当前位置:文档之家› 掺铒光纤激光器(EDFL)的原理与应用简介

掺铒光纤激光器(EDFL)的原理与应用简介

掺铒光纤激光器(EDFL)的原理与应用简介
掺铒光纤激光器(EDFL)的原理与应用简介

掺铒光纤激光器(EDFL)的原理与应用简介 

光信0304班 杨鹤猛 指导教师 王英 

摘要: 本文从增益介质,谐振腔结构和泵浦源三个构成激光器的必要条件出发,重点介绍了掺铒光纤激光器—EDFL的原理,接着简要介绍了光纤激光器的特点及分类,最后结合掺铒光纤激光器的特点阐明其应用并做了总结。 

 

关键字:光通信 光纤激光器 掺铒光纤激光器 环形腔 

1.引言 

掺铒光纤激光器简称EDFL(Erbium Doped Fiber Laser),光纤激光器的一种,是在掺铒光纤放大器(EDFA)技术基础上发展起来的。早在1961年,美国光学公司的E.Snitzer等就在光纤激光器领域进行了开创性的工作,但由于相关条件的限制,其实验进展相对缓慢。而80年代英国Southhampton大学的S.B.Poole等用MCVD法制成了低损耗的掺铒光纤,从而为光纤激光器带来了新的前景。近期,随着光纤通信系统的广泛应用和发展,超快速光电子学、非线性光学、光传感等各种领域应用的研究已得到日益重视。其中,以光纤作基质的光纤激光器,在降低阈值、振荡波长范围、波长可调谐性能等方面,已明显取得进步,是目前光通信领域的新兴技术,它可以用于现有的通信系统,使之支持更高的传输速度,是未来高码率密集波分复用系统和未来相干光通信的基础。目前光纤激光器技术是研究的热点技术之一。 

 EDFL利用光纤成栅技术把掺铒光纤相隔一定长度的两处写入光栅,两光栅之间相当于谐振腔,用980nm或1480nm泵浦激光激发,铒离子就会产生增益放大。由于光栅的选频作用,谐振腔只能反馈某一特定波长的光,输出单频激光,再经过光隔离器即能输出线宽窄、功率高和噪声低的激光。 

2.EDFL的工作原理 

(1) EDFL的增益介质—EDF 

EDF作为EDFL的增益介质,其基本原理是在光纤的纤芯中能产生激光的稀有元素(如铒、钕、镨等),通过激光器提供的直流光激励,使通过的光信号得到放大。利用掺铒光纤的非线性效应,把泵浦光输入到掺铒光纤中,使光线中的铒原子的电子能级升高。当高能级向低能级跃迁时,向外辐射出光子。当有光信号输入时,辐射光 的相位和波长会自发与信号光传输一致。这样在输出端就可以得到功率较强的光信号,实现光信号放大。信号光在掺

铒光纤的输出过程中可不断被放大。用半导体二极管或其他固体激光器作泵辅源还可产生可调谐激光。用掺铒光纤作成的光纤激光器,是光纤通信中不可缺少的部分。 

 

 

(2) EDFL的谐振腔 

F—P腔,采用端面泵浦,使作为增益介质的掺铒光纤对泵浦光和激射光都能以单横模传播。其中要求腔镜1对泵浦光全透,对激射光全反;腔镜2对泵浦光全反,对激射光部分透。这样才能得到有用的稳定的激光输出。但实际上腔镜2很难同时满足对激光与泵浦光的透射与反射要求,因而必然有少量泵浦光从腔镜2输出。如图2。 

 

F—P腔虽然结构简单,但光纤端面与镜面存在间隙,安装成斜角,端面与纤轴不垂直,这些将导致输出激光不理想。同时用大数值孔径透镜来耦合泵浦光时,要求镀膜基体很薄,以得到最大泵浦效率,在高泵浦功率下,面镜介质膜容易损坏。因此,F—P结构难以得到实际应用。 

1 铒离子(Er3+)能级结构

4I 11/24I 13/24I 15/2980nm泵浦 

基态

高能态

亚稳态 泵浦光 掺铒光纤 腔镜1 腔镜2 

输出激光

2 

EDFL结构示意图 

根据实际需求,有多种不同谐振腔结构的EDFL,如采用光纤光栅的F—P腔,如图3示。 

 

 

如环形腔EDFL,进一步降低了损耗,提高了耦合效率。图4即为一种窄带滤波器型环形腔。

(3) EDFL的泵浦源 

掺铒光纤激光器主要的泵浦波长有800nm,980nm和1480nm三个,常用的为980nm。铒离子在800nm附近具有吸收峰,这意味着可用功率较高而价格又相对便宜的AlGaAs激光二极管进行泵浦。但在大多数情况下,用这个带进行泵浦的光纤器件性能都较差。因为这个带的基态吸收较弱,而且还与较强的激发态吸收带相重合。这两个吸收过程决定了利用这个带进行泵浦的放大器和激光器性能。而铒离子在980nm泵浦波长上不存在受激发射和激发态吸收,因此具有很高的能量转换效率。利用1480nm波长进行泵浦所获得的结果非常好,而且已有高功率的1400nm激光二极管产品。尽管此时激光工作物质为两能级系统,但由于吸收和发射谱之间的位移使谐振泵浦产生了增益,它是斯塔克能级被非均匀占据的结果。 

EDF

pump laser

4 窄带滤波器型环形腔掺铒光纤激光器结构图

filter

3 光纤光栅F--P腔

3.光纤激光器的特点及分类 

光纤激光器的历史几乎和激光器一样长。从1963年发明光纤激光器到二十世纪八十年代末第一批商用光纤激光器出现在市场上,经历了二十年的发展历程。这些激光器使用单模二极管泵浦,发射出几十毫瓦的激光,它们的高增益以及针对多种稀有离子跃迁发射单模连续波激光的能力得到了使用者的青睐。因为这是最常用的晶体激光器所无法做到的。 

与其它激光器相比,光纤激光器的优越性主要体现在:光纤激光器是波导式结构,可容强泵浦,具有高增益、转换效率高、阈值低、输出光束质量好、线宽窄、结构简单、可靠性高波长,可调谐性好,散热效果好等特性,易于实现光纤集成和降低与光纤线路的耦合。 

我们可以从不同的角度对光纤激光器进行分类,如根据光纤激光器的谐振腔采用的结构可以将其分为Fabry-Perot腔和环行腔两大类。也可根据输出波长数目将其分为单波长和多波长等。根据用途分类,有掺铒/镱光纤激光器,光纤喇曼激光器,光纤光栅分布反馈式(DFB)激光器,全光纤激光器,多波长光纤激光器,高功率光纤激光器,窄线宽光纤激光器,短脉冲光纤激光器等。如多波长光纤激光器用于DWDM系统,高功率光纤激光器可用于激光武器,激光印刷和打标,全光网通讯等,窄线宽光纤激光器可用于光纤传感,激光指示和测距等,短脉冲光纤激光器可用于光学测量。 

4.EDFL的应用 

光纤激光器中最为大家所熟知的掺铒光纤激光器EDFL,因其特殊的波长以及对人眼安全等独有特点,在自由空间光通信、激光雷达、环境检测、工件校准以及工业加工领域有着广泛的实际应用。 

EDFL出射时光波长落在1550nm窗口,由掺饵光纤和光泵以及其他相关光路元件,如波长选择器, 偏振控制器,输入/输出耦合器等组成光板,具有低阈值,及与光纤通信系统兼容等 优点。因此,EDFL非常适用于大容量长距离光纤通信系统,而可调谐EDFL非常适用于DWDM系统。如,IPG Photonics公司已经在德国推出了世界上第一台80W波长可调的掺铒光纤激光器,并正式投入商业应用。该激光器可在人眼安全窗口实现1550-1567nm调谐。 掺铒光纤激光器(单模/多模)人眼安全波长,超高脉冲能量,超高光束质量,还可广泛用于:激光雷达/测距,远距离光传感,环境测试和监控。目前,掺铒光纤激光器方面有很多新的尝试,如用于光通信和光传感的纵模掺铒光纤激光器,在光纤环形镜中嵌入未抽运的掺铒光纤作为可饱和吸收体以抑制多纵模,用光纤环谐振腔作为滤波器抑制拍频噪声,用光纤光栅作为波长选择器件,最终得到了单纵模输出并消除了拍频噪声。又如采用纳米粒子直接掺杂的双包层大模场直径的掺铒光纤,该光纤具有极高的铒离子掺杂浓度,保证光纤的高

转换效率,20um的纤芯直径可以保证高功率的应用,同时只有0.07的纤芯数值孔径能够确保高质量的光束输出。 

掺铒光纤激光器因其在光通讯等领域具有广阔的应用前景越来越受到国内外广大科技工作者的重视。 

5.小结 

EDFL出射时光波长落在1550nm窗口,由掺饵光纤和光泵以及其他相关光路元件,如波长选择器, 偏振控制器,输入/输出耦合器等组成光板,具有低阈值,及与光纤通信系统兼容等 优点。特别是可调谐环形EDFL具有调谐范围大,输出功率高,成为可调谐激光器的主 流,其主要类型有抛光型可调谐WDM器件型,DFB型,光纤双折射调谐型,压电调谐光 纤F-P标准具型等。因而,EDFL适用于大容量长距离光纤通信和WDM系统。 

随着光通信网络及相关领域技术的飞速发展,光纤激光器技术正在不断向广度和深度方面推进;技术的进步,特别是以光纤光栅、滤波器、光纤技术等为基础的新型光纤器件等的陆续面市,将为光纤激光器的设计提供新的对策和思路。虽然目前多数类型的光纤激光器仍处于实验室研制阶段,但已经在实验室中充分显示其优越性。可以预见,光纤激光器将成为LD的有力竞争对手,必将在未来光通信、军事、工业加工、医疗、光信息处理、全色显示和激光印刷等领域中发挥重要作用。 

 

参考文献: 

[1]刘德明 向清 黄德修.光纤光学.2003 

[2]杨明涛等.掺铒光纤激光器理论与实验研究.红外与激光技术,1995,(4):43~44 [3]袁树忠等.南开大学学报(自然科学),1999,32(4):117~118 

[4]http://www.opticsjournal.net/getArticle.aspx 

[5]http://www.c-fol.net/news/content/21/20030528140218.htm 

[6]http://teacher.uestc.edu.cn/Thome/yjrao/Course/1854950146.ppt 

光纤激光器原理

光纤激光器原理 光纤激光器主要由泵浦源,耦合器,掺稀土元素光纤,谐振腔等部件构成。泵浦源由一个或多个大功率激光二极管阵列构成,其发出的泵浦光经特殊的泵浦结构耦合入作为增益介质的掺稀土元素光纤,泵浦波长上的光子被掺杂光纤介质吸收,形成粒子数反转,受激发射的光波经谐振腔镜的反馈和振荡形成激光输出。 光纤激光器特点 光纤激光器以光纤作为波导介质,耦合效率高,易形成高功率密度,散热效果好,无需庞大的制冷系统,具有高转换效率,低阈值, 光纤激光器原理图1: 峰值功率:脉冲激光器,顾名思义,它输出的激光是一个一个脉

冲,每单个脉冲有一个持续时间,比如说10 ns(纳秒),一般称作单个脉冲宽度,或单个脉冲持续时间,我们用t 表示。这种激光器可以发出一连串脉冲,比如,1 秒钟发出10 个脉冲,或者有的就发出一个脉冲。这时,我们就说脉冲重复(频)率前者为10,后者为1,那么,1 秒钟发出10 个脉冲,它的脉冲重复周期为0.1 秒,而1 秒钟发出1 个脉冲,那么,它的脉冲重复周期为1 秒,我们用T 表示这个脉冲重复周期。 如果单个脉冲的能量为E,那么E/T 称作脉冲激光器的平均功率,这是在一个周期内的平均值。例如, E = 50 mJ(毫焦),T = 0.1 秒,那么,平均功率P平均= 50 mJ/0.1 s = 500 mW。 如果用 E 除以t,即有激光输出的这段时间内的功率,一般称作峰值功率(peak power),例如,在前面的例子中E = 50 mJ, t = 10 ns, P峰值= 50 ×10^(-3)/[10×10^(-9)] = 5×10^6 W = 5 MW(兆瓦),由于脉冲宽度t 很小,它的峰值功率很大。 脉冲能量E=1mj 脉宽t=100ns 重复频率20-80K 脉冲持续时间T=1s/2k=?秒 平均功率P=E/T=0.001J/0.00005s=20W P峰值功率=E/t 激光的分类: 激光按波段分,可分为可见光、红外、紫外、X光、多波长可调谐,目前工业用红外及紫外激光。例如CO2激光器10.64um红外

掺铒光纤激光器的设计

2 掺铒光纤激光器的设计 一、实验目的 1、完成环形腔掺铒光纤激光器谐振腔的设计,通过选择环形腔中耦合器的不同耦合比,优化设计激光器的阈值特性和输出效率。 2、通过使用不同滤波特性的滤波器,完成环形腔掺铒光纤激光器输出纵模特性的设计和选择。 3、完成光纤激光器的构建,并进行相关性能参数的测试。 二、实验原理 1.掺铒光纤(EDF)与掺铒光纤放大器(EDFA) 当泵浦光通过掺杂光纤中的稀土离子(Er3+、Nd3+、Tm3+、Yb3+等)时,稀土离子吸收泵浦光,使稀土原子的电子激励到较高激发态能级,从而实现通常所说的粒子数反转。反转后的高能态粒子在外界光场的诱使下,以光辐射的形式从高能级转移到基态,完成受激光辐射。 图2.1铒粒子能级图 掺铒光纤在0.5~1.6μm 波长范围内有几个吸收峰,分别对应的铒离子能级(铒离子能级图如图 2.1所示)是0.5~0.60μm (2 /1132/154 ~H I )、0.63μm (2/942/154 ~F I )、0.8μm μm ( 2 /942/154 ~I I )、0.98μm ( 2 /1142/154 ~I I )和1.48μm ( 2 /1342/154 ~I I )直接吸收峰。 掺铒光纤放大器主要由波分复用器、大功率泵浦激光器、光隔离器和掺铒光

纤构成。根据泵浦光和信号光传播方向的相对关系, 掺铒光纤放大器的结构可分为正向泵浦、反向泵浦和双向泵浦三种形式。EDFA 是利用掺铒光纤中掺杂的稀土离子在泵浦光(波长980nm 或1480nm ) 的作用下, 形成粒子数反转, 产生受激辐射, 辐射光随入射光的变化而变化, 进而对入射光信号提供光增益。其放大范围为1530~ 1565 nm , 增益谱比较平坦的部分是1540~ 1560nm , 几乎可以覆盖整个1550nm工作窗口。 2.掺铒光纤激光器(EDFL) 掺铒光纤激光器是在掺铒光纤放大器技术基础上发展起来的。目前掺稀土元素光纤激光器的研究受到了世界各国的普遍重视,成为国际激光器技术研究领域一个十分活跃的前沿研究方向。 和传统的固体、气体激光器一样,掺稀土光纤激光器基本也是由泵浦源、增益介质、谐振腔三个基本的要素组成。泵浦源一般采用高功率半导体激光器( LD) , 增益介质为掺稀土光纤,谐振腔可以由光纤光栅等光学反馈元件构成各种直线型谐振腔,也可以用耦合器构成各种环形谐振腔。泵浦光经适当的光学系统耦合进入增益光纤,增益光纤在吸收泵浦光后形成粒子数反转或非线性增益并产生自发辐射。所产生的自发辐射光经受激放大和谐振腔的选模作用后,最终形成稳定激光输出。 由于掺稀土光纤激光器在增益介质和器件结构等方面的特点,与传统的激光技术相比,在很多方面显示出独特的优点: (1) 较高的泵浦效率。通过对掺杂光纤的结构、掺杂浓度和泵浦光强度和泵浦方式的适当设计,可以使激光器的泵浦效率得到显著提高。例如采用双包层光纤结构,使用低亮度、廉价的多模LD泵浦光源即可实现超过60%的光光转换效率。 (2) 易于获得高光束质量的千瓦甚至兆瓦级超大功率激光输出。光纤激光器表面积/体积比大,其工作物质的热负荷小,易于散热和冷却。 (3) 易实现单模、单频运转和超短脉冲(fs级)。 (4) 工作物质为柔性介质,使得激光器的腔结构设计、整机封装和使用均十分方便。 (5) 激光器可在很宽光谱范围内(455~3500nm)设计与运行, 应用范围广泛。

光纤通信技术实验报告-掺铒光纤激光器

得分:_______ 光纤通信技术实验 (2) 掺铒光纤激光器的设计 实验报告

一、实验目的 1、完成环形腔掺铒光纤激光器谐振腔的设计,通过选择环形腔中耦合器的不同耦合比,优化设计激光器的阈值特性和输出效率。 2、通过使用不同滤波特性的滤波器,完成环形腔掺铒光纤激光器输出纵模特性的设计和选择。 3、完成光纤激光器的构建,并进行相关性能参数的测试。 二、实验原理与背景知识 1.掺铒光纤(EDF)与掺铒光纤放大器(EDFA) 当泵浦光通过掺杂光纤中的稀土离子(Er3+、Nd3+、Tm3+、Yb3+等)时,稀土离子吸收泵浦光,使稀土原子的电子激励到较高激发态能级,从而实现通常所说的粒子数反转。反转后的高能态粒子在外界光场的诱使下,以光辐射的形式从高能级转移到基态,完成受激光辐射。 掺铒光纤放大器主要由波分复用器、大功率泵浦激光器、光隔离器和掺铒光纤构成。根据泵浦光和信号光传播方向的相对关系, 掺铒光纤放大器的结构可分为正向泵浦、反向泵浦和双向泵浦三种形式。EDFA 是利用掺铒光纤中掺杂的稀土离子在泵浦光(波长980nm 或1480nm ) 的作用下, 形成粒子数反转, 产生受激辐射, 辐射光随入射光的变化而变化, 进而对入射光信号提供光增益。其放大

范围为1530~1565 nm , 增益谱比较平坦的部分是1540~1560nm , 几乎可以覆盖整个1550nm工作窗口。 2.掺铒光纤激光器(EDFL) 掺铒光纤激光器是在掺铒光纤放大器技术基础上发展起来的。目前掺稀土元素光纤激光器的研究受到了世界各国的普遍重视,成为国际激光器技术研究领域一个十分活跃的前沿研究方向。 和传统的固体、气体激光器一样,掺稀土光纤激光器基本也是由泵浦源、增益介质、谐振腔三个基本的要素组成。泵浦源一般采用高功率半导体激光器( LD) , 增益介质为掺稀土光纤,谐振腔可以由光纤光栅等光学反馈元件构成各种直线型谐振腔,也可以用耦合器构成各种环形谐振腔。泵浦光经适当的光学系统耦合进入增益光纤,增益光纤在吸收泵浦光后形成粒子数反转或非线性增益并产生自发辐射。所产生的自发辐射光经受激放大和谐振腔的选模作用后,最终形成稳定激光输出。 由于掺稀土光纤激光器在增益介质和器件结构等方面的特点,与传统的激光技术相比,在很多方面显示出独特的优点: (1) 较高的泵浦效率。通过对掺杂光纤的结构、掺杂浓度和泵浦光强度和泵浦方式的适当设计,可以使激光器的泵浦效率得到显著提高。例如采用双包层光纤结构,使用低亮度、廉价的多模LD泵浦光源即可实现超过60%的光光转换效率。 (2) 易于获得高光束质量的千瓦甚至兆瓦级超大功率激光输出。光纤激光器表面积/体积比大,其工作物质的热负荷小,易于散热和冷却。 (3) 易实现单模、单频运转和超短脉冲(fs级)。 (4) 工作物质为柔性介质,使得激光器的腔结构设计、整机封装和使用均十分方便。 (5) 激光器可在很宽光谱范围内(455~3500nm)设计与运行, 应用范围广泛。 (6) 与现有通信光纤匹配,易于耦合,可方便地应用于光纤通信和传感系统。 上述特点使得光纤激光器在很多应用领域有着广泛的用途。特别是掺铒光纤近40nm宽的增益谱范围与光纤通信的最佳窗口(1550nm窗口)相吻合,因而掺铒光纤激光器的研究和开发在光纤通信领域得到了极大的重视。

实验十二掺铒光纤放大器(edfa)的性能测试

实验十二掺铒光纤放大器(EDFA)的性能测试 一、实验目的 1. 了解掺铒光纤放大器(EDFA)的工作原理、基本结构及相关特性; 2. 测试掺铒光纤放大器(EDFA)的各种参数,并根据测量的参数计算增益、输出饱和功率和噪声系数; 二、实验原理 在光纤放大器实用化以前,为了克服光纤传输中的损耗,每传输一段距离都要进行“再生”,即把传输后的弱光信号转换成电信号,经过放大、整形后,再去调制激光器,生成一定强度的光信号,即所谓的O—E—O光电混合中继。但随着传输码率的提高,“再生”的难度也随之提高,于是中继部分成了信号传输容量扩大的“瓶颈”。光纤放大器的出现解决了这一难题,其不但可对光信号进行直接放大,同时还具有实时、高增益、宽带、在线、低噪声、低损耗的全光放大功能,是新一代光纤通信系统中必不可少的关键器件;由于这项技术不仅解决了损耗对光网络传输速率与距离的限制,更重要的是它开创了C+L波段的波分复用,从而将使超高速、超大容量、超长距离的波分复用(WDM)、密集波分复用(DWDM)、全光传输、光孤子传输等成为现实,是光纤通信发展史上的一个划时代的里程碑。 在目前实用化的光纤放大器中主要有掺铒光纤放大器(Erbium-Doped Fiber Amplifier,EDFA)、半导体光放大器(SOA)和光纤喇曼放大器(FRA)等,其中掺铒光纤放大器以其优越的性能现已广泛应用于长距离、大容量、高速率的光纤通信系统、接入网、光纤CATV 网、军用系统(雷达多路数据复接、数据传输、制导等)等领域。在系统中EDFA有三种基本的应用方式:功率放大器(Power booster-Amplifier)、中继放大器(Line-Amplifier)和前置放大器(Pre-Amplifier)。它们对放大器性能有不同的要求,功放要求输出功率大,前放对噪声性能要求高,而中放两者兼顾。 1.掺铒光纤放大器的工作原理 Er3+能级图及放大过程:掺铒光纤放大器之所以能放大光信号的基本原理在于Er3+吸收泵浦光的能量,由基态4I15/2跃迁至处于高能级的泵浦态,对于不同的泵浦波长电子跃迁到不同的能级,当用980nm波长的光泵浦时,如图15-1所示,Er+3从基态跃迁至泵浦态4I11/2。由于泵浦态上的载流子的寿命只有1μs,电子迅速以非辐射方式由泵浦态豫驰至亚稳态,在亚稳态上载流子有较长的寿命,在源源不断的泵浦下,亚稳态上的粒子不断累积,从而实现粒子数反转分布。当有1550nm的信号光通过已被激活的铒光纤时,在信号光的感应下,亚稳态上的粒子以收集受激辐射的方式跃迁到基态,同时释放出一个与感应光子全同的光

环形腔光纤激光器中光谱边带不对称性特性研究

第30卷 第1期光 学 学 报 Vol.30,No.12010年1月 ACTA OP TICA SINICA J anuary ,2010 文章编号:025322239(2010)0120132205 环形腔光纤激光器中光谱边带不对称性特性研究 高玉欣 徐文成 罗智超 罗爱平 宋创兴 (华南师范大学光电子信息科技学院,光子信息技术广东省重点实验室,广东广州510006) 摘要 理论分析了环形腔锁模光纤激光器中光谱边带不对称性产生的物理机制,实验中搭建了环形腔被动锁模光纤激光器平台,通过调节偏振控制器,在L 波段获得了明显不对称的边带光谱。实验结果表明,光谱不对称性主要存在两方面的明显特点:1)强度不对称性,最明显时正二级的强度比负二级的强度高14.28dBm ;2)数量不对称性,最明显时正级数量要比负级数量多5个。通过对光谱边带不对称性物理机制的分析对如何消除边带效应以获得理想的孤子脉冲具有重要的指导意义。 关键词 激光器;边带不对称性;光纤激光器;被动锁模;环形腔 中图分类号 TN248 文献标识码 A doi :10.3788/AOS 20103001.0132 Ch a r act e ris t ics of t he S i deba n d As y m met r y i n a Fi be r Ri n g L as e r Gao Yuxin Xu Wencheng L uo Zhichao L uo Aiping Song Chuangxing (L abor a tor y of Photonic Inf or m a tion Tech nology ,School of I nf or m a tion of Op toelect ronic Science a n d Engi neeri ng , Sout h Chi n a Nor m al U niversit y ,Gu a ngzhou ,Gua ngdong 510006,Chi n a ) Abs t r act Physical mechanism of the sideband asymmet ry is theoretically analyzed in the fiber ring lasers ,A passive mode 2locked erbium 2doped fiber ring laser is const ructed in the experiment ,The obvious asymmet ry of the spect ral sidebands in an L 2band is obtained by adjusting polarization cont rollers.The asymmet ry of sidebands can be observed in two aspects :on the one hand ,the asymmet ry of the power between the positive and the negative order numbers is obvious ,which can be observed that the intensity of the positive second order is higher 14.28dBm than that of the negative same order ;on the other hand ,the sideband asymmet ry numbers f rom the positive to the negative orders are also obvious ,the number of the positive orders is more 5numbers than that of the negative.The sideband asymmet ry is usef ul for the research of eliminating the sidebands and acquiring the ideal soliton p ulses and so on.Key w or ds lasers ;sideband asymmet ry ;fiber laser ;passively mode 2locking ;ring cavity 收稿日期:2009201219;收到修改稿日期:2009204210 基金项目:广东省自然科学基金(04010397)资助课题。 作者简介:高玉欣(1981—),女,硕士研究生,主要从事光纤激光器和高码率光通信等方面研究。E 2mail :liayuan322@https://www.doczj.com/doc/fc12729429.html, 导师简介:徐文成(1965— ),男,教授,博士生导师,主要从事光纤激光器及其在高码率光通信系统中的应用等方面的研究。E 2mail :xuwch @https://www.doczj.com/doc/fc12729429.html, (通信联系人) 1 引 言 自从1550nm 光通信窗口打开以来,光纤通信向着远距离、高容量的方向发展,该发展趋势对激光光谱的平滑程度以及脉冲前后沿的非重叠性无疑提出了更高的要求。而在超短脉冲掺铒光纤激光器实验中,产生的光谱总伴随着边带。光谱边带一方面使光谱的主脉冲能量减少,另一方面使激光器输出脉冲的频谱质量发生劣化,容易使信号之间产生串扰,从而直接影响激光器在长距离光纤通信系统的 应用。因此,如何获得无光谱边带的超短脉冲是近 年来非线性光纤光学研究领域中一个重要的研究课题[1~6]。 对光谱边带的研究国内并不多。国外从20世纪80年代开始就有人提出了光谱边带的问题,但是在整个80年代,对于边带的产生原因、不对称性机理、如何消除边带等仍处于探索研究阶段。1982年R.H.Stolen 等[7]对双折射光纤中光脉冲以不同的角度入射时对脉冲整形效应做了初步的研究,为以

多波长掺铒光纤激光器

如图为短脉冲高功率1.5微米光纤激光器 平均功率能达到1W,可调节的脉冲宽度达到ns 可调节的重复频率达到MHz 可以应用于激光雷达/雷达、遥感、测距 什么是光纤激光器 光纤激光器是指用掺稀土元素玻璃光纤作为增益介质的激光器,光纤激光器可在光纤放大器的基础上开发出来:在泵浦光的作用下光纤内极易形成高功率密度,造成激光工作物质的激光能级“粒子数反转”,当适当加入正反馈回路(构成谐振腔)便可形成激光振荡输出。光纤激光器的特点 光纤作为导波介质,纤芯直径小,纤内易形成高功率密度,可方便地与目前的光纤通信系统高效连接,构成的激光器具有高转换效率、低阈值、高增益、输出光束质量好和线宽窄等特点; 由于光纤具有极好的柔绕性,激光器可设计得相当小巧灵活、结构紧凑、体积小、易于系统集成、性能价格比高; 与固体、气体激光器相比:能量转换效率高、结构紧凑、可靠性高、适合批量生产;与半导体激光器相比:单色性好,调制时产生的啁啾和畸变小,与光纤耦合损耗小。 光纤激光器的分类 按谐振腔结构分类为F-P腔、环形腔、环路反射器光纤谐振腔以及“8”字形腔等。 按激光输出波长数目分类为单波长光纤激光器和多波长光纤激光器。 按输出激光特性分类为连续光纤激光器和脉冲光纤激光器 按光纤材料分为晶体光纤激光器、非线性光学型光纤激光器、稀土类(如铒)掺杂光纤激光器、塑料光纤激光器等 随着高容量光纤通信网的发展,波分复用技术得以广泛的采用,它要求多波长光源 具有波长间隔小、线宽窄、功率谱平坦等特点。因此满足波分复用技术要求的多波长光 纤激光器成为研究的重点 多波长光纤激光器基本结构 1、增益介质 就增益介质而言,多波长光纤激光器通常采用光纤放大器(如掺稀土光纤放大器和拉曼光纤放大器作为增益介质,这将使得其具有结构紧凑、灵活方便等优点。值得注意的是,多个波长同时共用同一增益介质将导致较强的模式竞争,要获得多波长同时稳定振荡,这是首先必须考虑的问题。然而,大多掺稀土光纤放大器为均匀展宽的增益介质,对实现稳定的多波长运转是非常不利的,必须采用一些辅助手段来抑制或削弱它们的均匀展宽特性。 (EDFA)多波长掺铒光纤激光器常采用液氮制冷光纤至77k、声光频移位调制和非线性光学效应等辅助技术来抑制掺饵光纤的均匀展宽。 2、谐振腔 在多波长光纤激光器中,谐振腔起到至关重要的作用—完成多波长选模。在大多实际情况下,多波长激光器要求相等波长间隔(ITU叮标准通信间隔200GHz、100GHz、50GHz 和25GHz)激射。为实现这一目的,通常需要借助梳状滤波器才能满足要求

光纤激光器工作原理及发展

光纤激光器的工作原理及其发展前景 1 引言 光纤激光器于1963年发明,到20世纪80年代末第一批商用光纤激光器面市,经历了20多年的发展历程。光纤激光器被人们视为一种超高速光通信用放大器。光纤激光器技术在高速率大容量波分复用光纤通信系统、高精度光纤传感技术和大功率激光等方面呈现出广阔的应用前景和巨大的技术优势。光纤激光器有很多独特优点,比如:激光阈值低、高增益、良好的散热、可调谐参数多、宽的吸收和辐射以及与其他光纤设备兼容、体积小等。近年来光纤激光器的输出功率得到迅速提高。已达到10—100 kW。作为工业用激光器,现已成为输出功率最高的激光器。光纤激光器的技术研究受到世界各国的普遍重视,已成为国际学术界的热门前沿研究课题。其应用领域也已从目前最为成熟的光纤通讯网络方面迅速地向其他更为广阔的激光应用领域扩展。本文简要介绍了光纤激光器的结构、工作原理、分类、特点及其研究进展,最后对光纤激光器的发展前景进行了展望。 2 光纤激光器的结构及工作原理 2.1光纤激光器的结构 和传统的固体、气体激光器一样。光纤激光器基本也是由泵浦源、增益介质、谐振腔三个基本的要素组成。泵浦源一般采用高功率半导体激光器(LD),增益介质为稀土掺杂光纤或普通非线性光纤,谐振腔可以由光纤光栅等光学反馈元件构成各种直线型谐振腔,也可以用耦合器构成各种环形谐振腔泵浦光经适当的光学系统耦合进入增益光纤,增益光纤在吸收泵浦光后形成粒子数反转或非线性增益并产生自发辐射所产生的自发辐射光经受激放大和谐振腔的选模作用后.最终形成稳定激光输出。图1为典型的光纤激光器的基本构型。 增益介质为掺稀土离子的光纤芯,掺杂光纤夹在2个仔细选择的反射镜之间.从而构成F—P谐振器。泵浦光束从第1个反射镜入射到稀土掺杂光纤中.激射输出光从第2个反射镜输出来。 2.2 光纤激光器的工作原理 掺稀土元素的光纤放大器促进了光纤激光器的发展,因为光纤放大器可以通过适当的反馈机理形成光纤激光器。当泵浦光通过光纤中的稀土离子时.就会被稀土离子所吸收。这时吸收光子能量的稀土原子电子就会激励到较高激射能级,从而实现离子数反转,反转后的离子数就会以辐射形式从高能级转移到基态,并且释放出能量,完成受激辐射。从激发态到基态的辐射方式有2种:自发辐射和受激辐射。其中,受激辐射是一种同频率、同相位的辐射,可

掺铒光纤放大器的设计..

东北石油大学课程设计 2014年3月7日

东北石油大学课程设计任务书 课程光电子技术课程设计 题目掺铒光纤放大器的设计 专业电子科学与技术姓名苗培梓学号100901240106 主要内容、基本要求、主要参考资料等 1、主要内容: 的掺铒光纤放通过学习光纤放大器的原理,设计一个能够对波长为1.55m 大器。 2、基本要求 要求在论文中写出掺铒光纤放大器的工作原理,结构与特性,以及优点与应用。 3、参考文献: [1] 刘增基,周洋溢著,光纤通信,西安电子科技大学出版社,2002.6. [2] 雷肇棣著,光纤通信基础,电子科技大学出版社,1999. [3] 马养武,包成芳,光电子学,浙江大学出版社,2003.3. 完成期限2014.3.3 ~2014.3.7 指导教师 专业负责人 年月日

第1章概述 掺铒光纤放大器,即在信号通过的纤芯中掺入了铒离子Er3 + 的光信号放大器,是1985年英国南安普顿大学首先研制成功的光放大器,它是光纤通信中最伟大的发明之一。掺铒光纤是在石英光纤中掺入了少量的稀土元素铒离子的光纤,它是掺铒光纤放大器的核心。光纤放大器是光纤通信系统对光信号直接进行放大的光放大器件,在使用光纤的通信系统中,不需要将光信号转换为电信号,直接对光信号进行放大的一种技术。 1.1研究意义 众所周知,现今是信息时代,社会信息化进程正在逐渐的深入,整个社会受信息运行的影响也随之越来越大,随着因特网的普及和网上应用,使人们对一些新型信息服务的需求越来越迫切,例如家庭办公、远程教育、电子商务等,因此这就需要用到功能强大的通信网络,光纤通信作为一种理想的通信手段,具有了诸如较大的通信容量、较长的无中继通信距离、良好的保密性等许多的优点,这使得光纤通信取代其它通信手段是一种必然的趋势。 在光放大器中,掺铒光纤放大器,即EDFA,的技术比较成熟,自身性能较好,所以它的应用比较广泛。它具有高增益、低噪声、输出功率大、串话小,对温度偏振不敏感,藕合效率高,易与传输光纤藕合连接,损耗低,不易自激,对信号速率和格式透明,并具有几十纳米的放大带宽等优点。由于它几乎接近完美的特性及半导体泵浦源的使用,导致了它在波分复用系统中的广泛应用,随着光纤通信向速度更快、带宽更大方向的发展,随之对掺铒光纤放大器的性能也有着更高的要求。 1.2发展趋势及其前景 掺铒光纤放大器的研究始于60年代早期,E.Snitzer发现掺铒玻璃对1.50微米波长的激光有放大作用,提出了掺杂光纤放大器的设想,但由于当时未能解决热淬灭效应问题,而且随后出现了半导体光放大器,使得掺铒光纤放大器的研究停滞不前。直到80年代中期,南安普敦大学的研究人员通过改进的化学气相沉积法(MCVD)成功研制出了掺铒光纤,并在之后制作出了利用650nm波长50mW 的红染料激光器为泵浦的EDFA具有25dB的小信号增益;几乎同时贝尔实验室

掺铒光纤激光器

掺铒光纤激光器 一、设计背景 激光器的发明是二十世纪科学技术的一项重大成就。1960年梅曼根据受激辐射光量子放大理论研制出第一台红宝石激光器,童年年底研制出He-Ne气体激光器,1962年又报导了砷化镓半导体激光器的研制成功。我国于1961年研制成功红宝石激光器,1966年试制出Nd:YAG激光器。到70年代末,各种激光器技术已经比较成熟,并得到实际应用。经过四十多年的发展,特别是最近十几年,激光技术高速发展,种类众多,现在已经广泛应用于工业加工、通讯、信息处理、医疗卫生、军事国防、文化教育以及科学研究等众多领域,并取得了很好的经济效益和社会效益,对国民经济及社会发展发挥着愈来愈重要的作用。 单纵模(SLM)掺铒光纤激光器(EDFL)由于可以应用在光通信、激光光谱学、光纤传感等领域而备受关注并得到了迅猛发展。掺铒光纤激光器具有结构简单、激射波长可以精确预定、可实现宽带调谐和窄线宽输出等优点,且与其他激光器相比具有许多优良特点:高增益、低阈值(几十毫瓦量级)、低噪声、高效率、抽运寿命长、有很好的单色性和高稳定性、小型化、易与传输光纤耦合[1]。 光纤通信的突飞猛进得益于光线放大器和光线激光器的不断发展光纤放大器的研究始于1964 年,从真正的使用从1986 年开始,这归功于低损耗稀土掺杂光纤工作特性和制造技术的发展其中掺铒光纤放大器格外引人瞩目因为它的工作波长在1550nm 附近适合于现代光通信系统早在1961 年就研制了的一台光纤激光器经过20 世纪七十年代到八十年代初期的酝酿从20世纪八十年代中期开始光纤激光器得到了长足的发展光纤激光器的输出波长范围在400 3400 纳米之间可应用于光学数据存储光通讯传感技术光谱研究和医学等多个领域[2]。

激光振镜场镜原理(精)

Rdie aarlh doped siide-rrirMte core single-mode signal Multi-mode pumplighrt 光纤激光器原理: 光纤激光器主要由泵浦源,耦合器, 掺稀土元素光纤,谐振腔等部件构成。 泵浦源由一 个或多个大功率激光二极管阵列构成, 其发出的泵浦光经特殊的泵浦结构耦合入作为增益介 质的掺稀土元素光纤, 泵浦波长上的光子被掺杂光纤介质吸收, 形成粒子数反转,受激发射 的光波经谐振腔镜的反馈和振荡形成激光输出。 光纤激光器特点 光纤激光器以光纤作为波导介质,耦合效率高,易形成高功率密度,散热效果好, 无需 庞大的制冷系统,具有高转换效率,低阈值,光束质量好和窄线宽等优点。并且,光纤激光 器的谐振腔内无光学镜片,具有免调节、 免维护、高稳定性的优点; 超长的工作寿命和免维 护时间,平均免维护时间在 10万小时以上。 光纤激光器原理图1: 峰值功率:脉冲激光器,顾名思义,它输岀的激光是一个一个脉冲,每单个脉冲有一个持续时间,比如 说10 ns (纳秒),一般称作单个脉冲宽度,或单个脉冲持续时间,我们用 t 表示。这种激光器可以发出一 连串脉冲,比如,1秒钟发出10个脉冲,或者有的就发出 一个脉冲。这时,我们就说脉冲重复 (频)率 前 者为10,后者为1,那么,1秒钟发出10个脉冲,它的脉冲重复周期为 0.1秒,而1秒钟发出1个 脉冲,那么,它的脉冲重复周期为 1秒,我们用T 表示这个脉冲重复周期。 如果单个脉冲的能量为 E ,那么E/T 称作脉冲激光器的平均功率,这是在一个周期内的平均值。例如,E =50 mJ (毫焦),T = 0.1 秒,那么, 平均功率 P 平均=50 mJ/0.1 s = 500 mW 。 如果用E 除以t ,即有激光输出的这段时间内的功率,一般称作峰值功率 (peak power ),例如,在前面的 例子中 E = 50 mJ, t = 10 ns, P 峰值=50 X 10A (-3)/[10 X10A (-9)] = 5 X 10A 6 W = 5 MW (兆瓦),由于脉冲宽度 t 很小,它的峰值功率 很大。 脉冲能量E=1mj 脉宽t=100ns 重复频率20-80K 脉冲持续时间 T=1s/2k= ?秒 平均功率 P=E/T=0.001J/0.00005s=20W P 峰值功率 =E/t

光纤激光器原理与特性详解

光纤激光器原理与特性详解 一、简介 光纤激光器,英文名称为Fiber Laser,是一种以掺稀土元素的玻璃光纤为增益介质来产生激光输出的装置。光纤激光器可在光纤放大器的基础上进行开发,由于光纤激光器中光纤纤芯很细,因此在泵浦光作用下,光纤内部功率密度高,使得激光能级出现“粒子数反转”现象,在此基础上,再通过正反馈回路构成谐振腔,便可在输出处形成激光振荡。

二、结构 光纤激光器的结构类似于传统的固体激光器、气体激光器,主要由泵浦源、增益介质、谐振腔三大部分构成,如下图所示。其中,泵浦源一般为高功率的半导体激光器,增益介质为掺稀土元素的玻璃光纤,谐振腔由耦合器或光纤光栅等构成。 三、原理 在上图中,由泵浦源发出的泵浦光通过一面反射镜耦合进入增益介质中,由于增益介质为掺稀土元素光纤,因此泵浦光被吸收,吸收了光子能量的稀土离子发生能级跃迁并实现粒子数反转,反转后的粒子经

过谐振腔,由激发态跃迁回基态,释放能量,并形成稳定的激光输出。 四、特点 特点一:由于光纤纤芯直径小,在纤芯内容易形成高功率密度,因此光纤激光器具有较高的转换效率、较低的阙值、较高的增益、较窄的线宽、且可方便高效的实现与当前光纤通信系统的连接。 特点二:由于光纤具有很好的柔绕性,因此光纤激光器具有小巧灵活、结构紧凑、性价比较高、且更易于系统的集成的特点。 特点三:与传统的固体激光器、气体激光器相比,光纤激光器的能量转换效率较高、结构较紧凑、可靠性高、且适合大批量的生产。 特点四:与半导体激光器相比,光纤激光器的单色性较好、调制时可产生较小的啁啾和畸变、且与光纤的耦合损耗较小。

和半导体激光器相比,光纤激光器的优越性主要体现在:光纤激光器是波导式结构,可容强泵浦,具有高增益、转换效率高、阈值低、输出光束质量好、线宽窄、结构简单、可靠性高等特性,易于实现和光纤的耦合。 我们可以从不同的角度对光纤激光器进行分类,如根据光纤激光器的谐振腔采用的结构可以将其分为Fabry-Perot腔和环行腔两大类。也可根据输出波长数目将其分为单波长和多波长等。 对于不同类型光纤激光器的特性主要应考虑以下几点: (1)阈值应越低越好; (2)输出功率与抽运光功率的线性要好; (3)输出偏振态; (4)模式结构; (5)能量转换效率;

第四次实验报告-测量掺铒光纤放大器放大特性

现代通信光电子学实验报告 实验名称:测量掺铒光纤放大器放大特性 学生姓名: 学号: 同组学生姓名:何子力 实验日期:2017.5.14 报告提交日期:2017.5.28

目录 一、实验目的和要求 (1) 二、实验内容和原理 (2) 2.1 掺铒光纤放大器的工作原理 (2) 2.2 增益特性分析 (5) 三、主要仪器设备 (6) 四、操作方法与实验步骤 (6) 五、实验结果记录 (9) 六、实验结果分析 (12) 七、结论与思考 (15) 八、参考资料 (16) 九、附件 (16)

一、实验目的和要求 1、了解掺铒光纤放大器的工作原理 2、理解惨耳光纤放大器(EDFA)的基本结构和功能; 3、测试掺铒光纤放大器(EDFA)的各种参数并通过测量的参数计算增益, 输出饱和功率,噪声系数 4、了解影响掺铒光纤放大器放大率的因素 5、了解怎样使用实验仪器 6、确定掺铒光纤放大器工作的临界状态,绘制放大特性曲线 二、实验内容和原理 在光纤放大器实用化以前,为了克服光纤传输中的损耗,每传输一段距离都要进行“再生”,即把传输后的弱光信号转换成电信号,经过放大、整形后,再去调制激光器,生成一定强度的光信号,即所谓的O—E—O光电混合中继。但随着传输码率的提高,“再生”的难度也随之提高,于是中继部分成了信号传输容量扩大的“瓶颈”。光纤放大器的出现解决了这一难题,其不但可对光信号进行直接放大,同时还具有实时、高增益、宽带、在线、低噪声、低损耗的全光放大功能,是新一代光纤通信系统中必不可少的关键器件;由于这项技术不仅解决了损耗对光网络传输速率与距离的限制,更重要的是它开创了C+L波段的波分复用,从而将使超高速、超大容量、超长距离的波分复用、密集波分复用、全光传输、光孤子传输等成为现实,是光纤通信发展史上的一个划时代的里程碑。

光纤光栅F_P标准具选模单频环形腔光纤激光器

第18卷 第12期强激光与粒子束Vol.18,No.12 2006年12月HIGH POWER LASER AND PAR TICL E B EAMS Dec.,2006  文章编号: 100124322(2006)1221987204 光纤光栅F2P标准具选模单频环形腔光纤激光器3 伍 波, 刘永智, 刘 爽, 代志勇 (电子科技大学光电信息学院,成都610054) 摘 要: 讨论了光纤光栅法布里2珀罗(F2P)标准具选模光纤激光器的单频运转原理,并研制了全光纤结 构单频掺Er3+光纤环形激光器。实验中采用两个976nm激光二极管双向泵浦作为泵浦源,高掺杂浓度掺 Er3+光纤作为增益介质,以行波腔消除空间烧孔效应,利用光纤光栅F2P标准具窄带选模特性,当泵浦光功率 为36mW时,得到了稳定的单频激光输出。实验中使用了长5和3m的掺杂光纤,在泵浦光功率为145mW 时输出功率分别为19和42mW,光2光转换效率分别为13%和29%,斜率效率分别达到了16%和33%。输出 谱线3dB带宽0.01nm,无跳模现象。 关键词: 激光技术; 光纤激光器; 环形腔; 布里2珀罗标准具; 光纤光栅 中图分类号: TN248 文献标识码: A 光纤激光器以其卓越的性价比,以及抗电磁干扰能力强、转换效率高、线宽窄、输出光束质量好、可靠性高等优点,在光纤通信、激光加工、激光医疗、激光雷达、结构测距、光纤传感等方面得到日益广泛的应用。在光纤激光器中,光纤光栅通常用来作为反射腔镜,产生窄带光谱输出[122],它可以使激光器紧凑、简单。与光纤法布里2珀罗标准具相比,光纤光栅标准具有更好的窄带选模特性,可用来对光纤激光器选纵模。文献[324]理论分析了光纤光栅标准具的透射特性及纵模特性,在掺铒环形腔光纤激光器腔内引入光纤光栅标准具作为选频器件,得到3.16mW单频激光输出[5]。采用掺铒镱双包层光纤作为增益介质,在光环形器上以光纤光栅标准具选频的光纤激光器得到了1W的单频高功率激光输出[6]。这两种激光器的共同缺点是结构复杂,能量转换效率低,文献[5]得到的效率为3%,文献[6]使用了19W泵浦功率,效率为5.3%。国内也研究了在增益光纤上相隔极近距离写入两个光纤光栅,从而构成超短腔光纤激光器实现单纵模输出[728],但是由于增益区太短,同样导致了输出功率小、效率低的问题。 为了得到高效率的单频光纤激光器,本文分析了光纤光栅标准具选模光纤激光器单频运转原理,并采用环形行波腔结构,将光纤光栅标准具作为外腔选模器件,进行了相应的实验研究,得到了稳定的单频激光输出。1 激光器单频运转原理 光纤光栅的反射、透射特性可用耦合模理论描述。设后向传播和前向传播的光波电场分别表示为 a(z)=A(z)exp(iβz)(1) b(z)=B(z)exp(-iβz)(2)式中:A(z),B(z)分别为后向和前向传播光波电场的振幅;β=2nπ/λ为传播常数。光纤光栅反射系数r g=|r g| exp(i

掺铒光纤放大器实验

实验十二掺铒光纤放大器实验 实验目的: 1. 理解掺铒光纤放大的原理; 2. 学习Optisystem 软件的使用; 3. 加深对光放大技术的认识。 实验仪器: 1. Optisystem 软件 实验原理: 1. EDFA的概念 EDFA采用掺铒离子单模光纤为增益介质,在泵浦光作用下产生粒子数反转,在信号光诱导下实现受激辐射放大。 信号光与波长较其为短的光波(泵浦光)同沿光纤传输,泵浦光的能量被光纤中的稀土元素离子吸收而使其跃迁至更高能级,并可通过能级间的受激发射转移为信号光的能量。信号光沿光纤长度得到放大,泵浦光沿光纤长度不断衰减。 泵浦波长可以是520、650、800、980、1480nm,波长短于980nm的泵浦效率低,因而通常采用980和1480nm泵浦。

2. 掺铒光纤放大器的基本结构 掺铒光纤:当一定的泵浦光注入到掺铒光纤中时, Er3+从低能级被激发到高能级上,由于在高能级上的寿命很短,很快以非辐射跃迁形式到较低能级上,并在该能级和低能级间形成粒子数反转分布。 半导体泵浦二极管:为信号放大提供足够的能量,使物质达到粒子数反转。 波分复用耦合器:将信号光和泵浦光合路进入掺铒光纤中。 光隔离器:使光传输具有单向性,放大器不受发射光影响,保证稳定工作。 EDFA 的三种泵浦方式进行比较: 同向泵浦(前向泵浦)型:好的噪声性能 反向泵浦(后向泵浦)型:输出信号功率高 双向泵浦型:输出信号功率比单泵浦源高3dB ,且放大特性与信号传输方向无关 实验内容: 增益G 是描述光放大器对信号放大能力的参数。定义为: G 与光放大器的泵浦功率、掺杂光纤的参数和输入光信号有很复杂的关系。用Optisystem 软件完成如下测量。 1. 增益对输入光功率的依存关系 2. 增益G 与输入光波长的关系 3. 小信号增益随泵浦功率的关系 4. 小信号增益随EDF 长度的关系 实验报告要求: 根据实验内容,完成器件选择与数据测量,绘图并对实验现象进行分析。

光纤激光器的原理及应用

光纤激光器的原理及应用 张洪英 哈尔滨工程大学理学院 摘要:由于在光通信、光数据存储、传感技术、医学等领域的广泛应用,近几年来光纤激光器发展十分迅速,且拥有体积小、重量轻、检测分辨率高、灵敏度高、测温范围宽、保密性好、抗电磁干扰能力强、抗腐蚀性强等明显优势。本文简要介绍了光纤激光器的基本结构、工作原理及特性,并对目前几种光纤激光器发展现状及特点做了分析,总结了光纤激光器的发展趋势。 关键词:光纤激光器原理种类特点发展趋势 1引言 对掺杂光纤作增益介质的光纤激光器的研究20世纪60年代,斯尼泽(Snitzer)于1963年报道了在玻璃基质中掺激活钕离子(Nd3+)所制成的光纤激光器。20世纪70年代以来,人们在光纤制备技术以及光纤激光器的泵浦与谐振腔结构的探索方面取得了较大进展。而在20世纪80年代中期英国南安普顿大学掺饵(EI3+)光纤的突破,使光纤激光器更具实用性,显示出十分诱人的应用前景[1]。 与传统的固体、气体激光器相比,光纤激光器具有许多独特的优越性,例如光束质量好,体积小,重量轻,免维护,风冷却,易于操作,运行成本低,可在工业化环境下长期使用;而且加工精度高,速度快,寿命长,省能源,尤其可以智能化,自动化,柔性好[2-3]。因此,它已经在许多领域取代了传统的Y AG、CO2激光器等。 光纤激光器的输出波长范围在400~3400nm之间,可应用于:光学数据存储、光学通信、传感技术、光谱和医学应用等多种领域。目前发展较为迅速的掺光纤激光器、光纤光栅激光器、窄线宽可调谐光纤激光器以及高功率的双包层光纤激光器。 2光纤激光器的基本结构与工作原理 2.1光纤激光器的基本结构 光纤激光器主要由三部分组成:由能产生光子的增益介质、使光子得到反馈并在增益介质中进行谐振放大的光学谐振腔和可使激光介质处于受激状态的泵浦源装置。光纤激光器的基本结构如图2.1所示。

基于多模光纤滤波器的可调谐掺铒光纤激光器

第31卷 第8期光 学 学 报 Vol.31,No.8 2011年8月 ACTA OPTICA SINICA  Aug ust,2011基于多模光纤滤波器的可调谐掺铒光纤激光器 郝艳萍 张书敏 王新占 孟义昌 李辉辉 杜 娟 李红飞 (河北师范大学物理科学与信息工程学院河北省薄膜材料实验室,河北石家庄050016 )摘要 研究了一种新型、全光纤、宽带可调谐环形腔掺铒光纤激光器。该激光器利用由单模-多模-单模光纤组成的滤波器实现波长可调谐及激光器的全光纤结构。该滤波器将多模光纤缠绕在偏振控制器上,两端分别与一段单模光纤相连,通过调整偏振控制器的状态,实现了中心波长1542~1560nm的不同激光输出。单波长连续可调谐激光器的波长可调范围为18nm,边模抑制比大于40dB,3dB线宽为0.096nm;进一步调整偏振控制器的状态和抽运功率,实验同时得到了连续可调谐的双波长、三波长等多波长激光输出。对于可调谐的多波长激光器,通过调整偏振控制器的状态, 可实现波长间隔及输出中心波长两者可调。关键词 激光器;可调谐光纤激光器;多模光纤滤波器;全光纤 中图分类号 TN248.1 文献标识码 A doi:10.3788/AOS201131.0814006 Tunable Erbium-Dop ed Fiber Laser Based on Multi-Mode Fiber FilterHao Yanping Zhang Shumin Wang Xinzhan Meng  Yichang Li HuihuiDu Juan Li Hong fei(Hebei Advanced Thin-Film Laboratory,College of  Physics Sicence and Information Engineering,Hebei Normal University,Shijiazhuang, Hebei 050016,China)Abstract A new-style,all-fiber,broad-band tunable erbium-doped fiber ring  laser is proposed.The wavelengthcontinuous tuning is realized by using a single-mode/multimode/single-mode fiber as a filter,in which the multimodefiber is wrapped around a polarization controller,and is spliced to a single-mode fiber at each ends.By carefullyadjusting the polarization controllers in the cavity,the output central wavelength of tunable single-wavelength laser istunable from1542 to 1560 nm over a range of 18 nm,with a sig nal-to-noise ratio of 40 dB and the 3-dB linewidth of0.096 nm.Furthermore,by appropriately rotating the polarization controllers and changing the pump power,wavelength continuously tunable dual-and triple-wavelength laser output is also experimentally demonstrated,andthe wavelength selection and switching can be achieved by adjusting the polarization controllers in the cavity.Key words lasers;tunable fiber laser;multi-mode fiber filter;all-fiberOCIS codes 1 40.3510;190.4370;350.2450 收稿日期:2010-12-30;收到修改稿日期:2011-03- 15基金项目:国家自然科学基金(11074065)、河北省自然科学基金(F2009000321)和高等学校博士学科点专项科研基金(20101303110003 )资助课题。作者简介:郝艳萍(1987—),女,硕士研究生,主要从事光纤激光器方面的研究。E-mail:haoyanping_2007@163.com导师简介:张书敏(1965—),女,教授,博士生导师,主要从事全光纤器件、光纤激光器和短脉冲光源等方面的研究。E-mail:zhang sm@mail.hebtu.edu.cn(通信联系人,中国光学学会会员号:8040111668)1 引 言 可调谐光纤激光器因其发射的激光波长能在一定的波长范围内连续可调,进而具有可用一个光源代替几个激光光源的优点,故在光通信、材料加工、医学及成像等方面具有广泛的应用。研究人员常采用光 纤光栅[1]、法布里-珀罗标准具[ 2 ]、马赫-曾德尔(M-Z )干涉仪[3]和声光滤波器[4 ]等作为波长可调谐器件。然而,这些调谐器件一般为非光纤结构,这样 会使所组成的激光器插入损耗较大、 不便于集成和实现全光纤连接、且对环境敏感。为实现全光纤结构的可调谐光纤激光器,免去准直光路的麻烦,人们常采 用光纤布拉格光栅作为调谐元件[5~7 ],然而,目前大 0814006-

相关主题
文本预览
相关文档 最新文档