当前位置:文档之家› 质谱解析

质谱解析

质谱解析
质谱解析

质谱法是将被测物质离子化,按离子的质荷比分离,测量各种离子谱峰的强度而实现分析目的的一种分析方法。质量是物质的固有特征之一,不同的物质有不同的质量谱——质谱,利用这一性质,可以进行定性分析(包括分子质量和相关结构信息);谱峰强度也与它代表的化合物含量有关,可以用于定量分析。

质谱仪一般由四部分组成:

进样系统——按电离方式的需要,将样品送入离子源的适当部位;

离子源——用来使样品分子电离生成离子,并使生成的离子会聚成有一定能量和几何形状的离子束;

质量分析器——利用电磁场(包括磁场、磁场和电场的组合、高频电场、和高频脉冲电场等)的作用将来自离子源的离子束中不同质荷比的离子按空间位置,时间先后或运动轨道稳定与否等形式进行分离;

检测器——用来接受、检测和记录被分离后的离子信号。一般情况下,进样系统将待测物在不破坏系统真空的情况下导入离子源(10-6~10-8mmHg),离子化后由质量分析器分离再检测;计算机系统对仪器进行控制、采集和处理数据,并可将质谱图与数据库中的谱图进行比较。

一、进样系统和接口技术

将样品导入质谱仪可分为直接进样和通过接口两种方式实现。

1. 直接进样

在室温和常压下,气态或液态样品可通过一个可调喷口装置以中性流的形式导入离子源。吸附在固体上或溶解在液体中的挥发性物质可通过顶空分析器进行富集,利用吸附柱捕集,再采用程序升温的方式使之解吸,经毛细管导入质谱仪。

对于固体样品,常用进样杆直接导入。将样品置于进样杆顶部的小坩埚中,通过在离子源附近的真空环境中加热的方式导入样品,或者可通过在离子化室中将样品从一可迅速加热的金属丝上解吸或者使用激光辅助解吸的方式进行。这种方法可与电子轰击电离、化学电离以及场电离结合,适用于热稳定性差或者难挥发物的分析。

质谱进样系统发展较快的是多种液相色谱/质谱联用的接口技术,用以将色谱流出物导入质谱,经离子化后供质谱分析。主要技术包括各种喷雾技术(电喷雾,热喷雾和离子喷雾);传送装置(粒子束)和粒子诱导解吸(快原子轰击)等。

2. 电喷雾接口

带有样品的色谱流动相通过一个带有数千伏高压的针尖喷口喷出,生成带电液滴,经干燥气除去溶剂后,带电离子通过毛细管或者小孔直接进入质量分析器。传统的电喷雾接口只适用于流动相流速为1~5μl/min的体系,因此电喷雾接口主要适用于微柱液相色谱。同时由于离子可以带多电荷,使得高分子物质的质荷比落入大多数四极杆或磁质量分析器的分析范围(质荷比小于4000),从而可分析分子量高达几十万道尔顿(Da)的物质。

3. 热喷雾接口

存在于挥发性缓冲液流动相(如乙酸铵溶液)中的待测物,由细径管导入离子源,同时加热,溶剂在细径管中除去,待测物进入气相。其中性分子可以通过与气相中的缓冲液离子(如NH4+)反应,以化学电离的方式离子化,再被导入质量分析器。热喷雾接口适用的液体流量可达2ml/min,并适合于含有大量水的流动相,可用于测定各种极性化合物。由于在溶剂挥发时需要利用较高温度加热,因此待测物有可能受热分解。

4. 离子喷雾接口

在电喷雾接口基础上,利用气体辅助进行喷雾,可提高流动相流速达到1ml/min。电喷雾和离子喷雾技术中使用的流动相体系含有的缓冲液必须是挥发性的。

5. 粒子束接口

将色谱流出物转化为气溶胶,于脱溶剂室脱去溶剂,得到的中性待测物分子导入离子源,使用电子轰击或者化学电离的方式将其离子化,获得的质谱为经典的电子轰击电离或者化学电离质谱图,其中前者含有丰富的样品分子结构信息。但粒子束接口对样品的极性,热稳定性和分子质量有一定限制,最适用于分子量在1000Da以下的有机小分子测定。

6. 解吸附技术

将微柱液相色谱与粒子诱导解吸技术(快原子轰击,液相二次粒子质谱)结合,一般使用的流速在1~10μl/min之间,流动相须加入微量难挥发液体(如甘油)。混合液体通过一根毛细管流到置于离子源中的金属靶上,经溶剂挥发后形成的液膜被高能原子或者离子轰击而离子化。得到的质谱图与快原子轰击或者液相二次离子质谱的质谱图类似,但是本底却大大降低。

二、离子源

离子源的性能决定了离子化效率,很大程度上决定了质谱仪的灵敏度。常见的离子化方式有两种:一种是样品在离子源中以气体的形式被离子化,另一种为从固体表面或溶液中溅射出带电离子。在很多情况下进样和离子化同时进行。

1. 电子轰击电离(EI)

气化后的样品分子进入离子化室后,受到由钨或铼灯丝发射并加速的电子流的轰击产生正离子。离子化室压力保持在10-4~10-6mmHg。轰击电子的能量大于样品分子的电离能,使样品分子电离或碎裂。电子轰击质谱能提供有机化合物最丰富的结构信息,有较好的重现性,其裂解规律的研究也最为完善,已经建立了数万种有机化合物的标准谱图库可供检索。其缺点在于不适用于难挥发和热稳定性差的样品。

2. 化学电离(CI)

引入一定压力的反应气进入离子化室,反应气在具有一定能量的电子流的作用下电离或者裂解。生成的离子和反应气分子进一步反应或与样品分子发生离子 分子反应,通过质子交换使样品分子电离。常用的反应气有甲烷,异丁烷和氨气。化学电离通常得到准分子离子,如果样品分子的质子亲和势大于反应气的质子亲和势,则生成[M+H]+,反之则生成[M-H]+。根据反应气压力不同,化学电离源分为大气压、中气压(0.1~10mmHg)和低气压(1 0-6mmHg)三种。大气压化学电离源适合于色谱和质谱联用,检测灵敏度较一般的化学电离源要高2~3个数量级,低气压化学电离源可以在较低的温度下分析难挥发的样品,并能使用难挥发的反应试剂,但是只能用于傅里叶变换质谱仪。

3. 快原子轰击(FAB)

将样品分散于基质(常用甘油等高沸点溶剂)制成溶液,涂布于金属靶上送入FAB离子源中。将经强电场加速后的惰性气体中性原子束(如氙)对准靶上样品轰击。基质中存在的缔合离子及经快原子轰击产生的样品离子一起被溅射进入气相,并在电场作用下进入质量分析器。如用惰性气体离子束(如铯或氩)来取代中性原子束进行轰击,所得质谱称为液相二次离子质谱(LSIMS)。

此法优点在于离子化能力强,可用于强极性、挥发性低、热稳定性差和相对分子质量大的样品及EI和CI难于得到有意义的质谱的样品。FAB比EI容易得到比较强的分子离子或准分子离子;不同于CI的一个优势在于其所得质谱有较多的碎片离子峰信息,有助于结构解析。缺点是对非极性样品灵敏度下降,而且基质在低质量数区(400以下)产生较多干扰峰。F AB是一种表面分析技术,需注意优化表面状况的样品处理过程。样品分子与碱金属离子加

合,如[M+Na]和[M+K],有助于形成离子。这种现象有助于生物分子的离子化。因此,使用氯化钠溶液对样品表面进行处理有助于提高加合离子的产率。在分析过程中加热样品也有助于提高产率。

在FAB离子化过程中,可同时生成正负离子,这两种离子都可以用质谱进行分析。样品分子如带有强电子捕获结构,特别是带有卤原子,可以产生大量的负离子。负离子质谱已成功用于农药残留物的分析。

4. 场电离(field ionization,FI)和场解吸(field desorption,FD)

FI离子源由距离很近的阳极和阴极组成,两极间加上高电压后,阳极附近产生高达10+7~10+8V/cm的强电场。接近阳极的气态样品分子产生电离形成正分子离子,然后加速进入质量分析器。对于液体样品(固体样品先溶于溶剂)可用FD来实现离子化。将金属丝浸入样品液,待溶剂挥发后把金属丝作为发射体送入离子源,通过弱电流提供样品解吸附所需能量,样品分子即向高场强的发射区扩散并实现离子化。FD适用于难气化,热稳定性差的化合物。FI和FD均易得到分子离子峰。

5. 大气压电离源(API)

API是液相色谱/质谱联用仪最常用的离子化方式。常见的大气压电离源有三种:大气压电喷雾(APESI),大气压化学电离(APCI)和大气压光电离(APPI)。电喷雾离子化是从去除溶剂后的带电液滴形成离子的过程,适用于容易在溶液中形成离子的样品或极性化合物。因具有多电荷能力,所以其分析的分子量范围很大,既可用于小分子分析,又可用于多肽、蛋白质和寡聚核苷酸分析。APCI是在大气压下利用电晕放电来使气相样品和流动相电离的一种离子化技术,要求样品有一定的挥发性,适用于非极性或低、中等极性的化合物。由于极少形成多电荷离子,分析的分子量范围受到质量分析器质量范围的限制。APPI是用紫外灯取代APCI的电晕放电,利用光化作用将气相中的样品电离的离子化技术,适用于非极性化合物。由于大气压电离源是独立于高真空状态的质量分析器之外的,故不同大气压电离源之间的切换非常方便。

6. 基质辅助激光解吸离子化(MALDI)

将溶于适当基质中的样品涂布于金属靶上,用高强度的紫外或红外脉冲激光照射可实现样品的离子化。此方式主要用于可达100000Da质量的大分子分析,仅限于作为飞行时间分析器的离子源使用。

7. 电感耦合等离子体离子化(ICP)

等离子体是由自由电子、离子和中性原子或分子组成,总体上成电中性的气体,其内部温度高达几千至一万度。样品由载气携带从等离子体焰炬中央穿过,迅速被蒸发电离并通过离子引出接口导入到质量分析器。样品在极高温度下完全蒸发和解离,电离的百分比高,因此几乎对所有元素均有较高的检测灵敏度。由于该条件下化合物分子结构已经被破坏,所以IC P仅适用于元素分析。

三、质量分析器

质量分析器将带电离子根据其质荷比加以分离,用于纪录各种离子的质量数和丰度。质量分析器的两个主要技术参数是所能测定的质荷比的范围(质量范围)和分辨率。

1. 扇形磁分析器

离子源中生成的离子通过扇形磁场和狭缝聚焦形成离子束。离子离开离子源后,进入垂直于其前进方向的磁场。不同质荷比的离子在磁场的作用下,前进方向产生不同的偏转,从而使离子束发散。由于不同质荷比的离子在扇形磁场中有其特有的运动曲率半径,通过改变磁场强度,检测依次通过狭缝出口的离子,从而实现离子的空间分离,形成质谱。

2. 四极杆分析器

因其由四根平行的棒状电极组成而得名。离子束在与棒状电极平行的轴上聚焦,一个直流固定电压(DC)和一个射频电压(RF)作用在棒状电极上,两对电极之间的电位相反。对于给定的直流和射频电压,特定质荷比的离子在轴向稳定运动,其他质荷比的离子则与电极碰撞湮灭。将DC和RF以固定的斜率变化,可以实现质谱扫描功能。四极杆分析器对选择离子分析具有较高的灵敏度。

3. 离子阱分析器

由两个端盖电极和位于它们之间的类似四极杆的环电极构成。端盖电极施加直流电压或接地,环电极施加射频电压(RF),通过施加适当电压就可以形成一个势能阱(离子阱)。根据RF电压的大小,离子阱就可捕获某一质量范围的离子。离子阱可以储存离子,待离子累积到一定数量后,升高环电极上的RF电压,离子按质量从高到低的次序依次离开离子阱,被电子倍增监测器检测。目前离子阱分析器已发展到可以分析质荷比高达数千的离子。离子阱在全扫描模式下仍然具有较高灵敏度,而且单个离子阱通过时间序列的设定就可以实现多级质谱(MSn)的功能。

4. 飞行时间分析器

具有相同动能,不同质量的离子,因其飞行速度不同而分离。如果固定离子飞行距离,则不同质量离子的飞行时间不同,质量小的离子飞行时间短而首先到达检测器。各种离子的飞行时间与质荷比的平方根成正比。离子以离散包的形式引入质谱仪,这样可以统一飞行的起点,依次测量飞行时间。离子包通过一个脉冲或者一个栅系统连续产生,但只在一特定的时间引入飞行管。新发展的飞行时间分析器具有大的质量分析范围和较高的质量分辨率,尤其适合蛋白等生物大分子分析。

5. 傅里叶变换分析器

在一定强度的磁场中,离子做圆周运动,离子运行轨道受共振变换电场限制。当变换电场频率和回旋频率相同时,离子稳定加速,运动轨道半径越来越大,动能也越来越大。当电场消失时,沿轨道飞行的离子在电极上产生交变电流。对信号频率进行分析可得出离子质量。将时间与相应的频率谱利用计算机经过傅里叶变换形成质谱。其优点为分辨率很高,质荷比可以精确到千分之一道尔顿。

四、串联质谱及联用技术

1. 串联质谱

两个或更多的质谱连接在一起,称为串联质谱。最简单的串联质谱(MS/MS)由两个质谱串联而成,其中第一个质量分析器(MS1)将离子预分离或加能量修饰,由第二级质量分析器(MS2)分析结果。最常见的串联质谱为三级四极杆串联质谱。第一级和第三级四极杆分析器分别为MS1和MS2,第二级四极杆分析器所起作用是将从MS1得到的各个峰进行轰击,实现母离子碎裂后进入MS2再行分析。现在出现了多种质量分析器组成的串联质谱,如四极杆-飞行时间串联质谱(Q-TOF)和飞行时间-飞行时间(TOF-TOF)串联质谱等,大大扩展了应用范围。离子阱和傅里叶变换分析器可在不同时间顺序实现时间序列多级质谱扫描功能。

MS/MS最基本的功能包括能说明MS1中的母离子和MS2中的子离子间的联系。根据MS 1和MS2的扫描模式,如子离子扫描、母离子扫描和中性碎片丢失扫描,可以查明不同质量数离子间的关系。母离子的碎裂可以通过以下方式实现:碰撞诱导解离,表面诱导解离和激光诱导解离。不用激发即可解离则称为亚稳态分解。

MS/MS在混合物分析中有很多优势。在质谱与气相色谱或液相色谱联用时,即使色谱未能

将物质完全分离,也可以进行鉴定。MS/MS可从样品中选择母离子进行分析,而不受其他物质干扰。

MS/MS在药物领域有很多应用。子离子扫描可获得药物主要成分,杂质和其他物质的母离子的定性信息,有助于未知物的鉴别,也可用于肽和蛋白质氨基酸序列的鉴别。

在药物代谢动力学研究中,对生物复杂基质中低浓度样品进行定量分析,可用多反应监测模式(multiple reaction monitoring,MRM)消除干扰。如分析药物中某特定离子,而来自基质中其他化合物的信号可能会掩盖检测信号,用MS1/MS2对特定离子的碎片进行选择监测可以消除干扰。MRM也可同时定量分析多个化合物。在药物代谢研究中,为发现与代谢前物质具有相同结构特征的分子,使用中性碎片丢失扫描能找到所有丢失同种功能团的离子,如羧酸丢失中性二氧化碳。如果丢失的碎片是离子形式,则母离子扫描能找到所有丢失这种碎片的离子。

2. 联用技术

色谱可作为质谱的样品导入装置,并对样品进行初步分离纯化,因此色谱/质谱联用技术可对复杂体系进行分离分析。因为色谱可得到化合物的保留时间,质谱可给出化合物的分子量和结构信息,故对复杂体系或混合物中化合物的鉴别和测定非常有效。在这些联用技术中,芯片/质谱联用(Chip/MS)显示了良好前景,但目前尚不成熟,而气相色谱/质谱联用和液相色谱/质谱联用等已经广泛用于药物分析。

(1)气相色谱/质谱联用(GC/MS)

气相色谱的流出物已经是气相状态,可直接导入质谱。由于气相色谱与质谱的工作压力相差几个数量级,开始联用时在它们之间使用了各种气体分离器以解决工作压力的差异。随着毛细管气相色谱的应用和高速真空泵的使用,现在气相色谱流出物已可直接导入质谱。

(2)液相色谱/质谱联用(HPLC/MS)

液相色谱/质谱联用的接口前已论及,主要用于分析GC/MS不能分析,或热稳定性差,强极性和高分子量的物质,如生物样品(药物与其代谢产物)和生物大分子(肽、蛋白、核酸和多糖)。

(3)毛细管电泳/质谱联用(CE/MS)和芯片/质谱联用(Chip/MS)

毛细管电泳(CE)适用于分离分析极微量样品(nl体积)和特定用途(如手性对映体分离等)。CE流出物可直接导入质谱,或加入辅助流动相以达到和质谱仪相匹配。微流控芯片技术是近年来发展迅速,可实现分离、过滤、衍生等多种实验室技术于一块芯片上的微型化技术,具有高通量、微型化等优点,目前也已实现芯片和质谱联用,但尚未商品化。

(4)超临界流体色谱/质谱联用(SFC/MS)

常用超临界流体二氧化碳作流动相的SFC适用于小极性和中等极性物质的分离分析,通过色谱柱和离子源之间的分离器可实现SFC和MS联用。

(5)等离子体发射光谱/质谱联用(ICP/MS)

由ICP作为离子源和MS实现联用,主要用于元素分析和元素形态分析。

五、数据处理和应用

检测器通常为光电倍增器或电子倍增器,所采集的信号经放大并转化为数字信号,计算机进行处理后得到质谱图。质谱离子的多少用丰度表示(abundance)表示,即具有某质荷比离子的数量。由于某个具体离子的“数量”无法测定,故一般用相对丰度表示其强度,即最强的峰叫基峰(base peak),其他离子的丰度用相对于基峰的百分数表示。在质谱仪测定的质量范围内,由离子的质荷比和其相对丰度构成质谱图。在LC/MS和GC/MS中,常用各分析物质的色谱保留时间和由质谱得到其离子的相对强度组成色谱总离子流图。也可确定某固

定的质荷比,对整个色谱流出物进行选择离子检测(selected ion monitoring,SIM),得到选择离子流图。质谱仪分离离子的能力称为分辨率,通常定义为高度相同的相邻两峰,当两峰的峰谷高度为峰高的10%时,两峰质量的平均值与它们的质量差的比值。对于低、中、高分辨率的质谱,分别是指其分辨率在100~2000、2000~10000和10000以上。

质谱在药物领域的主要应用为药物的定性鉴别、定量分析和结构解析。

如果一个中性分子丢失或得到一个电子,则分子离子的质荷比与该分子质量数相同。使用高分辨率质谱可得到离子的精确质量数,然后计算出该化合物的分子式,或者用参照物作峰匹配可以确证分子量和分子式。分子离子的各种化学键发生断裂后形成碎片离子,由此可推断其裂解方式,得到相应的结构信息。

质谱用于定量分析,其选择性、精度和准确度较高。化合物通过直接进样或利用气相色谱和液相色谱分离纯化后再导入质谱。质谱定量分析用外标法或内标法,后者精度高于前者。定量分析中的内标可选用类似结构物质或同位素物质。前者成本低,但精度和准确度以使用同位素物质为高。使用同位素物质为内标时,要求在进样、分离和离子化过程中不会丢失同位素物质。在使用FAB质谱和LC/MS(热喷雾和电喷雾)进行定量分析时,一般都需要用稳定的同位素内标。分析物和内标离子的相对丰度采用选择离子监测(只监测分析物和内标的特定离子)的方式测定。选择离子监测相对全范围扫描而言,由于离子流积分时间长而增加了选择性和灵敏度。利用分析物和内标的色谱峰面积或峰高比得出校正曲线,然后计算样品中分析物的色谱峰面积或它的量。

解析未知样的质谱图,大致按以下程序进行。

(一)解析分子离子区

(1) 标出各峰的质荷比数,尤其注意高质荷比区的峰。

(2) 识别分子离子峰。首先在高质荷比区假定分子离子峰,判断该假定分子离子峰与相邻碎片离子峰关系是否合理,然后判断其是否符合氮律。若二者均相符,可认为是分子离子峰。

(3) 分析同位素峰簇的相对强度比及峰与峰间的Dm值,判断化合物是否含有C1、Br、S、Si等元素及F、P、I等无同位素的元素。

(4) 推导分子式,计算不饱和度。由高分辨质谱仪测得的精确分子量或由同位素峰簇的相对强度计算分子式。若二者均难以实现时,则由分子离子峰丢失的碎片及主要碎片离子推导,或与其它方法配合。

(5) 由分子离子峰的相对强度了解分子结构的信息。分子离子峰的相对强度由分子的结构所决定,结构稳定性大,相对强度就大。对于分子量约200的化合物,若分子离子峰为基峰或强蜂,谱图中碎片离子较少、表明该化合物是高稳定性分子,可能为芳烃或稠环化合物。例如:萘分子离子峰m/z 128为基峰,蒽醌分子离子峰m/z 208也是基峰。

分子离子峰弱或不出现,化合物可能为多支链烃类、醇类、酸类等。

(二)、解析碎片离子

(1) 由特征离子峰及丢失的中性碎片了解可能的结构信息。

若质谱图中出现系列CnH2n+1峰,则化合物可能含长链烷基。若出现或部分出现m/z 7 7,66,65,51,40,39等弱的碎片离子蜂,表明化合物含有苯基。若m/z 91或105

为基峰或强峰,表明化合物含有苄基或苯甲酰基。若质谱图中基峰或强峰出现在质荷比的中部,而其它碎片离子峰少,则化合物可能由两部分结构较稳定,其间由容易断裂的弱键相连。

(2) 综合分析以上得到的全部信息,结合分子式及不饱和度,提出化合物的可能结构。

(3) 分析所推导的可能结构的裂解机理,看其是否与质谱图相符,确定其结构,并进一步解释质谱,或与标准谱图比较,或与其它谱(1H NMR、13C NMR、IR)配合,确证结构。

质谱的相关知识

MS - 质谱入门 了解质谱 本入门指南覆盖了现代质谱实践相关的大部分主题,并解答了质谱使用和性能方面的一些常见问题。文中还提供了便于深入学习相关文章的链接。第一部门内容讨论谁使用质谱仪的问题,接着讲述化合物在离子源怎样被电离,以便于质谱仪分析。然后通过对质量准确性和分辨率等重要主题的讨论,或我们怎样区分紧密相关化合物之间的差别,来讲述各种类型的质谱仪。本指南涉及化学、样品制备和数据处理,以及当今最流行的MS应用中一些专业用语的定义。 谁要使用质谱? 在考虑使用质谱仪(MS)之前,应当考虑您分析工作的类型、您预期获得的结果等: - 您分析的是像蛋白质、肽等大分子,还是获取水溶性小分子的数据? - 您在确定的水平寻找目标化合物,还是表征未知样品? - 针对复杂基质,您当前的分离技术抗干扰能力强吗,或者您必须开发新的方法? - 您要求单位质量精度(比如400 MW),或5 ppm的质量精度(比如,400.0125 MW或质量为400时准确度为2 mDa)? - 您必须每天处理几百个样品?上千个样品?上万个样品?Who Uses MS?

图1:表征被测物特征的能力随质谱性能的增加而增强。 化学、生物化学和物理学领域的各学科和分支学科的研究人员和专业技术人员通常会用到质谱分析。医药工业领域的工作人员在进行药物发现和药物开发时需要利用MS的特异性、动态范围及其灵敏度,区分复杂基质中紧密相关的代谢物,从而鉴定并量化代谢物。尤其是在药物的开发过程中,药物需要进行鉴定、纯化,确定早期的药代动力学,MS已经证实是不可或缺的工具。生物化学家扩展了MS的使用领域,将其应用到蛋白、肽和寡核苷酸的分析中。使用质谱仪,生物化学家们能够监测酶的反应,确定氨基酸序列,并通过包含有蛋白裂解片段衍生物样品数据库鉴别大分子蛋白。生物化学家通过氢-氘交换在生理条件下形成重要的蛋白-配体的复合物,监测蛋白质的折叠。临床化学家在药物检测和新生儿筛查中也应用MS,取代结果不确定的免疫分析。食品安全和环境研究人员也是这样。他们跟行业中相关的企业工作人员一样,也使用MS,比如:PAH和PCB分析,水质量分析,及食品农药残留分析。确定油组成是一项复杂且昂贵的工作,这刺激了早期质谱仪的发展,并不断推动该技术的继续创新。现今,MS的专业人员可以在各种质谱仪、一系列完善可靠的电离技术中进行选择。 什么是质谱?质谱是怎样工作的?

质谱基础知识介绍(英文原版)

An Introduction to Mass Spectrometry by Scott E. Van Bramer Widener University Department of Chemistry One University Place Chester, PA 19013 svanbram@https://www.doczj.com/doc/fa17516592.html, https://www.doczj.com/doc/fa17516592.html,/~svanbram revised: September 2, 1998 ? Copyright 1997

TABLE OF CONTENTS INTRODUCTION (4) SAMPLE INTRODUCTION (5) Direct Vapor Inlet (5) Gas Chromatography (5) Liquid Chromatography (6) Direct Insertion Probe (6) Direct Ionization of Sample (6) IONIZATION TECHNIQUES (6) Electron Ionization (7) Chemical Ionization (9) Fast Atom Bombardment and Secondary Ion Mass Spectrometry (10) Atmospheric Pressure Ionization and Electrospray Ionization (11) Matrix Assisted Laser Desorption/Ionization (13) Other Ionization Methods (13) Self-Test #1 (14) MASS ANALYZERS (14) Quadrupole (15) Magnetic Sector (17) Electric Sector/Double Focusing Mass Spectrometers (18) Time-of-Flight (19) Quadrupole Ion Trap (21) Ion Cyclotron Resonance (22) Self-Test #2 (23) DETECTORS (23) VACUUM SYSTEM (24) DATA SYSTEM (24) INTERPRETATION (24) Molecular Ion (25) Fragmentation (26) Isotope Abundance (31) Exact Mass (33) ACKNOWLEDGMENTS (34) END OF PAPER QUESTIONS (35)

有机质谱解析

有机质谱解析 第一章导论 第一节引言 质谱,即质量的谱图,物质的分子在高真空下,经物理作用或化学反应等途径形成带电粒子,某些带电粒了可进一步断裂。如用电子轰击有机化合物(M),使其产生离 子的过程如下: 每一离子的质量与所带电荷的比称为质荷比(m/z ,曾用m/e)。不同质荷比的离子经质量分离器一一分离后,由检测器测定每一离子的质荷比及相对强度,由此得出的谱图称为质谱 质谱分析中常用术语和缩写式如下: 游离基阳离子,奇电子离子(例如CH4) (全箭头) 电子对转移 钩)单个电子转移 α断裂αY ;与奇电子原子邻接原子的键断裂(不是它们间 的键断裂) “A”元素只有一种同位素的元素(氢也归入“A”元素)。 “A+1”元素某种元素,它只含有比最高丰度同位素高1amu 的同位素。 “A+2”元素某种元素,它含有比最高丰度同位素高2 amu的同位素。 A峰元素组成只含有最高丰度同位素的质谱峰。 A+1峰比A峰高一个质量单位的峰。 分子离子(M)失去一个电荷形成的离子,其质荷比相当于该分子的分子量。 碎片离子:分子或分子离子裂解产生的离子。包括正离子(A+)及游离基离子(A+.)。 同位素离子:元素组成中含有非最高天然丰度同位素的离子。 亚稳离子(m*)离子在质谱仪的无场漂移区中分解而形成的较低质量的离子。 质谱图上反应各离子的质荷比及丰度的峰被称为某离子峰。 基峰:谱图中丰度最高离子的峰 绝对丰度:每一离子的丰度占所有离子丰度总和的百分比,记作%∑。 相对丰度:每一离子与丰度最高离子的丰度百分比。

第二章谱图中的离子 第一节分子离子 分子离子(M+)是质谱图中最有价值的信息,它不但是测定化合物分子量的依据,而且可以推测化合物的分子式,用高分辨质谱可以直接测定化合物的分子式。 一、分子离子的形成 分子失去一个电子后形成分子离子。一般来讲,从分子中失去的电子应该是分子中束缚最弱的电子,如双键或叁键的π电子,杂原子上的非键电子。失去电子的难易顺序为: 杂原子> C = C > C —C > C —H 易难 分子离子的丰度主要取决于其稳定性和分子电离所需要的能量。易失去电子的化合物,如环状化合物,双键化合物等,其分子离子稳定,分子离子峰较强;而长碳链烷烃,支链烷烃等正与此相反。有机化合物在质谱中的分子离子稳定度有如下次序:芳香环> 共轭烯> 烯>环状化合物> 羰基化合物> 醚>酯> 胺> 酸> 醇>高度分支的烃类。

质谱介绍及质谱图的解析(来源小木虫)

质谱介绍及质谱图的解析(来源:小木虫)质谱法是将被测物质离子化,按离子的质荷比分离,测量各种离子谱峰的强度而实现分析目的的一种分析方法。质量是物质的固有特征之一,不同的物质有不同的质量谱——质谱,利用这一性质,可以进行定性分析(包括分子质量和相关结构信息);谱峰强度也与它代表的化合物含量有关,可以用于定量分析。 质谱仪一般由四部分组成:进样系统——按电离方式的需要,将样品送入离子源的适当部位;离子源——用来使样品分子电离生成离子,并使生成的离子会聚成有一定能量和几何形状的离子束;质量分析器——利用电磁场(包括磁场、磁场和电场的组合、高频电场、和高频脉冲电场等)的作用将来自离子源的离子束中不同质荷比的离子按空间位置,时间先后或运动轨道稳定与否等形式进行分离;检测器——用来接受、检测和记录被分离后的离子信号。一般情况下,进样系统将待测物在不破坏系统真空的情况下导入离子源(10-6~10-8mmHg),离子化后由质量分析器分离再检测;计算机系统对仪器进行控制、采集和处理数据,并可将质谱图与数据库中的谱图进行比较。 一、进样系统和接口技术 将样品导入质谱仪可分为直接进样和通过接口两种方式实现。 1. 直接进样 在室温和常压下,气态或液态样品可通过一个可调喷口装置以中性流的形式导入离子源。吸附在固体上或溶解在液体中的挥发性物质可通过顶空分析器进行富集,利用吸附柱捕集,再采用程序升温的方式使之解吸,经毛细管导入质谱仪。 对于固体样品,常用进样杆直接导入。将样品置于进样杆顶部的小坩埚中,通过在离子源附近的真空环境中加热的方式导入样品,或者可通过在离子化室中将样品从一可迅速加热的金属丝上解吸或者使用激光辅助解吸的方式进行。这种方法可与电子轰击电离、化学电离以及场电离结合,适用于热稳定性差或者难挥发物的分析。 目前质谱进样系统发展较快的是多种液相色谱/质谱联用的接口技术,用以将色谱流出物导入质谱,经离子化后供质谱分析。主要技术包括各种喷雾技术(电喷雾,热喷雾和离子喷雾);传送装置(粒子束)和粒子诱导解吸(快原子轰击)等。

液相色谱串联质谱的小知识

一、开机 water 2695/micromass zq4000: 开机步骤 1. 分别打开质谱、液相色谱和计算机电源,此时质谱主机内置的CPU会通过网线与计算机主机建立通讯联系,这个时间大约需要1至2分钟。 2. 等液相色谱通过自检后,进入Idle状态,依照液相色谱操作程序,依次进行操作。(具体根据液相色谱不同型号来执行,下面以2695为例)。 a.打开脱气机(Degasser On)。 b.湿灌注(Wet Prime)。 c.Purge Injector。 d.平衡色谱柱。 3.双击桌面上的MassLynx 4.0图标进入质谱软件。 4.检查机械泵的油的状态(每星期),如果发现浑浊、缺油等状况,或者已经累积运行超过3000小时,请及时更换机械泵油。 5.点击质谱调谐图标(MS T une)进入质谱调谐窗口。 6.选择菜单“Options –Pump”,这时机械泵将开始工作,同时分子涡轮泵会开始抽真空。几分钟后,ZQ就会达到真空要求,ZQ前面板右上角的状态灯“Vacuum”将变绿。 7.点击真空状态图标,检查真空规的状态,以确认真空达到要求。 8. 确认氮气气源输出已经打开,气体输出压力为90 psi。 9.设置源温度(Source T emp)到目标温度。 关机 1.点击质谱调谐图标进入调谐窗口。 2.点击Standby 让MS 进入待机状态时,这时状态灯会由绿变红,这一过程是关质谱高电压的过程。 3.停止液相色谱流速,如果还需要冲洗色谱柱,可以将液相色谱管路从质谱移开到废液瓶。4.等脱溶剂气温度(ESI)或APCI探头温度降到常温,点击气体图标关闭氮气。 5.逆时针方向拧开机械泵上的Gas Ballast 阀,运行20分钟后关闭(镇气)。 a) 对于ESI源,至少每星期做一次。 b) 对于APCI源,每天做一次。 6.再次确认机械泵的Ballast阀是否已经关闭。 7.选择Option / Vent,这时质谱开始泄真空,ZQ 前面板的状态灯“Vacuum”开始闪烁,几分钟后机械泵会停止运行,这时可以关闭质谱电源。 FINNIGEN DECA 开关机及校正流程—— 1开机前准备事项 (1)确保质谱总电源开关(白色开关)及主板电源开关(黑色开关)处于关闭状态(O); (2)检查真空泵油液面,确保泵内油页面处于标定的上下两线之间; (3)查看离子源洁净程度,ESI源查看喷口是否有固体析出,毛细管口是否完好;APCI喷口是否有积液; (4)气体压力,打开高纯氮气钢瓶总阀,调节出口压力调至0.65MPa,打开高纯氦气钢瓶总阀,调节出口压力调至0.25Mpa; (5)检查壳气及辅助气接口连接紧固,松开液相管路与离子源的接口; (6)开启动力电源,电压稳定,正常;

质谱知识总结

第四章:质谱法 第一节经验 1)在正离子模式下,样品主要以[M+H]+、[M+Na]+、[M+K]+准分子离子被检测;在负离子模式下,样品则大多以[M-H]-、[M+Cl]-准分子离子被检测。 2)正离子模式下,样品还会出现M-1(M-H), M-15(M-CH3), M-18(M-H2O), M-20(M-HF), M-31(M-OCH3)等的峰。分子离子峰应具有合理的质量丢失.也即在比分子离子质量差在4-13,21-26,37-,50-53,65,66 是不可能的也是不合理的,否则,所判断的质量数最大的峰就不是分子离子峰,.因为一个有机化合物分子不可能失去4~13个氢而不断键.如果断键,失去的最小碎片应为CH3,它的质量是15个质量单位. 3)分子离子峰应为奇电子离子,它的质量数应符合氮规则:在有机化合物中,凡含有偶数氮原子或不含氮原子的,相对分子质量一定为偶数,反之,凡今吸奇数氮原子的,相对分子质量一定是奇数,这就是氮规则。运用氮规则将有利于分子离子峰的判断和分子式的推定,经元素分析确定某化合物的元素组成后,若最高质量的离子的质量与氮规则不符,则该离子一定不是分子离子。 如果某离子峰完全符合上述3项判断原则,那么这个离子峰可能是分子离子峰;如果3项原则中有一项不符合,这个离子峰就肯定不是分子离子峰.应该特别注意的是,有些化合物容易出现M-1峰或M+1峰。

基峰

第二节: 基本原理 2.1基本原理 质谱是唯一可以确定分子式的方法。而分子式对推测结构是至关重要的。质谱法的灵敏度远远超过其它方法,测试样品的用量在不断降低,而且其分析速度快,还可同具有分离功能的色谱联用。 具有一定压力的气态有机分子,在离子源中通过一定能量(70ev)的电子轰击或离子分子反应等离子化方式,使样品分子失去一个电子产生正离子, 继而还可裂解为一系列的碎片离子,然后根据这些离子的质荷比(m/z e)的不同,用磁场或磁场与电场等电磁方法将这些正离子进行分离和鉴定。由此可见质谱最简单形式的三项基本功能是:

质谱分析方法要点解析

质谱分析方法解析 质谱仪种类很多,不同类型的质谱仪主要差别在于离子源。离子源的不同决定了对被测样品的不同要求,同时,所得信息也不同。质谱仪的分辨率同样十分重要,高分辨质谱仪可给出化合物的组成式,对于未知物定性至关重要。因此,在进行质谱分析前,要根据样品状况和分析要求选择合适的质谱仪。 目前,有机质谱仪主要有两大类: 气相色谱-质谱联用仪与液相色谱-质谱联用仪,现就这两类仪器的分析方法叙述如下: GC-MS分析条件的选择 在GC-MS分析中,色谱的分离与质谱数据的采集同时进行,为了使每个组分都得到分离和鉴定,必须设备合适的色谱和质谱分析条件: 色谱条件包括色谱柱类型(填充柱或毛细管柱),固定液种类,汽化温度,载气流量,分流比,温升程序等。 设置原则是: 一般情况下均使用毛细管柱,极性样品使用极性毛细管柱,非极性样品采用非极性毛细管柱,未知样品可先用中等极性毛细管柱,试用后再调整。当然,如果有文献可以参考,就采用文

献所用条件。 质谱条件包括: 电离电压,电子电流,扫描速度,质量范围,这些都要根据样品情况进行设定。为了保护灯绿和倍增器,在设定质谱条件时,还要设置溶剂去除时间,使溶剂峰通过离子源之后再打开灯绿和倍增器。在所有的条件确定之后,将样品用微量注射器注入进样口,同时,启动色谱与质谱,进行GC-MS分析。 GC-MS数据采集 有机混合物样品用微量注射器由色谱仪进样口注入,经色谱柱分离后进入质谱仪离子原在离子源被电离成离子。离子经质量分析器,检测器之后即成为质谱仪信号并输入计算机。样品由色谱柱不断流入离子源,离子由离子源不断进入分析器并不断得到质谱,只要没定好分析器扫描的质量范围和扫描时间,计算机就可以采集到一个个的质谱。如果没有样品进入离子源,计算机采集到的质谱各离子强度均为0。当有样品过入离子源时,计算机就采集到具有一定离子强度的质谱。并且计算机可以自动将每个质谱的所有离子强度相加。显示出总离子强度,总离子强度随时间变化的曲线就是总离子色谱图,总离子色谱图的形状和普通的色谱图是相一致的,它可以认为是是用质谱作为检测器得到的色谱图。

质谱相关知识

液相色谱-质谱联用(lc/ms)的原理及应用 液相色谱—质谱联用的原理及应用 简介 色谱质谱的在线联用将色谱的分离能力与质谱的定性功能结合起来,实现对复杂混合物更准确的定量和定性分析。而且也简化了样品的前 处理过程,使样品分析更简便。 色谱质谱联用包括气相色谱质谱联用(GC-MS)和液相色谱质谱联用(LC-MS),液质联用与气质联用互为补充,分析不同性质的化合物。 液质联用与气质联用的区别: 气质联用仪(GC-MS)是最早商品化的联用仪器,适宜分析小分子、易挥发、热稳定、能气化的化合物;用电子轰击方式(EI)得到的谱图 可与标准谱库对比。 液质联用(LC-MS)主要可解决如下几方面的问题:不挥发性化合物分析测定;极性化合物的分析测定;热不稳定化合物的分析测定;大分子量化合物(包括蛋白、多肽、多聚物等)的分析测定;没有商品化的谱库可对比查询,只能自己建库或自己解析谱图。

现代有机和生物质谱进展 在20世纪80及90年代,质谱法经历了两次飞跃。在此之前,质谱法通常只能测定分子量500Da以下的小分子化合物。20世纪70年代,出现了场解吸(FD)离子化技术,能够测定分子量高达1500~2000Da 的非挥发性化合物,但重复性差。20世纪80年代初发明了快原子质谱法(FAB-MS),能够分析分子量达数千的多肽。 随着生命科学的发展,欲分析的样品更加复杂,分子量范围也更大,因此,电喷雾离子化质谱法(ESI-MS)和基质辅助激光解吸离子化质 谱法(MALDI-MS)应运而生。 目前的有机质谱和生物质谱仪,除了GC-MS的EI和CI源,离子化方式有大气压电离(API)(包括大气压电喷雾电离ESI、大气压化学电离APCI、大气压光电离APPI)与基质辅助激光解吸电离。前者常采用四极杆或离子阱质量分析器,统称API-MS。后者常用飞行时间作为质量分析器,所构成的仪器称为基质辅助激光解吸电离飞行时间质谱仪(MALDI-TOF-MS)。API-MS的特点是可以和液相色谱、毛细管电泳等分离手段联用,扩展了应用范围,包括药物代谢、临床和法医学、环境分析、食品检验、组合化学、有机化学的应用等;

质谱相关知识

质谱 质谱定义 质谱分析法是通过对被测样品离子的质荷比的测定来进行分析的一种分析方法。被分析的样品首先要离子化,然后利用不同离子在电场或磁场的运动行为的不同,把离子按质荷比(m/z)分开而得到质谱,通过样品的质谱和相关信息,可以得到样品的定性定量结果。 发展历史 从J.J. Thomson制成第一台质谱仪,到现在已有近90年了,早期的质谱仪主要是用来进行同位素测定和无机元素分析,二十世纪四十年代以后开始用于有机物分析,六十年代出现了气相色谱-质谱联用仪,使质谱仪的应用领域大大扩展,开始成为有机物分析的重要仪器。计算机的应用又使质谱分析法发生了飞跃变化,使其技术更加成熟,使用更加方便。八十年代以后又出现了一些新的质谱技术,如快原子轰击电离子源,基质辅助激光解吸电离源,电喷雾电离源,大气压化学电离源,以及随之而来的比较成熟的液相色谱-质谱联用仪,感应耦合等离子体质谱仪,富立叶变换质谱仪等。这些新的电离技术和新的质谱仪使质谱分析又取得了长足进展。目前质谱分析法已广泛地应用于化学、化工、材料、环境、地质、能源、药物、刑侦、生命科学、运动医学等各个领域。 赛默飞世尔科技,在08年9月23日召开的新闻发布会上隆重宣布,全球第一台TSQ Vantage三重四极杆液质联用仪已在药明康德新药开发有限公司中国工厂成功安装。利用稳定的新型离子源、第二代离子光学系统和双曲面四级杆,Thermo Scientific TSQ Vantage?质谱提供了比市场上其它同类产品高出10倍的灵敏度和最低的化学噪音。同时,对于小分子、生物分子和多肽的定量,具有更好的重现性和精密度。 质谱种类 质谱仪种类非常多,工作原理和应用范围也有很大的不同。从应用角度,质谱仪可以分为下面几类: 有机质谱仪:由于应用特点不同又分为: ①气相色谱-质谱联用仪(GC-MS)

蛋白质质谱分析

蛋白质质谱分析研究进展作者:汪福源蛋白质质谱分析研究进展摘要:随着科学的不断发展,运用质谱法进行蛋白质的分析日益增多,本文简要综述了肽和蛋白质等生物大分子质谱分析的特点、方法及蛋白质质谱分析的原理、方式和应用,并对其发展前景作出展望。关键词:蛋白质,质谱分析,应用前言:蛋白质是生物体中含量最高,功能最重要的生物大分子,存在于所有生物细胞,约占细胞干质量的50%以上,作为生命的物质基础之一,蛋白质在催化生命体内各种反应进行、调节代谢、抵御外来物质入侵及控制遗传信息等方面都起着至关重要的作用,因此蛋白质也是生命科学中极为重要的研究对象。关于蛋白质的分析研究,一直是化学家及生物学家极为关注的问题,其研究的内容主要包括分子量测定,氨基酸鉴定,蛋白质序列分析及立体化学分析等。随着生命科学的发展,仪器分析手段的更新,尤其是质谱分析技术的不断成熟,使这一领域的研究发展迅速。自约翰.芬恩(JohnB.Fenn)和田中耕一(Koichi.Tanaka)发明了对生物大分子进行确认和结构分析的方法及发明了对生物大分子的质谱分析法以来,随着生命科学及生物技术的迅速发展,生物质谱目前已成为有机质谱中最活跃、最富生命力的前沿研究领域之一[1]。它的发展强有力地推动了人类基因组计划及其后基因组计划的提前完成和有力实施。质谱法已成为研究生物大分子特别是蛋白质研究的主要支撑技术之一,在对蛋白质结构分析的研究中占据了重要地位[2]。1.质谱分析的特点质谱分析用于蛋白质等生物活性分子的研究具有如下优点:很高的灵敏度能为亚微克级试样提供信息,能最有效地与色谱联用,适用于复杂体系中痕量物质的鉴定或结构测定,同时具有准确性、易操作性、快速性及很好的普适性。2.质谱分析的方法近年来涌现出较成功地用于生物大分子质谱分析的软电离技术主要有下列几种:1)电喷雾电离质谱;2)基质辅助激光解吸电离质谱;3)快原子轰击质谱;4)离子喷雾电离质谱; 5)大气压电离质谱。在这些软电离技术中,以前面三种近年来研究得最多,应用得也最广泛[3]。3.蛋白质的质谱分析蛋自质是一条或多条肽链以特殊方式组合的生物大分子,复杂结构主要包括以肽链为基础的肽链线型序列[称为一级结构]及由肽链卷曲折叠而形成三 维[称为二级,三级或四级]结构。目前质谱主要测定蛋自质一级结构包括分子量、肽链氨基酸排序及多肽或二硫键数目和位置。3.1蛋白质的质谱分析原理以往质谱(MS)仅用于小分子挥发物质的分析,由于新的离子化技术的出现,如介质辅助的激光解析/离子化、电喷雾离子化,各种新的质谱技术开始用于生物大分子的分析。其原理是:通过电离源将蛋白质分子转化为气相离子,然后利用质谱分析仪的电场、磁场将具有特定质量与电荷比值(M/Z值)的蛋白质离子分离开来,经过离子检测器收集分离的离子,确定离子的M/Z值,分析鉴定未知蛋白质。3.2蛋白质和肽的序列分析现代研究结果发现越来越多的小肽同蛋白质一样具有生物功能,建立具有特殊、高效的生物功能肽的肽库是现在的研究热点之一。因此需要高效率、高灵敏度的肽和蛋白质序列测定方法支持这些研究的进行。现有的肽和蛋白质测序方法包括N末端序列测定的化学方法Edman法、C末端酶解方法、C末端化学降解法等,这些方法都存在一些缺陷。例如作为肽和蛋白质序列测定标准方法的N末端氨基酸苯异硫氰酸酯(phenylisothiocyanate)PITC分析法(即Edman法,又称PTH法),测序速度较慢(50个氨基酸残基/天);样品用量较大(nmol级或几十pmol级);对样品纯度要求很高;对于修饰氨基酸残基往往会错误识别,而对N末端保护的肽链则无法测序[4]。C末端化学降解测序法则由于无法找到PITC这样理想的化学探针,其发展仍面临着很大的困难。在这种背景下,质谱由于很高的灵敏度、准确性、易操作性、快速性及很好的普适性而倍受科学家的广泛注意。在质谱测序中,灵敏度及准确性随分子量增大有明显降低,所以肽的序列分析比蛋白容易许多,许多研究也都是以肽作为分析对象进行的。近年来随着电喷雾电离质谱(electrospray ionisation,ESI)及基质辅助激光解吸质谱(matrix assisted laser

质谱知识总结

第四章:质谱法 第一节经验 1)在正离子模式下,样品主要以[M+H]+、[M+Na]+、[M+K]+准分子离子被检测;在负离子模式下,样品则大多以[M-H]-、[M+Cl]-准分子离子被检测。 2) 正离子模式下,样品还会出现M-1(M-H),M-15(M—CH3), M-18(M-H2O),M—20(M-HF), M-31(M-OCH3)等得峰。分子离子峰应具有合理得质量丢失.也即在比分子离子质量差在4-13,21-26,37—,50-53,65,66 就是不可能得也就是不合理得,否则,所判断得质量数最大得峰就不就是分子离子峰,.因为一个有机化合物分子不可能失去4~13个氢而不断键、如果断键,失去得最小碎片应为CH3,它得质量就是15个质量单位、 3)分子离子峰应为奇电子离子,它得质量数应符合氮规则:在有机化合物中,凡含有偶数氮原子或不含氮原子得,相对分子质量一定为偶数,反之,凡今吸奇数氮原子得,相对分子质量一定就是奇数,这就就是氮规则、运用氮规则将有利于分子离子峰得判断与分子式得推定,经元素分析确定某化合物得元素组成后,若最高质量得离子得质量与氮规则不符,则该离子一定不就是分子离子。 如果某离子峰完全符合上述3项判断原则,那么这个离子峰可能就是分子离子峰;如果3项原则中有一项不符合,这个离子峰就肯定不就是分子离子峰、应该特别注意得就是,有些化合物容易出现M-1峰或M+1峰。 基峰

研究高质量端离子峰, 确定化合物中的取代基 M-15(CH3); M-16(O, NH2 M-17(OH, NH3); M-18(H2O); M-19(F); M-26(C2H2); M-27(HCN, C2H3); M-28(CO, C2H M-29(CHO, C2H5); M-30(NO); M-31(CH2OH, OCH3); M-32(S, CH M-35(Cl); M-42(CH2CO, CH M-43(CH3CO, C3H7); M-44(CO2, CS 15 (。CH3) M-27 第二节:基本原理 2。1基本原理 质谱就是唯一可以确定分子式得方法。而分子式对推测结构就是至关重要得、质谱法得灵敏度远远超过其它方法,测试样品得用量在不断降低,而且其分析速度快,还可同具有分离功能得色谱联用。 具有一定压力得气态有机分子,在离子源中通过一定能量(70ev)得电子轰击或离子分子反应等离子化方式,使样品分子失去一个电子产生正离子, 继而还可裂解为一系列得碎片离子,然后根据这些离子得质荷比(m/ze)得不同,用磁场或磁场与电场等电磁方法将这些正离子进行分离与鉴定、由此可见质谱最简单形

质谱解析

质谱法是将被测物质离子化,按离子的质荷比分离,测量各种离子谱峰的强度而实现分析目的的一种分析方法。质量是物质的固有特征之一,不同的物质有不同的质量谱——质谱,利用这一性质,可以进行定性分析(包括分子质量和相关结构信息);谱峰强度也与它代表的化合物含量有关,可以用于定量分析。 质谱仪一般由四部分组成: 进样系统——按电离方式的需要,将样品送入离子源的适当部位; 离子源——用来使样品分子电离生成离子,并使生成的离子会聚成有一定能量和几何形状的离子束; 质量分析器——利用电磁场(包括磁场、磁场和电场的组合、高频电场、和高频脉冲电场等)的作用将来自离子源的离子束中不同质荷比的离子按空间位置,时间先后或运动轨道稳定与否等形式进行分离; 检测器——用来接受、检测和记录被分离后的离子信号。一般情况下,进样系统将待测物在不破坏系统真空的情况下导入离子源(10-6~10-8mmHg),离子化后由质量分析器分离再检测;计算机系统对仪器进行控制、采集和处理数据,并可将质谱图与数据库中的谱图进行比较。 一、进样系统和接口技术 将样品导入质谱仪可分为直接进样和通过接口两种方式实现。 1. 直接进样 在室温和常压下,气态或液态样品可通过一个可调喷口装置以中性流的形式导入离子源。吸附在固体上或溶解在液体中的挥发性物质可通过顶空分析器进行富集,利用吸附柱捕集,再采用程序升温的方式使之解吸,经毛细管导入质谱仪。 对于固体样品,常用进样杆直接导入。将样品置于进样杆顶部的小坩埚中,通过在离子源附近的真空环境中加热的方式导入样品,或者可通过在离子化室中将样品从一可迅速加热的金属丝上解吸或者使用激光辅助解吸的方式进行。这种方法可与电子轰击电离、化学电离以及场电离结合,适用于热稳定性差或者难挥发物的分析。 质谱进样系统发展较快的是多种液相色谱/质谱联用的接口技术,用以将色谱流出物导入质谱,经离子化后供质谱分析。主要技术包括各种喷雾技术(电喷雾,热喷雾和离子喷雾);传送装置(粒子束)和粒子诱导解吸(快原子轰击)等。 2. 电喷雾接口 带有样品的色谱流动相通过一个带有数千伏高压的针尖喷口喷出,生成带电液滴,经干燥气除去溶剂后,带电离子通过毛细管或者小孔直接进入质量分析器。传统的电喷雾接口只适用于流动相流速为1~5μl/min的体系,因此电喷雾接口主要适用于微柱液相色谱。同时由于离子可以带多电荷,使得高分子物质的质荷比落入大多数四极杆或磁质量分析器的分析范围(质荷比小于4000),从而可分析分子量高达几十万道尔顿(Da)的物质。 3. 热喷雾接口 存在于挥发性缓冲液流动相(如乙酸铵溶液)中的待测物,由细径管导入离子源,同时加热,溶剂在细径管中除去,待测物进入气相。其中性分子可以通过与气相中的缓冲液离子(如NH4+)反应,以化学电离的方式离子化,再被导入质量分析器。热喷雾接口适用的液体流量可达2ml/min,并适合于含有大量水的流动相,可用于测定各种极性化合物。由于在溶剂挥发时需要利用较高温度加热,因此待测物有可能受热分解。 4. 离子喷雾接口 在电喷雾接口基础上,利用气体辅助进行喷雾,可提高流动相流速达到1ml/min。电喷雾和离子喷雾技术中使用的流动相体系含有的缓冲液必须是挥发性的。

质谱基础知识问答题

一、试论述大气电离质谱概念及几种电离方式。 大气压电离质谱(API-MS):是指在或接近大气压的条件发生的任何离子化,与在高真空下相对而言。API包括电喷雾(API-ES或ESI)、大气压化学电离(APCI)和大气压光致电离(APPI)。电喷雾(API-ES或ESI)是指在电场作用下以外气辅助的形式电离分析物和流动相的大气压离子化技术。大气压化学电离(APCI)是指使用电晕放电针在气相中电离分析物和流动相的大气压离子化技术。大气压光致电离(APPI)是指使用紫外光在气相中电离分析物和流动相的大气压离子化技术。 二、详细论述电喷雾离子化过程 当样品溶液通过接地的针进入喷雾室时,首先是表面带电,然后在绕着针的管子进入喷雾室内的高流速喷雾气产生的强剪切力和喷雾室中的强电场(2KV—6KV)的联合作用下,使推出溶液分裂成带电的液滴。当液滴分散时,一种极性的离子易于被静电场吸引到液滴表面。因此样品同时带电和分散成带电液滴的细雾,故命名为电喷雾。这个时候得到的液滴大约为直径2 m其约含100,000电荷。在这里喷雾气所起的作用是使喷出的液滴很细小,否则较大的液滴不能很快去溶剂来达到离子蒸发所需的场强。 加热的氮气蒸发了液滴中的溶剂,增加了电荷/体积。当这个何质比超过Rayleigh极限(带电液滴能够存在的最大电荷/体积比)时,液滴的库仑排斥力等于其表面张力时,液滴破裂即库仑破裂,产生带电且更易蒸发的子液滴。 当液滴表面离子产生的场的作用力超过超过表面张力(即场强超过分析物在溶液中的溶解能)时,裸露的分析物离子直接从液滴表面射出进入气相。 三、液相色谱—质谱联用仪的优点 1.广适性检测器,MS几乎可检测所有的化合物(用不同的离子离子源,也即用不 同的电离方式),比较容易地解决了分析热不稳定化合物的难题(相对于气相和LC——ELSD)和无紫外吸收的化合物的检测(VWD、DAD)。 2.分离能力强,即使在色谱上没有完全分离开,但通过MS的特征离子质量色 谱图也能分别给出它们各自的色谱图来进行定量,可以给出每一个组分的分子量和结构信息。 3.提供的信息丰富,我们都知道质谱是质量检测器(注意区别于ELSD,在实际 的认识上有误区),尤其是离子阱质谱能通过多级质谱提供进一步的碎片信息:分子离子在高真空下与氦气发生多次碰撞而增加内能,导致分子中某些键断裂形成碎片离子,这种断裂过程叫碰撞诱导解离。形成的碎片还可以进

相关主题
文本预览
相关文档 最新文档