生物碱
- 格式:doc
- 大小:72.00 KB
- 文档页数:5
生物碱常见的作用
生物碱是一种含氮有机化合物,常见的作用有:
- 镇痛作用:一些生物碱具有镇痛作用,如吗啡、可卡因等。
它们可以通过与神经元的阿片受体结合,抑制疼痛传导,从而减轻疼痛感。
- 镇静作用:一些生物碱具有镇静和抗焦虑作用,如苯、海拉明和阿托品等。
它们可以通过影响神经递质的释放和受体的活性,减少神经系统的兴奋性,从而产生镇静和抗焦虑效果。
- 抗菌作用:一些生物碱具有抗菌活性,可以抑制细菌、真菌或寄生虫的生长和繁殖。
例如樟脑具有抗菌作用,常用于防腐剂和消毒剂。
- 抗炎作用:一些生物碱具有抗炎作用,可以减轻炎症反应和炎症介质的释放。
例如黄连碱具有抗炎作用,可用于治疗炎症性疾病。
- 抗肿瘤作用:一些生物碱具有抗肿瘤活性,可以抑制肿瘤细胞的增殖和生长。
例如紫杉醇是一种常用的抗肿瘤药物,具有抑制微管聚合和干扰细胞分裂的作用。
需要注意的是,部分生物碱具有毒性,如乌头碱存在于川乌、草乌、附子等植物,可以使神经兴奋,误服后可有口舌及四肢麻木,全身紧束感等表现,大剂量可导致人死亡。
对于来源不明的生物碱类物质应保持警惕,如在服用后有中毒迹象,应立刻赶往医院急诊就诊,以免造成不必要的损伤。
生物碱的概念与应用
生物碱是一类含有氮原子的有机化合物,通常存在于植物、动物等生物体内。
它们在生物体内起着重要的生理作用,具有广泛的应用价值。
以下是生物碱的概念与应用的几个方面:
1. 概念:生物碱是一类含有碱性氮原子(如吡啶环,哌啶环等)的有机化合物。
它们通常具有碱性和毒性,是生物体内的辅助代谢产物。
2. 应用:生物碱在药物、生物化学、农业等领域有着广泛的应用。
- 药物:许多生物碱具有药理活性,被广泛用于药物研发和制造。
例如,吗啉生物碱可用于制备止痛药物,奎宁生物碱是常用的抗疟疾药物成分,双香烯生物碱可用于治疗呼吸道疾病等。
- 生物化学:生物碱在生物化学研究中扮演着重要的角色。
它
们可以作为抗氧化剂、酶抑制剂、抗癌剂等来研究生物反应机制、激活或抑制生物过程等。
- 农业:在植物保护领域,生物碱具有显著的杀虫、杀菌等作用,因此被广泛应用于农药的制造。
例如,喹硫平生物碱是一种常用的杀虫剂,可用于防治水稻等作物的害虫。
总之,生物碱的应用涵盖了药物研发、生物化学研究和农业领域,对于人类的健康、科学研究和农作物保护都具有重要意义。
【最新】生物碱的研究进展
生物碱是一类具有生物活性的天然有机化合物,广泛存在于植物、动物和微生物中。
近年来,关于生物碱的研究进展如下:
1. 生物碱的化学合成:传统的生物碱提取方法受到限制,研究人员开始尝试化学合成生物碱。
近年来,许多独特和高效的化学合成方法被开发出来,并且这些方法已成功地制备出多个具有生物活性的生物碱。
2. 生物碱对疾病的治疗作用研究:生物碱在心血管疾病、肿瘤、糖尿病和炎症等疾病的治疗中越来越受到关注。
高通量筛选和分子模拟等先进技术已经用于发现新的生物碱,并且许多生物碱的药理和毒理作用已经得到了深入研究。
3. 生物碱的结构作用研究:生物碱的结构对其生物活性至关重要。
越来越多的研究表明,不同结构的生物碱具有不同的生物活性和药理特性。
因此,通过生物碱结构的修改和优化,可以设计出更有效的药物。
4. 生物碱的生产:生物碱由于其广泛的生物活性和药理作用,已成为一类非常重要的天然药物资源。
为了提高生物碱的生产效率和质量,更多的研究集中于开发新的生产技术和生产策略。
综上所述,生物碱的研究进展涵盖了化学、药理、生产等多个领域。
未来,人们将继续深入研究生物碱的特性和应用,以期开发出更多有效的药物。
生物碱促进剂作用
生物碱促进剂是一种化合物,具有能够促进植物生长和发育的作用。
它们可以影响植物的代谢、开花、果实发育、根系生长等多个方面。
1. 促进细胞分裂和伸长:生物碱促进剂可以刺激植物细胞的分裂和伸长过程,从而促进植株整体的生长。
2. 促进根系发育:生物碱促进剂可以刺激植物的根系发育,增加根毛的数量和长度,提高植物对养分和水分的吸收能力。
3. 促进开花和果实发育:生物碱促进剂对促进植物的开花和果实发育有着重要的作用。
它们可以提高植物内源激素的合成和传输,从而促进花蕾的分化和膨大,使其早熟、提高产量和品质。
4. 增强植物抗逆性:生物碱促进剂还可以增强植物的抗逆性,提高植物对病害、虫害和逆境的抵抗能力,使植物更加抵御外界环境的压力。
总的来说,生物碱促进剂的作用是通过对植物生理过程的调节,促使植物以更快的速度生长,增加产量和提高品质。
生物碱的提取和分离技术生物碱是一类植物次级代谢产物,具有广泛的药理活性和应用价值。
它们通常存在于植物体内的细胞器中,如液泡、叶绿体和线粒体等。
由于其结构和性质的多样性,生物碱的提取和分离技术也多种多样。
本文将介绍几种常用的生物碱提取和分离技术。
最常用的生物碱提取方法是溶剂提取法。
这种方法根据生物碱的性质选择合适的溶剂,在适当的温度和pH下进行溶剂萃取。
常见的溶剂有乙醇、醚、酸和水等。
通常将粉碎的植物样品与溶剂混合,在适当的时间内进行充分搅拌和浸泡,使生物碱溶解到溶剂中。
然后,通过离心、滤液等操作进行提取,最后通过蒸发溶剂或冷冻浓缩等方法得到生物碱的浓缩提取物。
萃取技术中的超声波提取法也常用于生物碱的提取。
超声波提取法利用超声波的机械振动效应和能量效应来增强溶剂对植物样品的渗透和扩散,并破坏细胞壁,使生物碱更容易溶解到溶剂中。
在超声波提取过程中,将植物样品和溶剂置于超声波清洗机中,通过超声波震荡来增加溶剂和样品之间的接触面积和质量传递速率,提高生物碱的提取效率。
色谱技术也是生物碱分离的重要手段之一。
色谱技术包括层析、气相色谱、液相色谱等。
液相色谱是最常用的生物碱分离方法之一。
在液相色谱中,根据生物碱的物理化学性质和它们与色谱柱固定相之间的相互作用选择适当的分离方法,如离子交换色谱、凝胶过滤色谱等。
这些方法通过调节流动相的性质和运行条件,从复杂的混合物中逐一分离和纯化目标生物碱。
还有一些其他分离技术,如凝胶电泳、萃取电泳、薄层色谱等。
这些技术通常用于生物碱的进一步分析和鉴定。
凝胶电泳可以根据生物碱的电荷和分子大小进行分离,萃取电泳则利用电场调控生物碱的迁移速率和方向来实现分离。
薄层色谱可以通过植物样品的吸附、分配和解吸作用分离和纯化生物碱。
生物碱的提取和分离技术有很多种,每种技术都有其特点和适用范围。
研究人员可以根据自己的需求选择合适的技术来进行生物碱的提取和分离,以便更好地研究和利用这一珍贵的植物次级代谢产物。
生物碱名词解释
生物碱是一类含有生物碱结构的化合物,也称为天然生物碱。
它们主要存在于植物和微生物中。
生物碱具有广泛的生物活性,包括抗菌、抗炎、抗肿瘤、神经活性等。
生物碱的结构特点是由一个或多个氮原子连接环状或非环状碳原子骨架形成。
根据它们的生物学活性、结构特点和来源,可以将生物碱分为多个类别,如生物碱生物合成物、兴奋剂和抗生素等。
生物碱生物合成物是由植物和微生物通过生物合成途径合成的生物碱。
这类生物碱在植物中起到响应环境应激、抵抗病原体、引诱授粉昆虫等重要生理功能。
典型的生物碱生物合成物包括莨菪碱、咖啡因、阿托品等。
兴奋剂是一类能够刺激中枢神经系统或提高机体兴奋性的生物碱。
这类生物碱具有兴奋、促进心跳、提高血压等作用。
著名的兴奋剂包括可卡因、咖啡碱等。
抗生素是一类由微生物产生的生物碱,其具有抗菌活性。
抗生素广泛用于临床医疗中,可以治疗多种感染性疾病。
典型的抗生素包括青霉素、红霉素等。
生物碱的生物活性主要是由其特定的结构所决定的。
生物碱主要通过与生物大分子(如蛋白质、核酸等)发生相互作用,干扰其正常功能而发挥药理活性。
例如,生物碱可以与DNA结合,抑制DNA的合成,从而起到抗肿瘤的作用。
当人类利用生物技术手段从植物和微生物中提取、分离和合成生物碱时,可以应用于药物研发和合成化学等领域。
生物碱的研究对于开发新型药物、研究生物活性重要靶点以及理解生物机制具有重要作用。
总之,生物碱是一类具有多种生物活性的化合物,它们含有特定的结构特点,并具有广泛的应用前景。
生物碱植物
生物碱是一类含氮的碱性有机化合物,广泛存在于各种植物体内,它们对植物有着多方面作用,同时不少还具备重要药用价值,以下是常见含生物碱的植物介绍:
罂粟:罂粟科罂粟属植物,它含有多种生物碱,像吗啡、可待因、蒂巴因等。
吗啡有强力的镇痛效果,是临床上缓解剧痛的关键药物;可待因常用于镇咳,能抑制咳嗽中枢起到止咳作用,但罂粟也是制取毒品的主要原料,受到严格管控。
古柯:古柯科古柯属的灌木或小乔木,原产于南美洲安第斯山区。
古柯叶里富含可卡因生物碱,有局部麻醉止痛的功效,也是毒品可卡因的原植物,如今,为防非法流入制毒渠道,古柯的种植与使用被严格规范。
麻黄:麻黄科麻黄属的草本植物,主要生物碱是麻黄碱与伪麻黄碱。
麻黄碱能兴奋交感神经,起到平喘、缓解鼻黏膜充血的效果,被广泛应用于感冒药与平喘药物的制作中,不过,由于它可被用于提取制作冰毒,受到严格监管。
黄连:毛茛科黄连属的多年生草本,黄连中的黄连素(小檗碱)含量颇高。
黄连素具有显著抗菌消炎能力,对痢疾杆菌、大肠杆菌等肠道致病菌有抑制作用,所以常被用于治疗肠道感染、腹泻等疾病。
长春花:夹竹桃科长春花属植物,含有长春碱、长春新碱等生物碱。
这些生物碱是非常重要的抗肿瘤药物,能抑制癌细胞分裂,用于白血病、淋巴瘤等多种癌症的化疗方案。
金鸡纳树:茜草科金鸡纳属的乔木,树皮内的奎宁生物碱极为关键,奎宁是最早用于治疗疟疾的特效药,曾经在全球疟疾防治历程里立下汗马功劳,直至今日,依旧是抗疟药物体系里的重要成员。
生物碱的分类
生物碱是存在于自然界(主要为植物,但有的也存在于动物)中的一类含氮的碱性有机化合物,有似碱的性质,所以过去又称为赝碱。
大多数有复杂的环状结构,氮素多包含在环内,有显著的生物活性,是中草药中重要的有效成分之一。
具有光学活性。
有些不含碱性而来源于植物的含氮有机化合物,有明显的生物活性,故仍包括在生物碱的范围内。
而有些来源于天然的含氮有机化合物,如某些维生素、氨基酸、肽类,习惯上又不属于“生物碱"。
按照生物碱的基本结构,已可分为60类左右。
主要有以下类型:
1、有机胺类,如麻黄碱、益母草碱、秋水仙碱。
2、吡咯烷类,如古豆碱、千里光碱、野百合碱。
3、吡啶类,如菸碱、槟榔碱、半边莲碱。
4、异喹啉类,如小檗碱、吗啡、粉防己碱。
5、吲哚类,如利血平、长春新碱、麦角新碱。
6、莨菪烷类,如阿托品、东莨菪碱。
7、咪唑类,如毛果芸香碱。
8、喹唑酮类,如常山碱。
9、嘌呤类,如咖啡碱、茶碱。
10、甾体类,如茄碱、浙贝母碱、澳洲茄碱。
11、二萜类,如乌头碱、飞燕草碱。
12、其他,如加兰他敏、雷公藤碱。
第九章 生物碱 第一节 概 述 一、生物碱的定义 指天然产的一类含氮的有机化合物; 多数具有碱性且能和酸结合生成盐; 大部分为杂环化合物且氮原子在杂环内; 多数有较强的生理活性。 下列除外: 低分子胺类:甲胺、乙胺; 氨基酸、氨基糖、肽类、蛋白质、核酸、核苷酸、卟啉类、维生素; 生物碱是含负氧化态氮原子、存在于生物有机体中的环状化合物。主要分布在植物界。 生物合成研究表明生物碱来源于前体氨基酸、甲戊二羟酸和醋酸酯等。 三、生物碱的存在形式 1.游离碱:碱性极弱,以游离的形式存在。 2.盐 类:与其成盐的有机酸有:柠檬酸、酒石酸等;特殊的酸类:乌头酸、绿原酸等;无机酸:硫酸、盐酸等。 3.苷 类:以苷的形式存在于植物中。 4.酰 胺:如秋水仙碱、喜树碱等。 5.N-氧化物:植物体中的氮氧化物约一百余种。 此外,还有氮杂缩醛类、烯胺、亚胺等。 第四节 生物碱的理化性质 (一)性状 1.形态:多数生物碱呈结晶形固体,有些为非晶形粉末状;少数生物碱为液体状态,这类生物碱分子中多无氧原子,或氧原子结合为酯键,个别生物碱具有挥发性,如麻黄碱;极少数生物碱具有升华性,如咖啡因。 2.味道:大多数生物碱具苦味,少数生物碱具有其它味道,如甜菜碱为甜味。 3 .颜色:绝大多数生物碱无色,仅少数具有较长共轭体系结构的生物碱呈不同的颜色。如小檗碱和蛇根碱显黄色,小檗红碱显红色。 (二)旋光性 凡是具有手性碳原子或本身为手性分子的生物碱,则具有旋光性。反之则无,如小檗碱没有旋光性。 生物碱的旋光性受溶剂、pH等因素的影响。如麻黄碱在氯仿中呈左旋光性,而在水中则呈右旋光性;烟碱在中性条件下呈左旋光性,而在酸性条件下则呈右旋光性;有的生物碱游离状态与其成盐状态的旋光性也有不同,如长春碱游离时为右旋光性,其硫酸盐为左旋光性。 生物碱的生理活性与其旋光性有关。通常左旋体的生理活性比右旋体强。 (三)溶解性 生物碱类成分的结构复杂,其溶解性有很大差异,与其分子中N原子的存在形式、极性基团的有无、数目以及溶剂等密切相关。 绝大多数叔胺碱和仲胺碱属于亲脂性生物碱。 水溶性生物碱数目较少,主要指季胺碱型生物碱,也包括一些分子量较小的叔胺碱或仲胺碱。 (四)生物碱的检识 在生物碱的预试、提取、分离和结构鉴定中,常常需要一种简便的检识方法。最常用的是生物碱的沉淀反应和显色反应。 1.生物碱的沉淀反应: 生物碱的沉淀反应是利用大多数生物碱在酸性条件下,与某些沉淀剂反应生成弱酸不溶性复盐或络合物沉淀。 碘化铋钾试剂 KBiI4 黄至橘红色沉淀 碘-碘化钾试剂 KI•I2 红棕色沉淀 2)净化处理: 为了避免其干扰,可将酸水也碱化后,用氯仿萃取,除去水溶性干扰成分,然后用酸水从氯仿中萃取出生物碱,以此酸水液进行沉淀反应。 需要注意的问题 ①极少数生物碱不能与一般生物碱沉淀试剂产生反应。如麻黄碱、咖啡碱与多数生物碱沉淀试剂不能发生反应,因而只能用其它检识反应鉴别; ②中药中有些非生物碱类物质也能与生物碱沉淀试剂产生沉淀反应,如蛋白质、多糖、氨基酸、鞣质等。因此制备共试品溶液时,需要净化处理除去这些物质,避免其干扰而导致错误的结论。 2.显色反应 某些生物碱单体能与一些以无机酸为主的试剂反应生成具有颜色的产物,不同的生物碱产生不同的特征颜色,这种试剂称为生物碱的显色试剂。 (1)生物碱显色试剂的种类: 试剂名称 试剂组成 颜色特征 Macquis试剂 含少量甲醛的浓硫酸 吗啡紫红色 Frohde试剂 1%钼酸钠(铵)的浓硫酸溶液 小檗碱棕绿色 Mandelin试剂 1%钒酸铵的浓硫酸溶液 莨菪碱红色
(五)生物碱的化学性质和反应 1.碱性: (1)碱性的产生及其强度表示: 生物碱分子中都含有氮原子,其氮原子上的孤电子对能接受质子而显碱性。碱性是生物碱的重要性质。通常以酸式离解指数pKa表示。 碱性强度与pKa值关系: pKa2(极弱碱)、pKa 27(弱碱)、pKa 712(中强碱)、pKa 12(强碱)。 碱性基团的pKa值大小顺序一般是: 胍基季胺碱(pKa 11)脂胺类,脂氮杂环类(pKa 811)芳胺类,芳氮杂环类(pKa 37)两个以上的氮杂环类(pKa 3) 酰胺基。 (2)碱性与分子结构的关系 生物碱的碱性强弱与氮原子的杂化度、诱导效应、诱导-场效应、共轭效应、空间效应以及分子内氢键形成等有关。 1)氮原子的杂化度:生物碱分子中氮原子孤电子对处于杂化轨道中,其碱性强度随杂化度升高而增强,即sp3sp2sp。 2)诱导效应:生物碱分子中氮原子上电荷密度受到分子中供电基(如烷基等)和吸电基(如芳环、酰基、醚键、双键、羟基等)诱导效应的影响。供电基使电荷密度增多,碱性变强;吸电基则降低电荷密度。 3)诱导-场效应:生物碱分子中同时含有两个氮原子时,即使其处境完全相同,碱度总是有差异的。氮原子之间产生两种碱性降低效应:诱导效应和静电效应。前者通过碳链传递,且随碳链增长而渐降低。后者则通过空间直接作用,故又称为直接效应。二者可统称为诱导-场效应。 4)共轭效应:若生物碱分子中氮原子孤电子对成p-共轭体系时,通常情况下,其碱性较弱。生物碱中常见的p-共轭效应主要有三种类型:苯胺型、烯胺型和酰胺型。 5)空间效应:尽管质子的体积较小,但生物氮原子质子化时,仍受到空间效应的影响,使其碱性增强或减弱。 6)分子内氢键形成:分子内氢键形成对生物碱碱性强度的影响颇为显著。 对具体化合物,必须综合考察。一般来说,空间效应和诱导效应共存时,前者居于主导地位。诱导效应和共轭效应共存时,往往后者为大。 2.成盐 绝大多数生物碱可与酸形成盐类。 对质子化来说,仲胺、叔胺生物碱成盐时,质子多结合于氮原子上。 但是,对以季胺碱、氮杂缩醛、烯胺以及具有涉及氮原子的跨环效应形式存在的生物碱,质子化则往往并非发生在氮原子上。 3.涉及氮原子的氧化 (1)—氧化成亚胺及其盐类:某些生物碱与Hg(Ac)2 作用,生成亚胺化合物。 (2)N-去烷基化:托品类生物碱和某些苄基四氢异喹啉类生物碱多具N-甲基,而二萜生物碱多为N-乙基。有时需要通过氧化进行N-去烷基化。常用的氧化剂有KMnO4、Hg(OAc)2、Ag2O、CrO3/pyr等。 (3)酰胺化:许多生物碱均可被KMnO4、Hg(OAc)2、K3Fe(CN)6等氧化形成酰胺衍生物。 (4)氮杂缩醛形成:某些特定结构的生物碱,可被氧化剂如KMnO4、Hg(OAc)2等氧化形成氮杂缩醛衍生物。 除上述外,生物碱在H2O2、过氧酸等作用下,氧化成N-氧化物。 4.C-N键的裂解反应 生物碱分子中C-N键的裂解是非常重要的化学反应,其裂解方法主要有:霍夫曼降解、Emde降解和von Braun三级胺降解。 (1)霍夫曼降解(Hofmann degradation):又称彻底甲基化,是最重要的C-N键 裂解反应。 霍夫曼降解就是指胺(伯、仲、叔)与CH3I等作用形成具有-H的季铵盐后,再与碱加热发生-H消除(或称1,2-消除),生成水、烯和胺的反应。 第五节 生物碱的提取分离 (一)总生物碱的提取 总生物碱的提取方法有:溶剂法、离子交换法、沉淀法。 1.溶剂法 (1)水或酸水-有机溶剂提取法: (2)醇-酸水-有机溶剂提取法: (3)碱化-有机溶剂提取法: (4)其他溶剂法: 2.离子交换树脂法 将酸水液与阳离子交换树脂(多用磺酸型)进行交换,以与非生物碱成分分离。 3.沉淀法 季胺生物碱因易溶于碱水中,除离子交换树脂法外,往往难于用一般溶剂将其提取出来。此时常采用沉淀法进行提取。以雷氏铵盐P381 第八章 甾体及其苷类 甾体又名类固醇化合物(steroids),因其结构中都具有环戊烷骈多氢菲的甾核. 在甾体母核上,大都存在C3羟基,可和糖结合成苷。而C17侧链有显著差别,根据C17侧链结构的不同,可将天然甾类分为不同类型。 甾体化合物 C21甾类(侧链为羟甲基衍生物) 强心苷类(侧链为不饱和内酯环) 甾体皂苷类(侧链为含氧螺杂环) 第二节 甾体化合物 一、C21甾体化合物 (一)定义 C21甾(C21-steroides)是一类含有21个碳原子的甾体衍生物,植物中分离出的C21甾类都是以孕甾烷(pregnane)或其异构体为基本骨架。是目前广泛应用于临床的一类重要药物,具有抗炎、抗肿瘤、抗生育等方面生物活性。 (二)存在形式 C21甾苷类大都与皂苷、强心苷共存于中药中如洋地黄叶和种子中,含有强心苷、皂苷及C21甾苷(称为洋地黄醇苷或洋地黄醇苷类)。其无强心作用,水解可生成糖及苷元。 二.理化性质 1.共性:大都是结晶形化合物;一般亲脂性较强(分子中往往存在酯键)。C21甾苷类水溶性增大。 第三节 强心苷类 (侧链为不饱和内酯环) 一、概述 强心苷(cardiac glycosides)是存在于植物中具强心作用的甾体苷类化合物,在十几科的几百种植物中含有该类化合物,尤其在玄参科和夹竹桃可植物中最多。 主要用以治疗充血性心力衰竭及节律障碍等心脏疾患,如西地兰、地高辛、毛地黄毒苷等。 三、理化性质 1、性质 性状:大都是结晶形化合物;一般亲脂性较强(分子中往往存在酯键)。可溶于石油醚、乙醚等亲脂性溶剂中,不溶于水 内酯环:遇碱开环,遇酸环合. 双键:氧化得羰基化合物。 叔羟基:脱水得次生脱水苷元。 异构化等其他 4、强心苷的提取分离 提取:溶剂法.铅盐法.吸附法 分离:液-液萃取法.逆流分配法.色谱法 第四节 甾体皂苷类 (侧链为含氧螺杂环) 甾体皂苷(Steroidal saponins)是一类由螺烷甾(Spi-rostanes)类化合物与糖结合的苷,主要分布在薯蓣科、百合科、玄参科、菝契科、龙舌兰等科植物中。 地奥心血康胶囊