当前位置:文档之家› 中考数学存在性问题(教师用)

中考数学存在性问题(教师用)

中考数学存在性问题(教师用)
中考数学存在性问题(教师用)

中考数学试题中“存在性”问题的解题策略

张丽英

存在性问题是指判断满足某种条件的事物是否存在的问题,这类问题的知识覆盖面较广,综合性较强,题意构思非常精巧,解题方法灵活,对学生分析问题和解决问题的能力要求较高,是近几年来各地中考的“热点”。这类题目解法的一般思路是:假设存在→推理论证→得出结论。若能导出合理的结果,就做出“存在”的判断,导出矛盾,就做出不存在的判断。

由于“存在性”问题的结论有两种可能,所以具有开放的特征,在假设存在性以后进行的推理或计算,对基础知识,基本技能提出了较高要求,并具备较强的探索性,正确、完整地解答这类问题,是对我们知识、能力的一次全面的考验。

一 数式是否存在型问题

数式是否存在型问题的一般解题思路是利用方程或不等式来对问题进行判别,以便得出正确结论,利用一元二次方程知识进行是否存在的判断时,根的判别式是最重要的依据,当)0(02≠=++a c bx ax 时,ac b 42-<0,方程无实数根,即是不存在的充分理由;而当042≥-ac b 时,方程存在实数根,此时还要结合已知条件、法则、定理与实际情况等进行判别

例1 .若关于x 的一元二次方程0209)1(322=+-++-m m x m x 有两个实数根,又已知a 、b 、c分别是△ABC 的∠A 、∠B、∠C的对边,∠C=90°且5

3cos =B ,3=-a b ,是否存在整数m ,使上述一元二

次程两个实数根的平方和等于Rt △ABC 的斜边c 的平方?若存在,求出满足条件的m 的值。若不存在,请说明理由。

分析:这个题目题设较长,分析时要抓住关键,假设存在这样的m ,满足的条件有m 是整数,一元二次方程两个实数根的平方和等于Rt △ABC 斜边c 的平方,隐含条件判别式Δ≥0等,这时会发现先抓住Rt △ABC 的斜边为c 这个突破口,利用题设条件,运用勾股定理并不难解决。

解:在△中,∠°,∵Rt ABC C B ==9035

cos ∴设a=3k ,c=5k ,则由勾股定理有b=4k ,

33343==-=-k k k a b ∴,∴,∵

∴,,a b c ===91215

设一元二次方程的两个实数根为,x m x m m x x 2212319200-++-+=() 则有:,x x m x x m m 1212231920+=+=-+()

∴x x x x x x m m m 122

212212222312920+=+-=+--+()[()]() =+-736312m m

由,x x c c 122

2215+== 有,即73631225736256022m m m m +-=+-=

∴,m m 124647==-

∵不是整数,应舍去,m =-647

当时,m =>40?

∴存在整数m=4,使方程两个实数根的平方和等于Rt △ABC 的斜边c 的平方。

例2.如图:已知,在同一坐标系中,直线2

2k kx y -+=与y 轴交于点P , 抛物线k x k x y 4)1(22++-=与x 轴交于A (1x ,0)B (2x ,0)两点,

C 是抛物线的顶点。

(1)求二次函数的最小值(用含k 的代数式表示)

(2)若点A 在点B 的左侧,且x 1·x 2<0

①当k 取何值时,直线通过点B ;

②是否存在实数k ,使S △ABP =S △ABC ?如果存在,求出抛物线的解析式;如果不存在,请说明理由。

分析:本题存在探究性体现在第(2)问的后半部分。认真观察图形,要使S △ABP =S △ABC ,由于AB=AB ,因此,只需两个三角形同底上的高相等就可以。OP 显然是△ABP 的高线,而△ABC 的高线,需由C 作AB 的垂线段,在两个高的长中含有字母k ,就不难找到满足条件的k 值。

解:()()()11044414

122∵,∴×最小值a y k k k =>=-+=-- ()()()()2214222由,得:y x k x k y x x k =-++=--

①当时,,y x x k ===02212

∵点A 在点B 左侧,

∴,又∵,∴,x x x x x x 121212000<<<>

∴A (2k ,0),B (2,0),

将,代入直线B y kx k ()2022=+-

得:,∴222043

k k k +-==- ∴当时,直线过点k B =-43

(2)过点C 作CD ⊥AB 于点D

则CD k k =--=-|()|()1122

∵直线交轴于,,y kx k y P k =+-

-22022() ∴OP k =-22

若,则

··△△S S AB OP AB CD ABP ABC ==1212 ∴OP=CD

∴22

12-=-k k () 解得:,k k 1212

2=-= 由图象知,,∴取k k <=-012

∴当时,△△k S S ABP ABC =-=12

此时,抛物线解析式为:y x x =--22

例3.如图,平面直角坐标系中有一直角梯形OMNH ,点H 的坐标为(-8,0),点N 的坐标为(-6,-4).

(1)画出直角梯形OMNH 绕点O 旋转180°的图形OABC ,并写出

顶点A ,B ,C 的坐标(点M 的对应点为A , 点N 的对应点为B ,

点H 的对应点为C );

(2)求出过A ,B ,C 三点的抛物线的表达式;

(3)截取CE =OF =AG =m ,且E ,F ,G 分别在线段CO ,OA ,AB 上,

求四边形...BEFG 的面积S 与m 之间的函数关系式,并写出自变

量m 的取值范围;面积S 是否存在最小值?若存在,请求出这

个最小值;若不存在,请说明理由;

(4)在(3)的情况下,四边形BEFG 是否存在邻边相等的情况,

若存在,请直接..

写出此时m 的值,并指出相等的邻边;若不存在,说明理由.

解:(1) 利用中心对称性质,画出梯形OABC . ∵A ,B ,C 三点与M ,N ,H 分别关于点O 中心对称,

∴A (0,4),B (6,4),C (8,0)

(2)设过A ,B ,C 三点的抛物线关系式为2y ax bx c =++,

∵抛物线过点A (0,4),

∴4c =.则抛物线关系式为24y ax bx =++.

将B (6,4), C (8,0)两点坐标代入关系式,得

3664464840a b a b ++=??++=?

,. 解得1432

a b ?=-????=??,.

O

M N H A

C E F

D B ↑

→ -8 (-6,-4) x y

所求抛物线关系式为:213442

y x x =-++. (3)∵OA =4,OC =8,∴AF =4-m ,OE =8-m .

∴AGF EOF BEC EFGB ABCO S S S S S =---△△△四边形梯形

21=OA (AB +OC )12-AF ·AG 12-OE ·OF 12

-CE ·OA m m m m m 421)8(21)4(2186421?-----+??=)(

2882+-=m m ( 0<m <4)

∵2(4)12S m =-+. ∴当4m =时,S 的取最小值.

又∵0<m <4,∴不存在m 值,使S 的取得最小值.

(4)当226m =-+时,GB =GF ,当2m =时,BE =BG .

二.点是否存在型问题

例1. 如图,在平面直角坐标系O —XY 中,正方形OABC 的边长为2cm ,点A 、C 分别在y 轴的负半轴和x 轴的正半轴上,抛物线y=ax 2+bx+c 经过点A 和B ,且12a+5c=0。

(1) 求抛物线的解析式;

(2)如果点P 由点A 沿AB 边以2cm/秒的速度向点B 移动,同时点Q 由点B 开始沿BC 边以1cm/秒的速度向点C 移动,那么:

①移动开始后第t 秒时,设S=PQ 2(cm 2),试写出S 与t 之间的函数关系式,并写出t 的取值范围;

②当S 取最小值时,在抛物线上是否存在点R ,使得以P 、B 、Q 、R 为顶点的四边形是平行四边形?若存在,请求出点R 的坐标;若不

存在,请说明理由。

解:(1)根据题意,A(0,-2),B(2,-2)

根据题意:∴

-=

-=++

+=

?

?

?

?

?

=

=-

=-

?

?

?

?

?

?

?

?

?

2

242

1250

5

6

5

3

2

c

a b c

a c

a

b

c

∴抛物线的解析式为:y x x

=--

5

6

5

3

2

2

(2)①移动开始后第t秒时,AP=2t,BQ=t

∴P(2t,-2),Q(2,t-2)

∵,∴

S PQ S t t

==-+--+

222

2222

()()

即S t t t

=-+<≤

58401

2()

②当取得最小值时,

S t=

4

5

∴,,,

P Q

()()

8

5

22

6

5

--

假设在抛物线上存在点R,使得以P、B、Q、R为顶点的四边形是平行四边形,

若以PR为一条对角线,使四边形PBRQ为平行四边形

∴BP QR

=-==

2

8

5

2

5

∴,∴,,

2

2

5

12

5

12

5

6

5

+=-

R()

经检验,在抛物线上,

R()

12

5

6

5

-

若为PB为一条对角线,使四边形PRBQ为平行四边形

∵BQ t PR ==

=45

∴245145

+= ∴,,经检验,不在抛物线上R R ()()8514585145

-- 综上所述,当最小时,抛物线上存在点,,使得以、、、S R P B Q R ()12565

- 为顶点的四边形是平行四边形。

例2 (2006年浙江省)如图,平面直角坐标系中,直线AB 与x 轴,y 轴分别交于A (3,0),B (0,)两点,点C 为线段AB 上的一动点,过点C 作CD ⊥x 轴于点D .

(1)求直线AB 的解析式;

(2)若S 梯形OBCD =433,求点C 的坐标;

(3)在第一象限内是否存在点P ,使得以P ,O ,B 为顶点的三角形与△OBA 相似.若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.

【评析】本题是一道存在探索性问题的题型,(1)、(2)两问是常规题,?容易解决.(3)问较难,要分不同情况考虑,首先画出符合题意的图形,?然后结合图形进行计算或推理,若能推导出符合条件的结论或计算出某些未知数的值,则表示存在;?若推出矛盾结论或求不出未知数的值,则所求的点就不存在.

解:(1)直线AB 解析式为:y=-33x+3. (2)设点C 坐标为(x ,-33x+3),那么OD=x ,CD=-33

x+3. ∴S 梯形OBCD =()2

OB CD OD +?=-36x 2+3. 由题意:-36x 2+3=433,解得x 1=2,x 2=4(舍去),∴(2,33

). (3)当∠OBP=Rt ∠时,如图: ①若△BOP ∽△OBA ,则∠BOP=∠OBA=60°,BP=3OB=3,∴P 1

(3,3)

① ③

②若△BPO ∽△OBA ,则∠POB=∠BAO=30°,BP=3OB=1,∴P 2(13

当∠OPB=Rt ∠时

③过点O 作OP ⊥BC 于点P (如图),

此时△PBO ∽△OBA ,∠BOP=∠BAO=30°,过点P 作PM ⊥OA 于

点M .

在Rt △PBO 中,BP=12OB=32,3BP=32

. ∵在Rt △PMO 中,∠OPM=30°,

∴OM=12OP=34;333P 3(34

33) ④若△POB ∽△OBA (如图),则∠OBP=∠BAO=30°,∠POM=30°,

∴33P 4(34

3)(由对称性也可得到点P 4的坐标).

当∠OPB=Rt ∠时,点P 在x 轴上,不符合要求,

综合得,?符合条件的点有四个,分别是:

P 1(33),P 2(13),P 3(3433P 4(34

3

例3:如图,AB 是⊙O 的直径,MN 是⊙O 的切线,C 为切点,AC=6cm ,

AB=10cm .

(1)试猜想∠ACM 与∠B 的大小有什么关系?并说明理由.

(2)在切线MN 上是否存在一点D ,使得以A 、C 、D 为顶点的三角形与△ABC 相似?若存在,请确定点D 的位置;若不存在,请说明理由.

O M https://www.doczj.com/doc/fb13288791.html,

C

B

A

简解:(1)∠ACM=∠B ,连结OC ,利用圆的切线性质和等腰三角形的性质可证得结论.

(2)存在两个点D 1、D 2,使得以A 、C 、D 为顶点的三角形与△ABC 相似.

过点A 作AD 1⊥MN 于D 1,过点A 作AD 2⊥AC 交MN 于D 2.

由相似三角形对应边成比例可分别求得CD 1和CD 2的长.

三.直线是否存在型问题

例1 (2006年诸暨市)如图1,在等腰梯形ABCD 中,AB =DC =5,AD =4,BC =10. 点E 在下底边BC 上,点F 在腰

AB 上.

(1)若EF 平分等腰梯形ABCD 的周长,设BE 长

为x ,试用含x 的代数式表示△BEF 的面积;

(2)是否存在线段EF 将等腰梯形ABCD 的周长和面积同时平分?若存在,求出此时BE 的长;若不存在,请说明理由;

(3)是否存在线段EF 将等腰梯形ABCD 的周长和

面积同时分成1∶2的两部分?若存在,求出此时BE

的长;若不存在,请说明理由.

解:(1)由已知条件得:梯形周长为24,高为4,面积为28.

过点F 作FG ⊥BC 于G ,过点A 作AK ⊥BC 于K ,则根据已知可求得:

1245

x FG -=

?, ∴21224(710)255BEF S BE FG x x ==-+△≤≤; (2)存在.理由是:

由(1),得22241455

x x -+=. 解得x 1=7,x 2=5(舍去);

∴存在线段EF 将等腰梯形ABCD 的周长与面积同时平分,此时BE =7;

(3)不存在.理由是:

假设存在,则S △BEF ∶S AFECD =1∶2,(BE +BF )∶(AF +AD +CE +DC )=1∶2,

则有221628553

x x -+=. 整理,得:3x 2-24x +70=0.

因为方程没有实数解,∴不存在这样的实数x .

即不存在线段EF 将等腰梯形ABCD 的周长和面积同时分成1∶2的两部分.

例2如图.已知平面直角坐标系xoy ,点A(m ,6),B(n ,1) 为两动点,其中0<m <3,连接OA ,OB ,OA ⊥OB 。

(1)求证:mn=-6

(2)当S△AOB =10时,抛物线经过A,B两点且以y 轴为对称轴,求抛物线对应的二次函数的关系式.

(3)在(2)的条件下,设直线AB交y 轴于点F,过点F作直线L.交抛物线于P,Q两点,问是否存在直线L,

使S△POF∶S△QOF=1∶3?若存在,求出直线L应的函数关系式;若不存在,请说明理由。

四.简单的多边形是否存在型问题

例1 如图,矩形ABCD中AD=3厘米,AB= a厘米(a>3)。动点M,N同时从点B出发,分别沿B→A,B→C运动,速度是1厘米\秒。过点M作直线垂直于AB,分别交AN,CD于P,Q两点。当点N到达终点C时,点M也随之停止运动,设运动时间为t秒。

(1)若a=4厘米,t=1秒,则PM=___厘米。

(2)若a=5厘米,求时间t,使△PNB∽△PAD,并求出它们的相似比.

(3)若在运动过程中,存在某时刻使梯形PMBN与梯形PQCN的面积相等,求a的取值范围。

(4)是否存在这样的矩形:在运动过程中,存在某时刻使梯形PMBN,梯形PQDA,梯形PQCN的面积相等?若存在,求的a值;若不存在,请说明理由。

例2 (1)已知矩形A的长,宽分别是2和1,那么是否存在另一个矩形B,它的周长和面积分别是矩形A的周长和面积的2倍?

对上述述问题,小明同学从“图形”的角度,利用函数图象给予了解决,小明论证的过程开始是这样的:如果用x,y分别表示矩形B的长和宽,那么矩形B满足x+y=6,xy=4。

请你按照小明的论证思路完成后面的论证过程。

(2)已知矩形A的长和宽分别是2和1,那么是否存在一个矩形C,它的周长和面积分别是矩形A的周长和面积的一半?

小明认为这个问题是肯定的,你同意小明的观点吗?为什么?

中考数学动点问题专题讲解63736

动点及动图形的专题复习教案 所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题. 关键:动中求静. 数学思想:分类思想 函数思想 方程思想 数形结合思想 转化思想 注重对几何图形运动变化能力的考查 从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。 二期课改后数学卷中的数学压轴性题正逐步转向数形结合、动态几何、动手操作、实验探究等方向发展.这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,容包括空间观念、应用意识、推理能力等.从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等.研究历年来各区的压轴性试题,就能找到今年中考数学试题的热点的形成和命题的动向,它有利于我们教师在教学中研究对策,把握方向.只的这样,才能更好的培养学生解题素养,在素质教育的背景下更明确地体现课程标准的导向.本文拟就压轴题的题型背景和区分度测量点的存在性和区分度小题处理手法提出自己的观点. 函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢?下面结合中考试题举例分析. 一、应用勾股定理建立函数解析式 )如图1,在半径为6,圆心角为90°的扇形OAB 的弧AB 上,有一个动点P,PH ⊥OA,垂足为H,△OPH 的重心为G. (1)当点P 在弧AB 上运动时,线段GO 、GP 、GH 中,有无长度保持不变的线段?如果有,请指出这样的线段,并求出相应的长度. (2)设PH x =,GP y =,求y 关于x 的函数解析式,并写出函数的定义域(即自变量x 的取值围). (3)如果△PGH 是等腰三角形,试求出线段PH 的长. 解:(1)当点P 在弧AB 上运动时,OP 保持不变,于是线段GO 、GP 、GH 中,有长度保持不变的线段,这条线段是GH=32NH=2 1 32?OP=2. (2)在Rt △POH 中, 22236x PH OP OH -=-=, ∴ 2362 1 21x OH MH -== . 在Rt △MPH 中, . 222223362 1 419x x x MH PH MP +=- +=+=H M N G P O A B 图1 x y

2021年中考数学必会专题系列10:直角三角形的存在性问题探究(有讲解答案)

专题十:直角三角形的存在性问题探究 引入: x+b交线段引例.如图,在平面直角坐标系中,点C(0,4),射线CE∥x轴,直线y=-1 2 OC于点B,交x轴于点A,D是射线CE上一点.若△ABD恰为等腰直角三角形,则b的值为. 方法梳理 是否存在一点,使之与另外两个定点构成直角三角形的问题:首先弄清题意,注意区分直角顶点;其次借助于动点所在图形的解析式,表示出动点的坐标;然后按分类的情况,利用几何知识建立方程(组),求出动点坐标,注意要根据题意舍去不符合题意的点. 解决方法如下 方法一:利用勾股定理进行边长的计算,从而来解决问题; 方法二:往往可以利用到一线等三角之K字(90°)类型和母子相似型类型,尝试建构相应的相似来进行处理; 方法三:可利用直径所对的圆周角为90°来处理. 导例解析:分三种情况讨论:①当∠ABD=90°时,如图1,b=4 ;②当∠ADB=90°时,如 3 ;③当∠DAB=90°时,如图3,b=2 图2,b=8 3

精讲精练 类型一:利用勾股定理来解决直角三角形的存在性问题 例1.如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=-1,且经过A(1,0),C(0,3)两点,与x轴的另一个交点为B. (1)若直线y=mx+n经过B,C两点,求抛物线和直线BC的解析式; (2)设点P为抛物线的对称轴x=-1上的一个动点,求使△BPC为直角三角形的点P的坐标. 第2题图 【分析】(1)首先由题意,根据抛物线的对称称轴公式,待定系数法,建立关于a,b,c 的方程组,解方程组可得答案; (2)首先利用勾股这事不师古求得BC,PB,PC的长,然后分别从点B为直角顶点,点C 为直角顶点,点P为直角顶点去分析求得答案. 类型二:构造相似来解决直角三角形存在性问题 x2+bx+8与x轴交于点A(-6,0),点B(点A在点B左侧),例2.如图①,抛物线y=-1 3 与y轴交于点C,点P为线段AO上的一个动点,过点P作x轴的垂线l与抛物线交于点E,连接AE,EC. (1)求抛物线的解析式及点C的坐标; (2)如图②,当EC∥x轴时,点P停止运动,此时,在抛物线上是否存在点G,使△AEG是以

专题25 规律性问题-决胜2018中考数学压轴题全揭秘精品(解析版)

一、选择题 1.(2017四川省内江市,第12题,3分)如图,过点A (2,0)作直线l :3 3 y x 的垂线,垂足为点A 1,过点A 1作A 1A 2⊥x 轴,垂足为点A 2,过点A 2作A 2A 3⊥l ,垂足为点A 3,…,这样依次下去,得到一组线段:AA 1,A 1A 2,A 2A 3,…,则线段A 2016A 2107的长为( ) A .20153( ) B .20163()2 C .20173 ()2 D .20183() 【答案】B . 【分析】根据含30°的直角三角形的性质结合图形即可得到规律“OA n =3()2n OA =2×3 ()2 n ”,依此规律即可解决问题. 点睛:本题考查了规律型中点的坐标以及含30度角的直角三角形,利用“在直角三角形中,30°角所对的直角边等于斜边的一半”结合图形找出变化规律OA n =3)2n OA =2×3 2 n 是解题的关键. 考点:一次函数图象上点的坐标特征;规律型;综合题. 2.(2017四川省绵阳市,第12题,3分)如图所示,将形状、大小完全相同的“●”和线段按照一定规律

摆成下列图形,第1幅图形中“●”的个数为a 1,第2幅图形中“●”的个数为a 2,第3幅图形中“●”的个数为a 3 ,…,以此类推,则 19 3211111a a a a ++++ 的值为( ) A . 2120 B .84 61 C .840589 D .760421 【答案】C . 【分析】首先根据图形中“●”的个数得出数字变化规律,进而求出即可. 【解析】a 1=3=1×3,a 2=8=2×4,a 3=15=3×5,a 4=24=4×6,…,a n =n (n +2); ∴ 193211111a a a a ++++ =11111 (132435461921) +++++????? = 1111111111(1...)232435461921-+-+-+-++-=1111(1)222021+--= 840 589 ,故选C . 点睛:此题考查图形的变化规律,找出图形之间的联系,找出规律解决问题. 考点:规律型:图形的变化类;综合题. 3.(2017四川省达州市,第9题,3分)如图,将矩形ABCD 绕其右下角的顶点按顺时针方向旋转90°至图①位置,继续绕右下角的顶点按顺时针方向旋转90°至图②位置,以此类推,这样连续旋转2017次.若AB =4,AD =3,则顶点A 在整个旋转过程中所经过的路径总长为( ) A .2017π B .2034π C .3024π D .3026π 【答案】D . 【分析】首先求得每一次转动的路线的长,发现每4次循环,找到规律然后计算即可. 【解析】∵AB =4,BC =3,∴AC =BD =5,转动一次A 的路线长是: 904 180 π? =2π,转动第二次的路线长是:905180π? =52π,转动第三次的路线长是:903180π? =3 2 π,转动第四次的路线长是:0,以此类推,每四

中考数学中的存在性问题

2010年中考数学中的存在性问题 一、存在性问题的内涵 所谓存在性问题是指根据题目所给的条件,探究是否存在符合要求的结论.存在性问题是相对于中学数学课本中有明确结论的封闭型问题而言的.存在性问题可抽象为“已知事项M,是否存在具有某种性质的对象Q。”解题时要说明Q存在,通常的方法是将对象Q构造出来;若要说明Q不存在,可先假设存在Q,然后由此出发进行推论,并导致矛盾,从而否定Q的存在。此类问题的叙述一般是“是否存在……,如果存在,请求出……(或请证明);如果不存在,请说明理由.” 二、存在性问题的解决策略 1、直接求解法 存在性问题是探索型问题中的一种典型性问题.存在性问题探索的方向是明确的.探索的结果有两种:一种是存在:另一种是不存在.直接求解法就是直接从已知条件入手,逐步试探,求出满足条件的对象,使问题得到解决的解法。 2、假设求解法 先假设结论存在,再从已知条件和定义,定理,公理出发,进行演绎推理;若得到和题意相容的结论,则假设成立,结论也存在;否则,假设不成立,结论不存在。即假设结论存在,根据条件推理、计算,如果求得出一个结果,并根据推理或计算过程每一步的可逆性,证得结论存在;如果推得矛盾的结论或求不出结果,则说明结论不存在. 三、中考数学中的存在性问题的类型 1、定性分类 (1)肯定型存在性问题 肯定型存在性问题是解决其余两类存在性问题的基础,具体地构造出(或求出,寻找出)满足条件的数学对象,是证明肯定型存在性问题的主要方法。这种处理方法一般分为两大步,第一步是构造出满足要求的数学对象;第二步是通过验证,证明构造的对象满足问题的要求。 例1、(2010年陕西卷)问题探究 (1)请你在图①中做一条 ..直线,使它将矩形ABCD分成面积相等的两部分; (2)如图②点M是矩形ABCD内一点,请你在图②中过点M作一条直线,使它将矩形ABCD分成面积相等的两部分。 问题解决 (3)如图③,在平面直角坐标系中,直角梯形OBCD是某市将要筹建的高新技术开发区用地示意图,其中DC∥OB,OB=6,CD=4开发区综合服务管理委员会(其占地面积不计)设在点P(4,2)处。为了方便驻区单位准备过点P修一条笔直的道路(路宽不计),并且是这条路所在的直线l将直角梯形OBCD分成面积相等的了部分,你认为直线l是否存在?若存在求出直线l的表达式;若不存在,请说明理由

中考数学热点专题训练-规律探究问题

中考数学热点练习2规律探究问题 数学中的所谓归纳,是指从许多个别的事物中概括出一般性概念、原则或结论的思维方法。探索规律性问题就是根据新课程标准“创新意识的培养是现代数学教育的基本任务,应体现在数学教与学的过程之中。学生自己发现和提出问题是创新的基础;独立思考、学会思考是创新的核心;归纳概括得到猜想和规律,并加以验证,是创新的重要方法。创新意识的培养应该从义务教育阶段做起,贯穿数学教育的始终”的要求,近年中考数学经常出现的考题. 归纳规律题是指在一定条件下,探索发现有关数学对象所具有的规律性或不变性的问题,它往往给出了一组变化了的数、式子、图形或条件,要求学生通过阅读、观察、分析、猜想来探索规律。它体现了“特殊到一般(再到特殊)”的数学思想方法,考察了学生的分析、解决问题能力,观察、联想、归纳能力,以及探究能力和创新能力. 结合2019年全国各地中考的实例,我们从下面八方面探讨归纳规律性问题的解法:(1)根据数的排列或运算规律归纳;(2)根据式的排列或运算规律归纳;(3)根据图的变化规律归纳;(4)根据寻找的循环规律归纳;(5)根据代数式拆分规律归纳;(6)根据一阶递推规律归纳;(7)根据二阶递推规律归纳;(8)根据乘方规律归纳. 考向1 数字类规律探究型问题 1. (2019·海南)有2019个数排成一行,对于任意相邻的三个数,都有中间的数等于前后两个数的和,如果第一个数是0,第二个数是1,那么前6个数的和是______,这2019个数的和是______. 【答案】0,2 【解析】根据题目的规则,0,1,1,0,-1,-1,0,1,1,0,-1,-1,……,每6个数是一个循环单位,∴前6个数的和是0,2019÷6=336…3,∴这2019个数的和=0+1+1=2. 2.(2019·黄石)将被3整除余数为1的正整数,按照下列规律排成一个三角形数阵

中考数学专题存在性问题解题策略角的存在性处理策略

第1讲 角的存在性处理策略 知识必备 一、一线三等角 1.如图1-1-1,o 90=∠=∠=∠E D ACB 且0 45=∠CAB →CBE ACD ??≌,此为 “一线三直角”全等,又称“K 字型”全等; 图1-1-1 图1-1-2 图1-1-3 图1-1-4 2.如图1-1-2,o 90=∠=∠=∠E D ACB →CBE ACD ??∽,此为“一线三直角” 相似,又称“K 字型”相似; 3.如图1-1-3,o 90=∠=∠=∠E D ACB →CBE ACD ??∽,此为更一般的“一线三等角”. 二、相似三角形的性质 相似三角形的对应边成比例,其比值称为相似比; 相似三角形的对应线段成比例. 三、正切的定义 如图1-1-4,在ABC Rt ?中,b a A =∠tan ,即A ∠的正切值等于A ∠的对边与A ∠的邻边之比;同理,a b B = ∠tan ,则1tan tan =∠?∠B A ,即互余两角的正切值互为倒数. 方法提炼 一、基本策略:联想构造 二、构造路线 方式(一):构造“一线三等角” 1.45o 角→构等腰直角三角形→造“一线三直角”全等,如图1-2-1; 图1-2-1 2.30o 角→构直角三角形→造“一线三直角”相似,如图1-2-2;

A 图1-2-2 3.tan α=k →构直角三角形→造“一线三直角”相似,如图1-2-3; 4.“一线三等角”的应用分三重境界; 一重境:当一条线上已有三个等角时,只要识别、证明,直接应用模型解题,如图1-2-4所示的“同侧型一线三等角”及图1-2-5所示的“异侧型一线三等角”; 二重境:当一条线上已有两个等角时,需要再补上一个等角,构造模型解题; 三重境:当一条线上只有一个角时,需要再补上两个等角,构造模型解题,如图1-2-6及图1-2-7所示; 方式 (二):构造“母子型相似” “角处理”,还可以在角的一边上某点处作水平或竖直辅助线,造成某水平边或竖直边对此角结构,然后在这条线上补出一个与此角相等的角,构造出“母子型相似 ”,其核心结构如图1-2-8所示. 方式(三):整体旋转法( *) DAC DEA →DA 2=DC ?DE →DG 2+AG 2=DC ?DE 定 定 定 定 定 定 定 定 A A A 图1-2-3 图1-2-4 图1-2-5 图1-2-6 图1-2-7 图1-2-8

初三数学专题讲义存在性问题

初三数学讲义 存在性问题 教学过程: 一、教学衔接(课前环节) 1、回收上次课的教案,了解家长的反馈意见; 2、检查学生的作业,及时指点 3、捕捉学生的思想动态和了解学生的本周学校的学习内容 二、知识点解析 存在性问题是指判断满足某种条件的事物是否存在的问题,这类问题的知识覆盖面较广,综合性较强,题意构思非常精巧,解题方法灵活,对学生分析问题和解决问题的能力要求较高,是近几年来各地中考的“热点”。 这类题目解法的一般思路是:假设存在→推理论证→得出结论。若能导出合理的结果,就做出“存在”的判断,导出矛盾,就做出不存在的判断。 由于“存在性”问题的结论有两种可能,所以具有开放的特征,在假设存在性以后进行的推理或计算,对基础知识,基本技能提出了较高要求,并具备较强的探索性,正确、完整地解答这类问题,是对我们知识、能力的一次全面的考验。 一、函数中的存在性问题(相似) 1.(2011枣庄10分)如图,在平面直角坐标系xoy 中,把抛物线2y x =向左平移1个单位,再向下平移4个单位,得到抛物线2()y x h k =-+.所得抛物线与x 轴交于A ,B 两点(点A 在点B 的左边),与y 轴交于点C ,顶点为D. (1)写出h k 、的值; (2)判断△ACD 的形状,并说明理由; (3)在线段AC 上是否存在点M ,使△AOM∽△ABC?若存在,求出点M 的坐标;若不存在,说明理由.

二、函数中的存在性问题(面积) 2. 如图,抛物线()20y ax bx a >=+与双曲线k y x =相交于点A ,B .已知点B 的坐标为(-2,-2),点A 在第一象限内,且tan∠AOX=4.过点A 作直线AC∥x 轴,交抛物线于另一点C . (1)求双曲线和抛物线的解析式; (2)计算△ABC 的面积; (3)在抛物线上是否存在点D ,使△ABD 的面积等于△ABC 的面积.若存在,请你写出点D 的坐标;若不存在,请你说明理由.

2019年福州市中考数学规律性试题汇总与解析(一)

2019年全国中考数学试题----规律试题(一) 1. (2019?安徽)观察下列关于自然数的等式: 32﹣4×12=5 ① 52﹣4×22=9 ② 72﹣4×32=13 ③ … 根据上述规律解决下列问题: (1)完成第四个等式:92﹣4×( )2= ( ); (2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性. 【解析】解:(1)32﹣4×12=5 ① 52﹣4×22=9 ② 72﹣4×32=13 ③ … 所以第四个等式:92﹣4×42=17; (2)第n个等式为:(2n+1)2﹣4n2=2(2n+1)﹣1, 左边=(2n+1)2﹣4n2=4n2+4n+1﹣4n2=4n+1, 右边=2(2n+1)﹣1=4n+2﹣1=4n+1. 左边=右边 ∴(2n+1)2﹣4n2=2(2n+1)﹣1. 2. (2019?漳州)已知一列数2,8,26,80.…,按此规律,则第n个数是( ) .(用含n的代数式表示). 【解析】解;已知一列数2,8,26,80.…,按此规律,则第n个数是3n﹣1,故答案为:3n﹣1. 3. (2019?白银)观察下列各式: 13=12 13+23=32 13+23+33=62 13+23+33+43=102 … 333

4. (2019?兰州)为了求1+2+22+23+…+2100的值,可令S=1+2+22+23+…+2100,则2S=2+22+23+24+…+2101,因此2S﹣S=2101﹣1,所以S=2101﹣1,即1+2+22+23+…+2100=2101﹣1,仿照以上推理计算1+3+32+33+…+32019的值是_______________ . 【解析】解:设M=1+3+32+33+…+32019 ①, ①式两边都乘以3,得 3M=3+32+33+…+32019 ②. ②﹣①得 2M=32019﹣1, 两边都除以2,得 M= , 故答案为: . 5. (2019?天水)如图,一段抛物线y=﹣x(x﹣1)(0≤x≤1)记为m1,它与x轴交点为O、A1,顶点为P1;将m1绕点A1旋转180°得m2,交x轴于点A2,顶点为P2;将m2绕点A2旋转180°得m3,交x轴于点A3,顶点为P3,…,如此进行下去,直至得m10,顶点为P10,则P10的坐标为(). 【解析】解:y=﹣x(x﹣1)(0≤x≤1), OA1=A1A2=1,P2P4=P1P3=2, P2(2.5,﹣0.25) P10的横坐标是2.5+2×[(10﹣2)÷2]=10.5, p10的纵坐标是﹣0.25, 故答案为(10.5,﹣0.25).

中考数学复习专题40:存在性问题(含中考真题解析)

专题40 存在性问题 ?解读考点 1.BC中,点D,E,F分别在AB,BC,AC上,且∠ADF+∠DEC=180°,∠AFE=∠BDE.(1)如图1,当DE=DF时,图1中是否存在与AB相等的线段?若存在,请找出,并加以证明;若不存在,说明理由; (2)如图2,当DE=kDF(其中0<k<1)时,若∠A=90°,AF=m,求BD的长(用含k,m的式子表示). 【答案】(1)AB=B E;(2)BD=.

试题解析:(1)如图1,连结AE.∵DE=DF,∴∠DEF=∠DFE,∵∠ADF+∠DEC=180°,∴∠ADF=∠DEB,∵∠AFE=∠BDE,∴∠AFE+∠ADE=180°,∴A、D、E、F四点共圆,∴∠DAE=∠DFE=∠DEF,∠ADF=∠AEF,∵∠ADF=∠DEB=∠AEF,∴∠AEF+∠AED=∠DEB+∠AED,∴∠AEB=∠DEF=∠BAE,∴AB=BE; (2)如图2,连结AE.∵∠AFE=∠BDE,∴∠AFE+∠ADE=180°,∴A、D、E、F四点共圆,∴∠ADF=∠AEF,∵∠DAF=90°,∴∠DEF=90°,∵∠ADF+∠DEC=180°,∴∠ADF=∠DEB,∵∠ADF=∠AEF,∴∠DEB=∠AEF,在△BDE与△AFE中,∵∠DEB=∠AEF, ∠BDE=∠AFE,∴△BDE∽△AFE,∴BD DE AF FE = ,在直角△DEF中,∵∠DEF=90°, DE=kDF,∴ EF= =DF, ∴ BD m = =,∴ BD=. 考点:1.相似三角形的判定与性质;2.探究型;3.存在型;4.综合题;5.压轴题.2.在平面直角坐标系中,矩形OABC的顶点A,C分别在x轴和y轴的正半轴上,顶点B 的坐标为(2m,m),翻折矩形OABC,使点A与点C重合,得到折痕DE,设点B的对应 点为F,折痕DE所在直线与y轴相交于点G,经过点C,F,D的抛物线为 c bx ax+ + =2 y. (1)求点D的坐标(用含m的式子表示); (2)若点G的坐标为(0,﹣3),求该抛物线的解析式;

中考数学专题复习--规律探究型问题

第5题 第6题 中考数学专题复习——规律探索型问题 规律探索型问题是根据已知条件或问题中所提供的若干特例,通过观察,实验,归纳,类比等活动来发现或揭示所给信息中蕴含的本质规律特征的一类探究性问题,常见的规律探索型问题有数字类探究型问题,几何图形探究型问题,点的坐标变化探究型问题等。 类型一、数式递变规律: 1.(2019安徽)观察以下等式: 2.(2019云南)按一定规律排列的单项式:3x ,5x -,7x ,9x -,11x ,…,第n 个单项式为( ) A. 121)1(---n n x B. 12)1(--n n x C. 121)1(+--n n x D. 12)1(+-n n x 3.(2018天水)按一定规律排列的一组数:21,61,121,201,…,a 1,901,b 1,(其中a ,b 为整数),则a+b 的值为--------------------------------------------------------------------------------------------------------------( ) A.182 B.172 C.242 D.200 4.(2019达州)a 是不为1的有理数,我们把a -11称为a 的差倒数,如2的差倒数为1211-=-,1-的差倒数为2 1)1(11=--,已知51=a ,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,…,以此类推,则2019a 的值为--------------------------------------------------------------------------------------------------( ) A.5 B. 4 1- C. 34 D. 54 5.(2018淄博)将从1开始的自然数按以下规律排列,例如位于第3行第4列的数是12,则位于第45行第8列的数是 。 类型二、图形递变规律: 按照上述规律,解决下列问题: (1)写出第6个等式: ; (2)写出你猜想的第n 个等式: ; (用含n 的代数式表示),并证明。

(完整版)2019年中考数学复习题方法技巧专题9角的存在性问题

方法技巧专题(九) 角的存在性问题 1.[2018·乐山] 如图F9-1,曲线C2是双曲线C1:y=(x>0)绕原点O逆时针旋转45°得到的图形,P是曲线C2上任意一点,点A 在直线l:y=x上,且PA=PO,则△POA的面积等于 () 图F9-1 A.B.6 C.3 D.12 2.[2018·宿迁] 如图F9-2,在平面直角坐标系中,反比例函数y=(x>0)的图象与正比例函数y=kx,y=x(k>1)的图象分别交于点A,B.若∠AOB=45°,则△AOB的面积是. 图F9-2 3.如图F9-3,在平面直角坐标系xOy中,点A(-1,0),B(0,2),点C在第一象限,∠ABC=135°,AC交y轴于点D,CD=3AD,反比例函数y=的图象经过点C,则k的值为. 图F9-3 4.如图F9-4,点P是正方形ABCD内一点,点P到点A,B和D的距离分别为1,2,.△ADP沿点A旋转至△ABP',连结PP',并延长AP与BC相交于点Q. (1)求证:△APP'是等腰直角三角形; (2)求∠BPQ的大小; (3)求CQ的长.

图F9-4 5.如图F9-5,抛物线y=ax2+bx-4a经过A(-1,0),C(0,4)两点,与x轴交于另一点 B. (1)求抛物线的解析式; (2)已知点D(m,m+1)在第一象限的抛物线上,求点D关于直线BC对称的点的坐标; (3)在(2)的条件下,连结BD,点P为抛物线上一点,且∠DBP=45°,求点P的坐标. 图F9-5

6.如图F9-6,在平面直角坐标系xOy中,顶点为M的抛物线是由抛物线y=x2-3向右平移一个单位后得到的,它与y轴负半轴交于点A,点B在该抛物线上,且横坐标为3. (1)求点M,A,B的坐标; (2)连结AB,AM,BM,求∠ABM的正切值; (3)点P是顶点为M的抛物线上一点,且位于对称轴的右侧,设PO与x轴正半轴的夹角为α,当α=∠ABM时,求点P的坐标. 图F9-6 7.如图F9-7,抛物线y=-x2+bx+c与直线y=x+2交于C,D两点,其中点C在y轴上,点D的坐标为(3,).点P是y轴右侧的抛物线上一动点,过点P作PE⊥x轴于点E,交CD于点F. (1)求抛物线的解析式; (2)若存在点P,使∠PCF=45°,求点P的坐标. 图F9-7

中考数学规律题(附答案)

1.我们平常用的数是十进制数,如2639=2×103+6×102+3×101+9×100 ,表示十进制的数要用10个数码(又叫数字):0,1,2,3,4,5,6,7,8,9。在电子数字计算机中用的是二进制,只要两个数码:0和1。如二进制中101=1×22 +0×21 +1×20 等于十进制的数5,10111=1×24 +0×23 +1×22 +1×21 +1×20 等于十进制中的数23,那么二进制中的1101等于十进制的数 。 2.任何一个正整数n 都可以进行这样的分解:n s t =?(s t ,是正整数,且s t ≤),如果p q ?在 n 的所有这种分解中两因数之差的绝对值最小,我们就称p q ?是n 的最佳分解,并规定: ()p F n q = .例如18可以分解成118?,29?,36?这三种,这时就有31 (18)62 F ==.给出下列关于()F n 的说法:(1)1(2)2F =;(2)3 (24)8 F =;(3)(27)3F =;(4)若n 是一个完全平方数,则()1F n =. 其中正确说法的个数是( B ) A.1 B.2 C.3 D.4 3.若(x 2 -x -1)x +2=1,则x =___________.2、-1、0、-2 4.观察下面的一列单项式:x ,22x -,34x ,4 8x -,…根据你发现的规律,第7个单项式为 ; 第n 个单项式为 .7 64x ;1 (2)n n x -- 5.已知2 1 (123...)(1)n a n n = =+,,,,记112(1)b a =-,2122(1)(1)b a a =--,…, 122(1)(1)...(1)n n b a a a =---,则通过计算推测出n b 的表达式n b =_______. (用含n 的代数式表示) 6.已知n 是正整数,111222(,),(,),,(,),n n n P x y P x y P x y L L 是反比例函数k y x = 图象上的一列点,其中121,2,,,n x x x n ===L L .记112A x y =,223A x y =,1n n n A x y +=L L ,, 若1A a =(a 是非零常数),则12n A A A ???L 的值是________________________(用含a 和n 的代数式表示).(2)1 n a n + 7.已知22223322333388 + =?+=?,,

中考数学:存在性问题复习

中考数学:存在性问题复习 二次函数中的图形构建及存在性问题 一、二次函数中有关面积的存在性问题 例1(10山东潍坊)如图所示,抛物线与x轴交于点x两点,与x轴交于点x以x为直径作x过抛物线上一点x作x的切线x切点为x并与x的切线x相交于点x连结x并延长交x于点x连结x (1)求抛物线所对应的函数关系式及抛物线的顶点坐标; (2)若四边形x的面积为x求直线x的函数关系式; (3)抛物线上是否存在点x,使得四边形x的面积等于x的面积?若存在,求出点x的坐标;若不存在,说明理由. 答案:解:(1)因为抛物线与x轴交于点x两点,设抛物线的函数关系式为:x ∵抛物线与x轴交于点x ∴x ∴x 所以,抛物线的函数关系式为:x 又x 因此,抛物线的顶点坐标为x (2)连结x∵x是x的两条切线, ∴x∴x 又四边形x的面积为x∴x∴ x 又x∴x 因此,点x的坐标为x或x 当x点在第二象限时,切点x在第一象限. 在直角三角形x中, x ∴x∴x 过切点x作x垂足为点x ∴x 因此,切点x的坐标为x

设直线x的函数关系式为x将x的坐标代入得 x 解之,得 x 所以,直线x的函数关系式为 x 当x点在第三象限时,切点x在第四象限. 同理可求:切点x的坐标为x直线x的函数关系式为 x 因此,直线x的函数关系式为 x 或 x (3)若四边形x的面积等于x的面积 又x ∴x ∴x两点到x轴的距离相等, ∵x与x相切,∴点x与点x在x轴同侧, ∴切线x与x轴平行, 此时切线x的函数关系式为x或x 当x时,由x得,x 当x时,由x得,x 故满足条件的点x的位置有4个,分别是x x 说明:本参考答案给出了一种解题方法,其它正确方法应参考标准给出相应分数. 强化训练 ★1、(10广东深圳)如图,抛物线y=ax2+c(a>0)经过梯形ABCD的四个顶点,梯形的底AD在x 轴上,其中A(-2,0),B(-1, -3). (2)点M为y轴上任意一点,当点M到A、B两点的距离之和为最小时,求此时点M的坐标; (3)在第(2)问的结论下,抛物线上的点P使S△PAD=4S△ABM成立,求点P的坐标. 答案:(1)、因为点A、B均在抛物线上,故点A、B的坐标适合抛物线方程 ∴ x 解之得: x ;故x为所求 (2)如图2,连接BD,交y轴于点M,则点M就是所求作的点 设BD的解析式为x,则有 x , x , 故BD的解析式为x;令x则x,故x (3)、如图3,连接AM,BC交y轴于点N,由(2)知,OM=OA=OD=2,x 易知BN=MN=1,易求x x ;设x, 依题意有: x ,即: x 解之得:x,x,故符合条件的P点有三个: x ★2、.矩形OBCD在如图所示的平面直角坐标系中,其中三个顶点分别为O(0,0)、B(0,3)、D(-

2017-2018学年最新中考数学压轴题解题策略《面积的存在性问题》

面积的存在性问题解题策略 中考数学压轴题解题策略 专题攻略 面积的存在性问题常见的题型和解题策略有两类: 第一类,先根据几何法确定存在性,再列方程求解,后检验方程的根. 第二类,先假设关系存在,再列方程,后根据方程的解验证假设是否正确.例题解析 例?如图1-1,矩形ABCD的顶点C在y轴右侧沿抛物线 y=x2-6x+10滑动,在滑动过程中CD//x轴,CD=1,AB 在CD的下方.当点D在y轴上时,AB落在x轴上.当矩形 ABCD在滑动过程中被x轴分成两部分的面积比为1:4时,求 点C的坐标. 图1-1 【解析】先求出CB=5,再进行两次转化,然后解方程. 把上下两部分的面积比为1∶4转化为S上∶S全=1∶5或S上∶S全=4∶5.把面积比转化为点C的纵坐标为1或4. , 4)或(3-3, 4).如图1-2,C (3, 1).如图1-3,C(33

图1-2 图1-3 例?如图2-1,二次函数y =(x +m )2+k 的图象与x 轴交于A 、B 两点,顶点M 的坐标为(1,-4),AM 与y 轴相交于点C ,在抛物线上是否还存在点P ,使得S △PMB =S △BCM ,如存在,求出点P 的坐标. 图2-1 【解析】△BCM 是确定的,△PBM 与三角形BCM 有公共边BM ,根据“同底等高的三角形面积相等”和“平行线间的距离处处相等”,过点C 画BM 的平行线与抛物线的交点就是点P .一目了然,点P 有2个. 由y =(x -1)2-4=(x +1)(x -3),得A (-1,0),B (3,0).由A 、M ,得C (0,-2). 如图2-2,设P (x , x 2-2x -3),由PC //BM ,得∠CPE =∠BMF .所以CE BF PE MF =. 解方程2(1)4242 x x --+=,得25x =±.所以(25,225)P ++或(25,225)--. 图2-2

中考数学规律性问题归纳

初中数学规律性问题归纳 ●【教学目标】理解并掌握规律探究性问题的方法 ●【重点难点】理解并掌握规律探究性问题的方法 ●【基础知识】 专题诠释 规律探索型题是根据已知条件或题干所提供的若干特例,通过观察、类比、归纳,发现题目所蕴含的数字或图形的本质规律与特征的一类探索性问题。这类问题在素材的选取、文字的表述、题型的设计等方面都比较新颖新。其目的是考查学生收集、分析数据,处理信息的能力。所以规律探索型问题备受命题专家的青睐,逐渐成为中考数学的热门考题。 解题策略和解法精讲 规律探索型问题是指在一定条件下,探索发现有关数学对象所具有的规律性或不变性的问题,它往往给出了一组变化了的数、式子、图形或条件,要求学生通过阅读、观察、分析、猜想来探索规律.它体现了“特殊到一般”的数学思想方法,考察了学生的分析、解决问题能力,观察、联想、归纳能力,以及探究能力和创新能力.题型可涉及填空、选择或解答.。 ●【例题讲解】 (一) 与数与式有关的规律探究性问题 例1 一组按规律排列的式子:-b 2a ,b 5a 2,-b 8a 3,b 11 a 4,…(a b ≠0),其中第7个式子是 ________,第n 个式子是 ______________(n 为正整数). [解析] 第7个式子是-b 20a 7,第n 个式子是(-1)n b 3n - 1 a n .观察给出的一列数,发现这一列数的分母a 的指数分别是1、2、3、4、…,与这列数的项数相同,故第7个式子的分母是a 7,第n 个式子的分母是a n ;这一列数的分子b 的指数分别是2、5、8、11、…,这一组数首项为2,从第二项起,每一项与它的前一项的差等于3,第n 项应为2+3(n -1)=3n -1.故第7个式子的分子是b 3 ×7-1 =b 20,第n 个式子的分子是b 3n - 1; 特别要注意的是这列数字每一项的符号,它们的规律是奇数项为负,偶数项为正,故第7个式子的符号为 负,第n 个式子的符号为()-1n . 例2 小东玩一种“挪珠子”游戏,根据挪动珠子的难度不同而得分不同,规定每次挪

中考数学压轴题专题全等三角形的存在性

专题25 全等三角形的存在性 破解策略 全等三角形的存在性问题的解题策略有: (1)当有一个三角形固定时(三角形中所有边角为定值),另一个三角形会与这个固 定的三角形有一个元素相等;再根据全等三角形的判定,利用三角函数的知识(画图)或列方程来求解. (2)当两个三角形都不固定时(三角形中有角或边为变量),若条件中有一条边对应 相等时,就要使夹这条边的两个角对应相等,或其余两条边对应相等;若条件中有一个角对应相等时,就要使夹这个角的两边对应相等,或再找一个角和一条边对应相等. 例题讲解 例1 如图,在平面直角坐标系中,抛物线y=ax2+bx+4与x轴的一个交点为A(-2,0),与y轴的交点为C,对称轴是x=3,对称轴与x轴交于点B. (1)求抛物线的表达式; (2)若点D在x轴上,在抛物线上是否存在点P,使得△PBD≌△PBC?若存在,求点P 的坐标;若不存在,请说明理由. (3)若点M在y轴的正半轴上,连结MA,过点M作MA的垂线,交抛物线的对称轴于点N.问:是否存在点M,使以点M、A、N为顶点的三角形与△BAN全等?若存在,求出点M 的坐标;若不存在,请说明理由. 解:(1)由题意可列方程组 4240 3 2 a b b a -+= ? ? ? -= ?? ,解得 1 4 3 2 a b ? =- ?? ? ?= ?? ,

所以抛物线的表达式为213 442 y x x =-++. (2)显然OA =2, OB =3, OC =4. 所以225BC OB OC BA =+==. 若△P BD ≌△PBC ,则BD = BC =5,PD =PC 所以D 为抛物线与x 轴的左交点或右交点,点B ,P 在CD 的垂直平分线上, ①若点D 为抛物线与 x 轴的左交点,即与点A 重合. 如图1,取AC 的中点E ,作直线BE 交抛物线于P 1(x 1,y 1),P 2(x 2.y 2)两点. 此时△P 1BC ≌△P 1BD ,△P 2BC ≌△P 2 B D . 由A 、C 两点的坐标可得点E 的坐标为(-1,2). 所以直线BE 的表达式为1322 y x =-+. 联立方程组21322 13442y x y x x ?=-+????=-++?? ,解得114261262x y ?=-??-+=??,224261262x y ?=+??--= ?? . 所以点P 1,P 2的坐标分别为(4一26, 1262 -+).(4+26,1262--). ②若D 为抛物线与x 轴的右交点,则点D 的坐标为(8,0). 如图2,取CD 的中点F .作直线BF 交抛物线于P 3(x 3,y 3),P 4(x 4,,y 4)两点. 此时△P 3BC ≌△P 3BD ,△P 4BC ≌△P 4 B D . 由C 、D 两点的坐标可得点F 的坐标为(4,2), 所以直线BF 的表达式为y =2x -6. 联立方程组22613 442y x y x x =-?? ?=-++?? ,解得331418241x y ?=-+??=-+??,441418241x y ?=--??=--?? 所以点P 3,P 4的坐标分别为(-1+41,-8+241),( -1-41,-8-241), 综上可得,满足题意的点P 的坐标为(426126-+),(426126 --, (-1418+41)或(-1418-41). (3)由题意可设点M (0,m ),N (3,n ),且m >0, 则AM 2=4+m 2,MN 2=9+(m -n )2,BN 2=n 2. 而∠AMN =∠ABN =900 , 所以△AMN 与△ABN 全等有两种可能: ①当AM =AB ,MN =BN 时, 可列方程组222 4259()m m n n ?+=? ?+-=??,解得1121521m n ?=??=??2221521m n ?=-??=??(舍), 所以此时点M 的坐标为(021). ②当AM =NB ,MN =BA 时,可列方程组:222 49()25 m n m n ?+=??+-=??·

中考考试数学压轴题之三角形存在性问题

中考数学压轴题全面突破之四?三角形的存在性 题型特点 三角形的存在性问题是一类考查是否存在点,使其能构成某种特殊三角形的问题,如:直角三角形、等腰三角形、全等三角形及相似三角形的存在性.常结合动点、函数与几何,考查分类讨论、画图及建等式计算. 解题思路 ①由判定定理确定三角形所满足的特殊关系; ②分类讨论,画图; ③建等式,对结果验证取舍. 对于目标三角形不确定、点的位置难以寻找等存在性问题的思考方向为: ①从角度入手,通过角的对应关系尝试画出一种情形. ②解决第一种情形.能根据几何特征表达线段长的,借助对应边成比例、或 线段长转坐标代入函数表达式求解;不能直接表达线段长的,观察点的位置,考虑联立函数表达式求解. ③分类讨论,类比解决其他情形.分类时,先考虑点的位置,再考虑对应关 系,用同样方法解决问题. 难点拆解 ①直角三角形关键是用好直角,可考虑:勾股定理逆定理、弦图模型、直线 k1; ②等腰三角形可考虑直接表达线段长,利用两腰相等建等式,或借助三线合 一找相似建等式; ③全等三角形或相似三角形关键是研究目标三角形的边角关系,进而表达线 段长,借助函数或几何特征建等式. ④分类不仅要考虑图形存在性的分类,也要考虑点运动的分类.

1.(2012云南改编)如图,在平面直角坐标系中,抛物线错误!未找到引用源。 的图象经过点(2,4),且与直线错误!未找到引用源。交于A,B两点.(1)求抛物线的函数解析式. (2)过点A作AC⊥AB交x轴于点C,求点C的坐标. (3)除点C外,在坐标轴上是否存在点M,使得△MAB是直角三角形?若存在,请求出点M的坐标;若不存在,请说明理由.

中考数学专题复习——存在性问题

中考数学专题复习——存在性问题 一、二次函数中相似三角形的存在性问题 1.如图,把抛物线2 =向左平移1个单位,再向下平移4个单位,得到抛物线2 y x =-+. y x h k () 所得抛物线与x轴交于A,B两点(点A在点B的左边),与y轴交于点C,顶点为D. (1)写出h k 、的值;(2)判断△ACD的形状,并说明理由; (3)在线段AC上是否存在点M,使△AOM∽△ABC?若存在,求出点M的坐标;若不存在,说明理由. 2.如图,抛物线经过A(﹣2,0),B(﹣3,3)及原点O,顶点为C. (1)求抛物线的解析式; (2)若点D在抛物线上,点E在抛物线的对称轴上,且A、O、D、E为顶点的四边形是平行四边形,求点D的坐标; (3)P是抛物线上的第一象限内的动点,过点P作PM⊥x轴,垂足为M,是否存在点P, 使得以P、M、A为顶点的三角形△BOC相似?若存在,求出点P的坐标;若不存在,请说明理由.

二、二次函数中面积的存在性问题 3.如图,抛物线()20y ax bx a >=+与双曲线k y x = 相交于点A ,B .已知点B 的坐标为(-2,-2), 点A 在第一象限内,且tan ∠AOX =4.过点A 作直线AC ∥x 轴,交抛物线于另一点C . (1)求双曲线和抛物线的解析式;(2)计算△ABC 的面积; (3)在抛物线上是否存在点D ,使△ABD 的面积等于△ABC 的面积.若存在,写出点D 的坐标; 若不存在,说明理由. 4.如图,抛物线y =ax 2 +c (a >0)经过梯形ABCD 的四个顶点,梯形的底AD 在x 轴上, A (-2,0), B (-1, -3). (1)求抛物线的解析式;(3分) (2)点M 为y 轴上任意一点,当点M 到A 、B 两点的距离之和为最小时,求此时点M 的坐标;(2分) (3)在第(2)问的结论下,抛物线上的点P 使S △PAD =4S △ABM 成立,求点P 的坐标.(4分) (4)在抛物线的BD 段上是否存在点Q 使三角形BDQ 的面积最大,若有,求出点Q 的坐标,若没有,说明理由。

相关主题
文本预览
相关文档 最新文档