当前位置:文档之家› 特种陶瓷的新型烧结技术

特种陶瓷的新型烧结技术

特种陶瓷的新型烧结技术
特种陶瓷的新型烧结技术

特种陶瓷的新型烧结技术

一.特种陶瓷的微波烧结技术及研究进展

陶瓷材料的微波烧结原理与目前的常规烧结工艺有着本质的区别。传统的加热是利用电阻加热,通过辐射,传导或对流的方式将发热体的热量传递给样品,热流方向是从样品表面指向心部,形成样品表面温度高,心部温度低的温度场。而微波烧结是利用微波具有的特殊波段与材料的基本细微结构耦合而产生热量,材料在电磁场中的介质损耗使材料整体加热至烧结温度而实现致密化的方法。由于材料可内外均匀地整体吸收微波能并被加热,使得处于微波场中的被烧结物内部的热梯度和热流方向与常规烧结时完全不同。微波可以实现快速均匀加热而不会引起试样开裂或在试样内形成热应力,更重要的是快速烧结可使材料内部形成均匀的细晶结构和较高的致密性,从而改善材料性能。同时,由于材料内部不同组分对微波的吸收程度不同,因此可实现有选择性烧结,从而制备出具有新型微观结构和优良性能的材料。

利用微波烧结特种陶瓷材料,有利于降低烧结温度,提高烧结速率,改善显微结构和性能,并且在节能环保方面也存在巨大潜力。目前微波烧结技术应用于制备特种陶瓷材料的范围在不断扩展,其中多孔陶瓷,生物陶瓷,非氧化物陶瓷及陶瓷复合材料等将成为今后利用微波烧结技术研究和开发的重点。

虽然微波技术在陶瓷材料烧结领域内有很好应用前景,在某些方

面也得到了一定程度的产业化应用,但是其烧结机理不清楚及许多工程技术问题限制了微波烧结技术的发展。

(1)测定材料的介电常数及掌握不同频率下各种材料介电常数的变化规律,对优化烧结工艺和设计微波设备可以提供丰富的理论依据。(2)微波保温材料的选型,烧结过程中温度均匀性的控制,是生产出质量稳定的陶瓷产品的关键。

(3)大功率微波发生器的研制,微波能的转换效率的提高,微波高温材料成本的控制等是解决高温微波加热设备的工业化应用的难题。

二.Na0.5K0.5NbO3无铅压电陶瓷烧结技术研究进展

1.热压烧结

为了提高压电陶瓷的致密度,尽量抑制碱金属元素的挥发,从而获得更高的压电性能,研究人员首先尝试采用先进的烧结工艺。1962年,Jaeger和Egerton采用热压法烧结制备了相对密度接近于99%的Na0.5K0.5NbO3陶瓷,其居里温度Tc为420e。热压烧结是将干燥粉料充填在模型内,再从单轴方向边加压边加热,使成形和烧结同时完成的一种烧结方法。由于热压烧结过程中加热加压同时进行,粉料处于热塑性状态,有助于颗粒的接触扩散、流动传质过程进行,因而能够降低烧结温度,缩短烧结时间,从而抑制晶粒长大,得到晶粒细小、致密度较高和机械性能、电学性能良好的产品。

2.放电等离子烧结

自1988年日本研制出第一台工业型放电等离子烧结(Spark Plasma Sintering,SPS)装置以来,该方法在新材料研究领域扮演着越来

越重要的角色。放电等离子烧结设备类似于热压烧结炉,所不同的是给一个承压导电模具加上可控脉冲电流,通过调节脉冲电流的大小来控制升温速度和烧结温度。放电等离子烧结的中间过程和现象十分复杂,其烧结机理到目前还没有完全定论,尤其是对于导电材料和非导电材料烧结而言,研究人员认为其烧结机理存在很大的差异。然而,尽管其烧结机理还没有完全弄清楚,但其应用近年来却得到了快速发展。由于其融等离子活化和热压为一体,具有升温速度快、烧结时间短、冷却迅速、外加压力和烧结气氛可控制、节能环保等特点,在诸多材料制备领域得到了广泛的应用研究。

三.纳米Ti(C.N)基金属陶瓷制备技术研究进展

1.真空烧结

炉内压力小于大气压的条件下进行的烧结#叫真空烧结。真空烧结比较有利于氧化物在较低温度下还原。在液相出现以前促进粘结金属和碳化物之间的扩散。以及烧结体内气体的解析和排除#可大大减少气相与固相之间的反应#缩小气体介质的影响,工艺上比较容易控制。

周书助等利用分段真空烧结法主要研究了纳米。烧结过程中的组织结构和相变。在微米基金属陶瓷中后发生固溶反应消失。而在纳米基金属陶瓷中发生固溶反应消失。另外,纳米基金属陶瓷在固相反应完成之前,随着烧结温度的升高硬质相的晶格常数增加。纳米基金属陶瓷粘结相的晶格常数随着烧结温度的增加而升高。

2.放电等离子烧结

放电等离子烧结是一种利用断直流脉冲电流直接通电烧结的加压烧结法。通断式直流脉冲电流的主要作用是产生放电等离子体,放电冲击压力焦耳热和电场扩散作用在放电等离子烧结过程中。电极通入直流脉冲电流瞬间产生的放电等离子体使烧结体内部颗粒均匀地自身产生焦耳热,并使颗粒表面活化,放电等离子烧结具有快速加热和冷却的特点。烧结温度低,烧结时间短,可获得细小,均匀的组织,并能保持原始材料的自然状态。而且,通过控制烧结组分与工艺,能烧结类似于梯度材料及大型工件等复杂材料。

3.热压烧结

热压烧结是在加热粉体的同时施加一定的压力。样品的致密化主要依靠外加压力作用实现物质的迁移。热压烧结与无压烧结相比,烧结温度较低,而且烧结中气孔率也低。热压烧结用于制备纳米材料时,可使用的压力通常很高#烧结效果较好。很多材料的热压烧结表明,样品可在比无压烧结低几十甚至几百度的温度下达到致密,同时晶粒生长较慢,从而可得到细晶粒的陶瓷材料。

烧结配料的优化控制

烧结配料的优化控制 莱钢自动化部 杜春雷 [摘 要]莱钢银前配料PL C 系统针对常规控制存在的问题,通过实现料批控制功能和数字变频控制功能动态优化烧 结原料的配比,大大提高了烧结矿产品的质量。 [关键词]配料制度 料批控制 数字变频控制 优化控制 1.前言 随着工业自动化水平的提高和普及,计算机控制技术逐渐引入到烧结生产中,大多采用了DCS (集散控制系统)或PL C 控制系统,基本实现了烧结生产的自动化控制。但莱钢在烧结质量控制方面,特别是配料生产中缺乏优化控制手段,主要靠基础自动化及人工经验操作,输送到265m 2烧结机的各种原料难以得到理想化的配比,从而烧结矿的质量也难以保证。莱钢银前烧结PL C 系统通过实现料批控制功能和数字变频控制功能,从而实 现对烧结配料生产的优化控制。 2.莱钢银前烧结配料生产工艺概述 莱钢银前烧结配料室共有15个料仓,分别储存参与烧结的各种含铁原料、溶剂和燃料,由13台宽带给料机和两台双螺旋给料机(下生石灰)将原料打到13台配料称和两台螺旋称(称量生石灰),经过称量后按料头料尾对齐的原则配比后进入一混一皮带,再经过两台混合机加水搅拌均匀后,输送到265m 2烧结机。如下图1 。 配料是烧结生产的一个重要环节,它既影响着生产成本,又影响着高炉冶炼指标。 3.配料PL C 系统的硬件配置和组态软件3.1现场控制站选用QUAN TUM 系列PL C 完成基础设备级自动控制。3.2组态软件 采用基于M icrsoft W indow s 2000环境的CON CEPT 2.6编程软件,为整个控制系统提供一个统一的开发环境。监控软件 — 652—

特种陶瓷的高压烧结技术

特种陶瓷的高压烧结技术 摘要:特种陶瓷的性能主要取决于其烧结工艺。为获得均一致密的陶瓷结构而发展出各种各样的烧结工艺,每种工艺都有其特有的优势与不足。高压烧结制备功能陶瓷材料可以有效地降低烧结温度,缩短烧结时间,增进致密化,减少污染,提高样品的性能,具有快速、洁净、高致密度的特点。 关键词:特种陶瓷高压烧结 一.特种陶瓷 特种陶瓷,又称精细陶瓷,按其应用功能分类,大体可分为高强度、耐高温和复合结构陶瓷及电工电子功能陶瓷两大类。在陶瓷坯料中加入特别配方的无机材料,经过1360度左右高温烧结成型,从而获得稳定可靠的防静电性能,成为一种新型特种陶瓷,通常具有一种或多种功能,如:电、磁、光、热、声、化学、生物等功能;以及耦合功能,如压电、热电、电光、声光、磁光等功能。 二.特种陶瓷的烧结 现在特种陶瓷烧结机理已出现了气相烧结、固相烧结、液相烧结及反应液体烧结等四种烧结模式。目前,特种陶瓷的主要烧结方法有:常压烧结法、热压烧结/热等静压烧结法、反应烧结法、液相烧结法、微波烧结法、电弧等离子烧结法、自蔓延烧结法、气相沉积法等。它们材料结构机理与烧结驱动力方式各不相同,尤其传统陶瓷和大部分电子陶瓷烧结依赖于液相形成、粘滞流动和溶解再沉淀过程,而对于高纯、高强结构陶瓷烧结,则以固相烧结为主,它们通过晶界扩散或点阵扩散来达到物质迁移。 三.高压烧结 1.定义 高压烧结就是在给陶瓷粉体或具有一定致密度的坯体加热同时施加很高的压力,以实现陶瓷的压力烧结。与普通常压烧结工艺不同,高压烧结过程中,除了粉末的表面自由能的变化为烧结驱动力外,同时还有外加压力作为烧结驱动力,从而影响了烧结进程。由于烧结驱动力的增大,高压可以使得许多其它方法不能烧结的陶瓷实现烧结;其它方法可以烧结的则可以进一步改善其性能同时降低烧结温度,缩短烧结时间,有利于工艺控制。一般来说,同种陶瓷用普通无压烧结和高压烧结相比,高压的材料密度高,质地要均匀。同时,因为能够在颗粒成长或重新结晶不大可能进行的温度范围达到致密化,所以,高压烧结可以获得由微小晶粒构成的高强度、高密度烧结体。而且,高压的封闭型使得样品不易受到污染,还可减少挥发性物质的挥发,其优点是显而易见的。由于高压工艺的上述特点,尤其是由于现代高技术陶瓷的发展,高压烧结工艺越来越受到人们的重视。 2.原理 高压烧结与热压烧结类似,都是在烧结过程中对试样施加外加压力,但高压烧结压力较热压烧结要大很多。高压烧结中存在普通烧结过程所没有的晶界滑移传质和挤压蠕变传质两种作用。通常情况下,认为烧结过程分为两个阶段:第一阶段,即烧结初期,外加压力首先使颗粒的接触区发生塑性屈服,各类蠕变机制促进物质迁移,同时原子或空位发生体积扩散和晶界扩散,晶界中的位错可能沿晶界攀移,导致晶界滑动。在烧结的第二阶段,上述机制仍然存在,只不过孔洞成为孤立的闭孔,位于晶界相交处。同时,并不排除在晶粒内部存在的微孔。在常压烧结条件下,应力水平不足以使材料全部屈服发生塑性流动,但在高压下,应力水平已足够使材料大部分屈服发生塑性流动。因此,热压烧结和高压烧结之所以能够有效实现陶瓷材料的致密化烧结,主要是因为其与无压烧结相比,烧结驱动力不仅有表而能,还有外部高压提供的额外驱动力,从而促进烧结致密化并降低烧结温度。以上机理可根据默瑞的

烧结机废气余热利用

烧结机废气余热利用 冀留庆 林学良 (中钢集团工程设计研究院有限公司 北京100080) 摘 要 烧结机及烧结矿冷却机的废气温度在400℃以下,为了回收低温废气的余热,开发了纯低温余热锅炉。概述了锅炉及汽轮发电机组的设计和运行情况,并展望了应用前景。讨论的余热锅炉为发电用锅炉,用于回收烧结机和烧结矿冷却机排放的低温余热,机组安装于360m 2烧结机。 关键词 烧结机 烧结冷却机 余热锅炉 汽轮发电机组 W aste G as R ecovery of Sintering Machine J I Liu -qing LIN Xue -liang (Sinosteel Engineering Design &Research Institute Co.,Ltd. Beijing 100080) Abstract The tem perature of waste gas of sintering machine and sintering cooling machine is below 400℃.S ingle low -tem perature waste heat boiler is designed to recover the heat of low -tem perature waste gas.This paper describes the design and running situation of the boiler and turbogenerator set and prospects its application.The boiler mentioned is a power generation boiler.It is used to recover low -tem perature waste heat em itted by sintering machine and sintering cooling machine and installed in a 360m 2sintering machine.K eyw ords sintering machine sintering cooling machine waste heat boiler turbogenerator set 0 前言在钢铁生产过程中,烧结工序的能耗约占总能耗的 10%,仅次于炼铁工序。在烧结工序总能耗中,有近50%的 热能以烧结机烟气和冷却机废气的显热形式排入大气,既浪费了热能又污染了环境。烧结废气不仅数量大,而且可供回收的热量也大,但由于废气温度均低于400℃,所以如何回收其中的低温余热,进一步降低烧结生产能耗是我国烧结矿生产企业面临的节能技术课题。 在日本低温余热回收已应用得相当广泛,这种技术是利用烧结环冷机余热锅炉来产生低压过热蒸汽供汽轮机组发电。2005年9月,由日本川崎重工提供的一套先进而成熟可靠的低温余热发电成套设备在马钢炼铁厂投产发电。该套设备配2台容量为37.4t/h 废气锅炉(每台300m 2烧结机配备1台废气锅炉),装机容量为17.5MW 凝汽式汽轮发电机组。设计年发电量为1.4×108 kW ?h 。经4年运行实绩证明,该系统安全可靠,能为烧结生产带来显著的经济效益和环境效益。该技术近几年已经在我国烧结行业开始普及推广。对于关键设备余热锅炉的制造难点是如何应对烟气的低品位和高灰分问题,经过国内技术人员共同努力已经解决。方法是采用低成本的扩展受热面,即采用螺旋鳍片管来提高换热效率,采用机械振打清灰技术解决高灰分问题。 1 工艺简介 烧结环冷机余热锅炉是抽出环冷机第1段(300-400 ℃ )和第2段(250-300℃)的冷却热废气,废气进入余热锅炉经热交换后,余热锅炉出口排烟温度降至165℃。为了充分回收利用热能,将余热锅炉排出的165℃废气通过循环风机再送回烧结环冷机鼓风口,从而实现余热锅炉到烧结机之 间的烟气再循环方式。 烧结机余热锅炉是抽出烧结机高温段烟气,该段排出的 300-330℃的烟气进入余热锅炉经热交换后余热锅炉出口 排烟温度降至165℃。通过循环风机再送回烧结机低温段经烧结除尘器和主风机排向大气。产生的蒸汽与烧结环冷机余热锅炉产生的蒸汽混合进入汽轮发电机做功发电。 对于烧结余热利用可采用烧结环冷机余热锅炉和烧结机余热锅炉形式,也可以将环冷机高温段废气和烧结机高温段烟气混合后进入一个共同的余热锅炉进行热交换,但是带来的问题是余热锅炉出口排烟分配平衡调整不易。所以笔者认为2个余热锅炉较适宜。 2 锅炉规范及结构简述 对于360m 2烧结机配套的锅炉规范如下: 环冷机锅炉设计参数:型号QC720/350-45-1.25/300;第1段:废气流量360000m 3/h ,进口温度300-400℃,第2段:废气流量360000m 3/h ,进口温度250-300℃,出口温度 165-180℃,废气含尘量1g/m 3,漏风率≤2%,锅炉总废气 阻力≤500Pa ,蒸汽出口压力1.25MPa ,蒸汽出口温度300℃,蒸发量45t/h 。 烧结机锅炉设计参数:型号QC350/300-25-1.25/250;废气流量350000m 3/h ;进口温度300-330℃;出口温度165 -180℃;废气含尘量2g/m 3;漏风率≤2%;锅炉总废气阻力 ≤500Pa ;蒸汽出口压力1.25MPa ;蒸汽出口温度250℃;蒸发量25t/h 。 锅炉的总体方案是经充分调研并进行多方案比较而确定的。余热锅炉采用自然循环的立式结构,立式结构布置节约了占地面积,也方便了废气管道的布置;自然循环省掉 ? 61? 工业安全与环保 Industrial Safety and Environmental Protection 2009年第35卷第12期 December 2009

烧结机配料系统优化及运用

烧结机配料系统优化及运用 优化方法 ⑴提高雷达料位计准确度及可靠性。料位计是用来测量配料仓料位的仪表。由于受到安装角度、灰尘、仓壁挂料等影响,时常出现测量不准的情况,确保其测量准确性。有些需要在法兰处改变角度,加垫片等措施解决。同时避免在发射角内有造成假反射的装置。特别要避免在距离天线最近的1/3 锥形发射区内有障碍装置( 因为障碍装置越近,虚假反射信号越强) 。同时用一个折射板将过强的虚假反射信号折射走。这样可以减小假回波的能量密度,使传感器较容易地将虚假信号滤出。对雷达波信号进行滤波处理,雷达料位计下端的喇叭口四散发射的雷达波会碰到料灌或者在正常下料时探测到正在落下的料。由此需要调整角度使其尽可能的对准料面。 ⑴由于配料物料潮湿粘连、下料口不合适、传输皮带偶尔跑偏、水平度不佳等因素,会造成瞬间下料激变给下料量带来较大波动、PID 调节的死区在这里经常会显得起不了多大作用,通常的做法会使在理想状况下调节的很精确的PID 调节程序带来一些问题,会使下料量上下波动寻找在死区范围内的调节参数。为了避免下料激变带来的波动,又进行了处理。首先,屏蔽突变较大的料流信号,在正常运行中,比较当前料流信号和上一个料流信号,比例过大或者过小则屏蔽当前信号,使用上一个料流信号代替当前的信号。其次,设置动态的死区范围,根据下料设定值的大小来动态调节死区的范围。固定的死区在变动设定下料量大小时,容易产生精度不准,影响配料精度。此外,在实际下料时,调节功能块中测量范围、比例、积分时间,使下料量反馈接近于设定值。 ⑴增加全自动生产方式。系统送电后,将现场操作箱转换开关打到自动位,即可实现全自动操作。方式默认为定时震动,也可通过画面选点击启动的方式进行启动。间隔、循环间隔均可在画面进行设定。由料位确定方式也可在画面进行料位设定。当料位低于设定的值时,自动震动。可在画面暂停和停止,暂停恢复后继续震动过程,停止后再启动重新进行整个过程。⑴针对白石灰螺旋加水执行器关不死的情况,将原有老旧执行器更换型号为奥托克IKM18,对其零点附近的调校更加准确,反复试验看是否漏水,直到关紧位置。另外增加管道电动开关阀门,做好连锁,开机是自动启动,停机时自动关闭,此为双保险。实现自动换仓。在换仓操作时若不能实现自动无缝换仓,只能由人工手动启停拉式皮带,此时的延时若不停止所有参与配料的皮带则会带来配比的失衡。只有停止配料线,频繁的换仓意味着频繁的停机。改造后仪表的功能得到利用,自动换仓成为现实,使得生产能顺利稳定进行。 实施效果 通过对雷达料位计进一步的调整、调试,使其更加精确,使其具有重要的参考价值和连锁必要条件,减少了人工劳动强度。配料秤波动大通过优化的程序处理,使得配料皮带秤运行更加平稳,减少变频器输出频率忽上忽下的不稳定,使配料配比稳定在较高水平。增加的

特种陶瓷整理版

1名词解释 特种陶瓷:采用高度精选的原料,具有能精确控制的化学组成,按照便于控制的制造技术加工的,便于进行结构设计,具有优异特性的陶瓷。 粉体颗粒:指在物质的本质结构不发生改变的情况下,分散或细化而得到的固态基本颗粒。 团聚体:由一次颗粒通过表面力吸引或化学键键合形成的颗粒,它是很多一次颗粒的集合体。 胶粒:即胶体颗粒。胶粒尺寸小于100nm,并可在液相中形成稳定胶体而无沉降现象。 6什么是固相法、气相法、液相法,简述工艺流程 固相法就是以固态物质为出发原料,通过一定的物理与化学过程来制备陶瓷粉体的方法。 固相原料——配料——混合——合成——粉碎——粉体 气相法是直接利用气体或者通过各种手段将物质变成气体,使之在气体状态下发生物理变化或化学反应,最后在冷却过程中凝聚长大形成粉体的方法。 蒸发-凝聚法(PVD):原料——高温气化——急冷——粉体 蒸发-凝聚法是将原料加热至高温(用电弧或等离子流等加热),使之气化,接着在电弧焰和等离子焰与冷却环境造成的较大温度梯度条件下急冷,凝聚成微粒状物料的方法。 气相化学反应法(CVD):金属化合物蒸气——化学反应——粉体 气相化学反应法是挥发性金属化合物的蒸气通过化学反应合成所需物质的方法。 液相合成法也称湿化学法或溶液法。溶液法从均相的溶液出发,将相关组分的溶液按所需的比例进行充分的混合,再通过各种途径将溶质与溶剂分离,得到所需要组分的前驱体,然后将前驱体经过一定的分解合成处理,获得特种陶瓷粉体,可以细分为脱溶剂法、沉淀法、溶胶-凝胶法、水热法等。 溶液制备——溶液混合——脱水——前驱体——分解合成——粉体 7常用的气相法有哪些,各有何特点(3个)

烧结配料知识

烧结配料知识 一、烧结基础知识 1、烧结的含义 将含铁粉状料或细粒料进行高温加热,在不完全熔化的条件下烧结成块的过程。铁矿粉烧结是一种人造富矿的过程。 2、烧结的方法 (1)鼓风烧结:烧结锅,,平地吹;以及带式烧结机。 (2)抽风烧结: a:连续式:带式烧结机和环式烧结机等; b:间歇式:固定式烧结机,如盘式烧结机和箱式烧结机;移动式烧结机,如步进式烧结机; (3)在烟气中烧结:回转窑烧结和悬浮烧结。 3、烧结生产的工艺流程 一般包括:原燃料的接受、贮存,溶剂、燃料的准备,配料,混合,制粒,布料,点火烧结,热矿破碎,热矿筛分,热矿冷却,冷矿筛分,铺底料、成品烧结矿及返矿的贮存、运输等工艺环节(见下图)。 机上冷却工艺不包括热矿破碎和热矿筛分。 现代烧结工艺流程不再使用热矿工艺,应使用冷矿工艺。在冷矿工艺中,宜推广具有铺底料系统的流程。 4、烧结厂主要技术经济指标 烧结厂的主要技术经济指标包括利用系数、作业率、质量合格率、原材料消耗定额等。 1>、利用系数 每台烧结机每平方米有效抽风面积(m2)每小时(h)的生产量(t)称烧结机利用系数,单位为t/(m2.h)。它用台时产量与烧结机有效抽风面积的比值表示: 利用系数=台时产量(t/h)/有效抽风面积(m2) =总产量(t)/[总生产台时(t)×总有效面积(m2)] 台时产量是一台烧结机一小时的生产量,通常以总产量与运转的总台时之比值表示。这个指标体现烧结机生产能力的大小,它与烧结机有效面积的大小无关。 利用系数是衡量烧结机生产效率的指标,它与烧结机有效面积的大小无关。 2>、烧结机作业率 作业率是设备工作状况的一种表示方法,以运转时间占设备日历时间的百分数表示: 设备作业率=运转台时/日历台时× 100% 日历台时是个常数,每台烧结机一天的日历台时即为24台时。它与台数、时间有关。 日历台时=台数× 24×天数 事故率是指内部事故时间与运转时间的比值,以百分数表示: 事故率=事故台时/运转台时× 100% 设备完好率是衡量设备良好状况的指标。按照完好设备的标准,进行定期检查。设备完好率是全厂完好设备的台数与设备总台数的比值,用百分数表示: 设备完好率=完好设备台数/设备总台数× 100% 3>、质量合格率 烧结矿的化学成分和物理性能符合原冶金部YB/T421-92标准要求的叫烧结矿合格品,不符合的烧结矿叫出格品(见附件表1-1)。 根据部颁标准的规定,实际生产检验过程及工艺试验中出现的一部分未检验品和试验品,不参加质量合格率的计算。因此: 质量合格率=(总产量-未验品量-试验品量-出格品量)/(总产量-未验品量-试验品量)× 100% 质量合格率是衡量烧结矿质量好坏的综合指标。 烧结矿合格品、一级品或出格品的判定根据其物理化学性能的检验结果而定,主要包括烧结矿全铁(TFe)、氧化亚铁(FeO)、硫(S)含量、碱度(CaO/SiO2)、转鼓指数(≥6.3mm)、粉末(< 5mm)等,有的厂还

烧结机烟气脱硫技术

【tips】本文由李雪梅老师精心收编,值得借鉴。此处文字可以修改。 烧结机烟气脱硫技术 空气净化技术:2006年,全国SO2排放量为 2 588.8万t,比2005年增长1.5%,2007年全国SO2排放总量分别比2006年下降 3.18%,但总排放量依然惊人。因此,在十一五期间,SO2减排依然是环保工作的重点。钢铁 是SO2排放的主要之一,特别是烧结生产工序的SO2排放总量占到钢铁SO2排放总量的70%左右[1],解决好烧结工序的SO2减排,就是抓住了钢铁 行业SO2减排工作的重点,将为钢铁行业完成十一五规划中要求的SO2减排任务打下坚实的基础。 1 烧结机技术现状 技术主要分为干/半干法和湿法技术。干/半干法烟气脱硫技术主要包括喷 雾旋转干燥吸收工艺(SDA)、循环流化床烟气脱硫工艺(CFB)等;湿法主要包括:石灰石-石膏湿法工艺、氨法烟气脱硫工艺、氧化镁湿法工艺等。 钢铁行业的烧结机烟气脱硫起步较晚,相比于电厂广泛采用石灰石-石膏湿法烟气脱硫技术而言,钢铁行业采用的烟气脱硫技术可谓百花齐放,百家 争鸣。 宝钢、梅钢采用石灰石-石膏湿法烟气脱硫技术[2];三钢、济钢采用循环 流化床烟气脱硫技术[3];攀成钢、柳钢采用氨法烟气脱硫技术;五矿营口中板、韶钢采用氧化镁法烟气脱硫技术等。烧结机烟气脱硫多借鉴于电厂 的烟气脱硫技术,但何种技术更适合烧结机烟气脱硫,各钢铁仍在摸索前 进中。 2 烧结机烟气的特点 烧结烟气是烧结混合料点火后,随台车运行,在高温烧结成型过程中产生 的含尘,烧结烟气的主要特点是:(1)烧结机年作业率较高,达90%以上,烟气排放量大;(2)烟气成分复杂,且根据配料的变化存在多变性;(3)

烧结配料

2.配料 2.1概述 烧结配料是按烧结矿的质量指标要求和原料成分,将各种原料(含铁料、溶剂、燃料等)按一定的比例配合在一起的工艺过程,适宜的原料配比可以生产出数量足够的性能良好的液相,适宜的燃料用量可以获得强度高还原性好的烧结矿。 对配料的基本要求是准确。即按照计算所确定的配比,连续稳定配料,把实际下料量的波动值控制在允许的范围内,不发生大的偏差。实践表明,当配料发生偏差,会影响烧结过程的进行和烧结矿的质量。 生产中,当烧结机所需的上料量发生变化时,须按配比准确计算各种料在每米皮带或单位时间内的下料量;当料种或原料成分发生变化时,则应按规定要求,重新计算配比,并准确预计烧结矿的化学成分。 2.2配料方法——质量配料法 此法是按原料的质量进行配料的一种方法。其主要装置是皮带电子称——自动控制调节系统——调速圆盘给料机,配料时,每个料仓配料圆盘下的皮带电子称发出瞬时送料量信号,此信号输入调速圆盘自动调节系统,调节部分即根据给定值信号与电子皮带秤测量值信号的偏差,自动调节圆盘转速,达到所要求的给料量,质量配料系统如图1所示 质量配料法可实现配料的自动化,便于电子计算机集中控制与管理,配料的动态精度可高达0.5%-1%,为稳定烧结作业和产品成分创造了良好条件,也是劳动条件得到改善。 2.3配料室(本厂) 配料室采用单列布置,15个矿槽,混匀矿槽上采用移动B=1000卸料车向各配料槽给料;无烟煤、焦粉、冷返矿矿槽上采用B=650固定可逆胶带机向各配料槽给料。生石灰用外设压缩空气将汽车罐车送来的生石灰送至配料槽。混匀矿采用¢2500圆盘给料机排料,配料电子称称重;燃料和溶剂及冷返矿直接用配料电子称拖出;生石灰的排料、称量及消化通过叶轮给料机、电子称及消化器完成。以上几种原料按设定比例经称量后给到混合料的B=800胶带机上。料槽侧壁安装振动电机,防止料槽闭塞。 调速圆盘自 动调节系统 给定值 控制量 偏差 调节部分 调节量 操作部分 (圆盘) 操作量 控制部分 (圆盘给料机) 检出部分 (电子皮带秤) 图1 质量配料系统

烧结工艺技术操作要点

烧结工艺技术操作要点 根据公司颁发《关于工艺技术标准化操作推进实施方案的通知》要求,为确保我厂烧结、球团生产过程正常、稳顺进行,实现生产、工艺、技术、操作精细化管理,达到提高产品质量、降低生产成本,为下道工序高炉稳顺及增铁节焦创造条件。特此,在中和预配料、烧结及球团主要工序和关键岗位制定以下工艺技术操作要点。 一、中和预配料 1、严格按厂(技术室)下达的预配比通知单进行配料,并要求认真做好配料原始记录。 2、每班进行1-2次清理配料圆盘闸门口、电子皮带秤杂物,给料不畅及时挫料,严禁缺品种配料或少配后补。 3、配料作业中,做到勤检查,岗位巡回检查30分种一次。 4、电子皮带秤:每班校皮不少于一次;电子皮带秤校秤为6个月一次,配料工及车间工艺员配合校验,并要求有校秤文字记录。发现电子皮带秤计量不准,应在4小时反映。电子皮带秤架必须保持清洁,辊子无粘料,清扫器要刮料干净,配料误差控制在1%之内。 5、二次料场:堆料机在规定堆位及长度上逐层平铺造堆,保证混匀效果;禁止分段平铺、空段和定点堆料;料层数控制在300层以上。 6、产量:配料流量控制在1100t/h之内,二次料场A跨每堆控制在6万吨±5000吨,B跨控制在9.5万吨±5000吨,C跨每堆控制在8.5万吨±5000吨,雨季各减1万吨。

7、质量:每堆料品位稳定率(Fe±0.5%)达75%之上,二氧化硅稳定率(SiO2±0.5%)达95%之上。 二、烧结 1、配料工序 1.1严格执行技术科下达的配料通知单,精心配料,坚决杜绝断品种配料和乱配现象。如发生碱度波动:三烧由配料工可调节石粉和中和料配比,二烧由主控工调节石粉和中和料配比,并要求认真做好配料原始记录。 1.2根据烧结生产需要,确保烧结矿实物质量的前提下,三烧(130/180)双机生产配重按580—650t/h控制为宜;三烧如遇单机生产则配重减半范围控制;二烧(280m2)配重按630—700t/h控制为宜。 1.3配料电子皮带秤:如发现皮带秤计量不准,应在4小时内联系信息自动化中心组织校秤,配料工及车间工艺员配合校验,并要求有校秤文字记录。 1.4配料作业中,做到勤检查,岗位巡回检查60分种一次。 2、混合工序 2.1一次混合主要是加水混匀,包括生石灰消化;混合料水份配加以一次圆筒加足所需水份的80—90%为宜。 2.2二次混合:一是补充加水,另二主要是混匀制粒,提高混合料透气性。二次圆筒加水20—10%为宜。 2.3一次、二次混合料的水分测定,由红外测水仪监控与调节;二烧 (280m2)、三烧(130/180)混合料控制适宜水份分别为6—9%。正常生产时,由红外线自动加水系统自动控制混合加水量。 2.4当水份自动检测系统出现故障时,岗位人员根据上料量、返矿量的变

烧结烟气分段式综合处理工艺

烧结烟气分段式综合处理工艺 烧结是钢铁冶炼过程中SO2和NO x最大的产生源,约有51%~62%的SO2及48%的NO x来自烧结工序,因此烧结厂成为钢铁企业环境治理的重中之重。目前烧结烟气中污染物的脱除基本采取单一末端处理工艺。这种处理工艺存在烟气处理量大、污染物浓度偏低、受生产过程波动影响较大等弊端。随着国家对烟气中污染物限制排放种类的增多及排放量的要求越发严格,单一污染物的末端处理工艺设备配置越来越复杂,占地越来越大,势必造成建设投资及生产运行成本不断攀升。 根据研究成果显示,在不同的烧结区段,随着烧结气氛中O2和CO x浓度的变化,烟气中SO2和NO x 的浓度随着料温不断升高也产生相应变化。据此类研究结论,并结合有关烧结机尾烟气热风烧结的实践,本文以210m2烧结机为例,设计一种选择性的烧结烟气分段式综合处理工艺。该工艺是将热风烧结生产工艺与烟气脱硫脱硝分段治理工艺有机结合的烧结烟气环保减排综合处理工艺。 一、烧结烟气中SO2、NO x、CO x浓度在烧结过程中分布特点 1、烧结过程中SO2的形成及分布特点 烧结烟气中的SO2主要是由含铁原料中的FeS2,FeS和燃料中的有机硫,FeS2或FeS氧化生成,还有部分来自硫酸盐的高温分解。 SO2的产生存在于烧结生产的整个过程。在烧结生产过程中,烟气温度快速升高之前(即过湿带完全消失之前),烟气中SO2浓度一直处于较低且较稳定状态;当烟气温度开始快速升高(即干燥带接近烧结料底层时),料层原先吸附的SO2快速释放导致SO2浓度迅速升高;当燃烧带接近烧结料底层和达到烧结终点之前,SO2浓度达到最大值。由此可以看出,烧结生产过程中的SO2浓度与烟气温度存在对应关系,但SO2浓度最大值出现的时间点比烟气温度最高点的时间要提前一些。

特种陶瓷制备工艺..

特种陶瓷材料的制备工艺 10材料1班 王俊红,学号:1000501134 摘 要:介绍粉末陶瓷原料的制备技术、特种陶瓷成形工艺、烧结方法。 目前,特种陶瓷中的粉末冶金陶瓷工艺已取得了很大进展,但仍有一些急需解决的问题。 当前阻碍陶瓷材料进一步发展的关键之一是成形技术尚未完全突破。 压力成形不能满足形状复杂性和密度均匀性的要求。 多种胶体原位成形工艺,固体无模成形工艺以及气相成形工艺有望促使陶瓷成形工艺获得关键性突破。 关键词:特种陶瓷;成形;烧结;陶瓷材料 前言:陶瓷分为普通陶瓷和特种陶瓷两大类, 特种陶瓷是以人工化合物为原料(如氧化物、氮化物、碳化物、硼化物及氟化物等)制成的陶瓷。 它主要用于高温环境、机械、电子、宇航、医学工程等方面,成为近代尖端科学技术的重要组成部分。 特种陶瓷作为一种重要的结构材料,具有高强度、高硬度、耐高温、耐腐蚀等优点,无论在传统工业领域,还是在新兴的高技术领域都有着广泛的应用。 因此研究特种陶瓷制备技术至关重要。 正文:特种陶瓷的生产步骤大致可以分为三步:第一步是陶瓷粉体的制备、第二步是成形,第三步是烧结。 特种陶瓷制备工艺流程图 一、 陶瓷粉体的制备 粉料的制备工艺(是机械研磨方法,还是化学方法)、粉料的性质(粒度大小、形态、尺寸分布、相结构)和成形工艺对烧结时微观结构的形成和发展有着巨大的影响,即粉末制备 坯料制备 成型 干燥 烧结 后处理 热压或热等静压烧结 成品

陶瓷的最终微观组织结构不仅与烧结工艺有关,而且还受粉料性质的影响。由于陶瓷的材料零件制造工艺一体化的特点,使得显微组织结构的优劣不单单影响材料本身的性能,而且还直接影响着制品的性能。陶瓷材料本身具有硬、脆、难变形等特点。因此,陶瓷材料的制备工艺显得更加重要。由于陶瓷材料是采用粉末烧结的方法制造的,而烧结过程主要是沿粉料表面或晶界的固相扩散物质的迁移过程。因此界面和表面的大小起着至关重要的作用。就是说,粉末的粒径是描述粉末品质的最重要的参数。因为粉末粒径越小,表面积越大,单位质量粉末的表面积(比表面积)越大,烧结时进行固相扩散物质迁移的界面就越多,即越容易致密化。制备现代陶瓷材料所用粉末都是亚微米(<lμm)级超细粉末,且现在已发展到纳米级超细粉。粉末颗粒形状、尺寸分布及相结构对陶瓷的性能也有着显著使组分之间发生固相反应,得到所需的物相。同时,机械球磨混合无法使组分分的影响。粉末制备方法很多,但大体上可以归结为机械研磨法和化学法两个方面。 传统陶瓷粉料的合成方法是固相反应加机械粉碎(球磨)。其过程一般为:将所需要的组分或它们的先驱物用机械球磨方法(干磨、湿磨)进行粉碎并混合。然后在一定的温度下煅烧。由于达不到微观均匀,而且粉末的细度有限(通常很难小于 l μm 而达到亚微米级),因此人们普遍采用化学法得到各种粉末原料。根据起始组分的形态和反应的不同,化学法可分为以下三种类型: 1.固相法: 化合反应法:化合反应一般具有以下的反应结构式: A(s)+B(s)→C(s)+D(g) 两种或两种以上的固态粉末,经混合后在一定的热力学条件和气氛下反应而成为复合物粉末,有时也伴随一些气体逸出。 钛酸钡粉末的合成就是典型的固相化合反应。等摩尔比的钡盐BaCO3和二氧化钛混合物粉末在一定条件下发生如下反应: BaCO3+TiO2→BaTiO3+CO2↑ 该固相化学反应在空气中加热进行。生成用于PTC制作的钛酸钡盐,放出二氧化碳。但是,该固相化合反应的温度控制必须得当,否则得不到理想的、粉末状钛酸钡。 热分解反应法:

烧结配料优化熔剂结构的攻关实践

优化烧结熔剂配料结构 提高烧结产质量攻关实践 1 前言 我厂原15.4m2的烧结机经过三次扩容改造,现烧结机有效面积为25.34m2。2004年9月30日,作为2#高炉扩容改造最大配套改造项目——烧结系统改造完成,点火生产。此次改造,烧结机设计台时产量49t,年烧结矿生产能力将达到40万t。但在实际生产过程中烧结机台时产量从未达到设计能力,平均仅为44.08t/台时,烧结矿合格率为76.76%(2004年10月至2006年6月统计指标,见附表)。三座高炉因烧结矿比例结构很低,仅维持生产了七个月时间,被迫组织两座高炉生产,而烧结矿配比也在55%以下,高炉炉料结构不合理,严重制约了高炉生产的稳定顺行和经济指标的提高。因此,如何提高烧结台时产量,提高烧结矿合格率,使烧结矿产质量稳定提高,已成为我厂的迫切要求。为此,我们从影响烧结矿产质量指标的各个方面(如原料、设备、生产组织)入手,进行了分析和技术攻关,使烧结台时产量大幅度提高,平均为51.02t,超攻关目标3.02t,烧结矿合格率有了进一步稳定和提高,平均达88.92%,比攻关目标提高8.92%。 2 原因分析 2.1烧结铁料粒度:烧结料中烧结矿粉、球团矿粉、原矿粉粒度较粗,﹥8mm平均占36%,最高时﹥8mm占到70%,且粒级差大,

原矿粉粒度波动尤为突出。 2.2 熔剂成份:烧结配料熔剂有石灰石、生石灰、消石灰三种,品种多,CaO含量低,成分波动大。尤其是消石灰粉由多个厂家提供,CaO在5 3.24-66.67%之间,平均仅为59.53%,SiO2在2.54-12.9%之间,平均约为 6.89%,H2O在10%-20%,平均约为16.11%,水分、化学成分波动极大,且生烧严重,同时多家消石灰不能均衡进货,中和混匀工作难以作为。 2.3 熔剂粒度:石灰石粉﹤3mm达85%以上,生石灰粉﹤3mm 达95%以上,二者相对稳定,能够基本满足生产需要。消石灰粉﹤3mm在70-75%之间,主要问题有二:一是未完全焙烧的大粒度石灰石,在烧结过程中生成生石灰,进入成品烧结矿,影响烧结产质量指标;二是经过碾压板结的消石灰,在烧结过程中未能发生矿化反应,而以游离CaO的形态存在于烧结矿中(俗称“白点”),在吸收水分时(外喷水和大气湿分中的水)消化,导致烧结矿体积膨胀,引起烧结矿粉化。 2.4操作方面:主要是烧结预配、烧结矿粉、球团矿粉、原矿粉的打水润湿、配料、混合、看火等岗位操作人员的操作水平参差不齐,工作责任性有待加强,尤其是混合加水和看火等岗位。 2.5部分工艺设备的原因:主要表现在大料仓场地狭小、天车能力不够,预配料中和混匀不好。热返矿不能稳定参与配料。一二次混合效果差,生球粒度不理想。烧结布料偏析。头尾密封板、台车、滑道漏风严重。烧结矿冷却效果差,成品皮带打水等。

烧结技术综述

1文献综述 1.1烧结生产概况 1.1.1烧结及其发展 烧结法是迄今为止除北美以外使用最为广泛的铁矿石造块方法。自20世纪80年代起烧结技术得到了快速发展,主要体现在烧结工艺和新技术的研究开发和应用上。烧结工艺方面如自动化配料、混合料强化制粒、偏析布料、冷却筛分、整粒技术及铺底料技术等;新技术主要表现为球团烧结技术、小球烧结技术、低温烧结技术等。上述工艺和技术目前已经在大部分钢铁企业推广应用,并取得了显著的经济效益。 1897年,T.Huntington和F,Heberlein申请并注册了第一个有关烧结方面的专利。1905年,E.J.Savelsberg首先把T.Huntington-F.Heberlein烧结杯用于铁矿石烧结,从而开辟了烧结法进行铁矿粉造块的新纪元。在当今的冶金生产中,烧结已成为一道重要的单元工序并占有相当重要地位。据统计,全世界约有一半的生铁是用烧结矿生产的。过去十年中,世界上烧结矿年产量维持在538×106t~586×106t范围内。从1989年起,由于独联体和其他部分东欧国家发生巨变,因此,它们的钢铁工业进行了重新调整,导致烧结矿产量有所下降。欧洲和日本的经济衰退也影响了产量,但是不久烧结矿的产量又慢慢恢复。东欧和独联体的产量将下降,而中国、朝鲜和台湾的产量将继续上升。尽管出现新的炼铁工艺,但是在下一个十年中或更长的时间内,它们仍不可能对高炉产量有巨大影响。因此,烧结矿产量在未来相当长的时间内仍将维持在目前水平。 1.1.2烧结生产目的 铁矿粉烧结是一种铁矿粉造块的方法,是将细粒含铁物料与燃料、熔剂按一定比例混合,再加水润湿、混匀和制粒成为烧结料,加于烧结设备上,点火、抽风,借助燃料燃烧产生高温和一系列物理化学变化,生成部分低熔点物质,并软化熔融产生一定数量的液相,将铁矿物颗粒润湿粘结起来,冷却后,即成为具有一定强度的多孔块状产品一侥结矿。 烧结生产的目的主要是: 1.将粉状物料制成具有高温强度的块状料以适应高炉冶炼、直接还原等在流体力学方面的要求; 2.通过烧结改善铁矿石的冶金性能,使高炉冶炼指标得到改善; 3.通过烧结去除某些有害杂质,回收有益元素以达到综合利用资源和扩大炼铁矿石原料资源的目的。 1.1.3烧结反应过程 烧结反应过程是分层依次向下进行的。抽入的空气通过已烧结好的热烧结矿

【CN209726840U】一种多台烧结烟气循环共用循环风机的装置【专利】

(19)中华人民共和国国家知识产权局 (12)实用新型专利 (10)授权公告号 (45)授权公告日 (21)申请号 201920436268.8 (22)申请日 2019.04.02 (73)专利权人 中天钢铁集团有限公司 地址 213000 江苏省常州市中吴大道1号 (72)发明人 裴元东 张俊杰 陈军召 李国良  刘桐 张天啸 宋亚龙 李乾坤  周晓冬 夏强 殷国富  (74)专利代理机构 常州市英诺创信专利代理事 务所(普通合伙) 32258 代理人 郑云 (51)Int.Cl. F27D 17/00(2006.01) (54)实用新型名称 一种多台烧结烟气循环共用循环风机的装 置 (57)摘要 本实用新型提供了一种多台烧结烟气循环 共用循环风机的装置。 将两台烧结机的废气循环工艺相耦合,两台机的烟气循环工艺共用一台循 环风机和一台旋风除尘,循环废气量经过分配后 分别到两台烧结机料面。当两台机废气量发生变 化时,既可以对选择循环的风箱支管进行切换, 又可将循环废气量在两台机的料面进行分配。本 实用新型烟气循环工艺的另一个特点是循环中 后部烧结废气给尾部料面烧结。该实用新型较目 前单台烧结机分别采用烟气循环工艺的投资少, 循环废气量的调节余地更大。权利要求书1页 说明书3页 附图1页CN 209726840 U 2019.12.03 C N 209726840 U

权 利 要 求 书1/1页CN 209726840 U 1.一种多台烧结烟气循环共用循环风机的装置,其特征在于:包括: 至少2台烧结机(1),所述烧结机(1)的尾部设有烟气循环罩(2),烧结机底部沿着烧结机头部至尾部设有多个风箱支管(3),所述烧结机还包括排烟罩,所述排烟罩与风箱支管(3)连接; 还包括除尘输送装置,所述除尘输送装置包括除尘器(5)和与除尘器连接的循环风机(6),所述除尘输送装置的进气端连接各烧结机排烟罩的出气口,所述除尘输送装置的出气端连接各烧结机烟气循环罩(2)。 2.根据权利要求1所述的多台烧结烟气循环共用循环风机的装置,其特征在于:所述排烟罩可在烧结机(1)的头部和尾部之间移动,且包括排烟总管(4-1)和至少1个与排烟总管连接的排烟支管(4-2),所述排烟支管(4-2)与风箱支管(3)可拆卸连接,所述排烟支管(4-2)的数量可根据烧结机废气产生量进行增减,所述排烟总管的出气口即为排烟罩的出气口。 3.根据权利要求1所述的多台烧结烟气循环共用循环风机的装置,其特征在于:所述烧结机还包括循环送风管(7),所述循环送风管的进风口与所述除尘输送装置的出气端连接,所述循环送风管(7)的出风口与烟气循环罩(2)连接,所述循环送风管上设有控制阀门。 4.根据权利要求1所述的多台烧结烟气循环共用循环风机的装置,其特征在于:所述烟气循环罩(2)可在烧结机(1)的顶部移动,且可增减覆盖面积。 5.根据权利要求1所述的一种多台烧结烟气循环共用循环风机的装置,其特征在于:所述排烟罩与烧结机中后部的风箱支管连接。 2

特种陶瓷的制备工艺综述及其发展趋势

特种陶瓷的制备工艺综述及其发展前景 摘要:本文主要介绍了粉末陶瓷原料的制备技术、特种陶瓷成形工艺、烧结方法以及未来的发展趋势。目前,特种陶瓷中的粉末冶金陶瓷工艺已取得了很大进展,但仍有一些面临急需解决的问题。当前阻碍陶瓷材料进一步发展的关键之一是成形技术尚未完全突破。压力成形不能满足形状复杂性和密度均匀性的要求。多种胶体原位成形工艺,固体无模成形工艺以及气相成形工艺有望促使陶瓷成形工艺获得关键性突破。 关键词:特种陶瓷;成形;烧结;粉末冶金;陶瓷材料 引言 陶瓷分为普通陶瓷和特种陶瓷两大类,特种陶瓷是以人工化合物为原料(如氧化物、氮化物、碳化物、硼化物及氟化物等)制成的陶瓷。它主要用于高温环境、机械、电子、宇航、医学工程等方面,成为近代尖端科学技术的重要组成部分。特种陶瓷作为一种重要的结构材料,具有高强度、高硬度、耐高温、耐腐蚀等优点,无论在传统工业领域,还是在新兴的高技术领域都有着广泛的应用。因此研究特种陶瓷制备技术至关重要。 1 陶瓷原料的制备方法 粉料的制备工艺(是机械研磨方法,还是化学方法)、粉料的性质(粒度大小、形态、尺寸分布、相结构)和成形工艺对烧结时微观结构的形成和发展有着巨大的影响,即陶瓷的最终微观组织结构不仅与烧结工艺有关,而且还受粉料性质的影响。由于陶瓷的材料零件制造工艺一体化的特点,使得显微组织结构的优劣不单单影响材料本身的性能,而且还直接影响着制品的性能。陶瓷材料本身具有硬、脆、难变形等特点。因此,陶瓷材料的制备工艺显得更加重要。 由于陶瓷材料是采用粉末烧结的方法制造的,而烧结过程主要是沿粉料表面或晶界的固相扩散物质的迁移过程。因此界面和表面的大小起着至关重要的作用。就是说,粉末的粒径是描述粉末品质的最重要的参数。因为粉末粒径越小,表面积越大,单位质量粉末的表面积(比表面积)越大,烧结时进行固相扩散物质迁移的界面就越多,即越容易致密化。制备现代陶瓷材料所用粉末都是亚微米(<lμm)级超细粉末,且现在已发展到纳米级超细粉。粉末颗粒形状、尺寸分布及相结构对陶瓷的性能也有着显著

钢铁厂烧结机的烟气特点

钢铁厂烧结机的烟气特点 烧结是将各种粉状含铁原料,混合适宜的燃料和熔剂后放于烧结设备商点火烧结,在燃料产生高热和一系列物理化学变化的作用下,使部分混合料颗粒表面发生软化和熔化,产生一定数量的液相,并湿润其他未熔化的矿石颗粒,当冷却后,液相将矿粉颗粒烧结成烧结矿,这是炼铁行业的一项重要工序。 烧结烟气是烧结混合料点火后,随台车运行,在高温烧结成型过程中所产生的含尘废气。烧结烟气其他含尘气体的主要特点是: 1、由于漏风率高(40~50%)和固体料循环率高,有相当一部分空气没有通过烧结料层,使烧结烟气量大大增加,每产生一吨烧结矿大约产生4000~6000m3烟气。 2、烟气温度较高,随工艺操作状况的变化,烟气温度一般在120~180℃上下。 3、烟气携带粉尘多。粉尘主要由金属、金属氧化物或不完全燃烧物质等组成,一般浓度达10g/Nm3.平均粒径为13~35um。 4、含湿量大。为了提高烧结混合料的透气性,混合料在烧结前必须加适量的水制成小球,所以含尘烟气的含湿量较大,按体积比计算,水分含量在10%左右。 5、含有腐蚀性气体。高炉煤气点火及混合料的烧结成型过程,均产生一定量的氯化氢(HCl)、硫氧化物(SOx)、氮氧化物(NOx)、氟化氢(HF)等。 6、CO含量较高。 7、含SO2浓度较低,根据原料和燃料差异而变化,一般在1000~3000mg/Nm3. 8、含有重金属污染物。 9、二噁英类,目前钢铁行业的二噁英排放居世界第2位,仅次于垃圾焚烧行业 执行工业窑炉大气污染物排放标准 GB 9078-1996工业窑炉大气污染物排放标准: 一级:烟(粉)尘浓度(mg/m3):禁排; 二级:烟(粉)尘浓度(mg/m3):≤100; 三级:烟(粉)尘浓度(mg/m3):≤150。 [此文档可自行编辑修改,如有侵权请告知删除,感谢您的支持,我们会努力把内容做得更

烧结配料知识

烧结配料知识 LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】

一、烧结基础知识 1、烧结的含义 将含铁粉状料或细粒料进行高温加热,在不完全熔化的条件下烧结成块的过程。铁矿粉烧结是一种人造富矿的过程。 2、烧结的方法 (1)鼓风烧结:烧结锅,,平地吹;以及带式烧结机。 (2)抽风烧结: a:连续式:带式烧结机和环式烧结机等; b:间歇式:固定式烧结机,如盘式烧结机和箱式烧结机;移动式烧结机,如步进式烧结机; (3)在烟气中烧结:回转窑烧结和悬浮烧结。 3、烧结生产的工艺流程 一般包括:原燃料的接受、贮存,溶剂、燃料的准备,配料,混合,制粒,布料,点火烧结,热矿破碎,热矿筛分,热矿冷却,冷矿筛分,铺底料、成品烧结矿及返矿的贮存、运输等工艺环节(见下图)。 机上冷却工艺不包括热矿破碎和热矿筛分。 现代烧结工艺流程不再使用热矿工艺,应使用冷矿工艺。在冷矿工艺中,宜推广具有铺底料系统的流程。

4、烧结厂主要技术经济指标 烧结厂的主要技术经济指标包括利用系数、作业率、质量合格率、原材料消耗定额等。 1>、利用系数 每台烧结机每平方米有效抽风面积(m2)每小时(h)的生产量(t)称烧结机利用系数,单位为t/()。它用台时产量与烧结机有效抽风面积的比值表示: 利用系数=台时产量(t/h)/有效抽风面积(m2) =总产量(t)/[总生产台时(t)×?总有效面积(m2)] 台时产量是一台烧结机一小时的生产量,通常以总产量与运转的总台时之比值表示。这个指标体现烧结机生产能力的大小,它与烧结机有效面积的大小无关。 利用系数是衡量烧结机生产效率的指标,它与烧结机有效面积的大小无关。 2>、烧结机作业率 作业率是设备工作状况的一种表示方法,以运转时间占设备日历时间的百分数表示:设备作业率=运转台时/日历台时×?100% 日历台时是个常数,每台烧结机一天的日历台时即为24台时。它与台数、时间有关。日历台时=台数×24×天数 事故率是指内部事故时间与运转时间的比值,以百分数表示: 事故率=事故台时/运转台时×?100% 设备完好率是衡量设备良好状况的指标。按照完好设备的标准,进行定期检查。设备完好率是全厂完好设备的台数与设备总台数的比值,用百分数表示: 设备完好率=完好设备台数/设备总台数×?100% 3>、质量合格率 烧结矿的化学成分和物理性能符合原冶金部YB/T421-92标准要求的叫烧结矿合格品,不符合的烧结矿叫出格品(见附件表1-1)。 根据部颁标准的规定,实际生产检验过程及工艺试验中出现的一部分未检验品和试验品,不参加质量合格率的计算。因此: 质量合格率=(总产量-未验品量-试验品量-出格品量)/(总产量-未验品量-试验品量)×?100% 质量合格率是衡量烧结矿质量好坏的综合指标。 烧结矿合格品、一级品或出格品的判定根据其物理化学性能的检验结果而定,主要包括烧结矿全铁(TFe)、氧化亚铁(FeO)、硫(S)含量、碱度(CaO/SiO2)、转鼓指数(≥)、粉末(<5mm)等,有的厂还包括氧化镁(MgO)、氟(F)、磷(P)等。 一级品率=一级品量/合格品量×?100% 转鼓指数=检测粒度(≥5mm)的重量/试样重量×100% 烧结矿筛分指数=筛分后粒度(≤5mm)的重量/试样重量×100% 4>、烧结矿的原料、燃料、材料消耗定额 生产一吨烧结矿所消耗的原料、燃料、动力、材料等的数量叫消耗定额,包括含铁原料、熔剂料、燃料、煤气、重油、水、电、炉蓖条、胶带、破碎机锤头、润滑油、蒸气等。 5>、生产成本与加工费 生产成本是指生产一吨烧结矿所需的费用,由原料费及加工费两部分构成。 加工费是指生产一吨烧结矿所需的加工费用(不包括原料费)。它包括辅助材料费(如燃料、润滑油、胶带、炉蓖条、水、动力费等),工人工资,车间经费(包括设备折旧费、维修费等)。 6>、劳动生产率

相关主题
文本预览
相关文档 最新文档