当前位置:文档之家› 导数压轴题-导数与数列不等式的证明

导数压轴题-导数与数列不等式的证明

导数压轴题-导数与数列不等式的证明
导数压轴题-导数与数列不等式的证明

导数与数列不等式的证明

例1.已知函数()()ln 3f x a x ax a R =--∈

(1)讨论函数)(x f 的单调性;

(2)证明:*1111ln(1)()23n n N n +

+++>+∈ (3)证明:()*ln 2ln 3ln 4ln 5ln 12,2345n n n N n n ???<≥∈ (4)证明:()*22222ln 2ln 3ln 4ln 5ln 112,23452n n n n n N n n +?????

(5)证明:()444442

*44444ln 2ln 3ln 4ln 5ln (1)2,23454n n n n N n n

+???<≥∈ (6)求证:()()()

()222222121ln 2ln 3ln ...2,2321n n n n n N n n *-++++<≥∈+ (7)求证:()22221111111...12482n e n N *?

???????++++<∈ ????? ?????????

例2.已知函数()ln 1f x x x =-+?

(1)求()f x 的最大值;

(2)证明不等式:()*121n n n n e n N n n n e ??????+++<∈ ? ? ?-????

??

例3.已知函数()()2ln 1f x x x =-+

(1)当0x >时,求证:()3

;f x x < (2)当n N *∈时,求证:

()33311111511...23421n

k f k n n n =??<++++≤- ?+??∑

例4.设函数()2

()ln(1)0f x x m x m =++≠ (1)若12m =-,求)(x f 的单调区间;

(2)如果函数)(x f 在定义域内既有极大值又有极小值,求实数m 的取值范围;

(3)求证:对任意的*N n ∈,不等式311ln n

n n n ->+恒成立?

例5.已知函数()ln(1)(1)1()f x x k x k =---+∈R ,

(1)求函数()f x 的单调区间;

(2)若()0f x ≤恒成立,试确定实数k 的取值范围;

(3)证明:

ln 2ln 3ln (1)3414

n n n n -+++<+(),1n N n ∈>.

例6.已知函数)0()(>++=a c x

b ax x f 的图像在点))1(,1(f 处的切线方程为1-=x y ? (1)用a 表示出

c b ,;

(2)若x x f ln )(≥在),1[+∞上恒成立,求a 的取值范围;

(3)证明:)1()

1(2)1ln(131211≥+++>++++

n n n n n .

例7.已知函数2()2ln 1f x a x x =-+?

(1)当1a =时,求函数()f x 的单调区间及()f x 的最大值;

(2)令()()g x f x x =+,若()g x 在定义域上是单调函数,求a 的取值范围; (3)对于任意的*2,n n N ≥∈,试比较22222ln 2ln 3ln 4ln 5ln n

+++++与232(1)n n n n --+的大小并证明你的结论?

例8.已知函数1ln(1)()(0)x f x x x

++=

> (1)函数()f x 在区间(0,)+∞上是增函数还是减函数?证明你的结论?

(2)当0x >时,()1

k f x x >+恒成立,求整数k 的最大值; (3)试证明:23*(112)(123)(134)(1(1))().n n n e n N -+?+?+?+?+>∈

例9.已知函数()()ln 0f x x a x a =-->

(1)若1a =,求()f x 的单调区间及()f x 的最小值; (2)若0a >,求()f x 的单调区间;

(3)试比较()()()

()222222121ln 2ln 3ln ...2,2321n n n n n N n n *-++++≥∈+与的大小,并证明?

例10.已知函数()()()ln ,a f x x g x x a R x

==+

∈, (1)若1x ≥时,()()f x g x ≤恒成立,求实数a 的取值范围? (2)求证:

()ln 2ln 3ln 12,341n n n N n n

*?<≥∈+

例11.已知函数()2ln f x x x ax =+- (1)若函数()f x 在其定义域上为增函数,求a 的取值范围;

(2)设()11n a n N n

=+

∈*,求证:()()22212123...ln 12n n a a a a a a n n +++----<++L

例12.设各项为正的数列{}n a 满足111,ln 2,n n n a a a a n N +==++∈*.求证:21n n a ≤-.

高三导数压轴题题型归纳

导数压轴题题型 1. 高考命题回顾 例1已知函数f(x)=e x -ln(x +m).(2013全国新课标Ⅱ卷) (1)设x =0是f(x)的极值点,求m ,并讨论f(x)的单调性; (2)当m≤2时,证明f(x)>0. (1)解 f (x )=e x -ln(x +m )?f ′(x )=e x -1x +m ?f ′(0)=e 0-1 0+m =0?m =1, 定义域为{x |x >-1},f ′(x )=e x -1 x +m = e x x +1-1 x +1 , 显然f (x )在(-1,0]上单调递减,在[0,+∞)上单调递增. (2)证明 g (x )=e x -ln(x +2),则g ′(x )=e x -1 x +2 (x >-2). h (x )=g ′(x )=e x -1x +2(x >-2)?h ′(x )=e x +1 x +22>0, 所以h (x )是增函数,h (x )=0至多只有一个实数根, 又g ′(-12)=1e -13 2 <0,g ′(0)=1-1 2>0, 所以h (x )=g ′(x )=0的唯一实根在区间??? ?-1 2,0内, 设g ′(x )=0的根为t ,则有g ′(t )=e t -1 t +2=0????-12g ′(t )=0,g (x )单调递增; 所以g (x )min =g (t )=e t -ln(t +2)=1 t +2+t = 1+t 2 t +2>0, 当m ≤2时,有ln(x +m )≤ln(x +2), 所以f (x )=e x -ln(x +m )≥e x -ln(x +2)=g (x )≥g (x )min >0. 例2已知函数)(x f 满足2 1 2 1)0()1(')(x x f e f x f x + -=-(2012全国新课标) (1)求)(x f 的解析式及单调区间; (2)若b ax x x f ++≥ 2 2 1)(,求b a )1(+的最大值。 (1)121 1()(1)(0)()(1)(0)2 x x f x f e f x x f x f e f x --'''=-+?=-+ 令1x =得:(0)1f =

不等式典型例题之基本不等式的证明

5.3、不等式典型例题之基本不等式的证明——(6例题) 雪慕冰 一、知识导学 1.比较法:比较法是证明不等式的最基本、最重要的方法之一,它是两个实数大小顺序和运算性质的直接应用,比较法可分为差值比较法(简称为求差法)和商值比较法(简称为求商法). (1)差值比较法的理论依据是不等式的基本性质:“a-b≥0a≥b;a-b≤0a≤b”.其一般步骤为:①作差:考察不等式左右两边构成的差式,将其看作一个整体;②变形:把不等式两边的差进行变形,或变形为一个常数,或变形为若干个因式的积,或变形为一个或几个平方的和等等,其中变形是求差法的关键,配方和因式分解是经常使用的变形手段;③判断:根据已知条件与上述变形结果,判断不等式两边差的正负号,最后肯定所求证不等式成立的结论.应用范围:当被证的不等式两端是多项式、分式或对数式时一般使用差值比较法. (2)商值比较法的理论依据是:“若a,b∈R + ,a/b≥1a≥b;a/b≤1a≤b”.其一般步骤为:①作商:将左右两端作商;②变形:化简商式到最简形式;③判断商与1的大小关系,就是判定商大于1或小于1.应用范围:当被证的不等式两端含有幂、指数式时,一般使用商值比较法. 2.综合法:利用已知事实(已知条件、重要不等式或已证明的不等式)作为基础,借助不等式的性质和有关定理,经过逐步的逻辑推理,最后推出所要证明的不等式,其特点和思路是“由因导果”,从“已知”看“需知”,逐步推出“结论”.即从已知A逐步推演不等式成立的必要条件从而得出结论B. 3.分析法:是指从需证的不等式出发,分析这个不等式成立的充分条件,进而转化为判定那个条件是否具备,其特点和思路是“执果索因”,即从“未知”看“需知”,逐步靠拢“已知”.用分析法证明书写的模式是:为了证明命题B成立,只需证明命题B1为真,从而有…,这只需证明B2为真,从而又有…,……这只需证明A为真,而已知A为真,故B必为真.这种证题模式告诉我们,分析法证题是步步寻求上一步成立的充分条件. 4.反证法:有些不等式的证明,从正面证不好说清楚,可以从正难则反的角度考虑,即要证明不等式A>B,先假设A≤B,由题设及其它性质,推出矛盾,从而肯定A>B.凡涉及到的证明不等式为否定命题、惟一性命题或含有“至多”、“至少”、“不存在”、“不可能”等词语时,可以考虑用反证法. 5.换元法:换元法是对一些结构比较复杂,变量较多,变量之间的关系不甚明了的不等式可引入一个或多个变量进行代换,以便简化原有的结构或实现某种转化与变通,给证明带来新????

导数证明不等式

利用导数证明不等式的两种通法 利用导数证明不等式是高考中的一个热点问题,利用导数证明不等式主要有两种通法,即函数类不等式证明和常数类不等式证明。下面就有关的两种通法用列举的方式归纳和总结。 一、函数类不等式证明 函数类不等式证明的通法可概括为:证明不等式()()f x g x >(()()f x g x <)的问题转化为证明()()0f x g x ->(()()0f x g x -<),进而构造辅助函数()()()h x f x g x =-,然后利用导数证明函数()h x 的单调性或证明函数()h x 的最小值(最大值)大于或等于零(小于或等于零)。 例1 已知(0,)2x π ∈,求证:sin tan x x x << 证明这个变式题可采用两种方法: 第一种证法:运用本例完全相同的方法证明每个不等式以后再放缩或放大,即证明不等式 sin x x <以后,根据sin 1sin x x x -<<来证明不等式sin 1x x -<; 第二种证法:直接构造辅助函数()sin 1f x x x =--和()tan 1g x x x =--,其中(0, )2x π∈ 然后证明各自的单调性后再放缩或放大(如:()sin 1(0)10f x x x f =--<=-<) 例2 求证:ln(1)x x +< 技巧 一、利用导数研究函数的单调性,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点。 二、解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键。 1、利用题目所给函数证明 【例1】 已知函数x x x f -+=)1ln()(,求证:当1->x 时, 恒有x x x ≤+≤+- )1ln(1 11

高考导数压轴题题型(精选.)

高考导数压轴题题型 李远敬整理 2018.4.11 一.求函数的单调区间,函数的单调性 1.【2012新课标】21. 已知函数()f x 满足满足12 1()(1)(0)2 x f x f e f x x -'=-+; (1)求()f x 的解析式及单调区间; 【解析】 (1)12 11()(1)(0)()(1)(0)2 x x f x f e f x x f x f e f x --'''=-+?=-+ 令1x =得:(0)1f = 1211 ()(1)(0)(1)1(1)2 x f x f e x x f f e f e --'''=-+?==?= 得:21 ()()()12 x x f x e x x g x f x e x '=-+?==-+ ()10()x g x e y g x '=+>?=在x R ∈上单调递增 ()0(0)0,()0(0)0f x f x f x f x ''''>=?><=?< 得:()f x 的解析式为21()2 x f x e x x =-+ 且单调递增区间为(0,)+∞,单调递减区间为(,0)-∞ 2.【2013新课标2】21.已知函数f (x )=e x -ln(x +m ). (1)设x =0是f (x )的极值点,求m ,并讨论f (x )的单调性; 【解析】 (1)f ′(x )=1 e x x m - +. 由x =0是f (x )的极值点得f ′(0)=0,所以m =1. 于是f (x )=e x -ln(x +1),定义域为(-1,+∞),f ′(x )=1 e 1 x x -+. 函数f ′(x )=1 e 1 x x -+在(-1,+∞)单调递增,且f ′(0)=0. 因此当x ∈(-1,0)时,f ′(x )<0; 当x ∈(0,+∞)时,f ′(x )>0. 所以f (x )在(-1,0)单调递减,在(0,+∞)单调递增. 3.【2014新课标2】21. 已知函数()f x =2x x e e x --- (1)讨论()f x 的单调性; 【解析】 (1)+ -2≥0,等号仅当x=0时成立,所以f (x )在(—∞,+∞)单调递 增 【2015新课标2】21. 设函数 f (x )=e mx +x 2-mx 。 (1)证明: f (x )在 (-¥,0)单调递减,在 (0,+¥)单调递增; (2)若对于任意 x 1,x 2?[-1,1],都有 |f (x 1)-f (x 2)|£e -1,求m 的取值范围。

导数压轴题题型(学生版)

导数压轴题题型 引例 【2016高考山东理数】(本小题满分13分) 已知. (I )讨论的单调性; (II )当时,证明对于任意的成立. 1. 高考命题回顾 例1.已知函数)f x =(a e 2x +(a ﹣2) e x ﹣x . (1)讨论()f x 的单调性; (2)若()f x 有两个零点,求a 的取值范围. ()2 21 ()ln ,R x f x a x x a x -=-+ ∈()f x 1a =()3 ()'2 f x f x +>[]1,2x ∈

例2.(21)(本小题满分12分)已知函数()()()2 21x f x x e a x =-+-有两个零点. (I)求a 的取值范围; (II)设x 1,x 2是()f x 的两个零点,证明:122x x +<.

例3.(本小题满分12分) 已知函数f (x )=31 ,()ln 4 x ax g x x ++ =- (Ⅰ)当a 为何值时,x 轴为曲线()y f x = 的切线; (Ⅱ)用min {},m n 表示m,n 中的最小值,设函数}{ ()min (),()(0)h x f x g x x => , 讨论h (x )零点的个数 例4.(本小题满分13分) 已知常数,函数 (Ⅰ)讨论在区间 上的单调性; (Ⅱ)若存在两个极值点且 求的取值范围.

例5已知函数f(x)=e x-ln(x+m). (1)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性; (2)当m≤2时,证明f(x)>0.

例6已知函数)(x f 满足21 2 1)0()1(')(x x f e f x f x + -=- (1)求)(x f 的解析式及单调区间; (2)若b ax x x f ++≥2 2 1)(,求b a )1(+的最大值。 例7已知函数,曲线在点处的切线方程为。 (Ⅰ)求、的值; (Ⅱ)如果当,且时,,求的取值范围。 ln ()1a x b f x x x = ++()y f x =(1,(1))f 230x y +-=a b 0x >1x ≠ln ()1x k f x x x >+-k

不等式证明的常用基本方法

证明不等式的基本方法 导学目标:1.了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法.2.会用比较法、综合法、分析法、反证法、放缩法证明比较简单的不等式. [自主梳理] 1.三个正数的算术—几何平均不等式:如果a ,b ,c>0,那么_________________________,当且仅当a =b =c 时等号成立. 2.基本不等式(基本不等式的推广):对于n 个正数a 1,a 2,…,a n ,它们的算术平均不小于它们的几何平均,即a 1+a 2+…+a n n ≥n a 1·a 2·…·a n ,当且仅当__________________时等号成立. 3.证明不等式的常用五种方法 (1)比较法:比较法是证明不等式最基本的方法,具体有作差比较和作商比较两种,其基本思想是______与0比较大小或______与1比较大小. (2)综合法:从已知条件出发,利用定义、______、______、性质等,经过一系列的推理、论证而得出命题成立,这种证明方法叫综合法.也叫顺推证法或由因导果法. (3)分析法:从要证明的结论出发,逐步寻求使它成立的________条件,直至所需条件为已知条件或一个明显成立的事实(定义 、公理或已证明的定理、性质等),从而得出要证的命题成立为止,这种证明方法叫分析法.也叫逆推证法或执果索因法. (4)反证法 ①反证法的定义 先假设要证的命题不成立,以此为出发点,结合已知条件,应用公理、定义、定理、性质等,进行正确的推理,得到和命题的条件(或已证明的定理、性质、明显成立的事实等)矛盾的结论,以说明假设不正确,从而证明原命题成立,我们把它称为反证法. ②反证法的特点 先假设原命题不成立,再在正确的推理下得出矛盾,这个矛盾可以是与已知条件矛盾,或与假设矛盾,或与定义、公理、定理、事实等矛盾. (5)放缩法 ①定义:证明不等式时,通过把不等式中的某些部分的值________或________,简化不等式,从而达到证明的目的,我们把这种方法称为放缩法. ②思路:分析观察证明式的特点,适当放大或缩小是证题关键. 题型一 用比差法与比商法证明不等式 1.设t =a +2b ,s =a +b 2+1,则s 与t 的大小关系是( A ) ≥t >t ≤t 0;②a 2+b 2≥2(a -b-1);③a 2+3ab>2b 2;④,其中所 有恒成立的不等式序号是 ② . ②【解析】①a=0时不成立;②∵a 2+b 2-2(a-b-1)=(a-1)2+(b+1)2≥0,成立;③a=b=0时不成立;④a=2,b=1时不成立,故恒成立的只有②.

导数不等式证明

1.函数2ln 2)(x x x f -=,求函数)(x f y =在]2,2 [上的最大值 2.. 已知f(x)=e x -ax- (1)求f(x)的单调增区间; (2)若f(x )在定义域R 内单调递增,求a 的取值范围; (3)是否存在a,使f(x)在(-∞,0]上单调递减,在[0,+∞)上单调递增?若存在,求出a 的值;若不存在,说明理由. 3. 已知函数f(x)=x 2e -ax (a >0),求函数在[1,2]上的最大值. 4.已知x =3是函数f(x)=aln(1+x)+x2-10x 的一个极值点. (1)求a 的值; (2)求函数f(x)的单调区间; (3)若直线y =b 与函数y =f(x)的图象有3个交点,求b 的取值范围. 5. (2010年全国)已知函数 f(x)=x3-3ax2+3x +1. (1)设a =2,求 f(x)的单调区间; (2)设 f(x)在区间(2,3)中至少有一个极值点,求a 的取值范围. 不等式的证明: 一、函数类不等式证明 函数类不等式证明的通法可概括为:证明不等式 ()()f x g x >(()()f x g x <) 的问题转化为证明 ()()0f x g x ->(()()0f x g x -<),进而构造辅助函数 ()()()h x f x g x =-,然后利用导数证明函数()h x 的单调性或证明函数()h x 的最小 值(最大值)大于或等于零(小于或等于零)。 一、利用题目所给函数证明 【例1】 已知函数 x x x f -+=)1ln()(,求证:当1->x 时,恒有 x x x ≤+≤+- )1ln(1 1 1 【绿色通道】1 111)(+- =-+='x x x x f ∴当01<<-x 时,0)(>'x f ,即)(x f 在)0,1(-∈x 上为增函数 当0>x 时,0)(<'x f ,即)(x f 在),0(+∞∈x 上为减函数 故函数()f x 的单调递增区间为)0,1(-,单调递减区间),0(+∞ 于是函数()f x 在),1(+∞-上的最大值为0)0()(m a x ==f x f ,因此,当1->x 时, 0)0()(=≤f x f ,即0)1ln(≤-+x x ∴x x ≤+)1ln( (右面得证) , 现证左令11 1 )1ln()(-+++=x x x g , 2 2)1()1(111)(+=+-+='x x x x x g 则 当0)(,),0(;0)(,)0,1(>'+∞∈<'-∈x g x x g x 时当时 , 即)(x g 在)0,1(-∈x 上为减函数,在),0(+∞∈x 上为增函数, 故函数)(x g 在),1(+∞-上的最小值为0)0()(min ==g x g , ∴当1->x 时,0)0()(=≥g x g ,即011 1 )1ln(≥-+++x x ∴111)1ln(+-≥+x x ,综上可知,当x x x x ≤+≤-+->)1ln(11 1 ,1有时 【警示启迪】如果()f a 是函数()f x 在区间上的最大(小)值,则有()f x ≤()f a (或()f x ≥()f a ),那么要证不等式,只要求函数的最大值不超过0就可得证. 2、直接作差构造函数证明 【例2】已知函数 .ln 2 1)(2 x x x f += 求证:在区间),1(∞+上,函数)(x f 的图象在函数3 3 2)(x x g = 的图象的下方; 【绿色通道】设)()() (x f x g x F -=,即x x x x F ln 2 132)(2 3--= ,

高中数学基本不等式证明

不等式证明基本方法 例1 :求证:221a b a b ab ++≥+- 分析:比较法证明不等式是不等式证明的最基本的方法,常用作差法和作商法,此题用作差法较为简便。 证明:221()a b a b ab ++-+- 2221[()(1)(1)]02 a b a b =-+-+-≥ 评注:1.比较法之一(作差法)步骤:作差——变形——判断与0的关系——结论 2.作差后的变形常用方法有因式分解、配方、通分、有理化等,应注意结合式子的形式,适当选 用。 例2:设c b a >>,求证:b a a c c b ab ca bc 2 22222++<++ 分析:从不等式两边形式看,作差后可进行因式分解。 证明:)(222222b a a c c b ab ca bc ++-++ =)()()(a b ab c a ca b c bc -+-+- =)()]()[()(a b ab c b b a ca b c bc -+-+-+- =))()((a c c b b a --- c b a >>Θ,则,0,0,0<->->-a c c b b a ∴0))()((<---a c c b b a 故原不等式成立 评注:三元因式分解因式,可以排列成一个元的降幂形式: =++-++)(222222b a a c c b ab ca bc )())(()(2a b ab b a b a c a b c -++-+-,这样容易发现规律。 例3 :已知,,a b R +∈求证:11()()2()n n n n a b a b a b ++++≤+ 证明:11()()2()n n n n a b a b a b ++++-+ 11n n n n a b ab a b ++=+-- ()()n n a b a b a b =-+- ()()n n a b b a =--

利用导数证明不等式的两种通法

利用导数证明不等式的两种通法 吉林省长春市东北师范大学附属实验学校 金钟植 岳海学 利用导数证明不等式是高考中的一个热点问题,利用导数证明不等式主要有两种通法,即函数类不等式证明和常数类不等式证明。下面就有关的两种通法用列举的方式归纳和总结。 一、函数类不等式证明 函数类不等式证明的通法可概括为:证明不等式()()f x g x >(()()f x g x <)的问 题转化为证明()()0f x g x ->(()()0f x g x -<),进而构造辅助函数 ()()()h x f x g x =-,然后利用导数证明函数()h x 的单调性或证明函数()h x 的最小值(最 大值)大于或等于零(小于或等于零)。 例1 已知(0, )2 x π ∈,求证:sin tan x x x << 分析:欲证sin tan x x x <<,只需证函数()sin f x x x =-和()tan g x x x =-在(0,)2 π 上 单调递减即可。 证明: 令()sin f x x x =- ,其中(0,)2 x π ∈ 则/ ()cos 1f x x =-,而(0,)cos 1cos 102 x x x π ∈?

【高考数学】构造函数法证明导数不等式的八种方法

第 1 页 共 6 页 构造函数法证明不等式的八种方法 1、利用导数研究函数的单调性极值和最值,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点。 2、解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键。 以下介绍构造函数法证明不等式的八种方法: 一、移项法构造函数 【例1】 已知函数x x x f -+=)1ln()(,求证:当1->x 时,恒有 x x x ≤+≤+-)1ln(1 11 分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数 11 1)1ln()(-++ +=x x x g ,从其导数入手即可证明。 【解】1111)(+-=-+='x x x x f ∴当01<<-x 时,0)(>'x f ,即)(x f 在)0,1(-∈x 上为增函数 当0>x 时,0)(<'x f ,即)(x f 在),0(+∞∈x 上为减函数 故函数()f x 的单调递增区间为)0,1(-,单调递减区间),0(+∞ 于是函数()f x 在),1(+∞-上的最大值为0)0()(max ==f x f ,因此,当1->x 时,0)0()(=≤f x f ,即0)1ln(≤-+x x ∴x x ≤+)1ln( (右面得证), 现证左面,令111)1ln()(-+++=x x x g , 22) 1()1(111)(+=+-+='x x x x x g 则 当0)(,),0(;0)(,)0,1(>'+∞∈<'-∈x g x x g x 时当时 , 即)(x g 在)0,1(-∈x 上为减函数,在),0(+∞∈x 上为增函数, 故函数)(x g 在),1(+∞-上的最小值为0)0()(min ==g x g , ∴当1->x 时,0)0()(=≥g x g ,即011 1)1ln(≥-++ +x x ∴111)1ln(+-≥+x x ,综上可知,当x x x x ≤+≤-+->)1ln(11 1,1有时 【警示启迪】如果()f a 是函数()f x 在区间上的最大(小)值,则有()f x ≤()f a (或()f x ≥()f a ), 那么要证不等式,只要求函数的最大值不超过0就可得证. 2、作差法构造函数证明 【例2】已知函数.ln 21)(2x x x f += 求证:在区间),1(∞+上,函数)(x f 的图象在函数33 2)(x x g =的图象的下方;

高考导数压轴题题型

高考导数压轴题题型 远敬整理 2018.4.11 一.求函数的单调区间,函数的单调性 1.【2012新课标】21. 已知函数()f x 满足满足121()(1)(0)2x f x f e f x x -'=-+ ; (1)求()f x 的解析式及单调区间; 【解析】 (1)1211()(1)(0)()(1)(0)2 x x f x f e f x x f x f e f x --'''=-+?=-+ 令1x =得:(0)1f = 1211()(1)(0)(1)1(1)2 x f x f e x x f f e f e --'''=-+?==?= 得:21()()()12 x x f x e x x g x f x e x '=-+?==-+ ()10()x g x e y g x '=+>?=在x R ∈上单调递增 ()0(0)0,()0(0)0f x f x f x f x ''''>=?><=?< 得:()f x 的解析式为21()2 x f x e x x =-+ 且单调递增区间为(0,)+∞,单调递减区间为(,0)-∞ 2.【2013新课标2】21.已知函数f (x )=e x -ln(x +m ). (1)设x =0是f (x )的极值点,求m ,并讨论f (x )的单调性; 【解析】 (1)f ′(x )=1e x x m -+. 由x =0是f (x )的极值点得f ′(0)=0,所以m =1. 于是f (x )=e x -ln(x +1),定义域为(-1,+∞),f ′(x )=1e 1x x - +. 函数f ′(x )=1e 1 x x -+在(-1,+∞)单调递增,且f ′(0)=0. 因此当x ∈(-1,0)时,f ′(x )<0; 当x ∈(0,+∞)时,f ′(x )>0.

导数压轴题7大题型归类总结

导数压轴题7大题型归类总结,逆袭140+ 一、导数单调性、极值、最值的直接应用 设a> 0,函数g(x)= (a A2 + 14)e A x + 4?若E 1、E 2 € [0 , 4],使得|f( E 1) - g( E 2)| v 1 成立, 求a 的取值范围.

二、交点与根的分布 三、不等式证明 (一)做差证明不等式 LL期嗨敕门划=1扣 M】求的单调逼减区创! <2)^7 I >-1 r求证1 I ----- + x+ 1 W;的宦义域为(一4 +—=—-1 = ■―? x + 1 T t 4-1 I ■丈0 山厂w" 阳=」耳+ 1?二的中说逆减区簡为①,车呵一 ⑵国小由⑴得_虫(一1, ?时” /r Ct)>O f *庄曰① #8)时./'(XXO ?II /+(0) = 0 z.t>- 1 时.f骑)Wf(Qh ?〔耳口仇in(.T + h t T, I I x >X<^> = lnU + 1)+ ------ 1 t则K C<)* ----- -------- =------- -| r+1 立*1 {x+1)- G + I广/. — !< c<0时.X W Y O T ?A0时., JJ x F?h = <) 」?T A—l时、* S) (0)t UP \a(j[ + I M---------- 1MQ X + 1 ;.+1) ) ------- ,:心一1时t I------------- < ln{x + n^j. (二)变形构造函数证明不等式

Ehl&£ /I U li 故)白 )替换构造不等式证明不等式 >=/U ) “川理k C 1;/< <6 N 实出氓I:的崗散丿I + 20> I 沟申求齡./i (2JfiF(x) = /(.r)r-g(x> nt,护订} > 0 3r hH(f > [}). I J J //(:>- 2/0-^ . ft Injr". tl 中 i 堆fiU |他①5)的必人饥为hie' * = m 叫z ?削灯育公共恵?且在谆戍坯的也皱丹匸, %、b 、曲求占的E 大fh /(X) K (r K ). v = /Ol 存佥共C <^ r ()i 牡的岗绥翎同 ;In u J - 3

4 基本不等式的证明(1)

4、基本不等式的证明(1) 目标: (,0)2 a b a b +≥的证明过程,并能应用基本不等式证明其他不等式。 过程: 一、问题情境 把一个物体放在天平的一个盘子上,在另一个盘子上放砝码使天平平衡,称得物体的质量为 a 。如果天平制造得不精确,天平的两臂长略有不同(其他因素不计) ,那么a 并非物体的实际质量。不过,我们可作第二次测量:把物体调换到天平的另一个盘上,此时称得物体的质量为b 。那么如何合理的表示物体的质量呢? 把两次称得的物体的质量“平均”一下,以2 a b A +=表示物体的质量。这样的做法合理吗? 设天平的两臂长分别为12,l l ,物体实际质量为M ,据力学原理有1221,l M l a l M l b == ,有2,M ab M == ,0a b >时,2 a b +叫,a b ,a b 的几何平均数 2 a b + 二、建构 一般,判断两数的大小可采用“比较法”: 02a b +-=≥ 2 a b +≤(当且仅当a b =时取等号) 说明:当0a =或0b =时,以上不等式仍成立。 从而有 2 a b +≤(0,0)a b ≥≥(称之“基本不等式” )当且仅当a b =时取等号。 2 a b +≤的几何解释: 如图,,2 a b OC CD OC CD +≥== 三、运用 例1 设,a b 为正数,证明:1(1)2(2)2b a a a b a +≥+≥ 注意:基本不等式的变形应用 2,2a b a b ab +??≤+≤ ???

例2 证明: 22(1)2a b ab +≥ 此不等式以后可直接使用 1(2)1(1)1 x x x + ≥>-+ 4(3)4(0)a a a +≤-< 2 2≥ 2 2> 例3 已知,0,1a b a b >+=,求证:123a b +≥+ 四、小结 五、作业 反馈32 书P91 习题1,2,3

用导数证明不等式

用导数证明不等式 最基本的方法就是将不等式的的一边移到另一边,然后将这个式子令为一个函数f(x). 对这个函数求导,判断这个函数这各个区间的单调性,然后证明其最大值(或者是最小值)大于 0. 这样就能说明原不等式了成立了! 1.当x>1时,证明不等式x>ln(x+1) 设函数f(x)=x-ln(x+1) 求导,f(x)\'=1-1/(1+x)=x/(x+1)>0 所以f(x)在(1,+无穷大)上为增函数 f(x)>f(1)=1-ln2>o 所以x>ln(x+1 2..证明:a-a^2>0 其中0 F(a)=a-a^2 F\'(a)=1-2a 当00;当1/2 因此,F(a)min=F(1/2)=1/4>0 即有当00 3.x>0,证明:不等式x-x^3/6 先证明sinx 因为当x=0时,sinx-x=0 如果当函数sinx-x在x>0是减函数,那么它一定<在0点的值0, 求导数有sinx-x的导数是cosx-1 因为cosx-1≤0 所以sinx-x是减函数,它在0点有最大值0, 知sinx 再证x-x3/6

对于函数x-x3/6-sinx 当x=0时,它的值为0 对它求导数得 1-x2/2-cosx如果它<0那么这个函数就是减函数,它在0点的值是最大值了。 要证x2/2+cosx-1>0 x>0 再次用到函数关系,令x=0时,x2/2+cosx-1值为0 再次对它求导数得x-sinx 根据刚才证明的当x>0 sinx x2/2-cosx-1是减函数,在0点有最大值0 x2/2-cosx-1<0 x>0 所以x-x3/6-sinx是减函数,在0点有最大值0 得x-x3/6 利用函数导数单调性证明不等式X-X2>0,X∈(0,1)成立 令f(x)=x-x2 x∈[0,1] 则f\'(x)=1-2x 当x∈[0,1/2]时,f\'(x)>0,f(x)单调递增 当x∈[1/2,1]时,f\'(x)<0,f(x)单调递减 故f(x)的最大值在x=1/2处取得,最小值在x=0或1处取得 f(0)=0,f(1)=0 故f(x)的最小值为零 故当x∈(0,1)f(x)=x-x2>0。 i、m、n为正整数,且1 求证(1+m)^n > (1+n)^m 方法一:利用均值不等式 对于m+1个数,其中m个(2+m),1个1,它们的算术平均数大于几何平均数,即

导数压轴题双变量问题题型归纳总结

导数应用之双变量问题 (一)构造齐次式,换元 【例】已知函数()2 ln f x x ax b x =++,曲线()y f x =在点()()1,1f 处的切线方程为2y x =. (1)求实数,a b 的值; (2)设()()()()2 1212,,0F x f x x mx m R x x x x =-+∈<<分别是函数()F x 的两个零点,求证:0F ' <. 【解析】(1)1,1a b ==-; (2)()2 ln f x x x x =+-,()()1ln F x m x x =+-,()11F x m x '=+- , 因为12,x x 分别是函数()F x 的两个零点,所以()()11 221ln 1ln m x x m x x +=???+=?? , 两式相减,得1212ln ln 1x x m x x -+=-, 1212ln ln 1x x F m x x -' =+=- 0F '< ,只需证 12 12ln ln x x x x -< -. 思路一:因为120x x << ,只需证 1122ln ln ln 0 x x x x -> ?>. 令()0,1t ,即证12ln 0t t t -+>. 令()()12ln 01h t t t t t =-+<<,则()()2 22 12110t h t t t t -'=--=-<, 所以函数()h t 在()0,1上单调递减,()()10h t h >=,即证1 2ln 0t t t -+>. 由上述分析可知0F ' <. 【规律总结】这是极值点偏移问题,此类问题往往利用换元把12,x x 转化为t 的函数,常把12,x x 的关系变形 为齐次式,设12111222 ,ln ,,x x x x t t t x x t e x x -= ==-=等,构造函数来解决,可称之为构造比较函数法. 思路二:因为120x x << ,只需证12ln ln 0x x -, 设( ))22ln ln 0Q x x x x x =-<<,则 () 21 10 Q x x x '= ==<, 所以函数()Q x 在()20,x 上单调递减,()() 20Q x Q x >=,即证2ln ln x x -. 由上述分析可知0F ' <. 【规律总结】极值点偏移问题中,由于两个变量的地位相同,将待证不等式进行变形,可以构造关于1x (或2x )的一元函数来处理.应用导数研究其单调性,并借助于单调性,达到待证不等式的证明.此乃主元法.

【高中数学】利用导数证明不等式

第四节利用导数证明不等式 考点1作差法构造函数证明不等式 (1)欲证函数不等式f(x)>g(x)(x>a),只需证明f(x)-g(x)>0(x>a),设h(x)=f(x)-g(x),即证h(x)>0(x>a).若h(a)=0,h(x)>h(a)(x>a).接下来往往用导数证得函数h(x)是增函数即可. (2)欲证函数不等式f(x)>g(x)(x∈I,I是区间),只需证明f(x)-g(x)>0(x∈I). 设h(x)=f(x)-g(x)(x∈I),即证h(x)>0(x∈I),也即证h(x)min>0(x∈I)(若h(x)min不存在,则须求函数h(x)的下确界),而这用导数往往容易解决. 已知函数f(x)=ax+x ln x在x=e-2(e为自然对数的底数)处取得极小值. (1)求实数a的值; (2)当x>1时,求证:f(x)>3(x-1). [解](1)因为f(x)定义域为(0,+∞),f(x)=ax+x ln x, 所以f′(x)=a+ln x+1, 因为函数f(x)在x=e-2处取得极小值, 所以f′(e-2)=0,即a+ln e-2+1=0, 所以a=1,所以f′(x)=ln x+2. 当f′(x)>0时,x>e-2;当f′(x)<0时,0<x<e-2, 所以f(x)在(0,e-2)上单调递减,在(e-2,+∞)上单调递增, 所以f(x)在x=e-2处取得极小值,符合题意,所以a=1. (2)证明:由(1)知a=1,所以f(x)=x+x ln x. 令g(x)=f(x)-3(x-1), 即g(x)=x ln x-2x+3(x>0). g′(x)=ln x-1,由g′(x)=0,得x=e. 由g′(x)>0,得x>e;由g′(x)<0,得0<x<e. 所以g(x)在(0,e)上单调递减,在(e,+∞)上单调递增,

导数与不等式证明

导数与不等式证明 作差证明不等式 1. (优质试题湖南,最值、作差构造函数) 已知函数. (1)求函数的单调递减区间; (2)若,求证:≤≤x . 解:(1)函数f (x )的定义域为(-1,+∞),, 由 得:,∴x >0,∴f (x )的单调递减区间 为(0,+∞). (2)证明:由(1)得x ∈(-1,0)时,, 当x ∈(0,+∞)时,,且 ∴x >-1时,f (x )≤f (0),∴≤0,≤x 令 ,则 , ∴-1<x <0时,,x >0时,,且 ∴x >-1时,g (x )≥g (0),即≥0 ∴≥ ,∴x >-1时, ≤≤x . 2. (优质试题湖北20,转换变量,作差构造函数,较容易) 已知定义在正实数集上的函数 ,x x x f -+=)1ln()()(x f 1->x 11 1+-x )1ln(+x 1 111)(+-=-+= 'x x x x f 0)(<'x f ????? -><+- 1 01x x x 0)(>'x f 0)(<'x f (0)0f '=x x -+)1ln()1ln(+x 111 )1ln()(-++ +=x x x g 2 2)1()1(111)(+=+-+= 'x x x x x g 0)(<'x g 0)(>'x g 0)0(='g 11 1 )1ln(-+++x x ) 1ln(+x 1 11+- x 1 11+- x )1ln(+x 2 1()22 f x x ax = +

,其中.设两曲线,有公 共点,且在该点处的切线相同. ⑴用表示,并求的最大值; ⑵求证:当时,. 解:⑴设与在公共点处的切线相 同. ,,由题意,. 即由得:,或(舍 去). 即有. 令,则.于是 当,即时,; 当,即 时,. 故在为增函数,在为减函数, 于是在的最大值为. ⑵设, 则. 2()3ln g x a x b =+0a >()y f x =()y g x =a b b 0x >()()f x g x ≥()y f x =()(0)y g x x =>0 ()x y ,()2f x x a '=+∵23()a g x x '=0 ()()f x g x =0 ()()f x g x ''=2 2000200123ln 2 32x ax a x b a x a x ?+=+????+=?? ,, 20032a x a x +=0 x a =03x a =-2222215 23ln 3ln 22 b a a a a a a a = +-=-2 25()3ln (0)2 h t t t t t =->()2(13ln )h t t t '=-(13ln )0t t ->13 0t e <<()0h t '>(13ln )0t t -<1 3 t e >()0h t '<()h t 1 3(0)e ,1 3()e ∞,+()h t (0)+, ∞123 33()2 h e e =2 21()()()23ln (0)2 F x f x g x x ax a x b x =-= +-->()F x '23()(3)2(0)a x a x a x a x x x -+=+-=>

高三导数压轴题题型归纳

高三导数压轴题题型归 纳 This model paper was revised by LINDA on December 15, 2012.

导数压轴题题型 1. 高考命题回顾 例1已知函数f(x)=e x -ln(x +m).(2013全国新课标Ⅱ卷) (1)设x =0是f(x)的极值点,求m ,并讨论f(x)的单调性; (2)当m≤2时,证明f(x)>0. (1)解 f (x )=e x -ln(x +m )f ′(x )=e x -1x +m f ′(0)=e 0 -10+m =0m =1, 定义域为{x |x >-1},f ′(x )=e x -1x +m =e x x +1-1 x +1 , 显然f (x )在(-1,0]上单调递减,在[0,+∞)上单调递增. (2)证明 g (x )=e x -ln(x +2),则g ′(x )=e x - 1 x +2 (x >-2). h (x )=g ′(x )=e x - 1x +2(x >-2)h ′(x )=e x +1x +2?2 >0, 所以h (x )是增函数,h (x )=0至多只有一个实数根, 又g ′(-12)=1e -13 2 <0,g ′(0)=1-1 2>0, 所以h (x )=g ′(x )=0的唯一实根在区间? ?? ?? -12,0内, 设g ′(x )=0的根为t ,则有g ′(t )=e t - 1t +2=0? ?? ??-12

所以,e t =1 t +2 t +2=e -t , 当x ∈(-2,t )时,g ′(x )g ′(t )=0,g (x )单调递增; 所以g (x )min =g (t )=e t -ln(t +2)=1t +2+t =1+t 2 t +2 >0, 当m ≤2时,有ln(x +m )≤ln(x +2), 所以f (x )=e x -ln(x +m )≥e x -ln(x +2)=g (x )≥g (x )min >0. 例2已知函数)(x f 满足2 12 1)0()1(')(x x f e f x f x + -=-(2012全国新课标) (1)求)(x f 的解析式及单调区间; (2)若b ax x x f ++≥ 2 2 1)(,求b a )1(+的最大值。 (1)1211 ()(1)(0)()(1)(0)2 x x f x f e f x x f x f e f x --'''=-+?=-+ 令1x =得:(0)1f = 得:21 ()()()12 x x f x e x x g x f x e x '=-+?==-+ ()10()x g x e y g x '=+>?=在x R ∈上单调递增 得:()f x 的解析式为21 ()2 x f x e x x =-+ 且单调递增区间为(0,)+∞,单调递减区间为(,0)-∞

相关主题
文本预览
相关文档 最新文档