当前位置:文档之家› 国内外转基因农作物研发进展_彭永刚

国内外转基因农作物研发进展_彭永刚

国内外转基因农作物研发进展_彭永刚
国内外转基因农作物研发进展_彭永刚

植物生理学报 Plant Physiology Journal 2013, 49 (7): 611~614611

收稿 2013-04-23 修定 2013-05-20

资助 转基因生物新品种培育重大专项(2011ZX08001-001和

2013ZX08012-002)。

* 通讯作者(E-mail: zzhu@https://www.doczj.com/doc/fd13321395.html,; Tel: 010-********)。

国内外转基因农作物研发进展

彭永刚, 张磊, 朱祯*

中国科学院遗传与发育生物学研究所植物基因组学国家重点实验室, 国家植物基因研究中心(北京), 北京100101

摘要: 发展转基因技术可以更好地应对我国农业上面临的耕地减少、水资源缺乏等诸多问题, 然而转基因技术却引起了广泛的争议。本文综述了国内外转基因农作物的研发进展, 以及我国转基因产业化等问题, 阐述了应用先进技术对我国农业可持续发展以及确保粮食安全的重要作用。同时, 本文概括了我国在基因组学研究和基因挖掘上取得的重要进展, 以及我国转基因产业化已经具备的发展条件。本文还对未来我国种业尤其是生物技术种业的发展做出展望。关键词: 转基因作物; 转基因技术; 产业化

A Review on Research and Development of Transgenic Crops

PENG Yong-Gang, ZHANG Lei, ZHU Zhen *

State Key Laboratory of Plant Genomics, National Plant Gene Research Center (Beijing), Institute of Genetics and Developmen-tal Biology, Chinese Academy of Sciences, Beijing 100101, China

Abstract: Development of transgenic technology helps to deal with China's agricultural challenges such as the reduction of arable land, and water scarcity etc. However, bio-safety involved in transgenic technology has aroused widespread controversy. This paper reviewed the progress in research and development of transgenic crops, and commercialization of transgenic crops both in China and abroad. Meanwhile, the paper brie ? y sum-marized the research progress that has been made in genome sequencing and functional genomics in China, and discussed future prospects of seed industry, especially biotechnology seed industry in China.Key words: transgenic crop; transgenic technology; commercialization 1 我国农业的主要问题及解决途径

目前, 我国农业面临着三方面的重大挑战。首先耕地锐减, 人均耕地面积不足世界平均水平的40%。其次, 水资源匮乏, 人均水资源占有率只有世界平均水平的25%左右。再次, 病虫害、旱涝等自然灾害频发, 环境恶化。

发展转基因技术可以有效地缓解或解决这些问题。第一, 转基因农作物品种能够显著提高农作物产量, 改善农产品的品质, 确保我国的粮食安全。第二, 进行抗性的转基因育种还可以降低农药、化肥的施用量, 确保我国农业的生态安全。第三, 通过开发功能性和治疗性的食品, 可以提高农产品的附加值, 增加农民的收入。第四, 通过对转基因技术的研究、创新, 可以建立我国自己的生物技术研发体系, 提高我国在这方面的国际竞争力。

2 转基因农作物国际研发进展

国际上对转基因农作物的研究已有30年历

史。1983年, 第一例转外源基因植物(烟草)获得成功(Zambryski 等1983); 1987年, 第一例转基因植物(转基因抗虫番茄)田间试验在美国进行; 1994年, 转基因番茄上市; 1996年, 全球转基因作物种植面积已达160万公顷; 到了2012年, 种植面积达1亿7千万公顷, 约30个国家正式批准种植转基因农作物, 从1996年到2012年, 累计种植面积达15亿公顷(International Service for the Acquisition of Agri-biotech Applications, https://www.doczj.com/doc/fd13321395.html,/resources/publications/briefs/default.asp)。

目前, 美国是种植转基因作物面积最大的国家, 面积达6 950万公顷, 其后依次为巴西、阿根廷、加拿大、印度和中国。2012年我国转基因作

植物生理学报612

物种植面积为4百万公顷, 而且近十年来, 种植面积增长趋缓, 而印度、美国、阿根廷等国家均在稳步上升。2012年全球转基因作物种植面积最大的是大豆, 有八千多万公顷, 主要是抗除草剂转基因大豆, 其次是转基因玉米, 再次是转基因棉花和油菜。2012年全球大豆的播种面积的81%、棉花播种面积的81%、玉米播种面积的35%和油菜播种面积的30%都种植着转基因的品种(International Service for the Acquisition of Agri-biotech Applica-tions, https://www.doczj.com/doc/fd13321395.html,/ resources/publications/ briefs/default.asp)。近期将要陆续推广的一些转基因品种包括转基因抗旱玉米、转基因氮高效利用玉米, 以及富含β-胡萝卜素的金水稻。

转基因作物带来了巨大的经济效益和社会效益, 大幅度提高了农业生产力。在1996到2011年期间, 作物产量增加估计达到982亿美元; 同时, 少用杀虫剂4.73亿千克; 在2011年减少231亿千克二氧化碳的排放, 有非常好的环境效益(International Service for the Acquisition of Agri-biotech Applica-tions, https://www.doczj.com/doc/fd13321395.html,/resources/publications/ briefs/default.asp)。

转基因农作物的广泛应用促进了农业生物技术产业的形成, 彻底改变了种业的产业结构, 大规模的并购与重组已于上世纪末本世纪初完成, 种业已由原先的单一的种子经营过度到了育繁推一体化的经营模式。新技术的应用使种业的产业凝聚度大幅度提升, 世界上最大的三家种业公司在全球种子市场上占有份额已从1996年8%左右提高到2010年的35%。种业的国际化趋势日趋明显, 跨国公司加速了全球种子市场的瓜分。

3 我国转基因农作物发展现状

我国转基因农作物的研发总体上可以分为两个时期。第一个时期, 从1986年到2000年, 目标是追踪世界科技前沿, 有所为有所不为, 研究内容主要是基因克隆、植物转化和转基因农作物的大田试验。第二个时期, 从2001年至今, 我国开展了自主创新研发, 主要的研究内容是转基因农作物的商业化生产, 以及基因组测序和通过组学的手段进行基因克隆的研究。经过这两个时期的发展和积淀, 未来我国将要进行源头的、根本性的创新。

我国批准商业化生产的首批转基因品种包括: 抗病毒番茄、耐储存番茄、抗病毒甜椒、改变花色的矮牵牛以及抗虫棉。其中抗虫棉在商业化用途上成效显著。2008年我国转基因抗虫棉种植面积已占全国总植棉面积的72%。我国自行研制的转基因抗虫棉占抗虫棉推广面积的百分比也由1999年的7%增长到2008年的93%。1999年到2008年, 我国累计推广转基因抗虫棉2.2亿亩, 受益农户超过3 000万户, 减少农药80%以上, 减少的农药使用量约为4.5万吨。平均每亩增收节支220元, 累计为国家和棉农增收节支大约400亿元人民币(郭三堆研究员提供), 这些收益远远超过了国家对农业生物技术研究的总投入。

另外, 我国在转基因抗虫水稻研制方面处于世界领先水平, 目前已经通过了安全审批, 等待产业化。另一个重要的转基因农作物——转植酸酶玉米, 也已经通过了我国转基因安全审批。抗鳞翅目害虫的转基因杨树和转基因抗病毒的番木瓜也已获批进行商业化应用。

此外, 我国自行研制的生产人血清蛋白和品质改良的转基因稻米、抗虫或抗旱的转基因玉米、抗黄花叶病毒或抗旱的小麦、品质改良的转基因棉花、抗除草剂的转基因大豆等优良转基因作物已完成了产业化前期的工作。

4我国农作物重要基因的发现与克隆

转基因农作物的核心知识产权是基因专利。如果转基因没有基因的自主知识产权, 转基因产业就无法很好的发展。我国在新的农作物重要功能基因的发掘与克隆方面取得了重要进展。已经克隆的基因有决定水稻高产性状的理想株型基因IP A1 (Jiao等2010), 决定水稻籽粒长宽比例的gl-7(t)基因, 决定稻穗夹角角度的EP2基因(Zhu等2010), 水稻穗形态相关的DEP1基因(Huang等2009b), 耐旱相关的OsKIPa基因(Hou等2009), 与株高、产量、穗粒数相关的Ghd7基因(Xue等2008), 与穗发育(Wu等2008)、广亲和性相关基因(Chen等2008; Long等2008)等, 以及抗稻飞虱的Bph14基因(Yang 等2004), 抗水稻重要病害水稻细菌白叶枯病的Xa26基因(Sun等2004)。

5 我国的作物基因组学研究

近些年我国在作物基因组学研究也取得了重大进展。首先, 我国参与了国际水稻基因组计划,

彭永刚等: 国内外转基因农作物研发进展613

完成了粳稻‘日本晴’四号染色体的精确测序和功能解析工作(Feng等2002); 同期我国独立完成了籼稻‘93-11’的基因组草图(Yu等2002)和完成图(Yu等2005), 标志着我国农业基因组学已经进入了世界基因组学研究的前列。2002年以后, 中国的科学家独立或者通过国际合作完成了其他许多重要作物的基因组测序, 包括马铃薯(Potato Genome Se-quencing Consortium等2011)、大豆(Lam等2010)、黄瓜(Huang等2009a)、杨树(Tuskan等2006)和番茄(Tomato Genome Consortium 2012), 以及近期完成的小麦D基因组(Jia等2013)和A基因组(Ling等2013)的测序工作; 同时, 包括其他一些生物像鹅、朱鹮、血吸虫(Y oung等2012)、鲤鱼、仓鼠(Xu等2011)等(科学网, https://www.doczj.com/doc/fd13321395.html,/)。

基因组研究的核心竞争力是生物信息学, 这不仅需要大量的测序工作, 还需要高性能计算机和高效率算法。在这方面我国已经具备了上述基因组研究的核心竞争力, 深圳华大基因研发中心现在已经成为世界最大的基因组测序中心。引领本世纪世界未来发展的两大技术是生物技术和信息技术。《第三次浪潮》的作者托夫勒曾指出, 在新的机遇面前, 发展中国家和发达国家在同一起跑线上。在高新技术领域世界格局将重新洗牌, 只要抓住机遇我国完全可以赶超世界领先水平。

6 我国转基因产业化展望

从克隆基因到获得转基因植物, 最后育成可用于生产的农作物新品种是一个复杂的过程。目前我国在DNA测序、组学研究、以及转基因技术和分子育种各个环节上均取得了重要进展。问题在于如何将这些技术环节形成完整的技术链条和产业化链条, 并最终实现转基因作物的产业化。

抗虫棉是应用成功的一个例子。我国批准商业化的抗虫棉是分别由我国和美国孟山都公司自行研制的。在1997年我国自行研制的抗虫棉仅占抗虫棉推广面积的一小部分, 孟山都的占绝大部分。但到了2008年, 我国的品种已占主导地位, 全面超过了国外产品。其中重要原因是我国结合使用了三系杂交棉技术和抗虫棉技术, 产量增加了20%以上, 棉花纤维质量明显提高, 种子成本也明显降低, 因此具有了国际竞争力。从这个例子可看出, 在对待国际竞争时, 我们一定要正面积极应对。只有发展我国自己的转基因产业才是正确的应对措施, 通过引进、消化、模仿、吸收、自主研发和进一步创新以增强我国的科技竞争力。担心国外的竞争而拒绝采用新技术最终将会导致我国种业彻底“崩盘”, 那将是任何人都不愿见到的结果。

另一个例子是我国的大豆种植业。1995年国际上大规模培育和应用转基因作物的前夕, 我国年生产大豆1 600万吨, 美国年生产量为6 000多万吨。2012年美国年生产量提高到8 000多万吨, 而我国则降到1 260万吨, 在此期间, 另外两个主要大豆生产国阿根廷和巴西的产量增加了2~3倍(美国农业部, https://www.doczj.com/doc/fd13321395.html,/cropexplor-er/)。以上3个主要大豆生产国均大规模采用了转基因大豆, 不但增加了产量, 同时还降低了生产成本, 从而更具国际竞争力。1996年以前, 我国是纯大豆出口国, 而现在最高的时候需进口大豆5 838万吨, 是我国大豆产量的4倍(海关总署, http:// www. https://www.doczj.com/doc/fd13321395.html,/publish/portal0/)。国外廉价大豆价格冲击了我国大豆市场, 并导致我国榨油产业70%~80%的榨力被外国公司所控制。

未来, 企业将是转基因农作物育种研发、投资和应用推广的主体。我国连续两年中央一号文件都提到了种业问题, 而且特别地强调转基因和生物技术育种; 同时, 2011年国务院的八号文件也明确了关于种业发展的意见, 这些重大决策将有效地推动我国种业的发展。尽管我国农业生物技术和种业面临着挑战, 但同样也存在着重大机遇, 我们坚信, 未来我国生物种业将有一个巨大的发展。

参考文献

Chen J, Ding J, Ouyang Y, Du H, Yang J, Cheng K, Zhao J, Qiu S, Zhang X, Yao J et al (2008). A triallelic system of S5 is a major regulator of the reproductive barrier and compatibility of indica-japonica hybrids in rice. Proc Natl Acad Sci USA, 105 (32): 11436~11441

Feng Q, Zhang Y, Hao P, Wang S, Fu G, Huang Y, Li Y, Zhu J, Liu Y, Hu X et al (2002). Sequence and analysis of rice chromosome 4.

Nature, 420 (6913):316~320

Hou X, Xie K, Yao J, Qi Z, Xiong L (2009). A homolog of human ski-interacting protein in rice positively regulates cell viability and stress tolerance. Proc Natl Acad Sci USA, 106 (15):6410~6415 Huang S, Li R, Zhang Z, Li L, Gu X, Fan W, Lucas W J, Wang X, Xie B, Ni P et al (2009a). The genome of the cucumber, Cucumis sativus L. Nat Genet, 41 (12):1275~1281

植物生理学报614

Huang X, Qian Q, Liu Z, Sun H, He S, Luo D, Xia G, Chu C, Li J, Fu X (2009b). Natural variation at the DEP1 locus enhances grain yield in rice. Nat Genet, 41 (4):494~497

Jia J, Zhao S, Kong X, Li Y, Zhao G, He W, Appels R, Pfeifer M, Tao Y, Zhang X et al (2013). Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature, 496 (7443):91~95

Jiao Y, Wang Y, Xue D, Wang J, Yan M, Liu G, Dong G, Zeng D, Lu Z, Zhu X et al (2010). Regulation of OsSPL14 by OsmiR156 de-? nes ideal plant architecture in rice. Nat Genet, 42 (6):541~544 Lam HM, Xu X, Liu X, Chen W, Yang G, Wong FL, Li MW, He W, Qin N, Wang B et al (2010). Resequencing of 31 wild and cul-tivated soybean genomes identi? es patterns of genetic diversity and selection. Nat Genet, 42 (12):1053~1059

Ling HQ, Zhao S, Liu D, Wang J, Sun H, Zhang C, Fan H, Li D, Dong L, Tao Y et al (2013). Draft genome of the wheat A-genome progenitor Triticum urartu. Nature, 496 (7443):87~90

Long Y, Zhao L, Niu B, Su J, Wu H, Chen Y, Zhang Q, Guo J, Zhuang C, Mei M et al (2008). Hybrid male sterility in rice controlled by interaction between divergent alleles of two adjacent genes. Proc Natl Acad Sci USA, 105 (48):18871~18876

Potato Genome Sequencing Consortium, Xu X, Pan S, Cheng S, Zhang B, Mu D, Ni P, Zhang G, Yang S, Li R et al (2011). Ge-nome sequence and analysis of the tuber crop potato. Nature, 475 (7355):189~195

Sun X, Cao Y, Yang Z, Xu C, Li X, Wang S, Zhang Q (2004). Xa26, a gene conferring resistance to Xanthomonas oryzae pv. oryzae in rice, encodes an LRR receptor kinase-like protein. Plant J, 37 (4): 517~527

Tomato Genome Consortium (2012). The tomato genome sequence provides insights into ? eshy fruit evolution. Nature, 485 (7400): 635~641

Tuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N, Ralph S, Rombauts S, Salamov A et al (2006).

The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science, 313 (5793):1596~1604

Wu C, You C, Li C, Long T, Chen G, Byrne ME, Zhang Q (2008).

RID1, encoding a Cys2/His2-type zinc ? nger transcription fac-tor, acts as a master switch from vegetative to ? oral development in rice. Proc Natl Acad Sci USA, 105 (35):12915~12920

Xu X, Nagarajan H, Lewis NE, Pan S, Cai Z, Liu X, Chen W, Xie M, Wang W, Hammond S et al (2011). The genomic sequence of the Chinese hamster ovary (CHO)-K1 cell line. Nat Biotechnol, 29

(8):735~741

Xue W, Xing Y, Weng X, Zhao Y, Tang W, Wang L, Zhou H, Yu S, Xu C, Li X et al (2008). Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet,

40 (6):761~767

Yang H, You A, Yang Z, Zhang F, He R, Zhu L, He G (2004). High-resolution genetic mapping at the Bph15 locus for brown plan-thopper resistance in rice (Oryza sativa L.). Theor Appl Genet, 110 (1):182~191

Young ND, Jex AR, Li B, Liu S, Yang L, Xiong Z, Li Y, Cantacessi C, Hall RS, Xu X et al (2012). Whole-genome sequence of Schisto-soma haematobium. Nat Genet, 44 (2):221~225

Yu J, Hu S, Wang J, Wong GK, Li S, Liu B, Deng Y, Dai L, Zhou Y, Zhang X et al (2002). A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science, 296 (5565):79~92

Yu J, Wang J, Lin W, Li S, Li H, Zhou J, Ni P, Dong W, Hu S, Zeng C et al (2005). The genomes of Oryza sativa: a history of duplica-tions. PLoS Biol, 3 (2):e38

Zambryski P, Joos H, Genetello C, Leemans J, Van Montagu M, Schell J (1983). Ti plasmid vector for the introduction of DNA into plant cells without alteration of their normal regeneration capacity. EMBO J, 2 (12):2143

Zhu K, Tang D, Yan C, Chi Z, Yu H, Chen J, Liang J, Gu M, Cheng Z (2010). Erect panicle2 encodes a novel protein that regulates panicle erectness in indica rice. Genetics, 184 (2):343~350

转基因研究的现状及发展

转基因研究的现状及发展 转基因作物是当今世界各国现代生物技术产业研究的热点,中国的转基因生物技术发展一、我国转基因作物的发展现状迅速,由于科学界对转基因作物对人类及生态环世界上最早的转基因作物诞生于年,是一境利与弊的争论,措政府应制定相应的政策、施对到种含有抗生素药类抗体的烟草。世纪年代,其进行安全管理。本文论述了转基因作物在国际农业生物技术已逐渐成为各国现代生物技术产业研国内的发展现状,分析了转基因作物对人类及生态环境的利与弊以及关于我国转基因作物安全管究的热点。 转基因技术的应用 1.在畜牧兽医中的应用 应用于动物抗病育种转基因技术可以用于动物抗病育种,通过克隆特定基因组中的某些编码片段,对之加以一定形式的修饰以后转入畜禽基因组,如果转基因在宿主基因组能得以表达,那么畜禽对该种病毒的感染应具有一定的抵抗能力,或者应能够减轻该种病毒侵染时对机体带来的危害。(其用于遗传育种,不仅可以加速改良的进程,使选择的效率提高,改良的机会增多,并且不会受到有性繁殖的限制。)例如Clements等将绵羊髓鞘脱落病毒的表壳蛋白基因转入绵羊,获得的转基因动物抗病力明显提高;丘才良把一种寒带比目鱼抗冻基因成功地转移到大西洋鲑中,为提高某些鱼类的抗寒能力做了积极的尝试。 2.在医学领域中的应用 用于生产药用蛋白用转基因动物的乳腺生产重组蛋白(乳腺生物反应器)可能是转基因动物的最大应用,这也是世界范围内转基因研究的热点之一。Swamdom (1992)用β-球蛋白的4个核酸酶I的高敏位点与人的两个基因相连,融合基因产生的转基因猪与鼠的原型相似。目前,把转基因动物当作生物反应器来生产药用蛋白已经受到国际社会的极大关注,不仅各国政府投资,一些私人集团也不惜投入大量资金加以研究和开发。 3.转基因的应用存在的问题及展望 (1)转基因表达水平低,许多转基因的表达强烈地位受着其宿主染色体上整合位点的影响,往往出现异位表达和个体发育不适宜阶段表达,影响转基因表达能力或基因表达的组织特异性,从而使大部分转基因表达水平极低,极少部分基因表达水平过高。 (2)难以控制转基因在宿主基因组中的行为,转基因随机整合于动物的基因组中,可能会引起宿生细胞染色体的插入突变,还会造成插入位点的基因片段丢失,插入位点周围序列的倍增及基因的转移,也可能激活正常状态下处于关闭状态的基因。 (3)不了解哪些基因控制多数生理过程,不了解基因表达的发育控制和组织特异性控制的机制。 (4)制作转基因动物的效率低,这是目前几乎所有从事转基因动物研究的实验室都面临的问题,也是制约着这项技术广泛应用的关键。 (5)对传统伦理是一种挑战,对人类的生存有一定的负面作用等。 当然,我们不能因为这些缺点的存在就否定转基因技术的研究价值。因为它作为一种新兴的生物技术,配合其他相关的生物技术将具有广阔的应用前景。随着这一技术日趋成熟,许多问题有望逐步得到解决。

浅谈我国转基因水稻的研究(一)

浅谈我国转基因水稻的研究(一) 论文关键词]水稻转基因论文摘要]稻转基因研究是国内外植物分子遗传学研究的热点之一。目前,水稻转基因研究在我国已取得显著进展。详细介绍转基因技术,并阐明我国转基因技术在水稻上的应用及研究进展, 水稻是我国的重要经济作物和粮食作物。水稻分布极其广泛,由于生态环境的复杂性和所处地理环境的影响,水稻在漫长的进化过程中,形成了极其丰富的遗传多样性,染色体组型和数目复杂多样,成为研究稻种起源、演化和分化必不可少的材料。 植物转基因技术是利用遗传工程手段有目的地将外源基因或DNA构建,并导入植物基因组中,通过外源基因的直接表达,或者通过对内源基因表达的调控,甚至通过直接调控植物相关生物如病毒的表达,使植物获得新性状的一种品种改良技术。它是基因工程、细胞工程与育种技术的有机结合而产生的一种全新的育种技术体系。转基因技术可以将水稻基因库中不具备的各种抗性或抗性相关基因转入水稻,进一步拓宽了水稻抗病基因源,为抗病育种提供了一条新途径。 一、国内外的转基因技术 转基因技术自20世纪70年代诞生以来,已经取得迅速的发展。到目前为止,中国已经是全球第4大转基因技术应用国。 转基因生物技术的应用,大多分布在抗虫基因工程、抗病基因工程、抗逆基因工程、品质基因工程、品质改良基因工程、控制发育的基因工程等领域。中国是继美国之后育成转基因抗虫棉的第二个国家。现在河北省与美国孟山都合作育成33B抗虫棉(高抗棉铃虫、抗枯萎病、耐黄萎病)。由中国农科院生物中心、江苏省农科院导入Bt基因,由安徽省种子公司,安徽省东至县棉种场共同选育的抗虫棉“国抗1号”在安徽省已通过审定。国际水稻所将抗虫基因导入水稻,育成抗二化螟、纵卷叶螟的转基因水稻。中国农科院、中国农业大学、中国科学院、河南农科院等许多科研单位和高校将几丁质酶和葡聚糖酶双价基因导入小麦育成抗病转基因小麦、转基因烟草、转基因水稻等等。英国爱丁堡大学将水母发光基因导入烟草、芹菜、马铃薯等作物,获得发光作物,驱赶害虫。 至于油菜方面利用转基因工程培育雄性不育系及其恢复系的研究,亦取得了突破性的进展。比利时为了提高菜饼粗蛋白质的含量,将一种草控制的蛋白质基因转移到油菜上来,选出高蛋白质含量的转基因油菜品种。瑞典Svalow-Weibull等公司利用基因工程技术将外源基因导入甘蓝型油菜,培育成抗除草剂油菜新品种;比利时PGS公司采用基因工程手段创造出新的油菜授粉系统;法国应用原生质体融合技术将萝卜不育细胞质的恢复基因引入甘蓝型油菜,充分利用萝卜不育细胞质不育彻底的特性,实现了萝卜不育细胞质的三系配套,对推动全球杂交油菜育种具有革命性的影响。 二、我国转基因技术在水稻上的应用及研究进展 我国是农业超级国,因此,中国人吃饭问题的关键是水稻问题(高产和抗性问题),而水稻问题的核心便是转基因技术在水稻中的成功应用。 近年来,植物抗病毒基因工程的技术路线已趋向成熟,国内外相继开展了水稻东格鲁病、条纹叶枯病、黄矮病、矮缩病等8种病毒病的转基因育种研究,将各病原病毒的外壳蛋白基因、复制酶基因、编码结构或非结构蛋白基因干扰素CDNA等分别导入水稻,获得了抗不同病毒病的转基因株系或植株。在我国,转基因技术在水稻中的应用已经取得了惊人的成果。(一)转基因技术在提高水稻植株的抗Basra除草剂的成果 王才林等利用花粉管通道法将抗Basta除草剂的bar基因导入水稻品系“E32”,获得转基因植株。抗性鉴定表明,转基因植株能充分表达对Basta除草剂的抗性;通过对转基因植株后代PCR分析,证实bar基因已整合到受体植株的基因组中,遗传分析表明,bar基因能在有性生殖过程中传递给后代,并在T代开始分离出抗性一致的稳定株系。段俊等利用转基因技术,

转基因作物的研究进展

生物与环境工程学院课程论文 转基因作物的研究进展 学生姓名:魏斌聪 学号:200806016139 专业/班级:生物工程081班 课程名称:生物工程原理 指导教师:陈蔚青教授 浙江树人大学生物与环境工程学院 2011年5月

转基因作物的研究进展 魏斌聪 (浙江树人大学生物与环境工程学院生工081班浙江杭州310015) 摘要:人们将所需要的外源基因(如高产、抗病虫害优质基因) 定向导入作物细胞中, 使其在新的作物中稳定遗传和表现,产生转基因作物新品种, 是大幅度提高作物产量的一项新技术。本文先描述了转基因作物的发展进程,对其基因问题的研究作了讨论,并列出转基因作物目前存在的主要问题并作分析,最后对此项技术作出展望。 关键词:转基因作物;DNA技术;基因导入;安全性 前言 转基因植物(transgenic plant),是指基因工程中运用DNA 技术将外源基因整合于受体植物基因组、改变其遗传组成后产生的植物及其后代。转基因植物的研究主要在于改进植物的品质,改变生长周期等提高其经济价值或实用价值。[ 1 ]其主要范围是在作物方面,如可食用的大豆、玉米等,或者可投入生产的棉花等作物。 从表面上看来,转基因作物同普通植物似乎没有任何区别,它只是多了能使它产生额外特性的基因。从1983年以来,生物学家已经知道怎样将外来基因移植到某种植物的脱氧核糖核酸中去,以便使它具有某种新的特性:抗除莠剂的特性,抗植物病毒的特性,抗某种害虫的特性。[ 2 ]这个基因可以来自于任何一种生命体:细菌、病毒、昆虫等。这样,通过生物工程技术,人们可以给某种作物注入一种靠杂交方式根本无法获得的特性,这是人类9000年作物栽培史上的一场空前革命。[ 3 ] 1 转基因作物的发展进程 转基因作物的研究最早始于20世纪80年代初期。1983年,全球第一例转基因烟草在美国问世。1986年,首批转基因抗虫和抗除草剂棉花进入田间试验。1996年,美国最早开始商业化生产和销售转基因作物(包括大豆、玉米、油菜、

转基因技术的研究进展

作物转基因技术的研究进展 摘要:作为生物技术领域的前沿,转基因技术已在多种植物上取得重大进展。本文主要介绍了当前作物转基因技术的三大主流方法:农杆菌介导法、基因枪介导法和花粉管通道法,并阐述了这几种转基因技术在水稻、小麦、棉花、玉米、大豆,甘薯等几种主要农作物的应用进展状况。 关键词:转基因技术、农作物、应用 Genetically Modified---转基因,简称GM,是指运用科学手段从某种生物体中提取所需要的基因,将其转入另一种生物中,使与另一种生物的基因进行重组,再从结果中进行数代的人工选育,从而获得特定的具有变异遗传性状的物质。而其衍生出的转基因技术就是将人工分离和修饰过的基因导入到目的生物体的基因组中,从而达到改造生物的目的,即把一个生物体的基因转移到另一个生物体DNA中的生物技术。 1983年比利时科学家Montagu 等人和美国Monsanto 公司Fraley等人分别将T- DNA上的致瘤基因切除并代之以外源基因,获得了世界上第一株转基因植株———转基因烟草。自此之后,作物转基因技术得到了迅速发展.截至目前,几乎所有的作物都开展了转基因研究,育种目标涉及到高产、优质、高效兼抗性及多用途等诸多方面.一批抗病、抗虫、抗逆、抗除草剂等转基因作物已进入商品化生产阶段. 国际农业生物技术应用服务组织2 月13 日在京发布的1 份报告显示,全球27 个国 家超过1800 万农民,2013 年种植转基因作物,种植面积比2012 年增加了500 万公顷。此外,首个具有耐旱性状的转基因玉米杂交品种亦于2013 年在美国开始商业化。 据该报告显示,全球转基因作物的种植面积于转基因作物商业化的18 年中增加了100 倍以上,从1996 年的170 万公顷增加到2013 年的1.75 亿公顷,其中美国仍是全球转基因作物的领先生产者,种植面积达7010 万公顷,占全球种植面积的40%。国际农业生物技术应用服务组织创始人兼荣誉主席、本年度报告作者Clive James 表示,目前排名前10 位的国家种植转基因作物的面积均超过100 万公顷,这为将来转基因作物的多样化持续发展打下了广泛基础。在种植转基因作物的国家中,有19 个为发展中国家,8 个为发达国家;发展中国家的种植面积连续2 年超越发达国家。 目前,作物遗传转化的方法有农杆菌介导法、基因枪法、电激法、PEG 法、脂质体法、低能离子束法、超声波介导法、显微注射法、花粉管通道法等.但在当前作物基因工程研究中,主要采用农杆菌介导法、基因枪法、花粉管通道法,这三种转基因技术也相对较为成熟. 一、农杆菌介导法 农杆菌介导法是指农杆菌侵染植物时,受到植物受伤后释放的酚类物质的刺激,活化质粒上Vir 区基因的表达,将质粒上的另一段DNA(T-DNA)共价整合到植物基因组上,在植物体内表达而改变植物的遗传特性。农杆菌介导法的转化效率受众多因素影响,如农杆菌侵染外植体的影响因素、外植体再生能力的内在因素和环境条件(pH、温度和光照条件)等[32],此法具有流程简单、仪器设备便宜、拷贝数低[33],且基因沉默少,转移的基因片段长等优点。 农杆菌介导法是获得第一个转基因植物的方法,迄今为止,农杆菌介导法获得的转基因植物占转基因植物总数85%,已成为植物基因转化首选方法。 二、基因枪介导法 基因枪法又称微弹轰击法,是将外源基因包裹在直径1~2 nm的钨或金颗粒表面,加速轰击植物外植体靶组织,穿过植物细胞壁和细胞膜而将外源基因带入植物细胞。因此,通过该方法进行DNA的转移过程不受外植体基因型的限制,可以将外源基因转移至几乎所有的植物细胞、组织器官和原生质体中。 最早的基因枪是由美国Cornel 大学的Sanford 等在1987 年研制成功的。目前基因枪介

我国转基因食品的现状

我国转基因食品的现状 自1994年世界首例转基因农作物西红柿(美国)种植以来,转基因农作物相继在一些国家得到了很大的发展。国际农业生物技术应用服务组织(ISAAA)的资料显示,1996年全球共有6个国家种植转基因农作物,包括美国、阿根廷、加拿大、中国、澳大利亚和墨西哥;种植的农作物种类有大豆、玉米、烟草、棉花、油菜籽、西红柿和土豆;种植总面积170万公顷(表1)。与1996年相比,2008年全球转基因农作物商业化程度进一步加深。转基因食品种植国由6个增加到25个,包括美国、阿根廷、巴西、加拿大、印度、中国、巴拉圭、南非、乌拉圭、菲律宾、澳大利亚、西班牙、墨西哥、哥伦比亚、智利、洪都拉斯、捷克、葡萄牙、德国、斯洛伐克、罗马尼亚、波兰、布基纳法索、埃及、玻利维亚;种植农作物的种类由7个扩充到13个,分别为大豆、玉米、棉花、油菜籽、南瓜、木瓜、木薯、康乃馨、土豆、白杨、矮牵牛、甜椒和甜菜;种植总面积由170万公顷上升到1.25亿公顷。在这两项资料中,美国转基因农作物种植总面积均居世界第一位,特别是2008年,其种植总面积高达6250万公顷,转基因农作物种类占去2008年种类总和的一半以上(大豆、玉米、棉花、油菜籽、南瓜、木瓜、土豆、木薯和甜菜,表1)。 而我国2008年以种植总面积380万公顷位居世界第六

位,转基因农作物的种类包括棉花、烟草、杨树、矮牵牛、木瓜、甜椒和大豆7项(表1)。除此之外,我国目前处于田间实验种植阶段的农作物有水稻、玉米、小麦、棉花、马铃薯、番茄、大豆、甘蓝、花生、甜瓜、番木瓜、甜椒、辣椒、油菜和烟草等。其中值得一提的是,我国农业部已经授予两种转基因抗虫水稻“华恢1号”和“Bt汕优63”以及转基因植酸酶玉米的生物安全证书,经品种审定并获得种子生产许可证和种子经营许可证后将进入商业化生产,但由于一时间反对声颇多暂时搁浅。在我国转基因食品商业化过程中,除自力更生性的研究开发、种植一些作物品种外,我国每年还要从美国进口一些转基因食品(主要包括玉米、大豆和油菜籽)以满足国内市场的需求,其中玉米主要用于饲料的加工、生产,大豆和油菜籽主要用于加工食用油。

转基因育种研究进展

作物转基因育种研究进展 摘要:近年来,植物基因工程取得了辉煌的成就,而转基因技术由于其巨大的产业价值,特别是在作物品质改良、产量和抗逆性提高等方面的明显优势,一直是国际农业高新技术竞争的焦点和热点。本文主以棉花、玉米、水稻为例就转基因育种技术在作物上的研究进展进行相关的介绍。 关键词:作物,棉花,玉米,水稻,转基因育种,研究进展 植物转基因技术是指利用重组技术、细胞DNA培养技术或种质系统转化技术将目的基因导入植物基因组,并能在后代中稳定遗传,同时赋予植物新的农艺性状,如抗虫、抗病、抗逆、高产、优质等。常规育种常常受有性杂交亲和性的制约,而利用转基因技术可以打破物种界限、克服有性杂交障碍,快速有效地创造遗传变异,培育新品种、创造新类型,大大缩短新品种育成的时间。因此,随着现代生物技术的迅速发展,植物转基因技术也蓬勃发展[1]。 1 转基因棉花育种的研究与进展 近年来,随着基因工程技术的不断发展,利用生物技术来创新棉花种质资源和培育新品种是一条非常有效的途径,极大地推动了棉花遗传育种的发展[2]。中棉所是世界上唯一可以同时采用农杆菌介导法、花粉管通道法、基因枪轰击法快速获得转基因抗虫棉新材料的技术平台,能将植物嫁接技术成功应用于转基因棉花的快速移栽,成活率超过90%。未来3~5年,中棉所将挖掘、整合与优化抗病、抗除草剂等基因10个,筛选高产因子、高品质纤维等基因或分子标记150个,创造转基因棉花育种新材料100份以上,培育重大新品种(组合)3~5个。 1.1转抗虫基因 1991年成功将外源Bt基因导人棉株中,1992年人工合成了全长1824bp的CrylAb和CrylAc融合的GFMCry1A基因,并于1993年采用农杆菌介导法和外源基因胚珠直接注射法成功导入晋棉7号、中棉12、泗棉3号等主栽品种,获得了高抗棉铃虫的转基因棉花株系;包含CryIAc和AP基因双价抗虫基因载体,通过农杆菌介导转化冀合321胚性愈伤组织,经6代筛选后培育出抗棉铃虫90%的纯合品系,且农艺性状均优于对照。 1.2转抗黄萎病相关基因 利用花粉管通道法和农杆菌介导转化法将菜豆中的几丁质酶和烟草中的葡聚糖酶基因转入棉花,并从转基因高世代材料中筛选出了高抗黄萎病的品系;将天麻抗真菌蛋白基因用花粉管通道法转化天然彩色棉主栽品种,从高世代系中选育出既抗枯萎病又抗黄萎病的兼抗材料;将葡萄糖氧化酶基因(GO)转入棉花,转基因后代对枯萎病和黄萎病抗性均有显著提高,部分材料抗性达到抗病水平。1.3转抗除草剂基因 1997年由美国孟山都公司推出抗除草剂棉花抗性品种,他们从土壤农杆菌变种CP4中分离到编码抗草甘膦酶的基因,并通过农杆菌介导法转化珂字棉312,把该基因导入棉花植株,从而使其对草甘膦产生抗性。采用中棉35下胚轴为材料,将草甘膦突变基因aroAM12导入到棉花中,获得65棵再生植株,通过Southern及Western试验验证了该基因的导入和表达状况,结果表明,转化株对草甘膦具有很高的抗性;将抗草甘膦基因aroAM12和抗虫基因Btslm一起整合到一个载体中,并以抗草甘膦基因作为选择标记,通过转化棉花品种石远321后获得了抗草甘膦和抗棉铃虫的再生株。

转基因作物安全评价研究进展

转基因作物安全评价研究进展 转基因技术是现代生物技术的核心。推进转基因技 术研究与应用,是着眼于未来国际竞争和产业分工的重大发展战略,是解决粮食短缺、人口问题、确保国家粮食安全的必然要求和重要途径。温家宝总理2010年政府工作报告中 明确指出要重点抓好“以良种培育为重点,加快农业科技创新和推广,实施好转基因生物新品种培育科技重大专项”工作。“农业转基因生物新品种培育科技重大专项”的实施,标志着转基因技术已成为我国抢占科技制高点和增强农业国际竞争力的战略重点。转基因技术自诞生以来,生物安全问题相伴而生。在转基因作物的研究和产业化过程中,转基因作物的安全性成为亟待解决的关键问题。 1 国内外转基因作物安全评价原则 全球各国都加强了对转基因作物安全性评价的研究工作,主要国际组织和研究机构都制定了相关“基于实质等同性”的安全评价原则和标准,在遵循这一原则的基础上对转基因作物进行安全性评价…。 2转基因作物安全评价体外实验研究现状 目前,转基因作物食用安全性评价主要方法是实验研究法。实验研究法有体外实验和体内实验两种研究途径。体外实验是通过各种物理化学方法对转基因作物及其产品进行评价分析。主要有关键成分分析和营养学评价:如蛋白质及氨基酸、脂肪及脂肪酸、碳水

化合物、矿物质、维生素等营养成分分析;抗营养因子和酶抑制剂等抗营养成分和天然毒素分析;因基因修饰生成的新成分和其他可能产生的非预期成分分析等。还有转基因作物主要成分稳定性分析:如 加工贮存过程中转基因作物稳定性的研究;转基因作物在动物体内消化稳定性的研究等。 现有研究表明转基因大豆、豆粕中干物质、粗脂肪、粗蛋白、中性洗涤纤维、酸性洗涤纤维、灰分、钙和总磷8种普通营养成分与普通大豆含量较接近,无显著差异;转基因大豆中氨基酸、微量元素铁、铜、锰、锌含量与普通大豆相近。转基因大豆中转基因植酸磷、胰蛋白酶抑制因子、脲酶活性和蛋白溶解度等抗营养因子未发生变化,大豆异黄酮和大豆凝集素等在二者之间也具有实质等同性[10]。研究者 还认为尽管转基因大豆中转基因豆粕C14:1脂肪酸、C22:0 脂肪酸、共轭亚油酸含量存在差异,但二者差异没有实际意义,饱和脂肪酸、不饱和脂肪酸含量及各种脂肪酸含量与传统常规大豆间无显著差异。转基因大豆与常规大豆具有实质等同性。部分研究也表明转基因玉米、转基因大米与普通作物具有实质等同性。 3转基因作物安全评价体内实验研究现状 体内实验主要是通过先饲喂动物转基因产品,然后通过研究实验动物身体各方面机能参数(日常活动、体液指标、器官发育、病理检查等)来评价转基因作物的安全性。一些研究表明转基因作物对动物的影响与传统非转基因作物相同。如有研究证实:转基因大豆

转基因动物技术应用研究进展汇总

转基因动物技术应用研究进展 摘要:本文主要对动物转基因技术发展状况作了概述,重点是近年发展的提高转基因效率的非定点整合转基因方法, 如睾丸转基因法和卵巢转基因法; 提高转基因精确性的定点整合转基因的基因打靶法作了介绍。然后对转基因技术的应用作了论述,最后对转基因技术的发展前景作了展望。 关键字:动物转基因技术;应用;展望 Progress on Techniques for Producing Transgenic Animals And their Application Abstract: This review describes the recently developed animal gene transfer techniques, including gene transfer into the testis and ovary for easily making non-site specific methods; gene targeting in embryonic stem cells, somatic cells and primordial germ cells for site specific methods.The application and prospect of transgenic technology was also discussed. Key words: animal gene transfer technique; application;prospect 动物转基因技术是将外源基因移入动物细胞并整合到基因组中, 从而使其得以表达。自Palmiter等[1] (1982)把大鼠生长激素基因导入小鼠受精卵获得超级巨鼠以来,世界各国科学家对转基因技术应用于动物生产的研究产生了极大的兴趣,并相继在兔、羊、猪、牛、鸡、鱼等动物上获得转基因成功。转基因动物研究是近年来生命科学中最热门、发展最快的领域之一,其应用已广泛渗透于分子生物学、发育生物学、免疫学、制药及畜牧育种等各个研究领域中。这项技术正在对动物生产产生一场新的革命,在提高生长速度、生产性能,改善产品品质、抗病育种、基因治疗等方面取得了可喜的进展,显示出诱人的应用前景。 1 转基因动物技术 1.1 显微注射法 这一方法是发展最早,目前应用最广泛和最为有效的制作转基因动物的方法,创始人是Jaenisch和Mintz等,Gorden等[2]和最先通过此法获得转基因动物。其基本原理是:通过显微操作仪将外源基因直接用注射器注入受精卵,利用受精卵繁殖过程中DNA的复制过程,将外源基因整合到DNA中,发育成转基因动物。 1.2 逆转录病毒载体导入法 将目的基因重组到逆转录病毒载体上,制成高滴度的病毒颗粒,人为感染着床前后的胚胎,

水稻转基因步骤

在植物转基因过程中,为了有效地识别和筛选转化子,常将目的基因和标记基因构建在同一表达载体中。这种载体结构导致转基因植物中目的基因和标记基因始终共存,而标记基因(尤其是抗生素抗性基因)的存在可能给转基因植物的生物安全带来隐患。目前已研发了多种方法剔除转基因植物中的标记基因,其中最常见的是共转化法(Komari 1996,McCormac 等2001)。共转化系统是采用2个质粒或1个含有两套T—DNA表达盒的表达载体共同转化植物,其中一套表达盒含有抗性选择标记基因,另一套表达盒含有目的基因,它们转化植物时可能整合到植物基因组的不同位置。转基因植株在减数分裂过程中,标记基因和目的基因发生分离,从而可在转基因后代中筛选到只含目的基因而不含选择标记基因的个体。共转化从根本上排除了转基因植物中的选择标记,是保证人畜和环境安全的重要措施,因此受到了广泛的重视。Zhou 等(2003)认为,用分别含一个T-DNA区的两个载体共转化的效率低于双T-DNA区表达载体的共转化效率。目前关于利用双T-DNA区表达载体,获得无选择标记转基因阳性株系的研究已有不少报道(唐俐等2006,张秀春等2006,于恒秀等2005)。花药培养与遗传转化技术相结合,可以快速获得纯合转基因植株(斯华敏等,1999,付亚萍等,2001),但是应用花药培养快速获得只含目的基因而无选择标记的转基因研究尚未见报告。 水稻是最主要的粮食作物,转基因水稻的安全显得尤为重要。本实验室通过农杆菌介导的水稻转化体系,将包含人乳铁蛋白(hLF)、高赖氨酸(SB401)、高甲硫氨酸(RZ10)基因的表达载体p13HSR成功转化脆茎稻,由于该表达载体采用双T-DNA结构,将检测出含选择标记潮霉素磷酸转移酶基因(hpt)和目的基因的转基因阳性T0植株按单株直接进行花药培养。在189株二倍体花培植株中检出23株有目的基因没有选择标记hpt的转基因纯合植株,得率为9.87%。RT-PCR检测结果显示外源基因已整合到转基因水稻基因组中并转录。本文首次发现插入的外源基因间存在交换事件,从而改变了花培群体中无选择标记而目的基因阳性的转基因纯系的获得率。同时还对农杆菌介导的同一载体上多个基因转化水稻后,会出现个别基因丢失的情况进行了讨论。 基因转化方法参照Hiei等(1994)的方法并加以修改。取开花后12-15 d左右的稻穗脱粒,表面灭菌后接种在NB培养基上,26℃暗培养诱导愈伤组织。约5-7d后取愈伤组织在相同条件下继代培养,用于共培养。农杆菌于含50mg/L卡那霉素(Kam)的YM平板上划线,28℃黑暗培养3d,用金属匙收集农杆菌菌体,将其悬浮于共培养CM液体培养基中,调整菌体浓度至OD600为0.3-0.5,加入AS(终浓度为100mΜ),即为共培养转化水稻用的农杆菌悬浮液。将继代培养4d后的愈伤组织浸于此菌液中,20min后取出并用无菌滤纸吸去多余菌液,随即转入铺有无菌滤纸的固体培养基上,于26℃下暗培养2~3d。共培养后的愈伤组织在含有50mg/l潮霉素的筛选培养基上,26℃暗培养14d,再转到新鲜配制的筛选培养基上继续筛选14d。然后选择生长旺盛的抗性愈伤组织转移到含有50mg/l潮霉素的分化培养基上,暗培养3天后转至15h/d 光照条件下培养,再生的小苗在1/2MS上生根壮苗两周左右。选择高约10cm、根系发达的小

水稻转基因育种研究进展 7

水稻转基因育种研究进展 王彩芬,安永平,韩国敏,张文银,马 静 (宁夏农林科学院农作物研究所,宁夏永宁 750105) 摘要:对水稻转基因技术在抗虫、抗病、抗逆及改良米质等方面的进展进行了综述。 关键词:水稻; 转基因育种; 进展 中图分类号:S511.035.3 文献标识码:A 文章编号:1002-204X(2005)06-0055-03 20世纪下半叶以来,由于分子生物学研究的巨大成就,使生物学成为自然科学的带头学科,它的理论和方法已渗透到生命科学的许多领域,为生命科学的研究带来新的思维方式和研究手段。基因工程技术在植物遗传育种上应用很广泛,并取得了显著成就。 水稻是最重要的粮食作物之一,世界上约有一半以上的人口以稻米为主食。据专家预测,到2025年在现有稻谷产量的基础上再增加60%才能满足需要(K hush,1995)。随着人口的增长和耕地面积的减少,世界尤其是我国将面临粮食问题的严峻挑战,培育优良品种是提高稻谷产量的主要途径。传统的育种技术已为培育水稻新品种做出了巨大贡献,并将在今后继续发挥主导作用,但由于品种资源的贫乏,单靠传统育种已很难有大的突破。基因工程技术为水稻分子标记辅助育种、水稻转基因育种提供了一条新途径。转基因技术可以将水稻基因库中不具备的抗病、抗虫、抗除草剂、抗旱、耐盐、改善品质、提高产量等基因转入水稻,从而实现水稻种质创新和为生产提供优良品种。自1988年以来,国内外已得到了许多水稻转基因植株,涉及到抗虫、抗病、抗除草剂、抗旱、耐盐、改良品质等重要农艺性状,有些已进入田间试验和应用阶段。 1 水稻转基因育种进展 植物转基因育种是利用遗传工程的手段,有目的地将外源基因或DNA构建导入植物基因组,通过外源基因的直接表达,或通过对内源基因表达的调控,甚至通过直接调控植物相关生物如病毒的表达,使植物获得新的性状的一种品种改良技术。在植物分子生物学研究的众多材料中,水稻不仅是世界重要粮食作物,而且由于其基因组较小、重复序列较少的优点而成为一种重要的分子遗传学研究的单子叶模式植物,基因组测序已完成。自1988年首次获得转基因水稻以来,水稻转基因技术已获得突飞猛进的发展,目前已成功获得籼稻、粳稻、爪哇稻的转基因植物。随着基因枪转化技术的建立和根癌农杆菌介导转化法的成功,水稻基因转化技术日益完善。而且转移目标基因已从报告基因或筛选标记基因进入改良水稻抗性和适应性,以及改善品质,提高产量等重要基因的利用。 1.1 抗虫转基因水稻育种 水稻是虫害最多的大田作物,稻螟虫和稻飞虱危害最为严重,水稻中抗虫资源贫乏,转基因技术为抗虫品种的培育提供了一条新途径。自从1989年实现苏云金杆菌(Bacillus thuringiensis,简称Bt)抗虫基因转化水稻并得到再生植株以来,转抗虫基因水稻的研究取得了很大进展。转抗虫基因水稻包括转Bt基因、转蛋白酶抑制基因和转凝集素基因。在转Bt基因的研究方面,中国农科院生物技术中心杨虹等(1989)将Bt基因导入水稻品种台北309、中花8号的原生质体并获得再生植株;Fujim oto等(1993)通过电激法将cry LAb 基因导入水稻,首次报道了转Bt基因水稻对二化螟和稻纵卷叶螟的抗性。项友斌等(1999)利用农杆菌介导实现了苏云金杆菌抗虫基因cryI A(b)和cryI A(c)在水稻中的转化;黄健秋等(2000)利用农杆菌介导获得转(Bt)基因秀水11和春江11植株;薛庆中等(2002)利用农杆菌介导获得转双价抗虫基因(cryI Ac和豇豆胰蛋白酶抑制基因C pTI)浙大19植株;朱常香等(2002)获得Bt和X a21共转化水稻(C48)植株。近几年转Bt基因研究越来越多,进展很快,在籼稻、香稻、爪哇稻、杂交稻、深水稻中获得成功,选育出克螟稻1号、2号、3号(舒庆尧等,1998)。转Bt基因水稻在我国已进入环境释放阶段,有望培育出应用于生产的抗虫品种。 在转蛋白酶抑制剂基因水稻研究方面,通过电激介导原生质体转化,Xu等(1996)把豇豆胰蛋白酶抑制剂基因C pT i转入粳稻品种台北309,转基因植株对大螟和二化螟2种水稻虫害都具有抗性;通过基因枪介导马铃薯蛋白酶抑制剂基因PinⅡ转化水稻,Duan等(1996)获得了Nipponbare、台南67和Pi4等3个粳稻品种的抗大化螟转基因株系;Lee等(1999)利用PEG介导法将大豆K units胰蛋白酶抑制剂(SK TI)的cDNA转入粳稻Nagdongbyeo的原生质体,再生转基因植株的后代抗褐飞虱。曾黎琼等(2004)利用农杆菌介导将马铃薯蛋白酶抑制剂基因(PinⅡ)导入玉优1号、HT-7中;孔维文等(2004)利用农杆菌介导将PT A和马铃薯高赖氨酸蛋白基因(S B401)同时转入超级杂交稻亲本材料1826中。在转凝集素基因水稻研究中,主要是转雪莲花凝集素(G NA)基因,采用基因枪法,英国John Innes Centre(Maqbool等,1999;Rao等,1998;Sudhakar等,1998)把G NA基因导入AS D16、M5、M7、M12、FX92D、Basmati370等籼稻品种中,得到200多株转基因植株,G NA在水稻中呈高水平的组成性表达(用Ubi启动子)或韧皮部专一性表达(用Rssl启动子),转基因植株抗褐飞虱。在我国,傅向东等(1997)用G NA基因枪转化水稻IR72、IR76、珍汕97和秀水11等品种,部分转基因植株子代对褐飞虱有一定抗性;T ang(唐克轩等,1999)通过基因枪介导实现了G NA 基因和X a21基因的共转化,得到了转基因植株。唐克轩等(2003)利用农杆菌介导将半夏凝集素基因(pta)导入粳稻鄂宛105、中花12和籼稻E优532中,获得7个转基因纯系。 1.2 抗病转基因水稻育种 抗病转基因水稻包括转抗病毒基因、抗真菌病害基因和抗细菌病害基因。抗病毒转基因已开展了8种病毒的转基因研究,包括水稻通枯罗病毒(rice tungro disease)、水稻齿叶矮缩病毒(rice ragged 收稿日期:2005-07-21 作者简介:王彩芬(1968-),女,副研究员,从事水稻花培育种研究。T el:0951-*******E-mail:caifen-68@https://www.doczj.com/doc/fd13321395.html,

转基因水稻大规模生产重组人血清白蛋白

转基因水稻大规模生产重组人血清白蛋白 由武汉大学生命科学院教授、武汉禾元生物科技有限公司董事长杨代常领衔的研发团队从2006年开始进行植物源替代血浆来源的医药蛋白的 研究与开发,现已取得突破性进展并已跨入规模化生产的阶段,填补了国际上此项技术空白。相关论文于2011年10月31日在线发表于《美国 科学院院报》。该论文在线之际,受到国外Scientist ,Nature news, The Australian, Thomson Reuters, Fox News, Agence France Presse (AFP法新社)等美国、英国、俄罗斯、德国、巴西、印度各专业杂志及媒体的广泛关注和报道。 该研究表明由转基因水稻种子生产的重组人血清白蛋白(OsrHSA)在生理生化性质、物理结构,生物学功能、免疫原性与血浆来源的人血清白 蛋白一致;并建立了大规模生产重组人血清白蛋白的生产工艺,获得了高纯度和高产量重组人血清白蛋白产品。利用大量数据证明了转基因 水稻种子可取代现有基于发酵的表达技术来生产重组蛋白质是经济有效的。正如PNAS 审稿人对该文章的评价:“这篇文章解决了在科学上振 奋人心、在经济上都非常重要的议题--即用转基因植物生产血浆产品或其他蛋白产品的技术平台,可代替其他基于发酵的表达技术,其重 要性也不言而喻……这篇文章近乎完美地证实了植物生产的医药蛋白和批准临床使用的血浆来源医药蛋白是完全相同的,并提供了翔实数据 证明植物系统规模化容易和成本优势。” 目前,人血清白蛋白(human serum albumin)广泛应用于临床治疗和细胞培养领域。常见的人血清白蛋白大多数从人的血浆中提取,这样的生 产方式不仅受到血浆供应的限制,而且还具有携带病毒传播的高风险性。国际上以重组人血白蛋白替代血源产品的应用已成为趋势,国内市 场需求也逐年扩大,2010年已达150吨。尽管市场广阔,但高纯度重组人血白蛋白的规模化生产技术和质量控制技术却是世界性难题。武汉禾 元历经多年的技术攻关,利用水稻胚乳表达技术平台,研发出国际先进水平的重组人血白蛋白产品生产技术,并成功实现重组人血白蛋白规 模化和产业化,完全摆脱了相关制约,具有纯度更高、无动物组分、安全、高效、绿色环保、廉价、无限量供应等优势。随着植物源重组人 血清白蛋白的发展,我国人血清白蛋白日益紧张的局面必将得到缓解。

小麦转基因研究进展

转基因小麦研究进展及前景 摘要:自第一株转基因小麦报道以来,小麦转基因育种研究发展迅速,通过转基因技术实现的小麦遗传转化弥补了经典小麦育种的不足,突破了可利用基因库的限制,取得了可喜的进展。简要介绍了基因枪法、农杆菌介导法和花粉管通道法等基因转化方法在小麦遗传转化中的应用,讨论了转基因技术在获得抗除草剂、抗病虫、抗逆、改良品质和雄性不育转基因小麦植株等方面的应用现状及其存在的主要问题与对策。 关键词:小麦;转基因;分子育种;进展 采用远缘杂交技术将小麦野生近缘物种中的有益外源基因导入小麦栽培品种,对其抗性、品质、产量的提高发挥了重要作用。但由于双亲亲缘关系较远造成杂交不结实、杂种不育、杂种后代长期分离、预见性差,使该技术在小麦遗传改良上的应用受到一定限制。 植物转基因技术被证明是进行外源基因定向转移独特而有力的手段,一定程度上补充或改进了传统的育种方法。通过植物遗传转化技术,可以按照需要,将有遗传信息的DNA 片段即目的基因进行人工重组,在离体条件下转入宿主细胞进行复制、表达,定向改造植物,可以打破基因流的界限,而且大大缩短育种周期。小麦是举世公认的最难转化的重要农作物之一,且转基因研究起步较晚,经过许多学者十几年的不懈努力,取得了长足的进展。目前,几乎所有的作物都开展了转基因研究,育种目标涉及到高产、优质、高效、兼抗性及多用途等诸多方面,一批抗逆性(如抗病、抗虫、抗除草剂)转基因作物已进入商品化生产阶段。美国研制成功的世界第一例抗草甘磷除草剂转基因小麦已经通过安全性试验;抗草胺膦转基因小麦、抗咪唑啉酮转基因小麦、高蛋白转基因小麦、抗虫和耐镇草宁除草剂转基因小麦、抗蚜虫转基因小麦、抗小麦黄花叶病毒转基因小麦,以及抗白粉病、赤霉病和黄矮病的转基因小麦正在田间释放[1,2];高分子量谷蛋白亚基转基因小麦[3]、转Trx-S 基因抗穗发芽小麦新品系已进入中试阶段[4]。近年来,中国在小麦转基因方面也取得了初步的进展,并获得了一批具有抗病虫、抗逆境及改善品质的转基因小麦新材料,部分品系已经进入环境释放阶段。本文概述了小麦转基因研究常用遗传转化技术及其在小麦遗传改良中的应用,讨论了存在的主要问题及采取的应对措施。 1 小麦转基因技术 小麦转基因技术是指用人工方法将外源基因或DNA 导入小麦细胞,使之稳定地整合、表达并遗传的综合技术。小麦转基因技术可根据转化目的基因否需要通过组织培养再生植株分为两大类,第一类需要通过组织培养,常用的方法有农杆菌介导法、基因枪介导法、花粉管通道法等;第二类不需要通过组织培养,如PEG法、电激法等。在小麦遗传改良中应用最广泛的是第一类方法。 1.1 花粉管通道法 中国学者周光宇1974 年提出的DNA 片段杂交假说是花粉管通道法的理论基础,他于1983 年建立了花粉管通道法,该技术利用植物授粉后花粉萌发形成的花粉管,将外源DNA 送入胚囊中尚不具备正常细胞壁的合子。利用该法进行基因转移的工作主要集中在中国。1992 年,周文麟等通过花粉管法将C4作物的DNA 导入小麦,获得了具有C4作物若干性状的转“基因”后代[5]。随后,曾君祉等利用该法将带有GUS基因的pBI121 质粒导入小山3号,获得 5株转基因植株,转化率为4.7%[6]。阎新甫等将抗白粉病的大麦DNA导入花76,既获得了符合遗传规律的稳定抗病后代,还明确了抗白粉病基因由一对显性基因控制[7]。Ziberstein A 等将质粒DNA 涂于授粉的柱头,提高了转化频率,并完成后代分析和分子鉴定[8]。成卓敏等将大麦黄矮病毒GPV 株系的外壳蛋白基因导入小麦品种,获得了抗黄矮病毒GPV 的转基

我国转基因水稻现状及安全管理

我国转基因水稻现状及安全管理 环境与生化工程系食品生物技术 0901班刘文婷随着世界经济和科技的发展,转基因物质经本上已不再是天方夜谭,几乎可以说是家喻户晓了。 自从第一株转基因烟草问世以来,转基因技术日趋成熟,世界各国都应为转基因技术的发展,是国家的工农业的到发展,特别是发展落后国家和发展中国家,转基因技术使国家的经济得到发展,农民生活得到改善。 我国是一个人口众多,粮食短缺的国家,所以转基因技术是我国的粮食产量得到提高,玉米、小麦、水稻……都已涉及到转基因技术,而事实上转基因技术确实为我们带来了预想不到的喜悦,但是同时又带来了不可避免的问题和担忧。 水稻—13亿中国百姓的主食,转基因水稻必不可免的成为人们担忧的对象,虽然农民伯伯自己会种植它,但是他们却不会轻易的去以身试法。全国人大香港特别行政区代表蔡素玉接受《环球财经》记者采访时揭示了跨国公司通过种子盈利的奥秘:种子公司通过加收专利费抬高转基因种子的价格,农民在种植转基因水稻的时候必须多付2 倍~3 倍以上的价格来购买转基因的种子。而且,转基因的种子是不允许下一年再种植的,农民必须再购买新的种子,无疑提高了农民的生产成本,加重了农民的负担。报道同时指出,据绿色和平组织的有关调查,转基因作物并不能降低农药使用量,恰恰相反,孟山都转基因大豆所需的农药总量有增无减。我国的Bt 棉花也发现这样的问

题。美国学者在研究这个问题时发现,由于转基因种子不是每个国家都可以有的,如果弱小国家大量使用,几代下去,种子就必须向国外进口,购买的价格会越来越高,直到这些国家的粮食主权被大的国家控制。在转基因水稻商业种植之前,应该充分考虑到转基因食品的副作用,甚至不妨将转基因食品的副作用放大。而对转基因食品,当前不少人对其安全性表示了担忧。有专家表示,转基因至少存在三方面的不确定性:一是转基因对生命结构改变后的连锁反应不确定;二是转基因导致食物链“潜在风险”不确定;三是转基因污染、扩散及其清除途径不确定。 转基因水稻对中国人和中国社会的冲击是多方面的,但主要表现在人们对其安全性的怀疑。自从转基因作物诞生以来,对其安全性的争论就没有断绝过,而且有愈演愈烈的趋势,中国批准转基因水稻则是火上加油。就目前的研究而言,既没有转基因作物是绝对安全的研究结论,也没有转基因作物是绝对不安全的研究结论。 目前,转基因水稻的不确定性大于确定性。不确定性在专业领域的称谓是“非预期效应”,相当多的人认为这就是潜在的危险。转基因作物的“非预期效应”主要包括几个方面:一是外源DNA(基因)随机插入可能破坏宿主原有的功能基因,产生非预期效应。二是蛋白质表达发生改变或形成新的代谢产物,产生非预期效应。三是可能诱发突变,产生非预期效应。四是转基因产生高水平表达的酶可能引起继发性生化反应,产生非预期效应。五是其他非预期效应。能威胁到人们的健康,而且还会对生态造成极大的破坏。

转基因食品的利与弊

转基因食品的利与弊 有利的方面 1 、过去改变植物的品种主要是通过育种,这种传统的育种方式需要的时间长,杂交出的品种不易控制,目的性差,其后代可能高产但不抗病,也可能抗病但不高产,也许是高产但品质差,所以必需一次一次地进行选育。而转基因技术就不同了,可以选择任何1个目的基因转进去,就可得到1个相应的新品种,不精品文档,你值得期待 用再花那么长的时间筛选了。 2 、传统的育种只能是水稻对水稻,玉米对玉米,进行杂交,不能水稻对玉米,水稻更不能和细菌进行杂交。而转基因技术不但可以把不同植物的基因进行组合,而且还可以把动物的基因,甚至人的基因组合到植物里去。比如:科学家看中了一种北极熊的基因,认为它有抵抗冷冻的作用,于是将其分离取出,再植入番茄之中,培育出耐寒番茄。 ●通过转基因技术可培育高产、优质、抗病毒、抗虫、抗寒、抗旱、抗涝、抗盐碱、抗除草剂等特性的作物新品种,以减少对农药化肥和水的依赖,降低农业成本,大幅度地提高单位面积的产量,改善食品的质量,缓解世界粮食短缺的矛盾。例如:马铃薯植人天蚕素的基因后,抗清枯病、软腐病的能力大大提高,过去这两种病每年会带来近3成的减产,一种抗科罗拉多马铃薯甲虫的马铃薯,可使美国每年少用37万kg的杀虫剂;阿根廷播种转基因豆种后,大豆抗病和抗杂草能力大为增加,使用农药和除草剂的量减少,生产成本比原来下降了15%。 ●利用转基因技术生产有利于健康和抗疾病的食品。杜邦和孟山都公司即将推出多种可榨取有益心脏的食用油的大豆。两大公司还将联手推出味道更鲜美且更容易消化的强化大豆新品种。艾尔姆公司与其他公司合作,正在研究高含量抗癌物质的西红柿,以及可用于生产血红蛋白的玉米和大豆。此外,含疫苗的香蕉和马铃薯也正在加紧研究中;日本科学家利用转基因技术成功培育出可减少血清胆固醇含量、防止动脉硬化的水稻新品种;欧洲科学家新培育出了米粒中富

相关主题
文本预览
相关文档 最新文档