当前位置:文档之家› 第14讲势流理论1

第14讲势流理论1

现代控制理论1-8三习题库

信息工程学院现代控制理论课程习题清单

正确理解线性系统的数学描述,状态空间的基本概念,熟练掌握状态空间的表达式,线性变换,线性定常系统状态方程的求解方法。 重点容:状态空间表达式的建立,状态转移矩阵和状态方程的求解,线性变换的基本性质,传递函数矩阵的定义。要求熟练掌握通过传递函数、微分方程和结构图建立电路、机电系统的状态空间表达式,并画出状态变量图,以及能控、能观、对角和约当标准型。难点:状态变量选取的非唯一性,多输入多输出状态空间表达式的建立。 预习题 1.现代控制理论中的状态空间模型与经典控制理论中的传递函数有何区别? 2.状态、状态空间的概念? 3.状态方程规形式有何特点? 4.状态变量和状态矢量的定义? 5.怎样建立状态空间模型? 6.怎样从状态空间表达式求传递函数? 复习题 1.怎样写出SISO系统状态空间表达式对应的传递函数阵表达式 2.若已知系统的模拟结构图,如何建立其状态空间表达式? 3.求下列矩阵的特征矢量 ? ? ? ? ? ? ? ? ? ? - - = 2 5 10 2 2 1- 1 A 4.(判断)状态变量的选取具有非惟一性。 5.(判断)系统状态变量的个数不是惟一的,可任意选取。 6.(判断)通过适当选择状态变量,可将线性定常微分方程描述其输入输 出关系的系统,表达为状态空间描述。 7.(判断)传递函数仅适用于线性定常系统;而状态空间表达式可以在定 常系统中应用,也可以在时变系统中应用. 8.如果矩阵A 有重特征值,并且独立特征向量的个数小于n ,则只能化为 模态阵。 9.动态系统的状态是一个可以确定该系统______(结构,行为)的信息集 合。这些信息对于确定系统______(过去,未来)的行为是充分且必要 的。 10.如果系统状态空间表达式中矩阵A, B, C, D中所有元素均为实常数时, 则称这样的系统为______(线性定常,线性时变)系统。如果这些元素 中有些是时间t 的函数,则称系统为______(线性定常,线性时变)系 统。 11.线性变换不改变系统的______特征值,状态变量)。 12.线性变换不改变系统的______(状态空间,传递函数矩阵)。 13.若矩阵A 的n 个特征值互异,则可通过线性变换将其化为______(对 角阵,雅可比阵)。 14.状态变量是确定系统状态的______(最小,最大)一组变量。 15.以所选择的一组状态变量为坐标轴而构成的正交______(线性,非线性) 空间,称之为______(传递函数,状态空间)。

现代控制理论第一章答案1

习题解答 2-1 2-2 2-3 2-4 2-5 2-6 2-7 2-8 2-9 2-10 2-11 2-12 2-13 2-14 2-15 2-16 2-17 2-18

2-1 如题图2-1所示为RLC 电路网络,其中()i U t 为输入电压,安培表的指示电流)(t i o 为输出 量。试列写状态空间模型。 题图2-1 解: (1) 根据回路电压和节点电流关系,列出各电压和电流所满足的关系式. ()()() 1 ()()()()() i L C L C R C C d U t L i t U t dt d i t i t i t C U t U t dt R =+=+=+ (2) 在这个电路中,只要给定了储能R 元件电感L 和电容C 上的i L 和U C 的初始值,以及t ≥t 0 时刻后的输入量U i (t ),则电路中各部分的电压、电流在t ≥t 0时刻以后的值就完全确定了。也就是说,i L 和U C 可构成完整的描述系统行为的一组最少个数的变量组,因此可选i L 和为U C 状态变量,即 x 1(t )=i L , x 2(t )=u C (3) 将状态变量代入电压电流的关系式,有 1221211 11 i dx x U dt L L dx x x dt C RC =-+=- 经整理可得如下描述系统动态特性的一阶矩阵微分方程组--状态方程 11i 22110110x x L U L x x C RC ??-??????????=+???? ???? -???????????? (4) 列写描述输出变量与状态变量之间关系的输出方程, 1221110C x y U x x R R R ????===?? ?????? (5) 将上述状态方程和输出方程列写在一起,即为描述系统的状态空间模型的状态空间表达 式 11i 221211011010 x x L U L x x C RC x y x R ??-?????????? =+????????-? ??????????? ??? ?=????? ???

第14讲第四章 理论力学(十二)

(2009年真题)均质圆盘质量为Ⅲ,半径为R,在铅垂图面内绕D轴转动,图所示瞬时角速度为国,则其对o轴的动量矩和动能的大小为( )。 解:此题关键是要求出均质圆盘对转轴O的转动惯量J0,则其对 O轴的动量矩,动能 答案:(D) (2007年真题)忽略质量的细杆OC=l,其端部固结均质圆盘。杆上点C为圆盘圆心。盘质量为m,半径为r。系统以角速度∞绕轴0转动(见图)。系统的动能是( )。 解:忽略质量的细杆动能不计,只需计算做定轴转动的均质圆盘的动能,其对转轴D的转动惯量为 ,系统的动能为 答案:(D) (2013年真题)A块与B块叠放如图示,各接触面处均考虑摩擦。当B块受力F作用沿水平面运动

时,A块仍静止于B块上,于是( )。 (A)各接触面处的摩擦力都做负功 (B)各接触面处的摩擦力都做正功 (C)A块上的摩擦力做正功 (D)B块上的摩擦力做正功 提示:当A、B两物体在力F作用下向右运动时,作用在A块上的摩擦力与A块运动方向相同,摩擦力做正功;而作用在B块上的摩擦力与B块运动方向相反,摩擦力做负功。 答案:(c) 2016—55真题质点受弹簧力作用而运动,为弹簧自然长度, k 为弹簧刚度系数,质点由位置 1 到位置 2 和由位置 3 到位置 2 弹簧力所做的功为()。 答案:C 2.动力学三大普遍定理 动力学普遍定理(包括动量定理、质心运动定理,对固定点和相对质心的动量矩定理、动能定理)及相应的守恒定理的表达式、适用范围见表4-9。

2016—56真题如图所示圆环以角速度ω绕铅直轴 AC 自由转动,圆环的半径为 R ,对转轴的转动惯量为 I ,在圆环中的 A 点放一质量为 m的小球,设由于微小的干扰,小球离开 A 点,忽略一切摩擦,则当小球达到 B 点时,圆环的角速度是()。

工程流体力学课件

流体力学 绪论 第一章流体的基本概念 第二章流体静力学 第三章流体动力学 第四章粘性流体运动及其阻力计算 第五章有压管路的水力计算 第六章明渠定常均匀流 第九章泵与风机 绪论 一、流体力学概念 流体力学——是力学的一个独立分支,主要研究流体本身的静止状态和运动状态,以及流体和固体界壁间有相对运动时的相互作用和流动的规律。 1738年伯努利出版他的专著时,首先采用了水动力学这个名词并作为书名;1880年前后出现了空气动力学这个名词;1935年以后,人们概括了这两方面的知识,建立了统一的体系,统称为流体力学。 研究内容:研究得最多的流体是水和空气。 1、流体静力学:关于流体平衡的规律,研究流体处于静止(或相对平衡)状态时,作用于流体上的各种力之间的关系; 2、流体动力学:关于流体运动的规律,研究流体在运动状态时,作用于流体上的力与运动要素之间的关系,以及流体的运动特征与能量转换等。 基础知识:主要基础是牛顿运动定律和质量守恒定律,常常还要用到热力学知识,有时还用到宏观电动力学的基本定律、本构方程(反映物质宏观性质的数学模型)和物理学、化学的基础知识。 二、流体力学的发展历史

流体力学是在人类同自然界作斗争和在生产实践中逐步发展起来的。古时中国有大禹治水疏通 江河的传说;秦朝李冰父子带领劳动人民修建的 马人建成了大规模的供水管道系统等等。 流体力学的萌芽:距今约2200年前,希腊学者阿基米德写的“论浮体”一文,他对静止时的液体力学性质作了第一次科学总结。建立了包括物理浮力定律和浮体稳定性在内的液体平衡理论,奠定了流体静力学的基础。此后千余年间,流体力学没有重大发展。 15世纪,意大利达·芬奇的著作才谈到水波、管流、水力机械、鸟的飞翔原理等问题;17世纪,帕斯卡阐明了静止流体中压力的概念。但流体力学尤其是流体动力学作为一门严密的科学,却是随着经典力学建立了速度、加速度,力、流场等概念,以及质量、动量、能量三个守恒定律的奠定之后才逐步形成的。 流体力学的主要发展: 17世纪,力学奠基人牛顿(英)在名著《自然哲学的数学原理》(1687年)中讨论了在流体中运动的物体所受到的阻力,得到阻力与流体密度、物体迎流截面积以及运动速度的平方成正比的关系。他针对粘性流体运动时的内摩擦力也提出了牛顿粘性定律。使流体力学开始成为力学中的一个独立分支。但是,牛顿还没有建立起流体动力学的理论基础,他提出的许多力学模型和结论同实际情形还有较大的差别。 之后,皮托(法)发明了测量流速的皮托管;达朗贝尔(法)对运动中船只的阻力进行了许多实验工作,证实了阻力同物体运动速度之间的平方关系;瑞士的欧拉采用了连续介质的概念,把静力学中压力的概念推广到运动流体中,建立了欧拉方程,正确地用微分方程组描述了无粘流体的运动;伯努利(瑞士)从经典力学的能量守恒出发,研究供水管道中水的流动,精心地安排了实验并加以分析,得到了流体定常运动下的流速、压力、管道高程之间的关系——伯努利方程。 欧拉方程和伯努利方程的建立,是流体动力学作为一个分支学科建立的标志,从此开始了用微分方程和实验测量进行流体运动定量研究的阶段。从18世纪起,位势流理论有了很大进展,在水波、潮汐、涡旋运动、声学等方面都阐明了很多规律。法国拉格朗日对于无旋运动,德国赫尔姆霍兹对于涡旋运动作了不少研究……。在上述的研究中,流体的粘性并不起重要作用,即所考虑的是无粘性流体。这种理论当然阐明不了流体中粘性的效应。 19世纪,工程师们为了解决许多工程问题,尤其是要解决带有粘性影响的问题。于是他们部分地运用流体力学,部分地采用归纳实验结果的半经验公式进行研究,这就形成了水力学,至今它仍与流体力学并行地发展。1822年,纳维(法)建立了粘性流体的基本运动方程;1845年,斯托克斯

《流体力学》教学大纲

《流体力学》教学大纲 一、课程基本信息 二、课程概述 中文: 本课程是工程力学专业的学类核心课程,以高等数学、理论力学、材料力学为前导课程,着重培养学生分析解决实际工程中流体力学问题的能力。 本课程主要包括流体的平衡、流体力学的基本方程、不可压缩无粘流动、涡旋运动、平面势流等,强调应用这些基本概念及定律分析与流体力学相关的工程问题,学生需了解流体力学的发展现状和趋势,理解流体力学中的基本概念、基本理论及基本定律,掌握流体力学的实验、分析与数值计算的基本技能与基本方法,并能灵活运用这些基本概念及定律分析与流体力学相关的工程问题。通过学习本课程,让学生学会流体力学基本理论,获得解决流体工程问题的基本技能,锻炼和提升对复杂的流体工程问题进行简化,从而建立数学模型并进行求解的能力。 英文: This is a bas ic course for majors of engineering mechanics, aiming at students’ physical concepts and basic principles commonly used to analyze engineering problems related to fluid mechanics, thus laying a solid foundation for their research and design in aerospace, mechanical, civil, chemical, environmental and ocean. The

applications of the dimensional and order analysis method in engineering are emphasized in this course. The study of this course develops the students’ ability to simplify the complex problems, prese nt and solve the mathematic model of related engineering problems. The main contents of this course are the basic equations of fluid mechanics, incompressible in-viscid flow, the motion of vortex, dimensional analysis, incompressible viscid flow. Prerequisites: Advanced Mathematics, Mathematics Physics Equation, Field Theory,Theoretical Mechanics,Mechanics of Materials. 三、课程内容 (一)课程教学目标 设置本课程是为了让工程力学专业的学生对工程力学专业知识体系的重要组成板块之一的流体力学进行较为系统的学习,并深度掌握与理解,具备应用流体力学的基本知识和基本理论分析解决生产实际工程问题的能力。本课程对学生达到毕业要求有如下贡献: 1.知晓流体力学的发展现状和趋势,应用流体力学及其软件在机械、土木、航空航天和材料 等工程领域解决与流体相关的技术问题; 2.具备对复杂的流体工程问题进行简化、建立数学模型并进行求解的能力; 3.具有针对复杂工程问题中的流体系统进行流体力学计算和技术设计的能力; 4.具有针对复杂流体工程问题开展实验研究的能力; 5.了解和初步掌握流体力学现代计算技术,进行流体力学问题的仿真计算。 (二)基本教学内容 绪论 教学目的与要求:掌握流体力学的研究方法、流体力学中常用的数学基础知识。 教学重点:流体的三大研究方法:实验方法、分析方法、数值计算;数学基础知识。 教学难点:三大研究方法之间的关系、数学基础知识。 教学内容:三大研究方法的主要特点、流体力学的研究对象、特点及学习方法、流体力学常用的数学知识。学时分配:2课时。 第一章、流体的物理性质和物理运动物理量的描述

现代控制理论复习题[1]

《现代控制理论》复习题1 一、(10分,每小题2分)试判断以下结论的正确性,若结论是正确的,则在其左边的括号 里打√,反之打×。 ( √ )1. 由一个状态空间模型可以确定惟一一个传递函数。 ( × )2. 若一个对象的连续时间状态空间模型是能控的,则其离散化状态空间模型也一定 是能控的。 ( × )3. 对一个给定的状态空间模型,若它是状态能控的,则也一定是输出能控的。 ( √ )4. 对系统Ax x =&,其Lyapunov 意义下的渐近稳定性和矩阵A 的特征值都具有负实部是一致的。 ( √ )5. 根据线性二次型最优控制问题设计的最优控制系统一定是渐近稳定的。 二、(15分)考虑由下式确定的系统: 2 33 )(2 +++= s s s s G 试求其状态空间实现的能控标准型、能观标准型和对角线标准型,并画出能控标准型的状态变量图。 解: 能控标准形为 []? ? ? ???=??????+??????? ?????--=??????21212113103210x x y u x x x x & & 能观测标准形为 []? ? ? ???=??????+??????? ?????--=??????21212110133120x x y u x x x x & & 对角标准形为 []? ? ? ???-=??????+????????????--=??????21212112112001x x y u x x x x && 三、(10分)在线性控制系统的分析和设计中,系统的状态转移矩阵起着很重要的作用。对系统 x x ?? ????--=3210 & 求其状态转移矩阵。 解:解法1。

第六章 势流理论

第六章势流理论 课堂提问: 为什么上弧旋与下弧旋乒乓球的应对方法不同? 本章内容: 1.势流问题求解的思路 2.库塔----儒可夫斯基条件 3. 势流的迭加法 绕圆柱的无环绕流,绕圆柱的有环绕流 4.布拉休斯公式 5.库塔----儒可夫斯基定理 学习这部分内容的目的有二: 其一,获得解决势流问题的入门知识,即关键问题是求解速度势。求出速度势之后,可按一定的步骤解出速度分布、压力分布,以及流体和固体之间的作用力。 其二,明确两点重要结论: 1)园柱体在理想流体中作等速直线运动时,阻力为零(达朗贝尔疑题);升力也为零。 2)园柱本身转动同时作等速直线运动时,则受到升力作用(麦格鲁斯效应)。 本章重点: 1、平面势流问题求解的基本思想。 2、势流迭加法 3、物面条件,无穷远处条件 4、绕圆柱有环流,无环流流动的结论,即速度分布,压力分布,压力系数分布,驻点位 置,流线图谱,升力,阻力,环流方向等。 5、四个简单势流的速度势函数,流函数及其流线图谱。 6、麦马格鲁斯效应的概念 7、计算任意形状柱体受流体作用力的卜拉修斯定理 8、附加惯性力,附加质量的概念 本章难点: 1.绕圆柱有环流,无环流流动的结论,即速度分布,压力分布,压力系数分布,驻点位置,流线图谱,升力,阻力,环流方向等。 2.任意形状柱体受流体作用力的卜拉修斯定理 3.附加惯性力,附加质量的概念

§6-1 几种简单的平面势流 平面流动:平面上任何一点的速度、加速度都平行于所在平面,无垂直于该平面的 分量;与该平面相平行的所有其它平面上的流动情况完全一样。 例如: 1)绕一个无穷长机翼的流动, 2)船舶在水面上的垂直振荡问题,由于船长比宽度及吃水大得多,且船型纵向变化比较缓慢,可以近似认为流体只在垂直于船长方向的平面内流动。如果我们在船长方向将船分割成许多薄片,并且假定绕各薄片的流动互不影响的话,则这一问题就可以按平面问题处理。这一近似方法在船舶流体力学领域内称为切片理论。 一、均匀流 流体质点沿x轴平行的均匀速度Vo , V x=V o , V y =0 平面流动速度势的全微分为 dx V dy V dx V dy y dx x d y x 0=+=??+??= ??? 积分: φ=Vox (6-4) 流函数的全微分为, dy V dy V dx V dy y dx x d o x y =+-=??+??= ψψψ 积分: ψ=Vo y (6-5) 由(6-4)和(6-5)可得: 流线:y=const ,一组平行于x轴的直线。 等势线:x=const ,一组平行于y轴的直线。 均匀流的速度势还可用来表示平行平壁间的 流动或薄平板的均匀纵向绕流,如图6-4所示。 图6-4 二、源或汇 平面源:流体由坐标原点出发沿射线流出,反之,流体从各个方向流过来汇聚于一点,谓之平面汇:与源的流动方向相反。 设源的体积流量为Q,速度以源为中心,沿矢径方向向外,沿圆周切线方向速度分量为零。现以原点为中心,任一半径r作一圆,则根据不可压缩流体的连续性方程, 体积流量Q 2πrvr=Q ∴vr=Q/2πr (6-6) 在直角坐标中,有 x y V y x V y x ??- =??=??=??= ψ?ψ?

王金城现代控制理论第一章知识题目解析

王金城化工出版社第1章习题参考答案: 1-1(a )选123123,,,,,y y y v v v 为状态变量,根据牛顿定律, 对1M ,有()1 1112121 dv M g K y K y y M dt ---= 对2M ,有()()2 22123232dv M g K y y K y y M dt +---= 对3M ,有()3 3323433dv M g K y y K y M dt +--= 令312112233415263,,,,,dy dy dy x y x y x y x v x v x v dt dt dt ===== ====,整理得 ()()()122214253641 11 23342332 51262322233 ,,,, ,K K K x x x x x x x x x g M M K K K K K x K K x x x g x x x g M M M M M +====-++++= -++=-+ () ()() 122 11 23222 22 3433 3 000100000010000000100000 01100010000K K K M M x x g K K K K M M M K K K M M ? ????? ??????? ? ??+??-????=+??????+?? ??- ? ? ???? ??? ? +- ?? ??? ? 100000010000001000y x ?? ??=?? ???? (b )选12,12,,y y v v 为状态变量,根据牛顿定律, 对1M ,有()1 1121111 dv M g B v v K y M dt +--= 对2M ,有()2 2221212dv f M g B v B v v M dt +---= 令1211223142,,,dy dy x y x y x v x v dt dt === ===,整理得 11113243134111 ,,K B B x x x x x x x x g M M M ===--++, 112434222 B B B f x x x g M M M +=-++

理论力学考试知识点总结

《理论力学》考试知识点 静力学 第一章静力学基础 1、掌握平衡、刚体、力的概念以及等效力系和平衡力系,静力学公理。 2、掌握柔性体约束、光滑接触面约束、光滑铰链约束、固定端约束和球铰链的性质。 3、熟练掌握如何计算力的投影和平面力对点的矩,掌握空间力对点的矩和力对轴之矩的计算方法,以及力对轴的矩与对该轴上任一点的矩之间的关系。 4、对简单的物体系统,熟练掌握取分离体并画出受力图。 第二章力系的简化 1、掌握力偶和力偶矩矢的概念以及力偶的性质。 2、掌握汇交力系、平行力系、力偶系的简化方法和简化结果。 3、熟练掌握如何计算主矢和主矩;掌握力的平移定理和空间一般力系和平面力系的简化方法和简化结果。 4、掌握合力投影定理和合力矩定理。 5、掌握计算平行力系中心的方法以及利用分割法和负面积法计算物体重心。 第三章力系的平衡条件 1、了解运用空间力系(包括空间汇交力系、空间平行力系和空间力偶系)的平衡条件求解单个物体和简单物体系的平衡问题。 2、熟练掌握平面力系(包括平面汇交力系、平面平行力系和平面力偶系)的平衡条件及其平面力系平衡方程的各种形式;熟练掌握利用平面力系平衡条件求解单个物体和物体系的平衡问题。 3、了解静定和静不定问题的概念。 4、掌握平面静定桁架计算内力的节点法和截面法,掌握判断零力杆的方法。 第四章摩擦 1、掌握运用平衡条件求解平面物体系的考虑滑动摩擦的平衡问题。 2、了解极限摩擦定律、滑动摩擦系数、摩擦角、自锁现象、摩阻的概念。 运动学 第五章点的运动 1、掌握描述点的运动的矢量法、直角坐标法和弧坐标法,能求点的运动方程。 2、熟练掌握如何计算点的速度、加速度及其有关问题。 第六章刚体的基本运动

理论力学试题 第14套

一.填空题(共10分,每空2分) 图(a)长为l 、质量为m 的均质细杆,在平面内绕O 点转动,角速度为ω,其动量为 ,动量矩为 ,动能为 ;图(b)所示的均质滚轮,半径为r ,质量为m ,轮心速度为v C ,其动量为 ,动量矩为 ; 1.秋千为什么越荡越高,能量的增长从何而来?(5分) 2.为什么发动机中都设有飞轮?试说明飞轮在工作时的能量变化过程。(5分) 三.图示水平面上放一均质三棱柱A ,在其斜面又放一均质三棱柱B 。两三棱柱 的横截面均为直角三角形。三棱柱A 质量为3m ,B 质量为m ,尺寸如图示。设各处摩擦不计,初始时系统静止。求当三棱柱B 沿三棱柱A 滑下接触到水平面时,三棱柱A 移动的距离。(20分) 四.高炉运送矿石用的卷扬机如图所示。已知鼓轮的半径为R ,质量为m ,作用 在鼓轮上的力偶矩为M 。小车和矿石总质量为m ,轨道的倾角为θ 。设绳的a 。(20分) 五.重物A 质量为m 1,系在绳子上,绳子跨过不计质量的固定滑轮D ,并绕在 鼓轮B 上,如图所示。由于重物下降,带动了轮C ,使它沿水平轨道只滚

不滑。设鼓轮半径为r ,轮C 的半径为R ,两者固连在一起,总质量为m 2,对于其水平轴O 的回转半径为ρ。求绳子的拉力。(20分) 六.如图所示,匀质薄圆盘M ,质量为m ,半径为R ,圆盘中心点在E 处,其悬 挂在两平行绳子上,圆盘上两悬挂点B 和D 的连线BD 通过圆盘中心点E ,并且BE=DE=r ,BE 为水平位置;开始时,系统处于静平衡状态;突然剪断绳子CD 。试求:剪断绳子CD 瞬时,绳子AB 的拉力。设重力加速度为g 。(20分) A

流体力学势流理论

第六章势流理论 本章内容: 1.势流问题求解的思路 2.库塔----儒可夫斯基条件 3. 势流的迭加法 绕圆柱的无环绕流,绕圆柱的有环绕流 4.布拉休斯公式 5.库塔----儒可夫斯基定理 学习这部分内容的目的有二: 其一,获得解决势流问题的入门知识,即关键问题是求解速度势。求出速度势之后,可按一定的步骤解出速度分布、压力分布,以及流体和固体之间的作用力。 其二,明确两点重要结论: 1)园柱体在理想流体中作等速直线运动时,阻力为零(达朗贝尔疑题);升力也为零。 2)园柱本身转动同时作等速直线运动时,则受到升力作用(麦格鲁斯效应)。 本章重点: 1、平面势流问题求解的基本思想。 2、势流迭加法 3、物面条件,无穷远处条件 4、绕圆柱有环流,无环流流动的结论,即速度分布,压力分布,压力系数分布,驻点位 置,流线图谱,升力,阻力,环流方向等。 5、四个简单势流的速度势函数,流函数及其流线图谱。 6、麦马格鲁斯效应的概念 7、计算任意形状柱体受流体作用力的卜拉修斯定理 8、附加惯性力,附加质量的概念 本章难点: 1.绕圆柱有环流,无环流流动的结论,即速度分布,压力分布,压力系数分布,驻点位置,流线图谱,升力,阻力,环流方向等。 2.任意形状柱体受流体作用力的卜拉修斯定理 3.附加惯性力,附加质量的概念 §6-1 几种简单的平面势流 平面流动:平面上任何一点的速度、加速度都平行于所在平面,无垂直于该平面的分量;与该平面相平行的所有其它平面上的流动情况完全一样。

例如: 1)绕一个无穷长机翼的流动, 2)船舶在水面上的垂直振荡问题,由于船长比宽度及吃水大得多,且船型纵向变化比较缓慢,可以近似认为流体只在垂直于船长方向的平面内流动,如图6-2所示。如果我们在船长方向将船分割成许多薄片,并且假定绕各薄片的流动互不影响的话, 则这一问题就可以按 一、均匀流 流体质点沿x轴平行的均匀速度Vo ,如图6-5所示, V x=V o , V y =0 dx V dy V dx V dy y dx x d y x 0=+=??+??= ?? ? 积分:φ=V ox (6-4) 如图6-3 流函数的全微分为, dy V dy V dx V dy y dx x d o x y =+-=??+??= ψψψ 积分:ψ=V o y (6 -5 如图6-4 由(6-4)和(6 -5 流线:y=const ,一组平行于x轴的直线,如图6 -3 等势线:x=const ,一组平行于y轴的直线,如图6-3中的虚线。 均匀流的速度势还可用来表示平行平壁间的流动或薄平板的均匀纵向绕流,如图6-4所示。 平面源:流体由坐标原点出发沿射线流出,反之,流体从各个方向流过来汇聚于一点,谓之平面汇:与源的流动方向相反。 设源的体积流量为Q,速度以源为中心,沿矢径方向向外,沿圆周切线方向速度分量为零。现以原点为中心,任一半径r作一圆,则根据不可压缩流体的连续性方程, 体积流量Q πrvr=Q ∴vr=Q/2πr (6-6) 在直角坐标中,有 x y V y x V y x ??- =??=??=??= ψ?ψ? 在极坐标中有: r r s V r s r V s r ??- =??=??=??=??=??= ψθ??θψψ?11 (6-7) 图6-6 点源和点汇 极坐标中φ和ψ 的全微分:

第六章 实际流体的绕流运动

第六章 实际流体的绕流运动 Chapter Six Cross-flow Movement of Real Fluid 一、研究内容 1.实际流体绕流物型时所产生的问题,如速度和压强分布;边界层分离现象;绕流阻力与升力等等。 2.实际流体绕流物型时,不能忽略流体黏性的影响,并且流体与物体间存在相互作用力。工程中绕流问题很常见,如锅炉中烟气横向流过受热面管束;汽轮机、轴流式泵或风机等设备中流体绕流叶栅;飞机在空中飞行、船只在海中航行等等。 二、研究方法 以N-S 方程及速度边界层理论为基础研究实际流体的绕流问题。 第一节 纳维-斯托克斯方程(N-S 方程) Section One The Navier-Stokes Equation(N-S Equation) 一、不可压缩流体的N-S 方程的形式 其中,方程等号左侧为全加速度,可以展开为 因此,不可压缩流体的N-S 方程三个方程式,每个方程含有 9项内容,方程较复杂。 二、不可压缩流体N-S 方程的说明 1.方程等号左侧为全加速度,即是惯性力项;等号右侧第一项是质量力项,第二项为压力项,第三项为黏性力项。其实质可以理解为实际流体的牛顿第二定律(也即是机械能转换与守恒定律的应用)。 2.若运动黏度0=ν,则N-S 方程转变为欧拉运动微分方程;若运动黏度0=ν,且全加速度0/=dx du 、0/=dy dv 及0/=dz dw ,则N-S 方程转变为欧拉平衡微分方程。 3. N-S 方程结合不可压缩流体的连续性方程0=??+??+??z w y v x u ,若其余量已知,理论上 可求得速度一压强分布u 、v 、w 及p 。但N-S 方程在数学上求解相当困难,通常采用近似解。 第二节 边界层理论 Section Two Velocity Boundary Layer Theory 一、理论的提出 针对工程中出现的大雷诺数Re 下实际流体绕流物型时所产生的若干问题,如速度和压强分布;边界层分离现象;绕流阻力与升力等,并成功解决了达朗贝尔(D ’Alembert)疑题,即势流理论所得到的绕流物型时可能只有升力而无阻力的结论与实际情况截然相反的现象。 二、边界层的基本概念 1.速度边界层含义: z w w y w v x w u t w dt dw z v w y v v x v u t v dt dv z u w y u v x u u t u dt du ??+??+??+??=??+??+??+??=??+??+??+??=

现代控制理论 第1章习题解答

《现代控制理论》第1章习题解答 1.1 线性定常系统和线性时变系统的区别何在? 答:线性系统的状态空间模型为: x Ax Bu y Cx Du =+=+ 线性定常系统和线性时变系统的区别在于:对于线性定常系统,上述状态空间模型中的系数矩阵A ,B ,C 和D 中的各分量均为常数,而对线性时变系统,其系数矩阵A ,B ,C 和 D 中有时变的元素。线性定常系统在物理上代表结构和参数都不随时间变化的一类系统, 而线性时变系统的参数则随时间的变化而变化。 1.2 现代控制理论中的状态空间模型与经典控制理论中的传递函数有什么区别? 答: 传递函数模型与状态空间模型的主要区别如下: 1.3 线性系统的状态空间模型有哪几种标准形式?它们分别具有什么特点? 答: 线性系统的状态空间模型标准形式有能控标准型、能观标准型和对角线标准型。对于n 阶传递函数 121210 1 110 ()n n n n n n n b s b s b s b G s d s a s a s a ------++++=+++++ , 分别有 ⑴ 能控标准型: []01 2101210100000100000101n n n x x u a a a a y b b b b x du ---????? ?????????? ?????=+?? ???????? ? ?????----???? ?=+?? ⑵ 能观标准型: []001122110001000100010 00 1n n n b a b a x a x u b a b y x du ---?-?? ????? ??-????? ?????=-+???? ? ??? ????????-???? ?=+??

燃烧学复习重点2014

第一章燃烧化学反应动力学基础 1、什么叫燃烧? 2、浓度和化学反应速度正确的表达方法?化学反应速度如何计量? 3、什么是单相反应、多相反应、简单反应、复杂反应、总包反应? 4、质量作用定律的适用范围?如何从微观的分子运动论的观点来理解质量作用定律?试用质量作用定律讨论物质浓度对反应速度的影响。 5、什么是反应级数?反应级数与反应物浓度(半衰期)之间的关系如何? 6、常用的固体、液体和气体燃料的反应级数值的范围是多少? 7、试用反应级数的概念,讨论燃尽时间与压力之间的关系。 8、惰性组分如何影响化学反应速率? 9、Arrhenius定律的内容是什么?适用范围?如何从微观的分子运动论的观点来理解Arrhenius定律? 10、什么是活化能?什么是活化分子?它们在燃烧过程中的作用? 11、图解吸热反应和放热反应的活化能与反应放热(吸热)之间的关系。 12、什么叫链式反应?它是怎样分类的?链反应一般可以分为几个阶段? 13、描述氢原子燃烧的链式反应过程。 14、试用活化中心繁殖速率和销毁速率的数学模型,结合编程技术,绘制氢原子浓度随时间变化的图线,解释氢燃烧的几种反应的情况。并讨论:分支链反应为什么能极大地增加化学反应的速度? 15、烃类燃烧的基本过程是什么,什么情况下会发生析碳反应?如何进行解释?什么样的烃类燃烧时更容易发生析碳反应?如何防止烃类燃烧析碳? 16、图解催化剂对化学反应的作用。 17、什么叫化学平衡?平衡常数的计算方法?吕·查德里反抗规则的内容是什么? 18、什么是燃料的低位发热量和高位发热量? 19、试用本章的知识解释,从燃烧学的角度来看,涡轮增压装置对汽车发动机的作用是什么? 20、过量空气系数(a)与当量比(b)的概念?

《现代控制理论(第三版)》答案刘豹_唐万生编

第一章答案 1-1 试求图1-27系统的模拟结构图,并建立其状态空间表达式。 1 1 K s K K p +s K s K p 1 +s J 11s K n 2 2s J K b - ++ - + - ) (s θ) (s U 图1-27系统方块结构图 解:系统的模拟结构图如下: ) (s U ) (s θ-- - + ++图1-30双输入--双输出系统模拟结构图 1 K p K K 1p K K 1++ +p K n K ? ? ?1 1J ? 2 J K b ? ? - 1 x 2 x 3 x 4 x 5x 6x 系统的状态方程如下:

u K K x K K x K K x X K x K x x x x J K x J x J K x J K x x J K x x x p p p p n p b 1611166 13153 46 1 51 41 31 33 222 11+ - - =+-==+ + - - == =? ? ? ? ? ? 阿 令y s =)(θ,则1x y = 所以,系统的状态空间表达式及输出方程表达式为 []????????? ???????????=?? ? ???? ? ?? ???????? ????+?????????? ?????????????????????? ? ??? ? ???????? ?---- -=??????????????????????????????65432116543 21111111126543 2100 0001 000000 00 0000 0001 00100000 000 000 10 x x x x x x y u K K x x x x x x K K K K K K J K J J K J K J K x x x x x x p p p p n p b 1-2有电路如图1-28所示。以电压)(t u 为输入量,求以电感中的电流和电容上的电压作为状态变量的状态方程,和以电阻2R 上的电压作为输出量的输出方程。

《流体力学及流体机械》复习讲诉

《流体力学与流体机械》复习 《流体力学》部分 第一章 流体及其物理性质 1、流体是一种很容易发生剪切变形的物质,流动性是其主要特征。连续介质假定是为以及流体的宏观机械运动而提出的一种流体模型。质点是构成宏观流体的最小单元,质点本身的物理量可以进行观测。 2、单位体积流体所包含的质量称为密度ρ;重度γ是单位体积流体具有的重量,g γρ=。 3、流体受压体积减小的性质称为压缩性;流体受热体积增大的性质称为膨胀性。液体的可压缩性和膨胀性都比较小,气体的可压缩性和膨胀性都比较大,所以,通常可将其视为不可压缩流体( 0D Dt ρ =,0??=u ) ,而将气体视为可压缩流体。 4、粘性是流体反抗发生剪切变形的特性,粘性只有在流体质点之间具有相对运动时才表现出来(0τ=,能否说明是理想流体?)。牛顿流体作一维层流流动时,其粘性内摩擦切应力符合牛顿内摩擦定律(牛顿剪切公式):d d u y τμ=。μ是表征流体动力特性的粘度,称为动力粘度。ν是表征流体运动特性的粘度(νμρ=),称为运动粘度。当温度升高时,液体的粘性降低,而气体的粘性增大。 应用牛顿内摩擦定律做相关计算:平行和旋转缝隙内的剪切流动 第二章 流体静力学 1、作用于流体上的力按其性质可以分为:表面力和质量力。 2、流体静压强:指当流体处于静止或相对静止状态时,作用于流体上的内法向应力。 流体静压强的两个重要特性: (1)流体静压强的作用方向总是沿其作用面的内法线方向; (2)在静止流体中任意一点压力的大小与其作用的方位无关,沿各个方向的值均相等。 3、流体的平衡微分方程

101010p X x p Y y p z z ρρρ??- =??? ??-=??? ??-=??? 或 ()d d d d d d d p p p p x y z X x Y y Z z x y z ρ???=++=++??? 4、等压面:在平衡流体中,压力相等的各点所组成的面。 等压面的两个重要特性: (1)在平衡的流体中,通过任意一点的等压面,必与该点所受的质量力互相垂直; (2)当两种互不相混的液体处于平衡时,它们的分界面必为等压面。 5、流体静力学基本方程式:p z c γ + = 或 0p p gh ρ=+ 适用条件:(1)质量力只有重力;(2)不可压缩流体。 6、液体的相对平衡 (1) 等加速直线运动容器中液体的相对平衡(与坐标系选取有关) 流体静压力分布规律:0(cos sin )p p ay gz az ραα=-++ 等压面方程:cos sin ay gz a c αα++= 自由液面方程:cos sin 0ay gz az αα++= (2) 等角速度旋转容器中液体的平衡(与坐标系选取有关) 流体静压力分布规律:222200122r p p r gz p z g ωρωγ???? =+-=+- ? ????? 等压面方程:22 2 r gz c ω-= 自由液面方程:02 2 2=-gz r ω

相关主题
文本预览
相关文档 最新文档