主要内容: 基于视觉的人的运动分析最有前景的潜在应用之一是视觉监控。视觉监控系统的需求主要来自那些对安全要求敏感的场合,如银行、商店、停车场、军事基地等。通过对静止背景下的目标识别,来提醒监测人员有目标出现。 要求: 1> 对原始参考图和实时图像进行去噪处理; 2> 对去噪后的两幅图像进行代数运算,找出目标所在位置,提取目标,并将背景置黑;

本科毕业设计论文--基于matlab数字图像处理gui设计

目录 摘要 (2) 一.数字图像概述 (3) 1.1 数字图像处理的意义 (4) 1.2 数字图像处理技术的发展 (5) 二.matlab图像处理简介 (6) 2.1 matlab简介 (6) 2.2 matlab图像界面GUI简介 (7) 三.数字图像处理软件的设计 (7) 3.1软件的总体设计 (7) 3.1.1整体界面设计 (8) 3.1.2菜单栏设计 (8) 3.2文件的读入与显示 (8) 3.3图像的保存 (9) 3.4图像的灰度处理 (9) 3.5图像二值化 (10) 3.6图像R直方图 (11) 3.7图像G直方图 (11) 3.8图像B直方图 (12) 3.9直方图均衡 (12) 3.10图像的腐蚀 (13) 四.exe文件的生成 (14) 参考文献 (15)

摘要 数字图像处理是一门新兴技术,随着计算机硬件的发展,数字图像的实时处理已经成为可能,由于数字图像处理的各种算法的出现,使得其处理速度越来越快,能更好的为人们服务。数字图像处理是一种通过计算机采用一定的算法对图形图像进行处理的技术。数字图像处理技术已经在各个领域上都有了比较广泛的应用。图像处理的信息量很大,对处理速度的要求也比较高。MATLAB强大的运算和图形展示功能,使图像处理变得更加的简单和直观。本文介绍了MATLAB 语言的特点,基于MATLAB的数字图像处理环境,介绍了如何利用MATLAB及其图像处理工具箱进行数字图像处理,并通过一些例子来说明利用MATLAB图像处理工具箱进行图像处理的方法。主要论述了利用MATLAB的GUI实现图像二值化分析等图像处理。 关键词:MATLAB,数字图像处理,GUI,二值图像

【免费下载】小波分析及其应用

科技文献检索作业 卷 试 料 小波分析及其应用 测控技术1103 雷创新

小波分析及其应用 1.小波分析的概念和特点 1.1小波理论的发展概况 20世纪80年代逐渐发展和兴起的小波分析(wavelctanalysis)是20世纪 数学领域中研究的重要杰出成果之一。小波分析理论作为数学界中一种比较成熟的理论基础,应用到了各种领域的研究当中,推动了小波分析在各工程应用中的发展。它作为一种新的现代数字信号处理算法,汲取了现代分析学中诸如样条分析、傅立叶分析、数值分析和泛函分析等众数学多分支的精华部分,替代了工程界中一直应用的傅立叶变换,它是一种纯频域分析方法,不能在时频同时具有局部化特性。而小波分析中的多尺度分析思想,犹如一台变焦照相机,可以由粗及精逐步观察信号,在局部时频分析中具有很强的灵活性,因此有“数学显微镜”的美称。它能自动随着频率增加而调节成窄的“时窗”和宽的“频窗”,又随着频率降低而调节成宽的“时窗”和窄的“频窗”以适应实际分析需要。另外,小波变换在经过适当离散后可以够成标准正交基或正交系,这些在理论和应用上都具有十分重要的意义,因此,小波分析在各个领域得到了高度的重视并取得了许多重要的成果。 小波变换作为一种数学理论和现代数字信号处埋方法在科学技术界引起了越来越多专家学者的关注和重视。在数学家看来,基于小波变换的小波分析技术是当今数值分析、泛函分析、调和分析等半个多世纪以来发展最完美的结晶,是正在发展中的新的数学分支。在工程领域,特别是在信号处理、图像处理、机器视觉、模糊识别、语音识别、流体力学、量子物理、地震勘测、电磁学、CT成像、机械故障诊断与监控等领域,它被认为是近年来在工具及方法上的重大突破。然而,小波分析虽然在众多领域中已经取得了一定的成果,但是,有专家预言小波分析理论的真正高潮并没有到来。首先,小波分析尚需进一步完善,除一维小波分析理论比较成熟以外,向量小波和多维小波则需要进行更加深入的研究与讨论;其次,针对不同情况选择不同的小波基函数,实现的效果是有差别性的这一问题,对最优小波基函数的选取方法有待进一步研究。在今后数年中,小波理论将成为科技工作者经常使用的又一锐利数学工具,极大地促进科技进步及各个领域工程应用的新发展。 小波分析的概念最早是在1974年由法国地质物理学家 J.Morlet提出的,并通过物理直观和信号处理的实际经验建立了反

基于matlab的数字图像处理本科毕业设计论文

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

数字图像处理课程设计报告

课程设计报告书 课程名称:数字图像处理 题目:数字图像处理的傅里叶变换 学生姓名: 专业:计算机科学与技术 班别:计科本101班 学号: 指导老师: 日期:2013 年06 月20 日 数字图像处理的傅里叶变换 1.课程设计目的和意义 (1)了解图像变换的意义和手段 (2)熟悉傅里叶变换的基本性质 (3)热练掌握FFT的方法反应用 (4)通过本实验掌握利用MATLAB编程实现数字图像的傅里叶变换 通过本次课程设计,掌握如何学习一门语言,如何进行资料查阅搜集,如何自己解决问题等方法,养成良好的学习习惯。扩展理论知识,培养综合设计能力。 2.课程设计内容 (1)熟悉并掌握傅立叶变换 (2)了解傅立叶变换在图像处理中的应用 (3)通过实验了解二维频谱的分布特点 (4)用MATLAB实现傅立叶变换仿真

3.课程设计背景与基本原理 傅里叶变换是可分离和正交变换中的一个特例,对图像的傅里叶变换将图像从图像空间变换到频率空间,从而可利用傅里叶频谱特性进行图像处理。从20世纪60年代傅里叶变换的快速算法提出来以后,傅里叶变换在信号处理和图像处理中都得到了广泛的使用。 3.1课程设计背景 数字图像处理(Digital Image Processing)又称为计算机图像处理,它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程。是通过计算机对图像进行去除噪声、增强、复原、分割、提取特征等处理的方法和技术。 3.2 傅里叶变换 (1)应用傅里叶变换进行数字图像处理 数字图像处理(digital image processing)是用计算机对图像信息进行处理的一门技术,使利用计算机对图像进行各种处理的技术和方法。 ? ??20世纪20年代,图像处理首次得到应用。20世纪60年代中期,随电子计算机的发展得到普遍应用。60年代末,图像处理技术不断完善,逐渐成为一个新兴的学科。利用数字图像处理主要是为了修改图形,改善图像质量,或是从图像中提起有效信息,还有利用数字图像处理可以对图像进行体积压缩,便于传输和保存。数字图像处理主要研究以下内容:傅立叶变换、小波变换等各种图像变换;对图像进行编码和压缩;采用各种方法对图像进行复原和增强;对图像进行分割、描述和识别等。随着技术的发展,数字图像处理主要应用于通讯技术、宇宙探索遥感技术和生物工程等领域。 傅里叶变换在数字图像处理中广泛用于频谱分析,傅里叶变换是线性系统分析的一个有力工具,它使我们能够定量地分析诸如数字化系统,采样点,电子放大器,卷积滤波器,噪声,显示点等地作用(效应)。傅里叶变换(FT)是数字图像处理技术的基础,其通过在时空域和频率域来回切换图像,对图像的信息特征进行提取和分析,简化了计算工作量,被喻为描述图像信息的第二种语言,广泛应用于图像变换,图像编码与压缩,图像分割,图像重建等。因此,对涉及数字图像处理的工作者,深入研究和掌握傅里叶变换及其扩展形式的特性,是很有价值得。 (2)关于傅里叶(Fourier)变换 在信号处理中,傅里叶变换可以将时域信号变到频域中进行处理,因此傅里叶变换在信号处理中有着特殊重要的地位。 傅里叶变换能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。傅里叶变换属于谐波分析。傅里叶变换的逆变换容易求出,而且形式与正变换非常类似;正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解.在线性时不变的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号

相关主题
文本预览
相关文档 最新文档