当前位置:文档之家› _室内和室外空气设计参数

_室内和室外空气设计参数

_室内和室外空气设计参数
_室内和室外空气设计参数

第四章室内和室外空气设计参数

4.1内空气设计参数

4.1.1舒适性空调室内空气设计参数

舒适性空调泛指生活环境中如居室、办公室、餐厅等对温度、湿度没有太高的精度要求的空调方式。舒适性空调室内空气的温度、相对湿度要求见表4-1所示。

表4-1 舒适性空调室内设计温湿度及风速

部分建筑的室内空气设计温、湿度见表4-2所示。民用建筑空气调节房间室内计算温度见表1-4-3所示。

表4-2 部分建筑的室内空气设计温、湿度

表4-3 民用建筑空气调节房间室内计算温度

4.1.2工艺性空调室内空气设计参数

工艺性空调室内空气设计参数见表4-4至表4-5所示。

表4-4 工艺性空调室内空气设计参数

表4-5 机械工业部分室内参数要求

4.1.3电子计算机房的温、湿度要求

电子计算机房的温、湿度标准值见表4-6所示。电子计算机房的温、湿度条件见表4-7所示。

表4-6 温、湿度标准值

表4-7 电子计算机房的温、湿度条件

4.2室外空气设计参数

1、夏季空调室外计算干球温度t

K 室外气象参数可按下面简化公式计算夏季空调室外计算干球温度

t

K = 0.47 t

x

+ 0.53 t

r

(℃)

式中 t

x

——累年最热月平均温度 (℃)

t

r

——累年极端最高温度 (℃)

2、夏季空调室的计算湿球温度t

s

(平均每年不保证50小时)

湿球温度t

s

应分区计算

(1)北部地区

黑龙江、吉林、辽宁、新疆、青海、甘肃、宁夏、内蒙和西藏等省、自治区计算公式如下

t

s = 0.72 t

sx

+ 0.28 t

sr

(℃)

(2)中部地区

陕西、山西、北京、天津、河北、河南、山东、上海、江苏、安徽和湖北的北部等省、市和地区计算公式如下

t s = 0.75 t sx + 0.25 t sr (℃) (3) 南部地区

浙江、江西、福建、台湾、湖南、广东、广西、云南、贵州及湖北中部、南部等省、自治区和地区计算公式如下

t s = 0.8 t sx + 0.2 t sr (℃) 以上三式中:

t sx ——由累年最热月平均温度和月平均相对湿度,在当地大气压下的i-d 图上查得的湿球温度 (℃)

t sr ——由累年极端最高温度和最热月平均相对湿度,在当地大气压下的i-d 图上查得的湿球温度 (℃) 3、 夏季空调日平均温度t kp

t kp = 0.8 t x + 0.2 t r (℃) 4夏季通风室外计算温度t f

t f =0.71 t x +0.29 t r (℃) 5冬季空调室外计算温度t wk

t wk =0.3 t a + 0.7 t p (℃) 式中 t a ——累年最冷月平均温度 (℃) t p ——累年最低日平均温度 (℃)

6冬季空调室外计算相对湿度应采用历年一月份月平均相对湿度的平均值 7供暖室外计算温度t w

t w =0.57 t a + 0.43 t p (℃)

我国若干城市的空调室外空气设计参数见表4-8所示。该表是根据暖通设计规

范所确定的室外空气设计参数原则而进行计算求出的。

表4-8 空调室外空气设计参数

续表

室内和室外空气设计参数

第四章室内和室外空气设计参数 4.1内空气设计参数 4.1.1舒适性空调室内空气设计参数 舒适性空调泛指生活环境中如居室、办公室、餐厅等对温度、湿度没有太高的精度要求的空调方式。舒适性空调室内空气的温度、相对湿度要求见表4-1所示。 表4-1 舒适性空调室内设计温湿度及风速 部分建筑的室内空气设计温、湿度见表4-2所示。民用建筑空气调节房间室内计算温度见表1-4-3所示。 表4-2 部分建筑的室内空气设计温、湿度 表4-3 民用建筑空气调节房间室内计算温度

4.1.2工艺性空调室内空气设计参数 工艺性空调室内空气设计参数见表4-4至表4-5所示。 表4-4 工艺性空调室内空气设计参数

表4-5 机械工业部分室内参数要求 4.1.3电子计算机房的温、湿度要求 电子计算机房的温、湿度标准值见表4-6所示。电子计算机房的温、湿度条件见表4-7所示。 表4-6 温、湿度标准值 表4-7 电子计算机房的温、湿度条件

4.2 室外空气设计参数 1、 夏季空调室外计算干球温度t K 室外气象参数可按下面简化公式计算 夏季空调室外计算干球温度 t K = 0.47 t x + 0.53 t r (℃) 式中 t x ——累年最热月平均温度 (℃) t r ——累年极端最高温度 (℃) 2、 夏季空调室的计算湿球温度t s (平均每年不保证50小时) 湿球温度t s 应分区计算 (1) 北部地区 黑龙江、吉林、辽宁、新疆、青海、甘肃、宁夏、内蒙和西藏等省、自治区计算公式如下 t s = 0.72 t sx + 0.28 t sr (℃) (2) 中部地区 陕西、山西、北京、天津、河北、河南、山东、上海、江苏、安徽和湖北的

空调室内设计参数

空调室内设计参数 室内设计参数与室内舒适标准及卫生要求有关,包括室内干球温度、相对湿度、新风量、流速、噪声和空气中含尘量六项指标。 1、室内干球温度: 夏季空调应采用22~28℃。高级民用建筑或人员停留时间较长的建筑可取低值,一般建筑或人员停留时间短的建筑应取高值。 冬季空调应采用18~24℃。高级民用建筑或人员停留时间较长的建筑可取高值,一般建筑或人员停留时间短的建筑应取低值。 2、室内相对湿度: 夏季空调应采用40%~65%,一般的或人员停留时间短的建筑可取偏高值。 冬季空调应采用30~60%。 商用中央空调系统一般用于高档公寓、别墅和面积较小的办公、商店、餐饮、娱乐等公共场所。对于业主来说,希望空调系统能提供舒适的室内环境,同时也希望空调系统的运行费用尽可能低。空调负荷计算表面,室内温度提高1℃,相对湿度提高5%,空调负荷将降低6%~8%,因此室内设计参数如温度、相对湿度的标准不应过高。 3、室内空气流速(人员活动区): 室内空气流速对人体的舒适也有一定的影响,夏季冷风或冬季热风流速过大,会有不舒适的吹风感。一般夏季空气流速要求不大于0.3m/s,冬季要求不大于 0.2m/s。 4、噪声: 噪声过大将有损于人体健康,因此噪声指标也是一个重要指标,空调设计人员应对空调系统的噪声进行有效控制。 5、洁净度: 对于民用建筑,对空气中含尘量的要求不高,一般在空调风系统中安装初效过滤器即可。对于要求较高的场合,可采用中效过滤器。 6、新风量: 一般住宅的层高较低(2.8m左右),新风处理设备(例如:新风机组)及新风管的布置将很困难,而且住宅建筑中,人员密度非常低,因此常依靠门窗渗透,或间歇开窗引入室内新风来稀释室内的二氧化碳浓度,从而保证人员卫生健康要求的

暖通空调设计中关于室外气象参数的文献综述

关于室外气象参数的文献综述 通过对《建筑热过程》这门课程的学习,使我体会到在做暖通空调设计时,室外气象参数的重要性。所以,需要对室外气象参数的来源、处理、计算方法、使用等等做进一步学习。 空调设计气象参数,包括设计干球温度、湿球温度和太阳辐射,是建筑空调系统设计必要和基本的数据。它们同时作用于建筑物,.是导致围护结构的传热和通过渗透和通风直接进行质交换的驱动势。在空调系统中同时发生的设计气象条件是确定空调系统容量的峰值冷负荷所必需的条件。不适当的设计气象数据将造成容量过大或偏小的HV AC系统,会导致不必要的额外初投资和较低的部分负荷效率,或者经常不能提供充足的制冷量。 1.室外空气计算参数的数据来源及分析比较 原始数据来源于中国气象局气象信息中心气象室编制的我国地面气象资料数据集和气象辐射资料数据集。我国地面气象资料数据集由我国地面气候观测网国家基准气候站和国家基本气象站连续定时探测大气变化所记录的各种气象要素资料组成。基准气候站每天进行24次定时观测,基本气象站每天进行4次定时观测,分别为02:00、08:00、14:00、20:00。 采用国家气象信息中心气象资料室提供的26城市1978年1月1月至2007年12月31日的地面气候资料为观测基础数据,按我国规范的确定方法和国外不保证率的方法为基础,对室外空气计算参数的确定方法进行讨论,并更新了部分城市的主要室外空气计算参数,主要结论如下: (1)分别计算统计年限为10年、15年、20年及30年的室外空气计算参数,参考气象学上的规定并综合冬夏室外空气计算参数的变化与累年气温的变化规律,认为30年是比较适宜的统计期。 (2)我国空调室外空气计算参数与ASHRAE相比,数值处于保证级别比较高的水平,只是形式不够灵活,不能让设计师在设计时根据建筑的不同用途、实际需要来选择对应的设计值。而且我国现在还不能提供满足统计要求的逐时气温数据,使用不保证率的方法条件还不够成熟。 (3)与GBJ19一87相比,夏季空调干球计算温度变化不大,大部分城市温度增长在1℃以内,个别城市如乌鲁木齐、徐州的夏季空调设计温度甚至低于原规范的设计参数;采暖城市30年统计期的采暖室外计算温度增幅较为明显,大部分上升了2一3℃,部分北方城市10年统计期的冬季采暖及空调设计参数呈现出下降趋势,有的甚至与30年的统计数据持平。 (4)对负荷计算方法进行分析并对比新老30年的计算参数,我国北方地区采暖室外计

采暖通风设计规范·室内外计算参数·室外空气计算参数

暖通知识 第2.2.1条采暖室外计算温度,应采历年平均不保证5天的日平均温度。 注:本条及本节其他文中所谓"不保证"。系针对室外空气温度状况而言,"历年平均不保证",系针对累年不保证总天数或小时数的历年平均值而言。 第2.2.2条冬季通风室外计算温度,应采用累年最冷月平均温度。 第2.2.3条夏季通风室外计算温度,应采用历年最热月14时的月平均温度的平均值。 第2.2.4条夏季通风室外计算相对湿度,应采用历年最热月14时的月平均相对湿度的平均值。 第2.2.5条冬季空气调节室外计算温度,应采用历年平均不保证1天的日平均温度。 第2.2.6条冬季空调节室外计算相对湿度,应采用累年最冷月平均相对湿度。 第2.2.7条夏季空气调节室外计算干球温度,应采用历年平均不保证50h的干球温度。 注:统计干温球温度时,宜采用当地气象台站每天4次的定时温度记录,并以每次记录值代表6h的温度值核算。第2.2.8条夏季空气调节室外计算湿球温度,应采用历年平均不保证50h的湿球温度。 第2.2.9条夏季空气调节室外计算日平均温度,应采用历年平均不保证5天的日平均温度。 第2.2.10条夏季空气调节室外计算逐时温度,可按下式确定: tsh=twp+βΔtr(2.2.10-1)

式中:tsh---室外计算逐时温度(℃) twp---夏季空气调节室外计算日平均温度(℃),按本规范第2.2.9条采用。 β---室外温度逐时变化系数,按2.2.10采用; Δtr---夏季室外计算平均日较差,应按下式计算:室外温度逐时变化系数 560)this.width=560"> 式中:Δtr---夏季空气调节室外计算干球温度(℃),按本规范第2.2.7条采用。其他符号意义同式(2.2.10-1)。 第2.2.11条当室内温湿度必须全年保证时,应另行确定空气调节室外计算参数。 更多文章https://www.doczj.com/doc/fc13898690.html,/ 长沙地暖 cscnwk 仅在部分时间(如夜间)工作的空气调节系统,可不遵守本规范第2.2.7条至第2.2.10条的规定。 第2.2.12条冬季室外平均风速,应采用累年最冷三个月各月平均风速的平均值。冬季室外最多风向的平均风速,应采用累年最冷三个月最多风向(静风除外)的各月平均风速的平均值。 夏季室外平均风速,应采用累年最热三个月各月平均风速的平均值。 第2.2.13条冬季最多风向及其频率,应采用累年最冷三个月的最多风向及其平均频率。 夏季最多风向及其频率,应采用累年最热三个月的最多风向及其平均频率。 年最多风向及其频率,应采用累年最多风向及其平均频率。 第2.2.14条冬季室外大气压力,应采用累年最冷三个月各月平均大气压力的平均值。 第2.2.15条冬季日照百分率,应采用累年最冷三个月各月月

设计用全国主要城市室外气象参数资料汇编

省份山东北京北京上海天津设计用室外气象参数单位济南北京密云上海天津拔海高度m 170.331.371.8 5.5 2.5 常年大气压pa 100813101169100847101618101677采暖室外计算温度℃-5.2 -7.5-8.9 1.2-7.0冬季通风室外计算温度℃-3.6 -7.6-8.7 3.5-6.5夏季通风室外计算温度℃30.9 29.929.930.829.9夏季通风室外计算相对湿度%56 58596962冬季空气调节室外计算温度℃-7.7 -9.8-11.7-1.2-9.4冬季空气调节室外计算相对湿 度% 45 37567473夏季空气调节室外计算干球温 度℃ 34.8 33.633.734.633.9夏季空气调节室外计算湿球温 度℃ 27.0 26.326.428.226.9夏季空气调节室外计算日平均 温度℃ 31.2 29.128.831.329.3冬季室外平均风速m/s 2.7 2.7 2.6 3.3 2.1冬季室外最多风向的平均风速m/s 3.5 4.5 3.2 3.0 5.6夏季室外平均风速m/s 2.8 2.2 2.2 3.4 1.7冬季最多风向——ENE NNW NE N NNW 冬季最多风向的频率%18 14211315夏季最多风向——SSW SE SSW S S 夏季最多风向的频率%19 12121411年最多风向——SSW SSW ENE ESE SSW 年最多风向的频率%15 101699冬季室外大气压力Pa 101853 102573102083102647102960夏季室外大气压力Pa 99727 9998799523100573100287冬季日照百分率%53 57533848设计计算用采暖期日数日100 12213140121 设计计算用采暖期初日——11月 26日 11月 14日 11月8 日 12月 31日 11月15 日 设计计算用采暖期终日——3月5 日 3月15 日 3月18 日 2月8 日 3月15 日 极端最低温度℃-14.9 -18.3-23.3-7.7-17.8极端最高温度℃42.0 41.940.739.640.5

给排水常用设计参数

出水、排水和水位的要求 消防水池的出水。排水和水位因符合下列要求: 1、消防水池的出水管应保证消防水池的有效容积能被全部利用 2.、消防水池应设置就地水位显示装置,并应在消防控制中心或值班室等 3、消防水池应设置溢流水管和排水设施,并应采用间接排水 条文说明 4.3.9本条为强制性条文,必须严格执行,消防水池的技术要求 1、消防水池是出水管的设计能满足有效容积被全部利用是提高消防水池的有效 利用率。减少死水区,实现节地的要求 消防水池(箱)的有效容积是设计最高水位至消防水池(箱)最低有效水位之间的距离,消防水池(箱)最低有效水位是消防水泵水喇叭口或水喇叭口以上0.6m 水位,当消防水泵吸水管或消防水箱出水管上设计防止旋流器时,最低有效水位为防止旋流器顶部以上0.2m 2.消防水池设置水位的目的是保证消防水池不因放空或各种因素漏水而照成的有效灭火水源不足的技术措施 3、消防水池溢流和排水采用见接排水的目的是防止污水倒灌污染消防水池内的 水 提示: 1,消防水池(箱)的有效容积可根据有效水深计算 2、喇叭口吸水管也可以在最低有效水位上方出池壁 3 在逆流水位、最低有效水位时应报警 4、水位位于正常水位的50~100mm时,应向消防控制中心或值班室报警消防水泵启动后低于正常水位时报警应停止 5、室外水池的就地水位显示装置可采用电子显示装置 消防水池容积的计算 (1)计算公式 有效容积为:V=3.6*(∑QPtp-Qbtb) V——消防水池的有效容积(m3)

QP——消火栓、自喷等自动灭火系统的设计流量(L/s) Qb——补水流量(L/s) t——火灾延续时间(H) (2)计算步骤 1、根据建筑类别和火灾危险性,确定消火栓延续时间:自动喷淋灭火系统火灾延续时间为1h 补水时间取最大值 2、根据建筑类别和规模。确定室外消火栓和室内消火栓的设计流量 3 、注意计算出消防水池容积与规定值要进行比较不应小于100m3 仅有消火栓系统时不应小于50m3

空气物性参数表

空气物性参数表 湿空气热物性计算示例A ●分子量 Maw=Ma-(Ma-Mw)pw/paw 式中,Maw为湿空气分子量,g/mol;Ma为干空气的分子量,28.97g/mol;Mw为水蒸气的分子量,18.02g/mol;pw为湿空气中水蒸气的分压力,Pa;paw为湿空气的总压力,Pa。 计算示例:设湿空气总压力为101325Pa,其中水蒸气的分压力为3000Pa,则此时湿空气的分子量为: Maw=28.97-(28.97-18.02)*3000/101325 =28.65 g/mol ●湿空气中水蒸气分压力

pw=φps 式中,pw为湿空气中水蒸气的分压力,Pa;φ为湿空气的相对湿度,无因次;ps为湿空气温度下纯水的饱和蒸气压力(也为湿空气温度下饱和湿空气中水蒸气的分压力),Pa。 纯水的饱和蒸气压力的估算式为(0~100℃): ln(ps)=25.4281-5173.55/(Ts+273) 式中,ps为水的饱和蒸气压,Pa;Ts为水的温度,℃。 计算示例:设湿空气温度为36℃,相对湿度为70%,则湿空气中水蒸气分压力的计算过程为: 该温度下纯水的饱和蒸气压为: ln(ps)=25.4281-5173.55/(36+273)=8.6852 ps =e8.6852=5915 Pa

湿空气中的水蒸气分压力为: pw=φps=0.7*5915=4140.5Pa ●湿空气的露点温度 湿空气中水蒸气开始凝结的温度为其露点温度,等于其湿空气中水蒸气分压力下纯水的饱和温度,其估算式为(0~80℃): Td=5266.77/(25.7248-ln(pw))-273 式中,Td为湿空气的露点温度,℃;pw为湿空气中水蒸气的分压力,Pa。 计算示例:接上例,温度为36℃,相对湿度为70%的湿空气,其露点温度计算过程为: 湿空气中水蒸气分压力为4140.5Pa,则其对应的露点温度为:

污水管道设计参数

全国民用建筑工程设计技术措施给水排水2003.第4.16.11 含有油脂的废水(包括经过隔油池的废水)不得流入化粪池,以防影响化粪池的腐化效果。 l) 设计充满度 设计流量下,污水在管道中的水深h和管道直径D的比值称为设计充满度(或水深比)。当h/D=1时称为满流;h/D<1称为非满流。 我国《室外排水设计规范》规定,污水管道应按非满流进行设计,对管道的最大设计充满度有相应的限制,污水管道设计充满度指的是h/D。对于明渠,设计规范还规定了设计超高(即渠中水面到渠顶或渠道翼墙顶的高度)不小于0. 2m。各种管道的允许最大设计充满度在《室外排水设计规范》( GB 50014-2006 )中有明确的规定。 在计算配置污水管道的管径时,管道的设计流量中不包括淋浴或短时间内突然增加的污水量,但当管径小于或等于300mm时,应复核当其满流时是否能满足设计流量的通过要求。 2) 设计流速 对应于设计流量、设计充满度的管道内的水流平均速度叫做设计流速。为了防止管道中产生淤积或冲刷,设计流速不宜过小或过大,最好在最大和最小设计流速范围之内。最小设计流速是保证管道内不致发生淤积的控制流速。《室外排水设计规范》(GB 50014-2006)规定了污水管道在设计充满度下的最小设计流速定为0. 6m/s。含有金属、矿物固体或重油杂质的生产污水管道,其最小设计流速宜适当加大,其值要根据试验或调查研究决定。明渠的最小设计流速为 0.4m/s。最大设计流速与管材相关,是保证管道不因长期剧烈冲刷而缩短运行寿命的控制流速。通常,金属管道的最大设计流速为1Qm/s,非金属管道的最大设计流速为5 m/s,更为具体的规定参见《室外排水设计规范》(GB 50014-2006 )。 3) 最小管径 在污水管道系统的上游部分,由于设计污水流量很小,若根据流量计算,则管径会很小,而管径过小极易堵塞;此外,采用较大的管径,可选用较小的坡度,使管道埋深减小,因此,为了养护工作的方便,常规定一个允许的最小管径。在街区和厂区内污水管道最小管径为DN200,街道下为DN300。 在污水管道系统上游的管段,由于管段服务的排水面积较小,因而设计流量较小,按此设计流量计算得出的管径会小于最小管径,这时应采用最小管径值。一般可根据最小管径在最小设计流速和最大充满度情况下能通过的最大流量值,计算出设计管段服务的排水面积。若计算管段的服务排水面积小于此值,即可直

空气处理机组选择计算说明

空气处理机组选择计算 1 电算表格内容、适用范围和使用说明 1.1 空气状态点计算表 已知某空气状态点的任意2个常用参数,求其他参数: 1、已知干、湿球温度; 2、已知干球温度、相对湿度; 3、已知干球温度、含湿量; 4、已知干球温度、焓值; 5、已知含湿量、焓值。 1.2 一次回风空气处理机组的选择计算表 基本已知数据:冬夏季室内热湿负荷、人员所需新风量、冬夏季新风状态、冬季加湿方式(仅限于“等焓”或“等温”加湿) 注:冬季当室内热湿负荷低于设计工况时,空气处理机组则需要较大的加热和加湿量,因此冬季工况表中填入的热湿负荷值应适当考虑开机时室内较低负荷的数值。 1.2.1夏季工况计算表 1、表1:已知室内温湿度,求空气处理机组的送风量、送风参数、冷却量、冷凝水量等。适用于 允许采用最大送风温差的一般典型空气处理机组的选型计算。见图1.2.1-1处理过程1(实线)。 2、表2:已知室内温度、允许送风温差,求空气处理机组的送风量、送风参数、冷却量、冷凝水 量和室内相对湿度等。可用于要求较小送风温差、但又不采用二次加热或二次回风的空调系统 能否满足要求。见图1.2.1-1(例如下送风舒适性空调),可根据计算结果校核室内相对湿度 2 处理过程2(虚线)。 100% 图1.2.1-1 采用最大送风温差的一次回风系统夏季处理过程 3、表3:已知室内温湿度、允许送风温差,求空气处理机组的送风量、送风参数、冷却量、再热 量、冷凝水量等。适用于要求较小的送风温差,不再热不能满足室内湿度要求的情况,以及热湿比较小,采用再热才能将送风状态点处理至热湿比线上的情况等。见图1.2.1-2处理过程。

中央空调室内外空气计算参数

中央空调室、内外空气计算参数 中央空调空气计算-夏季空调室外计算干、湿球温度 夏季空调室外计算干球温度,应采用历年平均不保证50h的干球温度;夏季空调室外计算湿球温度,应采用历年平均不保证50h的湿球温度。 中央空调空气计算-夏季空调室外计算日平均温度和逐时温度 夏季计算经围护结构传入室内的热量时,应按不稳定传热过程计算,因此,必须已知室外设计日的室外平均温度和逐时温度。夏季空调室外计算日平均温度应采用历年平均不保证5天的日平均温度。 中央空调空气计算-冬季空调室外计算温度、湿度的确定 1、由于冬季空调系统加热、加湿所需费用,小于夏季冷却、减湿的费用,为便于计算,冬季围护结构传热按稳定传热计算,不考虑室外气温的波动。冬季采用空调设备送热风时,计算其围护结构传热和计算冬季新风负荷,采用同一冬季空调室外计算温度。 2、冬季空调室外计算温度,应采用历年平均不保证一天的日平均温度。 3、若冬季不使用空调设备送热风,仅采用采暖装置补偿房间失热时,计算围护结构传热应采用采暖室外计算温度。 4、由于冬季室外空气含湿量低于夏季,且变化量很小,不必给出湿球温度,只给出冬季室外计算相对湿度值。 5、冬季空调室外计算相对湿度应采用累年最冷月平均相对湿度。 中央空调空气计算-舒适性空调室内温、湿度标准 根据《采暖通风与空气调节设计规范》规定,舒适性空调室内计算参数如下:夏季温度24-28度,相对湿度40%-65%,风速不大于0.3m/s;冬季温度18-22度,相对湿度40%-60%,风速不大于0.2m/s。 如果在中央空调空气计算过程中,出现任何一点误差,或误差超出了规定范围,特别是将高温季节中罕见的高温或高湿的数值,按这种方式计算出的结果去配置设备的话,则会因为设备各项指标过高而形成浪费,所以参数计算这一环节的重要性则不言而喻了。可以咨询柯伊梅尔。

民用建筑供暖通风与空气调节设计规范GB50736-2012

前 言 根据住房和城乡建设部建标[2008]102号文件“关于印发《2008年工程建设国家标准制定、修订计划(第一批)》的通知”,由中国建筑科学研究院主编,会同国内有关设计、科研和高等院校等单位组成编制组,共同编制本标准。 在标准编制过程中,编制组进行了广泛深入的调查研究,总结了国内实践经验,吸收了发达国家相关设计标准的最新成果,认真分析了我国暖通空调行业的现状和发展,多次征求了国内各有关单位以及业内专家的意见,通过反复讨论、修改和完善,形成征求意见稿。 本规范共分11章和10个附录。主要内容是:总则,术语,室内空气计算参数,室外设计计算参数,供暖,通风,空气调节,冷热源,监测与控制,消声与隔振,绝热与防腐。 本规范以黑体字标志的条文为强制性条文,必须严格执行。 本规范由住房和城乡建设部负责管理和对强制性条文进行解释,中国建筑科学研究院负责具体技术内容的解释。 本规范在执行过程中,请各单位注意总结经验,积累资料,随时将有关意见和建议反馈给中国建筑科学研究院暖通空调规范编制组(北京市北三环东路30号,邮政编码100013),以供今后修订时参考。 本规范主编单位、参编单位名单: 主 编 单 位:中国建筑科学研究院 参 编 单 位:北京市建筑设计研究院 中国建筑设计研究院 国家气象信息中心 中国建筑东北设计研究院 清华大学 上海建筑设计研究院 华东建筑设计研究院 天津市建筑设计院 天津大学 哈尔滨工业大学 同济大学 中国建筑西北设计研究院 中国建筑西南设计研究院 中南建筑设计院 山东省建筑设计研究院 深圳市建筑设计研究总院 新疆建筑设计研究院 贵州省建筑设计研究院

中建(北京)国际设计顾问有限公司华南理工大学建筑设计研究院 开利空调销售服务(上海)有限公司特灵空调系统(中国)有限公司 同方股份有限公司 丹佛斯(上海)自动控制有限公司 际高建业有限公司 新疆绿色使者空气环境技术有限公司北京普来福环境技术有限公司 昆山台佳机电有限公司 杭州华电华源环境工程有限公司 远大空调有限公司 安徽省宁国安泽电工有限公司 广东美的商用空调设备有限公司 北京天正工程软件有限公司 北京鸿业同行科技有限公司 西门子楼宇科技(天津)有限公司欧文斯科宁(中国)投资有限公司北京联合迅杰科技有限公司 妥思空调设备(苏州)有限公司

空气状态参数计算关系式

1.1 计算机程序编制的常用公式 为了满足空调系统和设备进行数学模拟的需要,必须根据湿空气各状态之间的关系式编制计算程序。在实际工程中多利用测定空气干、湿球温度的方法,再计算其它参数,以下按这种做法,顺序给出编制计算机程序用的各种关系式。 1) 输入量:t 、t S 、B 、V 2) 输出量:P q,b 、P q 、?、d 、i 、ρ、 l υ、l t 3) 关系式: a) T=273.15+t ● 当t=-100℃~0℃时 234,1234576ln()/ln()q b p C T C C T C T C T C T C T =++++++ 式中: 5359.56741-=C 3925247.62=C 851020747825.0-?=C 23109677843.0-?-=C 126109484024.0-?-=C 641062215701.0-?=C 1635019.47=C ● 当t=0~200℃时 )ln(/)ln(133122111098,T C T C T C T C C T C p b q +++++= 式中: 2206.58008-=C 4111041764768.0-?=C 3914993.19=C 7121014452093.0-?-=C 04860239.010-=C 5459673.613=C 以上公式用)()ln(,T f p b q =表示。 b) B t t A p p s b q q )(',--= 式中:)()'ln(,s b q T f p = s s T T +=15.273 0.00001(65 6.75)A u =+ U 为通过湿球温度计的空气流速 式中B ,q p 及b q p ,的单位为Pa c) ,q q b p p φ= d) 干空气q q kg kg p B p d /622.0-=或干空气q q kg g p B p d /622-= e) 干空气kg kJ t d t i /)84.12501(001.001.1++= T p T B q 00132.000348.0-=ρ

室内空气计算参数的确定

§3-1室内空气计算参数的确定 一、计算空调冷(热)、湿负荷的目的 为了保持室内良好的空气环境,及时消除室内、外干扰因素而形成的冷(热)、湿负荷,必须进行空调负荷计算,以便选取合适的空气处理设备以及制冷机。 二、室内空气计算参数 1、舒适性空调 根据我国《采暖通风与空气调节设计规范》(GBJ19-87)中的规定: 夏季:温度=26±20C,相对湿度=40~65%,风速≤0.3m/s; 冬季:温度=20±20C,相对湿度=40~60%,风速≤0.2m/s。 2、工艺性空调 由生产工艺过程的特殊要求决定。 §3-2室外空气计算参数的确定 确定室外空气计算参数的作用: (1)计算通过围护结构传入室内的热量或室内传至室外的热量时,要以室外空气计算温度为依据; (2)加热或冷却满足卫生和正压需要的新风所需要的热量或冷量与室外空气计算干湿球温度有关。 一、夏季空调室外空气计算参数 1、夏季空调室外空气计算干湿球温度 确定夏季空调室外空气计算干湿球温度的作用:(1)作为新风符合的计算温度;(2)作为围护结构传热的最高计算温度;(3)确定室外新风状态点。 2、夏季空调室外空气计算日平均温度和逐时温度 其作用是:计算围护结构传热应当考虑室外温度的波动的影响以及围护结构对温度的衰减和延迟作用,应按照不稳定传热计算。因此,除了干球温度以外,还需要知道设计日的室外日平均温度和逐时温度。 二、冬季空调室外空气计算参数 1、冬季空调室外空气计算干球温度 冬季空调系统加热加湿所需费用小于夏季冷却减湿费用,为了便于计算,冬季围护结构传热可按稳定传热计算,而不考虑室外气温的波动,只给定一个室外空气计算干球温度作为来计算围护结构传热和新风负荷。 2、冬季空调室外空气计算相对湿度 由于冬季室外空气的含湿量远较夏季小,其变化也很小,只采用室外空气计算相对湿度确定室外新风计算状态。 以上室外空气计算参数均可以在空气调节设计手册中查到。 <<返回 §2-4空调房间的冷(热)、湿负荷计算 一、瞬时得热量与冷负荷的关系及计算 结论:得热量和冷负荷有时相等,有时不等。围护结构的蓄热特性决定了两者的关系。对流得热可直接形成冷负荷,而辐射得热先传给室内物体蓄热,不能立刻成为冷负荷。当室内物体的蓄热饱和后,辐射得热才全部成为冷负荷。

原始气象数据对建筑设计 室外计算参数的影响

西安建大科技/总63期/2006年第1期 * 作者简介:张 明,男,西安建筑科技大学建筑学院硕士研究生。 18 ●科研论文 原始气象数据对建筑设计 室外计算参数的影响 张明* 杨柳 (西安建筑科技大学建筑学院) 【摘要】 本文根据暖通规范的室外空气计算参数的确定方法,对1971-2000年的原始气象资料进行了统计计算,将得出的室外空气计算参数与暖通规范中的室外空气计算参数进行了比较分析。 [关键词] 室外空气计算参数 暖通规范 建筑设计 原始气象数据 1 室外计算参数的确定 在采暖热负荷计算中,如何确定室外计算温度等参数是一个相当重要的问题。单纯从技术观点来看,使采暖系统的最大出力,恰好等于当地出现最冷天气时所需要的热负荷,是最理想的,但这往往同采暖系统的经济性相违背。研究一下气象资料就可以看出,最冷的天气并不是每年都会出现。如果采暖设备是根据历年最不利条件选择的,即把室外计算温度定得过低,那么,在采暖运行期的绝大多数时间里,就会显得设备能力富裕过多,造成浪费;反之,如果把室外计算温度定得过高,则在较长的时间里不能保证必要的室内温度,达不到采暖的目的和要求。因此,正确地确定和合理地采用室外计算参数是一个技术与经济统一的问题。 《采暖通风与空气调节设计规范》(GB50019-2003)(以下简称暖通规范)对室外空气计算参数的具体内容和统计方法都提出了一定的要求,室外计算参数的统计年份 宜取近30年,不足30年者,按照实有年份采用,但不得少于10年,本文涉及的194个站点的实有年份均超过10年,大部分均为1971-2000年的观测数据,有些站点为1951-2000年的观测数据,因此完全满足规范的统计要求。下面分别介绍各项参数的含义和统计方法。 1、采暖室外计算温度 应采用历年平均不保证5天的日平均温度 2、冬季通风室外计算温度 应采用累年最冷月平均温度。“累年最冷月”,系指累年逐月平均气温最低的月份。 3、夏季通风室外计算温度 采用历年最热月14时的月平均温度的平均值。 4、夏季通风室外计算相对湿度 采用历年最热月14时的月平均相对湿度的平均值。 5、冬季空气调节室外计算温度采用历年平均不保证1天的日平均温度。 6、冬季空气调节室外计算相对湿度 采用累年最冷月平均相对湿度。

室外空气计算参数_secret

室外空气计算参数 1.1.1 采暖、通风和空气调节系统设计所采用的室外空气计算参数可参照《采暖通风与空气调节设计规范》(GB 50019—2003)。 1.1.2 采暖室外计算温度应采用历年平均不保证5天的日平均温度。 1.1.3 注:①冬季使用的局部送风、补偿局部排风和消除有害物质的全面通风等的进风应采用采暖室外计算温度。 ②“累年”指多年(不少于3年)。特指整编气象资料时,所采用的以往一段连续年份的累计。以下各条有“累年”词者,与此同义。 1.1.4 夏季通风通风室外计算温度应采用历年最热月14时的月平均温度的平均值。注:“历年”指逐年。特指整编气象资料时,所采用的以往一段连续年份的累计。以下各条有“历年”词者,与此同义。 1.1.5 夏季通风室外计算相对湿度应采用历年最热月14时的月平均相对温度的平均值。 1.1.6 冬季空气调节室外计算温度应采用历年平均不保证1天的日干均温度。注:冬季不用空气调节系统而仅用采暖系统时,应采用采暖室外计算温度。 1.1.7 冬季空气凋节室外计算相对湿度应采用累年最冷月平均相对温度。 1.1.8 夏季空气调节室外计算干球温度应采用历年干均不保证50h的干球温度。夏季空气调节新风的计算温度采用夏季空气调节室外计算干干球温度。注:当室内温湿度必须全年保证时,应另外确定空气调节计算参数。

1.1.9 夏季空气调节室外计算相对湿度应采用历年平均不保证50h的湿球温度。 1.1.10 夏季空气凋节室外计算日干均温度应采用历年平均不保证5天的日平均温度。 1.1.11 Δtr=(twg-twp)/0.52 表1.2.11室外温度逐时变化系数

室内和室外空气设计参数

第四章室内和室外空气设计参数 4. 1内空气设计参数 4.1.1舒适性空调室内空气设计参数 舒适性空调泛指生活环境中如居室、办公室、餐厅等对温度、湿度没有太高的精度要求的空调方式。舒适性空调室内空气的温度、相对湿度要求见表4-1所示。 表4-1 舒适性空调室内设计温湿度及风速 部分建筑的室内空气设计温、湿度见表4-2所示。民用建筑空气调节房间室内计算温度见表1-4-3所示 表4-2 部分建筑的室内空气设计温、湿度 表4-3民用建筑空气调节房间室内计算温度

4.1.2工艺性空调室内空气设计参数 工艺性空调室内空气设计参数见表4-4至表4-5所示 表4-4工艺性空调室内空气设计参数

表4-5 机械工业部分室内参数要求 4.1.3电子计算机房的温、湿度要求 电子计算机房的温、湿度标准值见表4-6所示。电子计算机房的温、湿度条件见表4-7所示。 表4-6 温、湿度标准值 表4-7 电子计算机房的温、湿度条件

房间名称 温度 相对湿度% 4.2室外空气设计参数 1、 夏季空调室外计算干球温度 t K 室外气象参数可按下面简化公式计算 夏季空调室外计算干球温度 t K = 0.47 t x + 0.53 t r ( C ) 式中t x ――累年最热月平均温度 (C ) t r ――累年极端最高温度 (C ) 2、 夏季空调室的计算湿球温度 t s (平均每年不保证 50小时) 湿球温度t s 应分区计算 (1) 北部地区 黑龙江、吉林、辽宁、新疆、青海、甘肃、宁夏、内蒙和西藏等省、自治区 计算公式如下 t s = 0.72 t sx + 0.28 t sr ( C ) (2) 中部地区

污水管道设计参数

污水管道设计参数 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

全国民用建筑工程设计技术措施给水排水2003.第 含有油脂的废水(包括经过隔油池的废水)不得流入化粪池,以防影响化粪池的腐化效果。 l) 设计充满度 设计流量下,污水在管道中的水深h和管道直径D的比值称为设计充满度(或水深比)。当h/D=1时称为满流;h/D<1称为非满流。 我国《室外排水设计规范》规定,污水管道应按非满流进行设计,对管道的最大设计充满度有相应的限制,污水管道设计充满度指的是 h/D。对于明渠,设计规范还规定了设计超高(即渠中水面到渠顶或渠道翼墙顶的高度)不小于0. 2m。各种管道的允许最大设计充满度在《室外排水设计规范》( GB 50014-2006 )中有明确的规定。 在计算配置污水管道的管径时,管道的设计流量中不包括淋浴或短时间内突然增加的污水量,但当管径小于或等于300mm时,应复核当其满流时是否能满足设计流量的通过要求。 2) 设计流速 对应于设计流量、设计充满度的管道内的水流平均速度叫做设计流速。为了防止管道中产生淤积或冲刷,设计流速不宜过小或过大,最好在最大和最小设计流速范围之内。最小设计流速是保证管道内不致发生淤积的控制流速。《室外排水设计规范》(GB 50014-2006)规定了污水管

道在设计充满度下的最小设计流速定为0. 6m/s。含有金属、矿物固体或重油杂质的生产污水管道,其最小设计流速宜适当加大,其值要根据试验或调查研究决定。明渠的最小设计流速为0.4m/s。最大设计流速与管材相关,是保证管道不因长期剧烈冲刷而缩短运行寿命的控制流速。通常,金属管道的最大设计流速为1Qm/s,非金属管道的最大设计流速为5 m/s,更为具体的规定参见《室外排水设计规范》(GB 50014-2006 )。 3) 最小管径 在污水管道系统的上游部分,由于设计污水流量很小,若根据流量计算,则管径会很小,而管径过小极易堵塞;此外,采用较大的管径,可选用较小的坡度,使管道埋深减小,因此,为了养护工作的方便,常规定一个允许的最小管径。在街区和厂区内污水管道最小管径为DN200,街道下为DN300。 在污水管道系统上游的管段,由于管段服务的排水面积较小,因而设计流量较小,按此设计流量计算得出的管径会小于最小管径,这时应采用最小管径值。一般可根据最小管径在最小设计流速和最大充满度情况下能通过的最大流量值,计算出设计管段服务的排水面积。若计算管段的服务排水面积小于此值,即可直接采用最小管径而不再进行管道的水力计算。这种管段称为不计算管段。对于这些不计算管段,当有适当的冲洗水源时,可考虑设置冲洗井(类似于污水检查井)。 4) 最小设计坡度

xxxx中央空调采购安装项目主要技术参数及要求

xxxx中央空调采购安装项目主要技术参数及要求 一、工程说明 1、项目名称:xxxx中央空调采购安装项目; 2、建筑面积:和鸣AB楼、和展B楼及阶梯教室安装中央空调。4栋教学楼建筑总面积约为31184㎡,。其中和鸣AB楼部分,地上六层,建筑面积约为18974㎡;和展B楼及阶梯教室部分地上六层,建筑面积约为12210㎡。 3、工程地址:xxx学院院内; 4、施工所用材料及设备等必须是符合国家标准的合格产品,并满足图纸要求; 5、本技术标准和要求规定的是最低限度的标准和要求,投标人投标产品的标准和要求应等于或高于本章所规定标准和要求; 二、招标内容(详见施工图纸及工程量清单): 本工程属于交钥匙工程,投标方在投标前需自行到施工现场考察,不仅要完成施工图纸及工程量清单范围内的工作,同时考虑中央空调系统设备购置及安装整体工程; 三、技术要求 1.《民用建筑供暖通风与空气调节设计规范》 GB50736-2012 3. 《河南省公共建筑节能设计标准实施细则》 DBJ41/075-2006 2. 《公共建筑建筑节能设计标准》 GB50189-2005 4. 建设单位对设计提出的要求 5. 甲方提供的委托设计任务书、相关技术条件及批文 6. 甲方提供的建筑设计图纸 和展B楼及阶梯教室楼空调改造工程 一、工程概况 1. 工程名称:和展B楼及阶梯教室楼空调改造工程 2. 建设地点:xx市经济开发区 3. 建筑概况:本工程地上六层,总建筑面积12210平方米。。 三、设计范围 1. xx楼及阶梯教室楼中央空调系统 四、设计参数 1. 冬季室外设计参数:空气调节室外设计温度 t w =-7 ℃,冬季室外计算相对湿度(最

相关主题
文本预览
相关文档 最新文档