当前位置:文档之家› 高效液相色谱法在手性药物拆分中的应用

高效液相色谱法在手性药物拆分中的应用

高效液相色谱法在手性药物拆分中的应用
高效液相色谱法在手性药物拆分中的应用

高效液相色谱法在手性药物拆分中的应用

摘要:外消旋化合物的手性分离是获得单一对映体的方法之一。随着人们对纯光学药物的需求日益增加,各种手性分离技术得以快速发展。近几十年来,在这些手性分离技术中,高效液相色谱法( HPLC ) 被公认为是一种强大、快速、高效的分离技术,它已成功应用于对映体药物的分离分析和制备中。HPLC用于对手性药物分离的研究已取得很大进展,并且研发了大量可应用于手性小分子和聚合物分离的手性固定相,大大提高HPLC的手性识别能力。本文以HPLC的手性药物分离为焦点,介绍了近几年高效液相色谱法手性固定相的新发展和应用。关键词:高效液相色谱法手性药物手性拆分

Application of High Performance Liquid Chromatography in Chiral Separation of Pharmaceuticals

Abstract:Resolution of racemic compounds is one of the potential ways of obtaining both enantiomers. The increasing demand for enantiopure drugs has led to the development of a variety of stereoselective separation technologies. Among several resolution techniques in the past few decades, high performance liquid chromatography ( HPLC ) is well recognized as a powerful, fast and efficient technique, which has been successfully employed for analysis and preparation of enantiomers of drugs. Enantioseparation by HPLC has significantly advanced, and a large number of chiral stationary phases ( CSPs ) for HPLC have been developed using both chiral small molecules and polymers with chiral recognition abilities. This review focuses on various HPLC methods for chiral separation of pharmaceuticals, many new developments and applications are introduced in chiral stationary phase of HPLC in recent years.

Keywords:HPLC; Chiral drug; Chiral separation;

引言

手性药物是指药物分子结构中引入手性中心后,得到的一对互为实物与镜像的对映异构体,是目前药物研究领域的热点之一。这些对映异构体的理化性质基本相似,仅仅是旋光性有所差别。而手性在自然界中是普遍存在的,并且人体本身就是一个手性环境,比如蛋白质、多糖、核酸和酶等大都是手性的。绝大多数的药物由手性分子构成。虽然它们的理化性质相似,但在生物体内的药理活性、代谢过程及毒性存在显著的差异。由于酶、受体、载体等分子都是具有手性特征的物质,手性药物的不同对映体在生物体内的吸收、转运、分布、代谢、排泄等存在显著的差异,甚至能够产生意想不到的毒性作用[1, 2]。因此,往往两种异构体中仅有一种是有效的,另一种无效甚至有害。比如,(S) -构型多巴为治疗帕金森综合症的首选药物,而(R) -构型能造成粒状白细胞减少症,使用极度危险;著名的“反应停事件”,R-反应停具有镇静作用,而S-反应停则对胎儿有致畸作用。

手性制药是医药行业的前沿领域,2001年诺贝尔化学奖就授予分子手性催化的主要贡献者。不同手性药物在体内发挥的作应不同,一种可能是高效低度的,而另一种可能有毒害作用。手性制药就是利用化合物的这种原理,开发出药效高、副作用小、药物的专一性高的药物。据调查,1985 - 2004年上市的550个新化学合成药物中,有313个药物具有手性中心,其中以单一异构体上市的手性药物为167个,手性药物数量呈逐年上升趋势;2005年世界药物的销售总额为6020亿美元,而手性药物的销售总额为2250亿美元,占全球制药市场销售总额的37 %,2010年可望超过5000亿美元[3, 4]。

一般情况下获得手性化合物有以下几种方法:天然物的提取、生物合成、外消旋体拆分、不对称合成等方法[5]。外消旋体拆分主要有:经典结晶法拆分、动态动力学拆分、色谱法拆分、膜拆分法、萃取拆分法等技术[6, 7]。本文重点介绍色谱法中HPLC在手性药物拆分中的应用。

1 高效液相色谱法简介

高效液相色谱法( High Performance Liquid Chromatography , HPLC)又称“高压液相色谱”、“高速液相色谱”、“高分离度液相色谱”等。HPLC是色谱法的一个重要分支,以液体为流动相,采用高压输液系统,将具有不同极性的单一溶剂或不同比例的混合溶剂、缓冲液等流动相泵入装有固定相的色谱柱,在柱内各成分

被分离后,进入检测器进行检测,从而实现对试样的分析。高效液相色谱仪可分为“高压输液泵”、“色谱柱”、“进样器”、“检测器”、“馏分收集器”以及“数据获取与处理系统”等部分

高效液相色谱的发展始于20世纪60年代中后期。60年代末期把高压泵和化学键合固定相用于液相色谱就出现了HPLC。1970年中期以后,微处理机技术用于液相色谱,进一步提高了仪器的自动化水平和分析精度。1990年以后,生物工程和生命科学在国际和国内的迅速发展,为高效液相色谱技术提出了更多、更新的分离、纯化、制备的课题,如人类基因组计划、蛋白质组学用HPLC做预分离等。现在该方法已成为化学、医学、工业、农学、商检和法检等学科领域中重要的分离分析技术。

高效液相色谱法有如下特点:(1) 高压:流动相为液体,流经色谱柱时,受到的阻力较大,为了能迅速通过色谱柱,必须对载液加高压。(2) 高效:分离效能高,可选择固定相和流动相以达到最佳分离效果。(3) 高灵敏度:紫外检测器可达0.01ng,进样量在uL数量级。(4) 应用范围广:百分之七十以上的有机化合物可用高效液相色谱分析,特别是高沸点、大分子、强极性、热稳定性差化合物的分离分析,显示出优势。(5) 分析速度快、载液流速快:通常分析一个样品在15 - 30分钟。此外,高效液相色谱还有色谱柱可反复使用、样品不被破坏、易回收等优点,但也有缺点,与气相色谱相比各有所长,相互补充。在从进样到检测器之间,除了柱子以外的任何死空间(进样器、柱接头、连接管和检测池等)中,如果流动相的流型有变化,被分离物质的任何扩散和滞留都会显著地导致色谱峰的加宽,柱效率降低。高效液相色谱检测器的灵敏度不及气相色谱。

2 高效液相色谱的手性拆分方法

高效液相色谱技术在手性药物拆分中应用最广泛的方法之一,在手性药物质量控制、立体选择性的药理学和毒理学研究等方面起着极其重要的作用。HPLC 对药物对映体的分离方法主要分间接法和直接法。

2.1 间接拆分法

间接法又称衍生化法,是手性化合物对映体在分离之前把手性药物对映体混合物在预处理液中进行柱前衍生化,形成一对非对映异构体,溶质分子与固定相和流动相之间作用力不同,发生差速迁移,对映体分子实现分离。常用的手性衍

生化试剂主要有:酰化试剂、胺类试剂、氯甲酸酯类和邻苯二醛等。

如Bhushan R等[8]合成琥珀- (S) -萘普生酯,并用它做衍生化试剂处理DL -青霉胺对映体,采用反相高效液相色谱法进行分离,分离效果很好。Peccinini RG 等[9]使用C18柱,(-) -氯甲酸薄荷酯作为衍生试剂处理血浆和尿液中的卡维地洛,用氯仿提取,用荧光检测器检测,对映体分离较好。该方法可应用于对映选择性的药代动力学研究。Bhushan R等[10]考察了二氯- S -三嗪和一氯- S -三嗪作为氨基酸的衍生化试剂,产生的对非对映体用反相C18柱分离,流动相为乙腈和三氟乙酸水溶液的混合物,实验结果说明,这两种试剂可以安全地用于氨基酸的手性分析药物分离。手性试剂衍生化法多用非手性柱即可分离,但是需要较高纯度的衍生试剂,衍生化反应要严格控制,对不同的药物要寻找相应的衍生化试剂,且操作比较麻烦,只可在小范围内应用。在HPLC中,直接法应用较多,手性添加剂和手性固定相种类多样。

2.2 直接法

2.2.1 手性流动相添加剂法

手性流动相添加剂法是在流动相中加入手性添加剂,然后利用非手性固定相进行拆分。常用的手性流动相添加剂有:手性离子对、CD、冠醚、手性金属配合物、动态手性固定相等。最常用的添加剂为环糊精。如郭娜等[11]采用C18固定相,以羟丙基-β-环糊精为手性流动相添加剂,建立了奥昔布宁对映体的高效液相色谱拆分方法。该法拆分奥昔布宁对映体,方法简单,灵敏度高,分离度好。刘学斌等[12]建立拆分新药尤利沙星对映异构体的HPLC手性流动相添加剂法。本文利用尤利沙星对映体与手性添加剂L-异亮氨酸和Cu2+ 间形成三元非对映体配位化合物,在较短时间内能达到理想的分离效果。

2.2.2 手性固定相法

目前认为手性固定相法是非常简单而有效的方法,应用也最为广泛,可分离的手性药物多。手性固定相法是将手性试剂化学键合到固定相上制成手性柱,外消旋体中的一个手性物质与手性固定相发生作用,生成不稳定的短暂复合物,而两者在固定相中的保留时间不同,从而达到分离的目的。CSP法发展异常迅速,手性固定相的种类大致有以下几类:手性聚合物类、刷型手性固定相、蛋白质类、大环抗生素类、分子印迹聚合物、冠醚类、多糖类和环糊精类等[13]。本文对几

种常用的手性固定相做一简单介绍。

3 高效液相色谱常用的手性固定相

3.1 蛋白质类手性固定相

蛋白质是一类复杂的高分子聚合物,所含手性亚单位L -氨基酸具有手性特异性,能特异性地结合小分子,因此对手性分子具有很强的识别能力。HPLC 蛋白质手性固定相主要有:人α1 -酸性糖蛋白、牛血清白蛋白、卵黏蛋白和纤维素二糖水解酶等[14]。Mallik R等[15]制备了基于硅固定化α1 -酸性糖蛋白的手性固定相,用它分离华法令和普萘洛尔对的映体异构体,分离结果良好。尹燕杰等[16]研究盐酸昂丹司琼对映体在纤维素衍生物及蛋白质固定相上的保留行为,以Chiral CEL OJ和Ultron ES - OVM 为固定相,优化色谱条件,并测定盐酸左昂丹司琼( R )中右旋异构体( S )的含量。作者所建立的方法均可方便地分离盐酸昂丹司琼对映体并测定盐酸左昂丹司琼原料和注射液中右旋异构体的含量。林丽娜等[17]以α1 -酸性糖蛋白为固定相,建立甲溴后马托品溴化物及硫酸阿托品的对映体拆分方法,采用HPLC法分离,结果甲溴后马托品溴化物及硫酸阿托品对映体可以在α1 -酸性糖蛋白固定相上得到完全分离。

3.2 多糖类手性固定相

多糖类手性固定相包括纤维二糖、棉子糖、乳糖、纤维素、淀粉及它们的衍生物。Peng, L等[18]用氯甲基氨基甲酸苯酯衍生直链淀粉和纤维素做为RP-HPLC 的手性固定相,考察它们的分离性能。结果发现,3 -氯- 4 -甲基氨基甲酸苯酯衍生的纤维素和 2 -氯- 5-甲基氨基甲酸苯酯衍生的直链淀粉的分离效能,比传统的二甲基氨基甲酸苯酯衍生直链淀粉和纤维素要好得多。Caccamese S等[19]利用手性多糖固定相和酸性添加剂,采用高效液相色谱法分离的芳香胺对映体和四个氨基醇对映体。纤维素和直链淀粉衍生的手性固定相有不同的对映体分离能力,该实验使用一种酸性添加剂加在流动相中,提高手性柱的分离效果。黄虎等[20]考察了多糖类手性固定相在含有酸性或碱性添加剂的流动相下高效液相色谱法拆分β受阻滞剂对映体的效果,在直链淀粉-三( 3, 5 -二甲基苯基氨基甲酸酯)衍生物手性固定相( Chiralpak AD 和Chiralpak IA)上拆分β受体阻滞剂对映体,酸性添加剂的流动相体系与碱性添加剂的流动相体系相比,碱性添加剂的流动相的

拆分效果比酸性添加剂的流动相要好。另外,赵峰等[21]葡萄糖、麦芽糖、纤维二糖、棉子糖、乳糖的对甲基苯甲酸酯经过 3 -异氰酸丙基三乙氧基硅烷键合到硅胶上作为高效液相色谱的手性固定相,对16种外消旋体化合物进行了拆分。结果表明,它们的对甲基苯甲酸酯手性分离柱分别分开了8、6、10、4、5对外消旋体化合物,并且这些手性固定相之间还具有好的手性识别互补性。

3.3 环糊精类手性固定相

环糊精(CD)及其衍生物是最常用的手性选择剂。CD是一种水溶性的大环寡聚葡萄糖,通常由6 - 12个互为椅式构象手性D - (+)葡萄糖单元通过α- ( 1, 4 ) -糖苷键连接而成。根据其结构不同可分为α-环糊精、β-环糊精和γ-环糊精,其中β-环糊精应用最多。常用衍生化环糊精有:2, 6 -甲基-β-环糊精( DM - β-CD )、2, 3, 6 -三甲基-β-环糊精( TM -β- CD ) 、2 -羟丙基-β -环糊精( HP -β-CD )、羧甲基-β-环糊精( CM - β - CD ),都己成功的用于一些手性化合物的拆分[22]。Thamarai Chelvi SK等[23]用溴取代[ 3- ( 2- O -β-环糊精)- 2 -羟基丙氧基] 丙基硅制备的手性固定相,该固定相在正相和反相条件下,对芳香位置异构体和一些芳香族化合物异构体显示良好的选择性。周婕等[24]用分步法制备全苯异氰酸酯基- β-环糊精键合硅胶手性固定相,在高效液相色谱仪上,对氟西汀对映体进行拆分,并探讨流动相组成及配比、离子强度、pH 值、流速和柱温等影响分离的因素,结果表明,在自制手性固定相上外消旋氟西汀得以拆分。

3.4 冠醚类手性固定相

20 世纪60年代,美国杜邦公司的C.J.Pedersen在研究烯烃聚合催化剂时首次发现冠醚。冠醚的空穴结构对手性药物有选择作用,它主要分离机制是氧原子与对映体的氢原子之间形成氢键,对映体与其存在静电和位阻作用。常见的冠醚有15 -冠- 5和18 -冠- 6。手性冠醚作为手性选择因子,适用于伯胺类化合物和氨基酸的对映体的分离。其中,(18 -冠- 6)- 2, 3, 11, 12 -四羧酸的应用越来越受到重视。如Jeon SH等[25]用(-) - ( 18 -冠- 6 ) - 2, 3, 11, 12 -四甲酸作为手性固定,分离六个不同的L -甲状腺素产品和四个市售的D-和L -甲状腺素试剂,实验结果良好。金京玉等[26]利用高效液相色谱法,采用(18 -冠- 6)- 2, 3, 11, 12 -四羧酸衍生的冠醚为手性固定相,对非甾体抗炎药酰肼衍生物进行手性分离研究,利用此冠醚衍生的手性色谱柱,可拆分手性酸的酰肼衍生物的对映体,此分析方法也适用

于其它多种手性酸化合物的对映体的拆分研究。

3.5 配体交换手性固定相

配体交换色谱法( ligand exchange chromatography, LEC )是由Davankov等发展的一种高效手性色谱分离方法。该类固定相多为手性氨基酸或其衍生物与二价金属离子(Cu2+、Ni2+、Zn2+ 等) 鳌合形成的金属离子络合物,待测对映体与配位体可形成2个非对映的三元络合物,经色谱过程实现光学异构体的立体选择性分离。LEC是目前分离氨基酸对映异构体最有效的方法之一,通常将氨基酸对映体或青霉胺衍生物通过物理吸附或化学键合结合到硅胶上,得到手性配体交换色谱固定相。如Liu Q等[27]建立了氨基酸离子液体作为手性配体手性分离方法。作者用1 -烷基- 3 -甲基咪唑- L -脯氨酸作为一个手性配体与Cu2+络合,用HPLC 和CE分别对DL -苯丙氨酸、DL -组氨酸、DL -色氨酸和DL -酪氨酸成功分离。马桂娟等[28]以单分散亲水性交联聚甲基丙烯酸环氧丙酯-甲基丙烯酸乙二醇双树脂为载体,制备新型L-羟脯氨酸聚合物键合高效手性配体交换固定相,对衍生和非衍生的D, L -氨基酸和α-羟基酸等9种手性化合物进行了高效液相色谱拆分,所拆分的9种手性化合物,有5种手性化合物能得到基线分离。

3.6 分子印迹聚合物手性固定相

分子印迹聚合物( molecular imprinted polymer, MIP ) 通过分子印迹技术合成的对特定目标分子(模板分子)及其结构类似物具有特异性识别和选择性吸附的聚合物。毫无疑问,分子印迹技术正在迅猛的发展,虽然目前主要处于实验室阶段,但其巨大的科研和商业潜力已经展露无余。分子印迹技术的基本过程如下:(1)在一定溶剂(致孔剂)中,模板分子与功能单体之间通过共价或非共价作用形成主客体配合物;(2)加入交联剂,使主客体配合物与交联剂通过自由基共聚合在模板分子周围形成高联的刚性聚合物;(3)将聚合物中的模板分子洗脱或解离出来。田晓琴等[29]结合β -环糊精在水相中制备以硅胶为骨架的苯丙氨酸分子印迹聚合物,并进行色谱性能研究,以苯丙氨酸为模板分子,2 -丙烯酸胺基- 2 -甲基- 1 -丙磺酸为功能单体,N, N' -亚甲基双丙烯酸胺为交联剂,采用热聚合法在水相中制得以硅胶为骨架的苯丙氨酸分子印迹聚合物,以此作为固定相,结果苯丙氨酸在印迹柱上的保留比在空自印迹柱上强,与赖氨酸、甫氨酸达到基线分离。银珍红等[30]以2, 4 -氯苯氧乙酸分子为模板,甲基丙烯酸为单体,乙二醇二

甲基丙烯酸酷为交联剂,甲苯和乙二醇为混合致孔剂,采用热引发原位聚合法制备了作为高效液相色谱固定相的分子印迹整体柱,在优化的合成条件下制备的分子印迹整体柱可在15 min 内分离2, 4 -氯苯氧乙酸及其类似物苯氧乙酸,分离度为1. 52。

3.7 刷型手性固定相

“刷型”手性固定相是HPLC 手性固定相中非常重要的一类CSP,这类一般通过一定的间隔臂,连接一个单分子层的手性有机分子到硅胶载体上而制得,因而被称之为“刷型”或“束型”CSP。其化学结构特点是在手性中心附近至少含有下列功能团之一[31]:(1) Π-酸性(带吸电子取代基)或Π-碱性(带推电子取代基)的芳香基团,在手性识别过程中能发生Π-电荷转移相互作用;(2)能形成氢键的原子或基团;(3)能发生偶极-偶极叠合相互作用的极性键或基团;(4)能提供立体排斥、范德华相互作用和(或)构型控制的较大的非极性基团。显然,对映体和CSP之间的手性识别是通过上述一种或几种相互作用来实现的。如唐琴等[32]以正己烷-异丙醇二元混合剂体系为流动相,在Whelk - O1、DNB - PG 和DNB - Leucine 3种刷型手性固定相上将药物丙卡特罗直接拆分为( R, R /S )和( S, R /S )对映体,分离系数值达1.4 - 1.8。张美等[33]采用纤维素-三( 3, 5 -二甲基苯基氨基甲酸酯)涂敷型手性固定相( Chiralcel OD 柱) 、直链淀粉-三( 3, 5 -二甲基苯基氨基甲酸酯)涂敷型手性固定相( Chiralpak AD 柱) 、直链淀粉-三( 3, 5 -二甲基苯基氨基甲酸酯)键合型手性固定相( Chiralpak IA 柱) 和Pirkle型的( S, S ) - Whelk - 01手性固定相对38种外消旋体化合物进行手性拆分,它们之间的手性识别性能具有一定的互补性。

3.8 大环抗生素类手性固定相

大环抗生素类键合手性固定相已经成为非常有效和流行的手性固定相,它具有多个手性中性,有非常广泛的对映体分离选择性。由于此类固定相的结构中含有多肽、糖类和其它可离子化基团,因此,在不同的洗脱模式下会表现出不同的对映体选择性。其作用机制包括离子作用,氢键作用,Π-Π键合作用,偶极-偶极作用,络合作用,空间位阻作用等。常用的抗生素有四类[34]:糖肽类,安沙霉素类,氨基糖苷类和大环内酯类抗生素。Mohamde等[35]使用万古霉素手性柱,建立了同时测定血浆和药物制剂中丁呋洛尔对映体含量的HPLC法。如关瑾

等[36]利用反相高效液相色谱法在大环抗生素类手性固定相万古霉素键合手性固定相上直接分离了泰妥拉唑对映体。许哲等[37]采用高效液相色谱法在人环糖肤抗牛素键合固定相手性柱上拆分了卡巴拉汀对映体。

4 小结

手性化合物在医学工业和人体代谢方面重要性已引起人们越来越多的关注,且手性药物分离成为药物研发领域的热点。液相色谱是手性药物拆分的主要方法,应用最为广泛,对大部分手性药物几乎都能实现分离。HPLC手性识别能力除了与映体的结构有关外,其它多种因素如涂层溶剂、溶液pH 值、操作温度等分离条件都会产生大的影响。因此,优化分离条件可提高分离效率。但HPLC手性色谱柱价格昂贵,大大增加应用成本,开发成本低、柱效高的新手性柱高效液相色谱手性固定相的将来发展的一个重要的方向。总之,HPLC在手性药物代谢、质量控制及手性新药研究等方面发挥重要作用,具有十分广阔的应用和发展前景。

参考文献

[1] 孙璐,杨业楠,严静.手性药物的立体选择性药物动力学[J].中国药物化学杂志, 2009, 16(9):

498-502

[2] 闫长会,彭双清.手性药物的毒理学特点及安全性评价要点[J].中国新药杂志,2008,17(16):

1372-1375

[3] MURAKAM I H. From racemates to single enantiomers chiral synthetic drugs over the last

20 years[J]. Top Curr Chem, 2007, 269: 273- 299

[4] Yue H F, Bu X, Young J, et al. Chiral method developm entstra tegies for early phase of drug

development a case study [ J]. Am Pharm Rev, 2008,11(3):113- 118.

[5] 吴伟群,何春,齐雪飞.手性药物的研究进展及开发应用[J].中国现代应用药学杂志,2009,

26 (6):452-456

[6] 卢定强,李衍亮,凌岫泉,等.手性药物拆分技术的研究进展[J].时珍国医国药, 2009, 20 (7):

1731-1734

[7] 杨千姣,刘丹,曲蕾,等.手性拆分技术及其在手性药物合成中的应用新进[J].中国药物化学

杂志, 2009,19(6):429-436

[8] Bhushan R, Tanwar S. Synthesis of succinimidyl-(S)-naproxen ester and its application for

indirect enantioresolution of penicillamine by reversed-phase high-performance liquid chromatography[J]. Journal of Chromatography A, 2008, 1209(1-2):174-178

[9] Peccinini RG, Ximenes VF, Cesarino EJ, et al. Stereoselective analysis of carvedilol in

human plasma and urine using HPLC after chiral derivatization[J]. Biopharm Drug Dispos, 2008, 29(5):280-288

[10] Bhushan R, Kumar V. Indirect enantioseparation of alpha-amino acids by reversed-phase

liquid chromatography using new chiral derivatizing reagents synthesized from s-triazine chloride[J]. Journal of Chromatography A, 2008, 1201(1):35-42

[11] 郭娜,高新星,徐国防,等.高效液相色谱手性流动相添加法拆分奥昔布宁对映体[J].色谱,

2008,26(2):259-261

[12] 刘学斌,安穗伟,满凤,等.高效液相色谱法手性流动相添加剂法拆分尤利沙星对映体[J].药

物分析杂志,2010,30(3):425-437

[13] 刘爱宁,侯文颖,王欣.手性色谱法在体内药物分析的应用进展[J].分析试验室,2010,29 (S1):

183-186

[14] 穆惠英,敦惠娟,苗凤,等.高效液相色谱中的蛋白质手性固定相[J].河北师范大学学报(自

然科学版)2009,33(3):362-368

[15] Mallik R, Xuan H, Hage DS. Development of an affinity silica monolith containing alpha1-

acid glycoprotein for chiral separations[J]. Chromatogr A, 2007, 1149(2):294-304

[16] 尹燕杰,张启明,田颂.蛋白质及纤维素衍生物手性固定相分离盐酸昂丹司琼对映体[J].

药物分析杂志,2009,29(6):971-975

[17] 林丽娜,张华燕,郭兴杰. α1 -酸性糖蛋白柱分离甲溴后马托品溴化物及硫酸阿托品对映体

[J].沈阳药科大学学报,2010,27(1):52-56

[18] Peng L, Jayapalan S, Chankvetadze B, et al. Reversed-phase chiral HPLC and LC/MS

analysis with tris(chloromethylphenylcarbamate) derivatives of cellulose and amylose as chiral stationary phases[J]. Journal of Chromatography A, 2010,1217(44):6942-6955

[19] Caccamese S, Bianca S, Carter GT. Direct high-performance liquid chromatographic

separation of the enantiomers of an aromatic amine and four aminoalcohols using

polysaccharide chiral stationary phases and acidic additive[J]. Chirality, 2007, 19(8):647-653 [20] 黄虎,金京玉,李元宰多糖衍生物手性固定相上采用酸性或碱性添加剂的流动相拆分β受

体阻滞剂对映体[J].色谱,2009,27(4):467-471

[21] 赵峰,迟绍明,袁黎明.寡糖对甲基苯甲酸酯手性固定相在高效液相色谱中的应用[J].分析

化学,2009,(2):259-262

[22] 祝芳.环糊精及其衍生物在手性药物分离分析中的应用[J].药学实践杂

志,2010,28(2):94-98

[23] Thamarai Chelvi SK, Yong EL, Gong Y. Application of bromoacetate-substituted beta - CD -

bonded silica particles as chiral stationary phase for HPLC[J]. Journal of Seperation Science,2010, 33(1): 74-78

[24] 周婕,施秀芳,张振中.新型环糊精手性固定相对氟西汀对映体的拆分[J].郑州大学学报(理

学版),2008,40(3):121-125

[25] Jeon SH, Kim M, Han HK, et al. Direct Enantiomer Separation of Thyroxine in

Pharmaceuticals Using Crown Ether Type Chiral Stationary Phase[J]. Archieve of Pharmacal Research, 2010, 33(9):1419-1423

[26] 金京玉,李元宰.非甾体抗炎药对映体在冠醚手性固定相上的拆分[J].分析化学,2009,37(3):

421-424

[27] Liu Q, Wu KK, Tang F, et al. Amino Acid Ionic Liquids as Chiral Ligands in Ligand-

Exchange Chiral Separations[J]. Chemistry-A European Journal, 2009, 15(38): 9889-9896 [28] 马桂娟,龚波林,阎超,等.新型L-羟脯氨酸聚合物键合手性固定相的制备及对手性化合物

的拆分[J].分析化学,2008,36(3):275-279

[29] 田晓琴,冯芳,狄斌,等.水相中制备硅胶表面分子印迹聚合物及色谱性能研究[J].中国药科

大学学报,2009,40(5):435-439

[30] 银珍红,陈小明. 2, 4 -氯苯氧乙酸分子印迹整体柱的制备、表征及色谱性能研究[J].分析

测试学报,2009,28(8):949-953

[31] 侯经国,周志强,陈立仁,等.高效液相色谱手性拆分中的“刷型”手性固定相[J].色谱,1997,

15(3):206

[32] 唐琴,陈先勇,宋航.丙卡特罗在三种刷型手性固定相上的直接拆分[J].分析测试学报,2010,

29(4):407-410

[33] 张美,奚文汇,字敏,等.高效液相色谱的4种商品手性柱对38种手性化合物的拆分研究[J].

分析化学,2010,38(2):181-186

[34] 崔彦,杨蕾叶,利明大.环抗生素作毛细管电泳手性选择剂的研究方法[J].药物分析杂志,

2007,27(11):1854-1856

[35] Mohamed M, Hefnawy, Maha A, et al. HPLC separation tech-nique for analysis of bufuralol

enantiomers in plasma and pharmaceutical formulationsusing a vancomycin chiral stationary phase and UV detection[J]. Journal of Chromatography B, 2007,856:328-336

[36] 关瑾,杨晶,毕玉金,等.万古霉素键合手性固定相高效液相色谱法直接分离泰妥拉唑对映

体[J].色谱,2007,25(5):732-734

[37] 许哲,周宁,许旭,等.使用大环糖肤抗生素键合固定相高效液相色谱法直接拆分卡巴拉汀

[J].分析化学,2007,35(7):1043-1046

手性分子的拆分技术

手性分子的拆分技术 Document serial number【LGGKGB-LGG98YT-LGGT8CB-LGUT-

手性分子的拆分技术 郝婷玉 57 15级材料工程 摘要:对外消旋体实施拆分是获得手性物质的重要途径。本文综述了外消旋体的拆分方法,主要有直接结晶拆分法、化学拆分法、动力学拆分法、色谱拆分法( 含毛细管电泳法) 和手性膜拆分法等五大类。其中, 包括目前作为手性拆分主要方法的色谱技术在内的前 4 类方法, 由于批处理能力小、工业放大成本高 ,不适合大规模生产 ; 相反,膜分离技术具有能耗低、易于连续操作等优点 ,被普遍认为是进行大规模手性拆分非常有潜力的方法之一,具有良好的应用前景。 关键词:手性分子;拆分;对映体;外消旋化合物 手性是自然界存在的一种普遍现象, 在药物化学领域尤为突出 ,已知药物中有 30 %~ 40 %是手性的。手性是生物体系的一个基本特征, 很多内源性大分子物质,如酶、蛋白、核酸、糖, 以及各种载体、受体等都具有手性特征。此外,手性还在医药、食品添加剂、杀虫剂、昆虫性信息素、香料和材料等领域有着深刻影响。特别是在医药行业,手性药物对映体通过与体内大分子的立体选择性结合, 产生不同的吸收、分布、代谢和排泄过程, 可能具有不同的药理毒理作用。随着医药行业对手性单体需求量的增加和对药理的探究,如何获得高纯度手性单体已成为一个令人困扰的问题。因此 ,手性药物的分离分析就显得尤为重要。随着对手性分子认识的不断深入,人们对单一手性物质的需求量越来越大,对其纯度的要求也越来越高。 单一手性物质的获得方法大致有以下三种:(1)手性源合成法:是以手性物质为原料合成其它手性化合物,这是最常用的方法。但由于天然手性物质的种类有限,要合成多种多样的目的产物会遇到很大困难,而且合成路线步骤繁多,也使得产物成本十分高昂。(2)不对称合成法:是在催化剂或酶的作用下合成得到过量的单一对映体化合物的方法。化学不对称合成高旋光收率的反应仍然有限,即使如此,所得产物的旋光纯度对于多

手性药物拆分的研究进展

手性药物拆分的研究进展 许多药物具有光学活性(opitical activeity)。一般显示光学活性的药物分子,其立体结构必定是手性(chirality)的,即具有不对称性。手性是指其分子立体结构和它的镜像彼此不能重合。互为镜像关系而又不能重合的一对分子结构称为对映体(enantiomer)。虽然对映异构体药物的理化性质基本相同,但由于药物分子所作用的受体或靶位是由氨基酸、核苷、膜等组成的手性蛋白质和核酸大分子等,后者对与之结合的药物分子的空间立体构型有一定的要求。因此,对映异构体在动物体内往往呈现出药效学和药动学方面的差异。鉴于此,美国食品药品监督管理局规定,今后研制具有不对称中心的药物,必须给出手性拆分结果,欧盟也提出了相应的要求。因此,手性拆分已成为药理学研究和制药工业迫切需要解决的问题。 目前,利用酶法、超临界流体色谱(SFC)法、化学法、高效液相色谱(HPLC)法、气相色谱(GC)法、毛细管电泳(capillary electrophoreisis,CE)法和分子烙印法拆分对映体,已成为新药研究和分析化学领域的重要课题。笔者在本文综述了近年来利用上述方法拆分手性药物的研究进展。 1酶法 酶的活性中心是一个不对称结构,这种结构有利于识别消旋体。在一定条件下,酶只能催化消旋体中的一个对映体发生反应而成为不同的化合物,从而使两个对映体分开。该法拆分手性药物已有较久的历史,反应产物的对映过剩百分率可达100%。酶催化的反应大多在温和的条件下进行,温度通常在0~50℃,pH 值接近7.0。由于酶无毒、易降解、不会造成环境污染,适于大规模生产。酶固定化技术、多相反应器等新技术的日趋成熟,大大促进了酶拆分技术的发展。脂肪酶、酯酶、蛋白酶、转氨酶等多种酶已用于外消旋体的拆分。脂肪酶是最早用于手性药物拆分的一类酶,是一类特殊的酯键水解酶,具有高度的选择性和立体专一性,反应条件温和,副反应少,适用于催化非水相递质中的化学反应,在B 一受体阻滞药、非甾体类抗炎药和其他多种药物的手性拆分中都有广泛的应用。意大利的Batlistel等用固定于载体Amberlite AD-7上的脂肪酶对萘普生的乙氧基乙酯进行酶法水解拆分,对温度、底物浓度和产物抑制等进行了研究,最后使用500 mL的柱式反应器,在连续进行了1200h的反应后,得到了l8kg的光学纯S-萘普生,且酶活性几乎无损失。另外,酯酶具有很高的工业价值,其应用前景也极为广阔。Jiaxin等利用pseudomaonas cepacia脂肪酶拆分了一类酰基取代的1.环己烯衍生物,通过酶催化酯交换反应,得到产率较高的光学纯化合物,且提供了反应过程监测方法。这种方法可推广到该类化合物系列衍生物的合成与拆分。 2 SFC法 根据手性选择剂种类不同,该分离方式主要包括氨基酸和酰氨类手性固定相、Prikle型手性固定相、环糊精型键合固定相如聚甲基异丁烯酯等。由于SFC 法尚处于发展阶段,各种参(如温度、压力、流动相的组成和密度等) 对分离度的影响机制还未完全清楚。SFC法具有简单、高效、易于变换操作条件等优点,已成为与HPLC法和GC法互补的拆分方法,因其具有独特的优越性,应用前景极为广阔。Nozal等用Chiralpak AD柱和Chiralcel OD柱在SFC条件下拆分了驱肠蠕虫药阿苯唑亚砜化合物,并研究了甲醇、乙醇、乙丙醇及乙腈等有机溶剂对立体构型的影响。结果表明,在以Chiralpak AD柱为固定相时,用2丙醇可以获得最好的拆分效果;而在Chiralcel OD柱上用甲醇效果最好。

手性拆分液膜及固膜的研究进展

2008年第27卷第11期CHEMICAL INDUSTRY AND ENGINEERING PROGRESS ·1703· 化工进展 手性拆分液膜及固膜的研究进展 郑熙,胡小玲 (西北工业大学理学院应用化学系,陕西西安 710072) 摘要:对外消旋体的手性拆分是获得单一对映体的有效途径,在诸多拆分方法中,膜拆分法以其能耗低、易连续操作、易工业放大的优点受到广泛关注,被认为是最有前途的方法。本文将膜技术分为液膜和固膜两部分,分别介绍了两者在手性物质拆分中的研究进展,并总结了各种方法的优缺点,在此基础上提出了存在的问题和今后的研究方向。 关键词:手性拆分;外消旋体;液膜;固膜 中图分类号:TQ 028.8 文献标识码:A 文章编号:1000–6613(2008)11–1703–07 Development of membranes for chiral resolution ZHENG Xi,HU Xiaoling (Department of Chemistry,Northwestern Polytechnical University,Xi’an 710072,Shaanxi,China)Abstract:Raceme resolution is the main route to get pure enantiomer.Among all kinds of the resolution methods,membrane resolution methods are considered as the most promising ones because of their special advantages,such as low energy consumption,continuous operation mode and convenient up-scaling and so on.In this paper,we consider membrane as two parts:liquid membranes and solid membranes,and introduce their development in chiral resolution respectively.The advantages and disadvantages of each method are also summarized.Moreover,the problems which need to be resolved and the trend of development are discussed. Key words:chiral resolution;raceme;liquid membranes;solid membranes 手性是自然界的本质属性之一。作为生命活动重要基础的生物大分子,如蛋白质、多糖、核酸和酶等,几乎都是手性的,这些大分子在体内往往具有重要的生理功能[1]。分子药理学研究发现,含有手性因素的药物对映体在人体内的毒性反应、药理活性和代谢过程都存在着显著差异。通常情况下,只有一种对映体具有药理活性,而另一个对映体不仅无药理活性,还会产生一定副作用。例如,抗帕金森氏病药物只以左旋多巴(L-多巴)单一对映体的形式销售,因为D-多巴会使得体内粒细胞减少,白、红细胞丧失,导致患者易于感染,严重的甚至危及生命[2]。因此,早在1992年美国食品与药物管理局(FDA)就发布了手性药物指导原则,要求在新药的使用说明中必须明确量化各种对映异构体的药理活性和毒性反应。这一条例的颁发不仅大大降低了医疗事故,同时也使手性药物开发这一年销售额超过1000亿美元的新兴产业得到了健康有序的发展[3]。 目前,对外消旋体的拆分是获得单一对映体的最有效途径。据统计,大约有65%的非天然手性药物是通过外消旋体或中间产物的手性拆分得到的[4]。当前用于外消旋体拆分的方法主要包括结晶法、化学拆分法、生物酶法、萃取法、色谱法、手性膜拆分法等[5]。其中以色谱法为代表的前5类方法都存在着批处理量小、放大成本高、连续性差等缺点,难以达到大规模工业化生产的要求。而手性膜拆分法以其能耗低、易连续操作、易工业放大等优点引起了国内外研究学者的广泛关注。近年来,关于手性拆分液膜和手性拆分固膜的研究时有报 收稿日期:2008–05–07;修改稿日期:2008–06–09。 第一作者简介:郑熙(1984—),男,硕士,主要从事膜分离方面的研究。E–mail jmacaulay@https://www.doczj.com/doc/fb4778247.html,。

手性化合物的拆分技术

手性化合物的拆分技术研究进展 许多药物具有光学活性。一般显示光学活性的药物分子,其立体结构必定是手性的,即具有不对称性。手性是指其分子立体结构和它的镜像彼此不能重合。互为镜像关系而又不能重合的一对分子结构称为对映体。虽然对映异构体药物的理化性质基本相同,但由于药物分子所作用的受体或靶位是由氨基酸、核苷、膜等组成的手性蛋白质和核酸大分子等,后者对与之结合的药物分子的空间立体构型有一定的要求。因此,对映异构体在动物体内往往呈现出药效学和药动学方面的差异。鉴于此,美国食品药品监督管理局规定,今后研制具有不对称中心的药物,必须给出手性拆分结果,欧盟也提出了相应的要求。因此,手性拆分已成为药理学研究和制药工业迫切需要解决的问题。 1.生成非对映体拆分 此方法是利用外消旋混合物与手性试剂反应后生成有不同性质的非対映体,从而利用生成物的不同物理性质(溶解度、蒸汽压、结晶速率等)将其分离,再将分离后的物质分别还原成之前的対映体。 还可以使用拆分剂家族代替单一拆分剂进行拆分,所谓拆分剂家族是指有类似结构的2~3个手性剂拆分剂。组合拆分提高了产品收率和纯度。 2.动力学拆分 利用两个対映体和手性试剂发生反应的速度不一样,在混合物中添加不足量的手性试剂。一个対映体与手性试剂结合,从而得到纯的反应慢的対映体。可以分为经典动力学拆分和动态动力学拆分,动态动力学拆分是指将经典动力学拆分和底物消旋化相结合的拆分方法,理论产率可以达到100%。底物消旋化分为化学消旋化和酶消旋化,由于酶消旋化具有操作条件温和、产率高、副反应少等优点而具有广泛的工业应用价值[4]。 3.液膜拆分 将具有手性识别功能的物质溶解在溶剂中制备液膜,利用内外向间推动力(浓度差、pH 差等)使待分离物中的某种物质得到富集。液膜分离方法又分为本体液膜、乳化液膜、支撑液膜3种类型。 4.固体膜拆分 此方法是基于対映体间亲和力的差异,利用推动力(浓度差、压力差、电势差)进行分

手性药物的合成与拆分的研究进展

手性药物的合成与拆分的研究进展 手性是自然界的一种普遍现象,构成生物体的基本物质如氨基酸、糖类等都是手性分子。手性化合物具有两个异构体,它们如同实物和镜像的关系,通常叫做对映异构体。对映异构体很像人的左右手,它们看起来非常相似,但是不完全相同。 目前市场上销售的化学药物中,具有光学活性的手性药物约占全部化学药40% } 50%,药物的手性不同会表现出截然不同的生物、药理、毒理作用,服用对映体纯的手性药物不仅可以排除由于无效(不良)对映体所引起的毒副作用,还能减少药剂量和人体对无效对映体的代谢负担,对药物动力学及剂量有更好的控制,提高药物的专一性,因而具有十分广阔的市场前景和巨大的经济价值[Dl 1由天然产物中提取 天然产物的提取及半合成就是从天然存在的光活性化合物中获得,或以价廉易得的天然手性化合物氨基酸、菇烯、糖类、生物碱等为原料,经构型保留、构型转化或手性转换等反应,方便地合成新的手性化合物。如用乳酸可合成(R)一苯氧基丙酸类除草剂[}z}。天然存在的手性化合物通常只含一种对映体用它们作起始原料,经化学改造制备其它手性化合物,无需经过繁复的对映体拆分,利用其原有的手性中心,在分子的适当部位引进新的活性功能团,可以制成许多有用的手性化合物。 2手性合成 手性合成也叫不对称合成。一般是指在反应中生成的对映体或非对映体的量是不相等的。手J险合成是在催化剂和酶的作用下合成得到过量的单一对映体的方法。如利用氧化还原酶、合成酶、裂解酶等直接从前体化合物不对称合成各种结构复杂的手性醇、酮、醛、胺、酸、酉旨、酞胺等衍生物,以及各种含硫、磷、氮及金属的手性化合物和药物,其优点在于反应条件温和、选择性强、不良反应少、产率高、产品光学纯度高、无污染。 手性合成是获得手性药物最直接的方法。手J险合成包括从手性分子出发来合成目标手性产物或在手性底物的作用下将潜在手性化合物转变为含一个或多个手性中心的化合物,手性底物可以作为试剂、催化剂及助剂在不对称合成中使用。如Yamad等和Snamprogetti 等在微生物中发现了能催化产生N-氨甲酞基一D-氨基酸的海因酶( Hy-dantoinase)。海因酶用于工业生产D一苯甘氨酸和D一对轻基苯甘氨酸。D一苯甘氨酸和D一对轻基苯甘氨酸是生产重要的临床用药半合成内酞胺抗生素(氨节青霉素、轻氨节青霉素、氨节头炮霉素、轻氨节头炮霉素)的重要侧链,目前国际上每年的总产量接近SOOOto 3外消旋化合物的拆分 外消旋拆分法是在手性助剂的作用下,将外消旋体拆分为纯对映体。外消旋体拆分法是一种经典的分离方法,在工业生产中己有100多年的历史,目前仍是获得手性物质的有效方法之一。拆分是用物理化学或生物方法等将外消旋体分离成单一异构体,外消旋体拆分法又可分为结晶拆分法;化学拆分法;生物拆分法;色谱拆分法;膜拆分和泳技术。 3. 1结晶拆分法 3.1.1直接结晶法 结晶法是利用化合物的旋光异构体在一定的温度下,较外消旋体的溶解度小,易拆分的性质,在外消旋体的溶液中加入异构体中的一种(或两种)旋光异构体作为晶种,诱导与晶种相同的异构体优先(分别)析出,从而达到分离的目的。在。一甲基一L一多巴的工业生产中就是使两种对映体同时在溶液中结晶,而母液仍是外消旋的,把外消旋混合物的过饱和溶液通过含有各个对应晶种的两个结晶槽而达到拆分的目的[3]。结晶法的拆分效果一般都不太理想,但优点是不需要外加手性拆分试剂。若严格控制反应条件也能获得较纯的单一对应体。 3. 1. 2非对映体结晶法

毛细管电泳色谱在手性药物拆分中的应用

毛细管电泳色谱在手性药物拆分中的应用 摘要:毛细管电泳色谱法是手性药物拆分的重要方法之一,是一种高效、快速、简便的手性分离手段。该技术在药物对映体的拆分、定量方面发挥了重要作用。近年来,手性药物的毛细管电泳拆分技术得到快速发展,本文参阅了国内外相关文献,对毛细管电泳技术的手性拆分模式及主要手性选择剂作了简单介绍,并介绍了一些新的手性选择剂在手性药物拆分中的应用。 关键词:毛细管电泳手性试剂手性拆分

The Application of Capillary Electrophoresis in Chiral Drug Separation Abstract:Capillary Electrophoresis is one of the crucial methods in chiral drug analysis. It is an important method with highly efficient, rapid and convenient features. This technology plays a crucial role in enantiomeric separation and quantitative analysis. In recent years, the application of capillary electrophoresis in chiral drug analysis has been developing rapidly. According to recent references, this paper makes a brief discription about the application of capillary electrophoresis in chiral drug separation. Keywords: Capillary electrophoresis; Chiral reagent; Chiral separation; 引言 手性是自然界的基本属性,也是生命系统最重要的属性之一,比如蛋白质、氨基酸、多糖、核酸、酶等生命活动重要基础物质都是手性的。据统计,在研发1200种新药中,有820种是手性的,占世界新药开发的68 %以上[1],而用于治疗的手性化合物中约88 %为外消旋体,作为单一对映体用药的只占手性药物的11%左右[2]。手性药物的立体结构与其生物活性有着密切的关系。药物在吸收、分布、代谢与排泄过程中,通过与体内大分子的不同立体结合,产生不同的药理作用和不良反应。如著名的“反应停事件”,沙利度胺只有( S ) -对映体具有致畸作用,( R ) -对映体具有镇静作用而无致畸作用。 目前,手性药物的拆分方法主要有经典结晶法、化学拆分法、生物拆分法、膜分离法、手性液-液拆分法和色谱法等[3, 4],其中色谱法由于简便快捷、分离效

手性药物的结晶拆分方法

手性药物的结晶拆分方法--直接结晶法---逆向结晶法 在优先结晶法中,通过加入不溶的添加物即晶种形成晶核,加快或促进与之晶型或立体构型相同的对映异构体结晶的生长。而逆向结晶法则是在外消旋体的饱和溶液中加入可溶性某一种构型的异构体[如(R)—异构体],添加的(R)—异构体就会吸附到外消旋体溶液中的同种构型异构体结晶体的表面,从而抑制了这种异构体结晶的继续生长,而外消旋体溶液中相反构型的(S)—异构体结晶速度就会加快,从而形成结晶析出。例如在外消旋的酒石酸钠铵盐的水溶液中溶入少量的(S)—(—)—苹果酸钠铵或(S)—(—)—天冬酰胺时,可从溶液中结晶得到(R,R)—(十)—酒石酸钠铵。 逆向结晶中的添加物必须和溶液中的化合物在结构和构型上有相关之处。这样所添加的物质才能嵌入生长晶体的晶格中,取代其正常的晶格组分并能阻止该晶体的生长。逆向结晶是一种晶体生长的动力学现象,添加物的加入造成了结晶速度上的差别。由于逆向结晶是晶体生长的动力学的现象,因此当结晶时间无限制的延长下之,最终得到的仍是外消旋的晶体。从化合物的性质上来看,逆向结晶只能用于能形成聚集体的化合物。在结晶法的拆分过程中,若能将优先结晶法中“加入某种单—对映异构体晶体可诱导相同构型结晶生长”的原理和逆向结晶中“加入另一个对映异构体溶液可抑制相同构型的对映异构体生长”的原理相结合,可使结晶拆分的效率大大提高 手性药物的结晶拆分方法--直接结晶法---优先结晶法 优先结晶方法(preferential crystallization)是在饱和或过饱和的外消旋体溶液中加入一个对映异构体的晶种,使该对映异构体稍稍过量因而造成不对称环境,结晶就会按非稍的过程进行,这样旋光性与该晶种相同的异构体就会从溶液中结晶出来。优先结晶方法是在巴士德的研究基础上发现的。文献最早报道的优先结晶方法是用于肾上腺素的拆分。1934年Duschinsky第一次用该方法分离得到盐酸组氨酸,使人们认识到该方法的实用性。但直到1963年工业化学家Secor对该方法进行综述后,才引起人们关注并逐渐发展成为众所周知的科学实用方法。Secor根据优先结晶法是聚集物的结晶的原理,可用其溶解度曲线的相图来进行结晶分离过程的分析。20世纪60~70年代,优先结晶方法在工业生产上大规模的用于由丙烯腈制备L—谷氨酸的拆分,每年的产量可达1.3万吨。这一技术不仅在工业生产上有非常显著的应用价值,在'实验室也可用于拆分数克到数十克的光学活性的化合物。应当指出的是,优先结晶方法仅适用于拆分能形成聚集体的外消旋体,而且该聚集体是稳定的结晶形式。换句话讲,假若该外消旋体可以是以聚集物或外消旋化合物的形式存在,但在某一定的温度范围内,只可以以聚集物的形式结晶出来,而刁;是产生外消旋化合物的结晶。例如盐酸组氨酸在45℃以上温度进行的优先结晶拆分。减肥药物芬氟拉明(fenfluramine,6)及其前体去乙基芬氟拉明(7)的拆分研究说明了优先结晶拆分的局限性。在对(6)和(7)与非手性的有机酸形成的50多个盐进行聚集物性质研究时,发现只有五个(6)的盐和三个(7)的盐是聚集体,但其中有两个盐不能使用优先结晶法结晶,这两个盐是(6)的苯氧乙酸盐和(7)的二氯乙酸盐。(6)的苯氧乙酸盐在室温下以不稳定的聚集体和稳定的外消旋化合物的形式发生共结晶,而(7)的二氯乙酸盐在结晶过程中会发生异手性(heterochiral growth)生长,即—种对映异构体的晶体生长在另一种异构体晶体的表面,得到晶体的光学纯度很低。聚集体通常在一定的温度范围内是稳定的,一旦超过该温度范围则叫咱S形成聚集体的亚稳态的形式,这种亚稳态的形式也可以用优先结晶的方法拆分,但得到的将是亚稳态多晶型的形式。例如盐酸组氨酸在25℃时的结晶。也有些化合物,例如外消旋的3—(3—氯苯基)—3—羟基丙酸(8),可以形成热力学稳定的聚旧体的形式,但在溶剂中结晶时总是生成亚稳态的外消旋化合物,而且该外消旋化合物的溶解度约是其对映异构体的7倍,这种情况难以用优先结晶法进行结晶。优先结晶法是一种高效、简单而又快捷的拆分方法,晶种的加入造成两个对映异构体具有不同的结晶速率是该动态过程控制的关键。延长结晶时间可提高产品的产率,但产品的光学纯度有所下降。从优先结晶法中得到晶体后,如要进一步提高产物的光学纯度,可经过反复的重结晶实现。 在实际应用过程中,尤其在工、限生产过程中,利用优先结晶方法的特点进行循环往复的结晶分离。这一方法从20世纪50年代起用于抗生素氯霉素(chloramphenicol,9)的中间体D—苏型?1—对硝基苯基—2—氨基—1,3—丙二醇(10)的拆分,至今工业生产中仍然在使用。循环优先结晶方法又称为“交*诱导结晶拆分

手性药物拆分技术的研究进展

手性药物拆分技术的研究进展 摘要:简要阐述了手性药物的世界销售市场。综述了目前实验室和工业生产领域手性药物的拆分方法,包括:结晶拆分法,化学拆分法,动力学拆分法,生物拆分法,色谱拆分法,手性萃取拆分法和膜拆分法等,并简要介绍了每种方法的应用情况及优缺点。 关键词:手性药物; 外消旋体; 手性拆分 自然界存在各种各样的手性现象,比如蛋白质、氨基酸、多糖、核酸、酶等生命活动重要基础物质,都是手性的。据统计,在研发的1200种新药中,有820种是手性的,占世界新药开发的68%以上[ 1 ]。美国FDA在1992年发布了手性药物指导原则,该原则要求各医药企业今后在新药研发上,必须明确量化每一对映异构体的药效作用和毒理作用,并且当两种异构体有明显不同作用时,必须以光学纯的药品形式上市。随后欧共体和日本也采取了相应的措施。此项措施大大促进了手性药物拆分技术的发展,手性药物的研究与开发,已经成为当今世界新药发展的重要方向和热点领域[ 2 ]。当前大多数药物是以外消旋体的形式出现,即药物里含有等量的左右两种对映体。但是近年来单一对映体药物市场每年以20%以上的速度增长。1993年全球100个热销药中,光学纯的药物仅仅占20%;然而到了1997年, 100个中就有50个是以单一对映体形式存在,手性药物已占到世界医药市场的半壁江山。在1993年,手性药物的全球销售额只有330亿美元;到了1996年,手性药物世界市场已增长到730亿美元; 2002年总销售额更是达到1720亿美元, 2010年可望超过2500亿美元[ 3~5 ]。广阔的应用前景和巨大的市场需求触发了更多的医药企业和学者探索更新更高效地获得单一手性化合物的方法。 不同的立体异构体在体内的药效学、药代动力学和毒理学性质不同,并表现出不同的治疗作用与不良反应,研究与开发手性药物是当今药物化学的发展趋势。随着合理药物设计思想的日益深入,化合物结构趋于复杂,手性药物出现的可能性越来越大;另一方面,用单一异构体代替临床应用的混旋体药物,实现手性转换,也是开发新药的途径之一[ 1 - 3 ]。1985~2004年上市的550个新化学合成药物中,有313个药物具有手性中心,其中以单一异构体上市的手性药物为167个,手性药物数量呈逐年上升趋势; 2005年世界药物的销售总额为6 020亿美元,而手性药物的销售总额为 2 250亿美元,占全球制药市场销售总额的37% , 2010年可望超过 5 000亿美元[ 4 - 6 ]。总之, 手性药物大量增长的时代已经来临,手性药物制备技术的发展亦日趋完善,这为以制备和生产手性药物为主要内涵的手性工业的建立和发展奠定了基础。 手性药物的制备技术由化学控制技术和生物控制技术两部分组成。手性药物的化学控制技术可分为普通化学合成、不对称合成和手性源合成3类;手性药物的生物控制技术包括天然物的提取分离技术和控制酶代谢技术。以前手性化合物为原料,经普通化学合成可得到外消旋体,再将外消旋体拆分制备手性药物中间体或手性药物,这是工业生产手性药物的主要方法。1985~2004年上市的58个含有一个手性中心的手性药物中,有27个手性药物是通过手性拆分法生产的[ 4 ]。 1结晶法拆分 结晶法拆分包括直接结晶法拆分( direct crys ta llization resolution )和非对映异构体拆分( dias te reom er crys tallization resolution) ,分别适用于外消旋混合物( conglom e rate)和外消旋化合物( racem ic compound)的拆分。在一种外消旋混合物的过饱和溶液中,直接加入某一对映体的晶种,即可得到一定量的该对映体,这种直接结晶的拆分方法仅适用于外消旋混合物,其应用几率不到10%。外消旋化合物较为常见,大约占所有外消旋体的90%。通过与非手性的酸或碱成盐可以使部分外消旋化合物转变为外消旋混合物,扩大直接结晶法拆分的应用范围。 对于外消旋化合物,可采用与另一手性化合物(即拆分剂, reso lving agent)形成非对映异

手性拆分进展

手性拆分技术进展

手性拆分技术进展 手性拆分(chial resolution)称光学拆分或外消旋体拆分(optical resolution),为立体化学上,用以分离外消旋化合物成为两个不同的镜像异构的方法。近几十年在工业上应用很广,尤其在手性药物开发上,已逐渐成为新药发展重要方向和热点领域。当前,用于手性物质拆分的方法主要有:化学拆分法、毛细管电泳技术、色谱分析法、萃取拆分法、聚合膜拆分法。 一、化学拆分法 (一)晶种结晶法是在饱和或过饱和的外消旋体溶液中加入其中一个对映异构体的晶种, 使该对映异构体稍稍过量而造成不对称环境, 结晶就会按非平衡的过程进行。应当指出的是,优先结晶方法仅适用于拆分能形成聚集体的外消旋体, 而且该聚集体是稳定的结晶形式。换句话讲,假若该外消旋体可以是以聚集物或外消旋化合物的形式存在, 但在某一定的温度范围内,只可以用聚集物的形式结晶出来,而不是产生外消旋化合物的结晶。1934 年,Duschinsky【1】首次应用该方法实现了盐酸组氨酸的分离。 (二)外消旋体的不对称转换一对合成的外消旋体由于在非手性条件下物理、化学性质相同,普通的分离方法如蒸馏、重结晶等在这种情况下时无能为力的。因此要设法先将一对对映异构体变成非对映体,然后再借用二者物理、化学性质的区别,将他们分开,制纯,再分别将非对映异构体分解,得回两个纯的对映体。这种方法一般需要被拆分的分子中有一个易发生反应的基团,如羧酸、碱基等,然后让它们与一个纯的(+)或(-)光活性化合物反应,形成盐或酯,这样就形成了一对非对映异构体。如: 常用的光化学试剂有:光活性碱:奎宁、马钱子碱等 光活性酸:酒石酸、樟脑磺酸等 1853 年,Pastrure【2】对该种拆分方法进行了全面概括酸碱性的外消旋体的拆分方面具有明显的优势,但也存在一定的局限性拆分过程中使用的手性试剂是拆分成功与否的关键合适的拆分剂应具备以下条件: 1 、必须容易与外消旋体中的2、个对映体结合生成非对映异构体,经拆分后又容易实现原

手性拆分

手性拆分 手性拆分(Chiral resolution),亦称光学拆分(Optical resolution)或外消旋体拆分,为立体化学上,用以分离外消旋化合物成为两个不同的镜像异构物的方法。[1]为生产具有光学活性药物的重要工具。 与不对称合成法比较,手性拆分的缺点为尽有50%的产率。有时在拆分的同时将不需要的对映异构体外消旋化,使其不断转化为需要的一个对映体,将拆分和外消旋化同时进行,从而使拆分的产率超过50%。这种方法称为动态动力学拆分。酮的烯醇化是常用的外消旋化反应。 拆分方法 结晶拆分法 晶种结晶法:也称优先结晶法。是向热的饱和或过饱和的外消旋溶液中,加入一种纯光活性异构体的晶种,创造出不对称的环境。冷却到一定的温度。这时稍微过量的与晶种相同的异构体就会优先结晶出来。滤去晶体后,在剩下的母液中再加入水和消旋体制成的热饱和溶液,再冷却到一定的温度。这时另一个稍微过剩的异构体就会结晶出来。理论上讲,如果原料能形成聚集体的外消旋体,那么将上述过程反复进行就可以将一对对映体转化为纯的光学异构体。 没有纯对映异构体晶种的情况下,有时用结构相似的手性化合物,甚至用非手性的化合物作晶种,也能成功进行拆分。 晶种结晶法是在路易·巴斯德的工作的基础上发现的。文献上最早报道的应用是肾上腺素的拆分。 路易·巴士德首先发现酒石酸有右旋和左旋现象,并于1849年第一次进行手性拆分以分离两者。直到1882年,他示范了借着引晶技术从过饱和的酒石酸钠铵溶液中生成d-晶体及l-晶体,相反的手性晶体将会排列成相反的形状。 直接结晶拆分法:也称自发结晶拆分法。这是巴斯德最早发现的拆分方法。是指外消旋体在平衡时结晶自发形成聚集体(conglomerate),两个对映体都自发析出等量的互为镜像的对映结晶。对映结晶可以人工分开。 外消旋美沙酮可以通过这种方法拆分。[2]以50g的dl-美沙酮为起始原料,溶于石油醚并浓缩,加入两个毫米大小d-和l-晶体,在40°C下搅拌125小时后便可得到两个大的d-和l-晶体,产率各为50%。

浅谈色谱技术在手性药物拆分的应用

浅谈色谱技术在手性药物拆分中的应用 XXX (XXXXX大学药学院制药工程,江西南昌330013) 摘要:手性药物拆分对药物研究有重要意义。近年来,色谱法拆分手性药物发展十分迅速,已成为药学研究热点之一。本文就色谱法在手性药物拆分中的应用作一简述。介绍了手性色谱拆分法中的薄层色谱法,气相色谱法,高效液相色谱法,毛细管电泳法,超临界流体色谱法,模拟移动床色谱,及其优缺点。 关键词:色谱法;手性药物;拆分;应用 手性是一种很普遍的自然现象,比如蛋白质、氨基酸、多糖、核酸、酶等生命活动重要基础物质,都是手性的。据统计,在研发的1200种新药中,有820种是手性的,占世界新药开发的68%以上[1]。1992年3月美国食品和药品管理局(FDA)发布了手性药物指导原则,该原则要求含手性因素的化合物,必须明确量化每一对映异构体的药效作用和毒理作用,并且当两种异构体有明显不同作用时,必须以光学纯的药品形式上市。随后欧共体和日本也采取了相应的措施。此项措施大大促进了手性药物拆分技术的发展。当前大多数药物是以外消旋体的形式出现,即药物里含有等量的左右两种对映体。近年来单一对映体药物市场每年以20%以上的速度增长[2]。2010年,在医药工业中,化学药销售超过7000亿美元,具有光学活性的手性药物约占全部化学药,规模约3200亿美元具有十分广阔的市场前景和巨大的经济价值[3]。 广阔的应用前景和巨大的市场需求触发了更多的医药企业和学者探索更新更高效地获得单一手性化合物的方法。本文就色谱法在手性药物拆分中的应用作一简述。 1 薄层色谱法(TLC)[4]-[5] TLC法始于20世纪30年代,现已发展了高效TLC法、离心TLC法及梯度展开等技术。由于高效薄层板的理论塔板数高(可达5000),加上现代化的检测手段,使得TLC 法拆分对映体成为可能。TLC拆分法可分为手性试剂衍生化法( CDR) 、手性流动相添加剂法( CMPA) 和手性固定相法(CSP)。目前,可用于TLC拆分的CMPA法主要有添加手性离子对试剂、添加CD及其衍生物于展开系统,可用于TLC拆分的CSP有CD、纤维素及其衍生物、手性氨基酸金属配体交换及手性试剂浸渍性固定相。手性药物的TLC拆分法具有操作简便、设备简单、分离效率高、分析速度快、色谱参数易调整等特点,在对映体的分离中具有实用意义,但由于其灵敏度不高,故目前主要用于定性分析手性药物。 2 气相色谱法(GC) GC法始于20世纪60年代,通过选择适当的吸附剂作固定相,使之选择性地吸附在外消旋体中的一种异构体,从而达到快速分离手性药物的目的。GC手性固定相按照拆分机制可分为三类[6]:①基于氢键作用的手性固定相,主要是氨基酸衍生物固定相;②基于配位作用的手性金属配合物固定相;③基于包含作用的环糊精衍生物固定相,这类固定相在GC手性分离研究中发展最快、选择性高,且应用广泛。研究表明,手性固定相与异构体之间的作用有氢键作用、偶极结合作用和三点作用。GC法分离手性药物具有简单快速、灵敏、重复性和精度高的特点,对于可挥发的热稳定手性分子,可表现出明显优势;但同样也存在着一些固有的局限性,如要求被分离的样品具有一定的挥发性和热稳定性,要实现制备比较困难。 3 高效液相色谱法(HPLC)[7] HPLC法是20世纪70年代后期发展起来的,在手性药物拆分中应用最为广泛,是药物质量控制、立体选择性的药理学和毒理

手性拆分技术

手性拆分技术 手性药物的制备技术由化学控制技术和生物控制技术两部分组成。化学控制技术:普通化学合成、不对称合成和手性源合成. 生物控制技术:天然物的提取分离技术和控制酶代谢技术。 手性拆分法: 结晶法拆分、动力学拆分、色谱分离法拆分、膜拆分法、萃取拆分法 1.结晶拆分法 结晶法拆分包括直接结晶法拆分和非对映异构体拆分分别适用于外消旋混合物和外消旋化合物的拆分。 在一种外消旋混合物的过饱和溶液中, 直接加入某一对映体的晶种,即可得到一定量的该对映体, 这种直接结晶的拆分方法仅适用于外消旋混合物, 其应用几率不到10% 外消旋化合物较为常见, 大约占所有外消旋体的90%。通过与非手性的酸或碱成盐可以使部分外消旋化合物转变为外消旋混合物, 扩大直接结晶法拆分的应用范围使部分外消旋化合物转变为外消旋混合物。也可采用与另一手性化合物(即拆分剂)形成非对映异构体混合物的方法, 利用这对非对映异构体盐的溶解度和结晶速去率的差异, 通过结晶法进行分离, 最后脱去拆分剂即得单一构型的异构体。最常见的拆分剂是手性酸或手性碱。 近年出现了组合拆分、复合拆分、包合拆分和包结拆分等新技术, 是对非对映异构体拆分的有效补充。 1.1 组合拆分 组合拆分是指采用结构类型相同的2~3个手性化合物构成的拆分剂家族代替单一拆分剂进行外消旋化合物拆分的新方法。拆分剂家族一般是将常用的手性拆分剂(如α-甲基苄胺、α-氨基苯乙醇、酒石酸、扁桃酸等)进行结构修饰而形成的一组衍生物。在拆分剂家族中, 每个化合物之间要具有非常强的结构类似性和立体化学均一性。 实际操作过程是将拆分剂家族和被拆分的外消旋化合物以物质的量比1∶1

手性拆分剂及其手性药物色谱拆分技术的应用进展梁娴

手性拆分剂及其手性药物色谱拆分技术的应用进展 梁娴,王慧文 (安徽省蚌埠市食品药品检验所,安徽蚌埠233000) 关键词:手性拆分;手性拆分剂;色谱拆分法 近三十年上市的新药中,手性药物占有很大比例,手性药物拆分技术应用广泛,发展也日趋完善。手性拆分(Chiral Resolution)也称作光学拆分(Optical Resolution),亦或称作外消旋体拆分,为立体化学上,用以分离外消旋化合物成为两个不同的镜像异构物的方法[1]。例如反应停事件中:药物沙利度胺(反应停)是以对映体的混合物用作缓解妊娠反应药物,造成许多服用过此药的孕妇产下畸婴,经研究发现(R)-沙利度胺具有镇静和缓解妊娠反应作用,而(S)-沙利度胺可酶促水解成邻苯二甲酰谷氨酸并渗透到胎盘,干扰叶酸的合成,产生强致畸作用。如果能在药物沙利度胺投放市场前就发现R、S构型手性异构体的性质差别并经分离提纯后用药,就可以避免这样的事故。 对手性化合物的识别、拆分或合成。需要有能够对被研究的手性化合物(客体分子)进行选择性识别或结合的手性化合物(主体分子),这样的主体分子被称为手性选择剂(手性拆分剂),手性拆分剂是具有多重识别位点的手性化合物。1手性拆分剂(手性选择剂) 根据化学结构不同可以分为:天然多糖及其衍生物(包括环糊精、纤维素、淀粉等多糖衍生物制备的手性固定相)、大环抗生素(主要有利福霉素B、利托菌素A、万古霉素及其衍生物和氨基糖苷类等等)、人工合成的手性大环配体(以N、P、S、Se等杂原子作为给电子原子的聚醚类冠状大环化合物、含氮的大环多胺)、配体交换复合物、手性表面活性剂(包括天然的和合成的两类。天然的包括胆酸盐、毛地黄皂苷、皂角苷等;人工合成的包括十二烷酰氨基酸钠等)、亲和手性选择剂(包括多肽、蛋白质、糖蛋白和相应的生物聚合物)等[2]。如黄碧云等[3]以羟乙基-β-环糊精为手性选择剂,确立了苯磺酸氨氯地平对映体的手性拆分方法。马桂娟等[4]以L-异亮氨酸聚合物手性配体交换固定相对DL-氨基酸进行了有效拆分。 根据作用机制不同还可以分为手性流动相添加剂(Chiral Mobile Phase Additives,CMPA)、手性固定相(Chiral Stationary Phase,CSP)、手性衍生化试剂(Chiral Derivatization Reagents,CDR)三类。CDR属于间接法使用手性选择剂,以共价键和手性物质结合,在分子内构建手性环境,对手性试剂的纯度要求很高,产物往往不可逆生成;CMPA和CSP属于直接法使用手性选择剂,在分子间构建手性环境,与手性物质基于分子间作用力(氢键、范德华力、π-π或偶极作用)、包结作用构成非对映异构体,所形成的非对映异构体具有可逆性脱去手性选择剂的性质。 CMPA是在流动相中加入手性试剂,利用手性试剂与各对映体结合的稳定常数的不同以及药物与结合物在固定相上分配系数的不同来进行分离的方法。常用的有:环糊精及其衍生物、冠醚、配位基手性选择剂、手性离子对添加剂、蛋白质、大分子抗生素等[5]。如贾绍栋等[6]建立了以手性冠醚为手性选择剂,分离吉米沙星对映体的方法。 CSP是先将高纯度的手性试剂化学键合到固定相上,键合后的固定相与药物对映体形成复合物,再根据复合物的稳定常数不同而获得分离的拆分方法,分离的效率和洗脱顺序取决于复合物的相对强度。根据化学结构类型的不同可以将手性固定相分为:(1)纤维素类固定相;(2)“刷型”手性固定相或称Pirkle型手性固定相;(3)环糊精类手性固定相;(4)蛋白质型手性固定相;(5)大环抗生素型手性固定相;(6)配体交换型手性固定相;(7)冠醚类手性固定相等;也可以根据手性固定相与被拆分的对映异构体间的作用机制进行分类:(1)基于氢键、π-π或偶极吸引等相互作用形成配合物进行 [11]Jhaveri KS,Wong F,Ghai S,et al.Comparison of CT histogramanaly-sis and chemical shift MRI in the characterization of indeterminate adrenal nodules[J].AJR,2006,187(5):1303-1308. [12]Ho LM,Paulson EK,Brady MJ,et al.Lipid-pooradenomas on unen-hanced CT:does histogram analysis increase sensitivity compared with a mean attenuation threshold[J].AJR,2008,191(1):234-238.[13]Halefoglu AM,Bas N,Yasar A,et al.Differentiation of adrenal ade-nomas from nonadenomas using CT histogram analysis method:a pro-spective study[J].Eur J Radiol,2010,73(3):643-651. [14]Park BK,Kim CK,Kim B,et al.Comparison of delayed enhanced CT and chemical shift MR for evaluating hyperattenuating incidental ad-renal masses[J].Radiology,2007,243(2):760-765. [15]Blake MA,Kalra MK,Sweeney AT,et al.Distinguishing benign from malignant adrenal masses:multi-detector row CT protocol with10-minute delay[J].Radiology,2006,238(2):578-585. [16]Lin XZ,Miao F,Li JY,et al.High definition CT gemstone spectral imaging of the brain:initial results of selecting optimal monochromat-ic image for beam-harding artifacts and image noise reduction[J].J Comput Assist Tomogr,2011,35(2):294-297.[17]惠萍,王新江,崔志鹏,等.CT能谱成像在消除金属移植物伪影中的应用价值[J].中华放射学杂志,2011,45(8):740-742.[18]吴华伟,程杰军,李剑颖,等.CT能谱成像定量碘基物质图对肺栓塞的诊断价值[J].中华放射学杂志,2011,45(8):727-730.[19]叶晓华,周诚,吴国庚,等.CT能谱单能量成像对不同肝脏肿瘤检出影响的初步探讨[J].中华放射学杂志,2011,45(8):718-722.[20]李铭,郑向鹏,李剑颖,等.甲状腺结节的能谱CT研究[J].中华放射学杂志,2011,45(8):780-781. [21]刘金刚,刘亚,李丽新,等.CT能谱成像在诊断肿瘤淋巴结转移和肿瘤性质中的作用[J].中华放射学杂志,2011,45(8):731-735.[22]张晓鹏.探索的精神与乐趣———CT能谱成像临床应用研究中的思考[J].中华放射学杂志,2011,45(8):709-712. [23]刘婧,王鹤,王霄英,等.双能CT成像鉴别肾上腺良恶性病变的初步研究[J].放射学实践,2012,27(3):242-245. [24]林晓珠,陈克敏,吴志远,等.CT能谱成像在鉴别胰腺寡囊型浆液性囊腺瘤与粘液性囊性肿瘤中的价值[J].中华放射学杂志,2011,45(8):713-717. (收稿日期:2012-05-20,修回日期:2012-10-16) · 241 ·安徽医药Anhui Medical and Pharmaceutical Journal2013Jan;17(1)

相关主题
文本预览
相关文档 最新文档