当前位置:文档之家› 五种插值法对比研究---开题报告

五种插值法对比研究---开题报告

五种插值法对比研究---开题报告
五种插值法对比研究---开题报告

五种插值法的对比研究

1. 选题依据

1.1 选题背景

插值法是一种古老的数学方法,插值法历史悠久。据考证,在公元六世纪时, 我国刘焯(zhuo) 已经把等距二次插值法应用于天文计算。十七世纪时,Newton 和 Gregory(格雷格里) 建立了等距节点上的一般插值公式,十八世纪时,Lagrange(拉格朗日) 给出了更一般的非等距节点插值公式。 而它的基本理论是在微积分产生以后逐渐完善的,它的实际应用也日益增多,特别是在计算机工程中。许多库函数的计算实际上归结于对逼近函数的计算。

1.2 研究的目的和意义

插值法是数值分析中最基本的方法之一。 在实际问题中碰到的函数是各种各样的,有的甚至给不出表达式,只提供了一些离散数据,例如,在查对数表时, 要查的数据在表中找不到,就先找出它相邻的数,再从旁边找出它的修正值, 按一定关系把相邻的数加以修正,从而找出要找的数,这种修正关系实际上就是一种插值。 在实际应用中选用不同类型的插值函数,逼近的效果也不同。在数值计算方法中,我们学习过五种基本的插值方法,即Lagrange 插值、Newton 插值、分段线性插值、分段三次Hermite 插值、样条插值函数。所以通过从这五种插值法的基本思想、特征、性质和具体实例入手,探讨五种插值法的优缺点和适用范围,让学习者能够迅速而准确的解决实际问题,掌握插值法的应用。

2. 研究的方法

从具体实例入手并结合Matlab 在科学计算中的优势,通过实验对它们的精度和效率进行比较分析。

3. 论文结构

3.1 论文的总体结构

第一部分 导言

主要介绍选题的背景、目的及意义、研究现状、文献综述等。

第二部分 五种插值法的基本思想、性质及特点

在数值计算方法中,插值法是计算方法的基础,数值微分、数值积分和微分方程数值解都建立在此基础上。

插值问题的提法是:已知f(x)(可能未知或非常复杂函数)在彼此不同的n+1 个实点0x ,1x ,…n x 处的函数值是f(0x ),f(1x ),…,f(n x ),这时我们简单的说f(x)有n+1 个

离散数据对0n i i )}y ,{(x i .要估算f(x)在其它点x 处的函数值,最常见的一种办法就是插

值,即寻找一个相对简单的函数y(x),使其满足下列插值条件:y(i x )=f(i x ),i=0,1,…,n.,并以y(x)作为f(x)的近似值.其中y(x)称为插值函数,f(x)称为被插函数。

多项式插值是最常见的一种函数插值.在一般插值问题中,由插值条件可以唯一确定一个次数不超过n 的插值多项式满足上述条件.从几何上看可以理解为:已知平面上n+1 个不同点,要寻找一条次数不超过n 的多项式曲线通过这些点.插值多项式一般有两种常见的表达形式,一个是拉格朗日(Lagrange )插值多项式,另一个是牛顿(Newton )插值多项式. 且Lagrange 插值公式恒等于Newton 插值公式.

分段线性插值与样条插值可以避免高次插值可能出现的大幅度波动现象,在实际应用中通常采用分段低次插值来提高近似程度,比如可用分段线性插值或分段三次埃尔米特插值来逼近已知函数,但它们的总体光滑性较差.为了克服这一缺点,一种全局化的分段插值方法———三次样条插值成为比较理想的工具.

(1)拉格朗日插值

Lagrange 插值是n 次多项式插值,其成功地利用构造插值基函数的方法解决了求n 次多项式插值函数问题。对Lagrange n 次插值多项式,首先构造n+1个插值点0x 1x ,....,n x 上的n 次插值基函数)(x l i ))...()()...(()

)...()()...(110110n i i i i i i n i i x x x x x x x x x x x x x x x x --------=+-+-(,)...,2,1,0(n i =

有了这n+1个n 次插值基函数,n 次Lagrange 插值多项式就容易写出来了,具体表达式为)

()()(0x l x f x Ln i n i i ∑==。

表1 插值数值表

Lagrange 插值的方法是:对给定的n 个插值节点,0x 1x ,....,n x 及对应的函数值n y y y y ,......,,,210,利用n 次Lagrange 插值多项式,则对插值区间任意的x 的函数值y 可以通过下式Ln (x )来求解。

表(1)中的n 次Lagrange 插值多项式Ln (x )的数学公式为:)

()()(0x l x f x Ln i n i i ∑==。

其中,)(x l i (i=0,1,2,3...,n )是插值基函数,且∏=--=n j j i j i x x x x x l 0)(。

Lagrange 插值多项式的余项为R(x)=)()()!1(1)()()1(x f n x L x f n n ωξ++=

-,其中))()(()(10n x x x x x x x ---=ω。

(2)牛顿插值

Newton 插值也是n 次多项式插值,它提出另一种构造插值多项式的方法,与Lagrange 插值相比,具有承袭性和易于变动节点的特点。

Newton 插值的方法:由表(1)构造的牛顿插值多项式为

],...,,[))...((...],,[))((],[)()()(1010210101000n n x x x f x x x x x x x f x x x x x x f x x x f x N ---++--+-+=用它插值时,首先要计算各阶差商,而各阶差商的计算可归结为一阶差商的逐次计算,一般的

111022010)

,...,,(),,...,,(),...,,(-----=k k k k k n x x x x x f x x x x f x x x f

其余项为:),...,,()()()(10n x x x f x N x f x Rn =-=。

(3)分段线性插值

分段线性插值函数,记为y(x),y(x)具有下列性质:

①y(x) 可以分段表示,在每个小区间],[1i i x x -上,它是线性函数`)(x y i ;

②)(x y i i i f x f ==)(,(i=0,1,2,3...,n ).

③ 在整个区间[a,b]上,y(x) 连续.

作分段线性插值的目的在于克服Lagrange 插值方法可能发生的不收敛性缺点.所谓分段线性插值就是利用每两个相邻插值基点作线性插值,即可得如下分段线性插值函数:

11)()()(+++=i i i i f x l f x l x y ,],[1+∈i i x x x ,i=0,1,...n.其中

11)(++--=i i i i x x x x x l ,

i i i

i x x x x x l --=++11)(. 特点:插值函数序列具有一致收敛性,克服了高次Lagrange 插值方法的缺点,故可通过增加插值基点的方法提高其插值精度. 但存在基点处不光滑、插值精度低的缺点.从几何上看所谓分段线性插值就是通过插值基点用折线段连接起来逼近原曲线,这也是计算机绘制图形的基本原理.

(4)分段三次Hermite 插值

对于函数f(x),常常不仅知道它在一些点的函数值,而且还知道它在这些点的导数值。这时的插值函数P (x ),自然不仅要求在这些点等于f(x)的函数值,而且要求P (x )的导数在这些点也等于f (x )的导数值。这就是埃尔米特插值问题,也称带导数的插值问题。从几何上看,这种插值要寻找的多项式曲线不仅要通过平面上的一直点组,而且在这些点(或者其中一部分)与原曲线“密切”,即它们有相同的斜率。

设已知函数f(x)在插值区间[a,b]上n+1个互异的节点i x ),...,1,0(n i =处的函数值i i f x f =)(及一阶导数值),...,2,1,0()(n i f x f i i ='=',若存在函数H(x)满足条件: ①H(x)是一个次数不超过2n+1次的多项式;

②)()(i i x f x H =,)()(i i x f x H '='),...,1,0(n i =.

则称H(x)为f (x )在n+1个节点

i x 上的埃尔米特插值多项式。 (5)样条插值函数

分段低次插值函数都有一致收敛性, 但光滑性较差; 对于像高速飞机的机翼形线, 船体放样等等型值线往往要求有二阶光滑度, 即有二阶连续导数, 早期工程师制图时, 把富有弹性的细长木条用压铁固定在样点上, 在其他地方让它自由弯曲, 然后画下长条的曲线, 称为样条曲线。 它实际上是由分段三次曲线并接而成, 在连接点即样点上要求二阶连续可导, 从数学上加以概括得到数学样条这一概念。

给定区间[a,b]上n+1个节点b x x x n =<<<=...a 10和这些点上的函数值n i y x f i i ,...,1,0,)(==,若函数s(x)满足:

①s(x)在每个子区间

],[1i i x x -),...,2,1(i n =上是不高于三次的多项式;

s(x),)(),(x s x s '''在[a,b]上连续;

满足插值条件),...,1,0()(n i y x s i i ==,则称s(x)为函数f(x)关于节点10,x x ,...,n x 的三次样条插值函数。

第三部分 五种插值法的对比研究

从具体例题出发,讨论五种插值法的优缺点及适用范围。

拉格朗日插值法的公式结构整齐紧凑, 在理论分析中十分方便, 然而在计算中, 当插值点增加或减少一个时, 所对应的基本多项式就需要全部重新计算, 于是整个公式都会变化, 非常繁琐, 而且当插值点比较多的时候, 拉格朗日插值多项式的次数可能会很高, 因此具有数值不稳定的特点, 也就是说尽管在已知的几个点取到给定的数值, 但在附近却会和“实际上” 的值之间有很大的偏差.

牛顿插值公式是 n 次插值多项式的又一种构造形式, 但它克服了拉格朗日插值多项式的缺点,它的一个明显优点是,每增加一个插值节点, 只要在原牛顿 12插值公式中增添一项便可形成高一次的插值公式。 而且在实际应用中, 经常会遇到插值节点是等距分布的情况,这时,牛顿插值公式可以进一步简化, 得到等距节点的插值公式, 从而能够大大的缩短实际运算的时间。但是这种代数插值, 只要求插值多项式在插值节点处与被插值函数有相同的函数值, 但是这种插值多项式往往还不能全面反映被插值函数的性态,许多实际问题不但要求插值函数与被插值函数在各节点的函数值相同,而且还要求插值多项式在某节点或全部节点上与被插值函数的导数值也相等,甚至要求高阶导数值也相等。 而这时拉格朗日插值与牛顿插值就不满足这种要求了。

埃尔米特插值是我们知道了函数在某些点出的函数值, 而且插值函数在这些点处的导数也和被插函数一致, 所以在几何上, 这种插值函数不仅和被插函数在插值节点处有相同的函数值“过点”, 而且和被插函数在节点处有相同的切线“相切”。 因此, 插值函数和被插函数的贴合程度要比多项式的程度好。 但是埃尔米特插值只有当被插值函数在插值节点处的函数值和导数值已知时才能使用,这在实际问题中是不现实的,因为在一般情况下不可能也没有必要知道函数在插值节点处的导数值。所以是否知道插值函数在节点处的导数值成为能否运用埃尔米特插值的一个重要因素。

分段线性插值:在计算上具有简洁方便的特点. 分段线性插值与 3 次多项式插值函数在每个小区间上相对于原函数都有很强的收敛性(舍入误差影响不 15大), 数值稳定性好且容易在计算机上编程实现等优点。缺点: 分段线性插值在节点处具有不光滑性的缺点(不能保证节点处插值函数的导数连续) , 从而不能满足某些工程技术上的要求. 而 3 次样条插值却具有在节点处光滑的特点。

对三次样条插值函数来说, 当插值节点逐渐加密时, 不但样条插值函数收敛于函数本身, 而且其微商也收敛于函数的微商, 这种性质要比多项式插值优越得多。而且样条函数不一定必须是逐段三次多项式, 也可以逐段是一个简单函数,且连续点保持足够光滑。 第四部分 结语

3.2 主要解决的问题

1.介绍常用的几种插值法;

2.分析各种插值法的优缺点, 以认识它们的联系与区别;

3. 研究插值法在实际问题中的应用。

4. 工作进度计划及目前研究现状

4.1 工作进度计划

2016年11月--2017年1月:

查阅文献资料、收集课题所需的中外文素材;学习理解相关知识和文献;

2017年2月--2017年3月:

进一步收集素材、筛选信息,完成毕业论文写作的初步思想,完成开题报告。

2017年4月—2017年5月上旬:

完成毕业论文初稿,送指导教师审阅。

2017年5月中旬—2017年5月底:

修改、完善初稿。完成论文,准备毕业答辩。

4.2 目前研究现状

2016年12月到2017年3月,大量阅读了相关期刊、书籍、论文等等,获取了不少信息,也对我将要展开的研究课题有了更全面更深入的了解和认识,从中认真选取了我将要阐述的重点,同时也引导我提出自己想要通过这篇论文想大家表达的内容。

2017年3月中旬到2017年4月初,完成了对素材的收集和筛选,将论文中论述的重点和自己想要表达的内容,进行梳理、修正。

参考文献

[1] 张洪波. 插值法应用的实例分析[J]. 华北科技学院学报. 2010(03)

[2] 权双燕,曹阳. 插值法的应用与研究[J]. 科技信息(科学教研). 2007(36)

[3] 赵前进. 关于数值分析中插值法教学的研究[J]. 安徽科技学院学报. 2007(03)

[4] 赵景军,吴勃英. 关于《数值分析》教学的几点探讨[J]. 大学数学. 2005(03)

[5] 李军成. 数值分析中插值法的教学实践研究[J]. 高师理科学刊. 2010(02)

[6] 瞿威. 浅论插值法及其应用[J]. 考试周刊. 2009(42)

[7] 苑金臣. 关于逐次线性插值法和牛顿插值法其过程的等价性问题[J]. 工科数学. 1995(04)

[8] 姜琴,周天宏. 常见的插值法及其应用[J]. 郧阳师范高等专科学校学报. 2006(03)

[9] 王春霖. 牛顿插值法的应用[J]. 武钢技术. 1999(03)

[10] 宋益荣,万冬梅. 四种插值法的特点比较[J]. 商丘职业技术学院学报. 2013(02)

牛顿插值法原理及应用

牛顿插值法 插值法是利用函数f (x)在某区间中若干点的函数值,作出适当的特定函数,在这些点上取已知值,在区间的其他点上用这特定函数的值作为函数f (x)的近似值。如果这特定函数是多项式,就称它为插值多项式。当插值节点增减时全部插值基函数均要随之变化,这在实际计算中很不方便。为了克服这一缺点,提出了牛顿插值。牛顿插值通过求各阶差商,递推得到的一个公式: f(x)=f[x0]+f[x0,x1](x-x0)+f[x0,x1,x2](x-x0)(x-x1)+...f[x0,...xn](x-x0 )...(x-xn-1)+Rn(x)。 插值函数 插值函数的概念及相关性质[1] 定义:设连续函数y-f(x) 在区间[a,b]上有定义,已知在n+1个互异的点 x0,x1,…xn上取值分别为y0,y1,…yn (设a≤ x1≤x2……≤xn≤b)。若在函数类中存在以简单函数P(x) ,使得P(xi)=yi,则称P(x) 为f(x)的插值函数. 称x1,x2,…xn 为插值节点,称[a,b]为插值区间。 定理:n次代数插值问题的解存在且唯一。

牛顿插值法C程序 程序框图#include void main() { float x[11],y[11][11],xx,temp,newton; int i,j,n; printf("Newton插值:\n请输入要运算的值:x="); scanf("%f",&xx); printf("请输入插值的次数(n<11):n="); scanf("%d",&n); printf("请输入%d组值:\n",n+1); for(i=0;i

五种插值法的对比研究毕业论文

题目:五种插值法的对比研究 xxx大学本科生毕业论文开题报告表 论文(设计)类型:A—理论研究;B—应用研究;C—软件设计等;

五种插值法的对比研究 (3) 一插值法的历史背景 (5) 二五种插值法的基本思想 (5) (一)拉格朗日插值 (5) (二)牛顿插值 (6) (三)埃尔米特插值 (7) (四)分段线性插值 (7) (五)样条插值 (8) 三五种插值法的对比研究 (9) 四插值法在matlab中的应用 (15) 五参考文献 (17)

五种插值法的对比研究 摘要:插值法是数值分析中最基本的方法之一。在实际问题中碰到的函数是各种各样的,有的甚至给不出表达式,只提供了一些离散数据,例如,在查对数表时,要查的数据在表中找不到,就先找出它相邻的数,再从旁边找出它的修正值,按一定关系把相邻的数加以修正,从而找出要找的数,这种修正关系实际上就是一种插值。在实际应用中选用不同类型的插值函数,逼近的效果也不同。本文详细介绍了拉格朗日插值、牛顿插值、分段插值、埃尔米特插值、样条插值法,并从五种插值法的基本思想和具体实例入手,探讨了五种插值法的优缺点和适用范围。.通过对五种插值法的对比研究及实际应用的总结,从而使我们在以后的应用中能够更好、更快的解决问题。 关键词:插值法对比实际应用

Abstract: interpolation numerical analysis of one of the most basic method. Function is a wide variety of practical problems encountered, and some even not give expression provides only a number of discrete data, e.g., in the the checker number table, to check the data is not found in the table , first find out the number next to it, from the side to find the correction value, a certain relationship between the adjacent number to be amended, and to find to find the number, this correction relationship is actually an interpolation . Selection of different types of interpolation functions in practical applications, the approximation of the effect is different. This paper describes the Lagrange interpolation, Newton interpolation, piecewise interpolation, Hermite interpolation, spline interpolation, and start from the basic idea of the five interpolation and specific examples to explore the advantages of the five interpolation shortcomings and the scope of application. The comparative study and practical application of the summary by the the five interpolation method of application so that we can better and faster to solve the problem.

常见的插值方法及其原理

常见的插值方法及其原理 这一节无可避免要接触一些数学知识,为了让本文通俗易懂,我们尽量绕开讨厌的公式等。为了进一步的简化难度,我们把讨论从二维图像降到一维上。 首先来看看最简单的‘最临近像素插值’。 A,B是原图上已经有的点,现在我们要知道其中间X位置处的像素值。我们找出X位置和A,B位置之间的距离d1,d2,如图,d2要小于d1,所以我们就认为X处像素值的大小就等于B处像素值的大小。 显然,这种方法是非常苯的,同时会带来明显的失真。在A,B中点处的像素值会突然出现一个跳跃,这就是为什么会出现马赛克和锯齿等明显走样的原因。最临近插值法唯一的优点就是速度快。 图10,最临近法插值原理 接下来是稍微复杂点的‘线性插值’(Linear) 线性插值也很好理解,AB两点的像素值之间,我们认为是直线变化的,要求X点处的值,只需要找到对应位置直线上的一点即可。换句话说,A,B间任意一点的值只跟A,B有关。由于插值的结果是连续的,所以视觉上会比最小临近法要好一些。线性插值速度稍微要慢一点,但是效果要好不少。如果讲究速度,这是个不错的折衷。 图11,线性插值原理

其他插值方法 立方插值,样条插值等等,他们的目的是试图让插值的曲线显得更平滑,为了达到这个目的,他们不得不利用到周围若干范围内的点,这里的数学原理就不再详述了。 图12,高级的插值原理 如图,要求B,C之间X的值,需要利用B,C周围A,B,C,D四个点的像素值,通过某种计算,得到光滑的曲线,从而算出X的值来。计算量显然要比前两种大许多。 好了,以上就是基本知识。所谓两次线性和两次立方实际上就是把刚才的分析拓展到二维空间上,在宽和高方向上作两次插值的意思。在以上的基础上,有的软件还发展了更复杂的改进的插值方式譬如S-SPline, Turbo Photo等。他们的目的是使边缘的表现更完美。

五种插值法的对比研究开题报告

五种插值法的对比研究 1. 选题依据 1.1 选题背景 插值法是一种古老的数学方法,插值法历史悠久。据考证,在公元六世纪时, 我国焯(zhuo) 已经把等距二次插值法应用于天文计算。十七世纪时,Newton 和 Gregory(格雷格里) 建立了等距节点上的一般插值公式,十八世纪时,Lagrange(拉格朗日) 给出了更一般的非等距节点插值公式。 而它的基本理论是在微积分产生以后逐渐完善的,它的实际应用也日益增多,特别是在计算机工程中。许多库函数的计算实际上归结于对逼近函数的计算。 1.2 研究的目的和意义 插值法是数值分析中最基本的方法之一。 在实际问题中碰到的函数是各种各样的,有的甚至给不出表达式,只提供了一些离散数据,例如,在查对数表时, 要查的数据在表中找不到,就先找出它相邻的数,再从旁边找出它的修正值, 按一定关系把相邻的数加以修正,从而找出要找的数,这种修正关系实际上就是一种插值。 在实际应用中选用不同类型的插值函数,逼近的效果也不同。在数值计算方法中,我们学习过五种基本的插值方法,即Lagrange 插值、Newton 插值、分段线性插值、分段三次Hermite 插值、样条插值函数。所以通过从这五种插值法的基本思想、特征、性质和具体实例入手,探讨五种插值法的优缺点和适用围,让学习者能够迅速而准确的解决实际问题,掌握插值法的应用。 2. 研究的方法 从具体实例入手并结合Matlab 在科学计算中的优势,通过实验对它们的精度和效率进行比较分析。 3. 论文结构 3.1 论文的总体结构 第一部分 导言 主要介绍选题的背景、目的及意义、研究现状、文献综述等。 第二部分 五种插值法的基本思想、性质及特点 在数值计算方法中,插值法是计算方法的基础,数值微分、数值积分和微分方程数值解都建立在此基础上。 插值问题的提法是:已知f(x)(可能未知或非常复杂函数)在彼此不同的n+1 个实点0x ,1x ,…n x 处的函数值是f(0x ),f(1x ),…,f(n x ),这时我们简单的说f(x)有n+1 个 离散数据对0n i i )}y ,{(x i .要估算f(x)在其它点x 处的函数值,最常见的一种办法就是插 值,即寻找一个相对简单的函数y(x),使其满足下列插值条件:y(i x )=f(i x ),i=0,1,…,n.,并以y(x)作为f(x)的近似值.其中y(x)称为插值函数,f(x)称为被插函数。

几种常用的插值方法

几种常用的插值方法 数学系 信息与计算科学1班 李平 指导老师:唐振先 摘要:插值在诸如机械加工等工程技术和数据处理等科学研究中有许多直接的应用,在很多领域都要用插值的办法找出表格和中间值,插值还是数值积分微分方程数值解等数值计算的基础。本文归纳了几种常用的插值方法,并简单分析了其各自的优缺点。 关键词:任意阶多项式插值,分段多项式插值。 引言:所谓插值,通俗地说就是在若干以知的函数值之间插入一些未知函数值,而插值函数的类型最简单的选取是代数多项式。用多项式建立插值函数的方法主要用两种:一种是任意阶的插值多项式,它主要有三种基本的插值公式:单项式,拉格朗日和牛顿插值;另一种是分段多项式插值,它有Hermite 和spine 插值和分段线性插值。 一.任意阶多项式插值: 1.用单项式基本插值公式进行多项式插值: 多项式插值是求通过几个已知数据点的那个n-1阶多项式,即P n-1(X)=A 1+A 2X+…A n X n-1,它是一个单项式基本函数X 0,X 1…X n-1的集合来定义多项式,由已知n 个点(X,Y )构成的集合,可以使多项式通过没数据点,并为n 个未知系数Ai 写出n 个方程,这n 个方程组成的方程组的系数矩阵为Vandermonde 矩阵。 虽然这个过程直观易懂,但它都不是建立插值多项式最好的办法,因为Vandermonde 方程组有可能是病态的,这样会导致单项式系数不确定。另外,单项式中的各项可能在大小上有很大的差异,这就导致了多项式计算中的舍入误差。 2.拉格朗日基本插值公式进行插值: 先构造一组插值函数L i (x ) =011011()()()() ()()()() i i n i i i i i i n x x x x x x x x x x x x x x x x -+-+--------L L L L ,其中i=0,… n.容易看出n 次多项式L i (x )满足L i (x )=1,(i=j );L i (x )=0,(i ≠j ),其中

三次样条插值方法的应用

CENTRAL SOUTH UNIVERSITY 数值分析实验报告

三次样条插值方法的应用 一、问题背景 分段低次插值函数往往具有很好的收敛性,计算过程简单,稳定性好,并且易于在在电子计算机上实现,但其光滑性较差,对于像高速飞机的机翼形线船体放样等型值线往往要求具有二阶光滑度,即有二阶连续导数,早期工程师制图时,把富有弹性的细长木条(即所谓的样条)用压铁固定在样点上,在其他地方让他自由弯曲,然后沿木条画下曲线,称为样条曲线。样条曲线实际上是由分段三次曲线并接而成,在连接点即样点上要求二阶导数连续,从数学上加以概括就得到数学样条这一概念。下面我们讨论最常用的三次样条函数及其应用。 二、数学模型 样条函数可以给出光滑的插值曲线(面),因此在数值逼近、常微分方程和偏微分方程的数值解及科学和工程的计算中起着重要的作用。 设区间[]b ,a 上给定有关划分b x x n =<<<= 10x a ,S 为[]b ,a 上满足下面条件的函数。 ● )(b a C S ,2∈; ● S 在每个子区间[]1,+i i x x 上是三次多项式。 则称S 为关于划分的三次样条函数。常用的三次样条函数的边界条件有三种类型: ● Ⅰ型 ()()n n n f x S f x S ''0'',==。 ● Ⅱ型 ()()n n n f x S f x S ''''0'''',==,其特殊情况为()()0''''==n n x S x S 。 ● Ⅲ型 ()() 3,2,1,0,0==j x S x S n j j ,此条件称为周期样条函数。 鉴于Ⅱ型三次样条插值函数在实际应用中的重要地位,在此主要对它进行详细介绍。 三、算法及流程 按照传统的编程方法,可将公式直接转换为MATLAB 可是别的语言即可;另一种是运用矩阵运算,发挥MATLAB 在矩阵运算上的优势。两种方法都可以方便地得到结果。方法二更直观,但计算系数时要特别注意。这里计算的是方法一的程序,采用的是Ⅱ型边界条件,取名为spline2.m 。 Matlab 代码如下: function s=spline2(x0,y0,y21,y2n,x) %s=spline2(x0,y0,y21,y2n,x) %x0,y0 are existed points,x are insert points,y21,y2n are the second

插值法在管理决策中的应用及其Matlab实现

插值法在管理决策中的应用及其Matlab实现 张英俊,孙大宁*,张亚娟 (北方工业大学理学院,北京100144) 摘 要:利用插值曲线,即三次样条插值和立方插值法来比较分析随机网络评审法中两个随机变量之间的相关 性.经分析表明,立方插值不仅是分析相关性的实用曲线工具,而且利用Matlab所构造的函数有足够的光滑性、平顺性,且图像在考察变量的相关性时具有直观性的优点,因此对它的应用研究非常有价值. 关键词:插值 Matlab程序相关性 中图分类号:O29;TB115文献标识码:A文章编号:1674-0874(2008)03-0040-03 收稿日期:2008-01-15 作者简介:张英俊(1982-),女,山西平遥人,在读硕士,研究方向:风险决策;*孙大宁,男,教授,通讯作者. 随机网络评审法是基于随机网络和计算机仿真的一种随机型的定量评估方法,它是以风险评审技术(简称VERT)为基础的,VERT是一种计算机仿真技术,它把网络理论,仿真原理和概率论综合起来,其特点之一就是在各种信息不完全,不充分和不肯定的情况下,对各种工程系统和工程项目的发展计划有关的时间T(周期或工作量),费用C(耗费、成本或投入),功能P(性能、效益或输出等)三种指标来描述,从而描述决策分析对象应达到的目标.一般情况下,在进行风险决策分析时为了有利于模型的建立和使分析计算工作更快更有效,我们需要对网络中各个节点上相应随机参数的频数直方图以及3个参数中任意两者之间的相关性进行分析.在处理我国飞机预研计划这一课题发展起来的 SNSS系统是采用Fortran77语言编写的[1],以卡片形式进行输入输出的,在输出直方图以及进行时间、 费用、效益三者中任两者之间相互关系的计算上不是很直观、很简洁.其实两个随机参数之间的这种函数关系,在数值分析中有许多的方法可以求得,但是哪种方法能更直观、更合乎实际地给出反映这种相关性的平滑曲线呢?本文所选的插值方法能够较好地满足这一要求. 1插值方法的选择及其数学原理 插值是已知某函数在若干离散点上的函数值或者导数信息,通过求解该函数中待定形式的插值函数以及待定系数,使得该函数在给定离散点上满足约束.也即要求通过平面上已知n个点(xi,yi),i= 1,2,…,n作一条光滑的曲线,完成这项工作的方 法有多种,如拉格朗日插值、埃尔米特插值和分段 插值等.实际表明,拉格朗日插值和埃尔米特插值函数对于数据较多且具有随机性的变量相关性分析,做一个高次插值多项式是不理想的,因为它带有近似性,且计算也相当复杂.而分段插值是克服高次插值的Runge现象而提出的,只能保证曲线的连续性,却不能保证曲线的光滑性.但是在生产和科学实验中,对所做的插值曲线既要简单,又要在曲线的连接处比较光滑,即所作的分段插值函数在分段上要求多项式次数低,而在节点上不仅连续,还存在连续的低阶导数,我们把满足这样条件的插值函数,称为样条插值函数,它所对应的曲线称为样条曲线,其节点称为样点,这种插值方法称为样条插值[2]. 2 应用举例 2.1 资料说明 某企业的领导和管理者,得知与其竞争的另一 企业正在研制一种新产品,一旦这种新产品研制成功,将给另一企业带来销售市场上的绝对优势,如 第24卷第3期山西大同大学学报(自然科学版) Vol.24.No.32008年6月 JournalofShanxiDatongUniversity(NaturalScience) Jun.2008

基于GIS的气温插值方法比较研究

基于GIS的气温插值方法比较研究 --以陕西省为例 摘要:随着空间气温信息需求的日益增加,气温的空间插值已被广泛应用而不同的插值方法因不同的地区和研究目的产生不同的效果。采用西安19个国家基本站点1983年的年平均气温数据,应用地信软件ArcGIS中的地统计学模块进行空间降水插值实验,分别采用反距离权重法、样条函数插值法和克里格方法探讨了陕西年均气温的空间分布,分析发现:三种插值方法在不同区域上各有优缺点,在本文研究年均气温分布中,克里格插值法要优于其它方法。 关键词: 空间插值; 年均气温; 地统计学; 陕西 1引言 作为生态、资源环境等相关学科基础数据源,气候信息在区域和全球尺度生态系统变化的模拟、生态系统管理、自然资源区划和管理中发挥着重要作用[1-4]。然而由于气象站点定位观测获取的只是局部有限的空间点数据,要想得到区域尺度的有关参数,只能利用以点代面或者空间内插和外推方法得到气象要素的空间分布数据[5-8]。 目前用于资料空间插值的方法有多种,主要有克里格(Kriging)插值法、反距离加权法(InverseDistanceWeight,IDW)、样条法(Splines)和综合插值法等。研究区域和时间尺度的不同决定插值方法选用的不同,即使是同一种插值方法,用于不同的研究区域,所取得的结果也不同,不同的方法插值结果差别也很大[9-11]。气象要素的空间分布受诸多要素影响,由于气象观测站点稀少而且分布不均,在很多地形复杂的地区,可用的气象数据非常有限,因此如何充分利用有限的气候资源,根据气候要素的空间分异规律,推测无观测点和少观测点区域的气候要素值,一直是相关学科研究的热点。

各种插值法的对比研究样本

各种插值法对比研究

目录 1.引言 (1) 2.插值法的历史背景 (1) 3.五种插值法的基本思想 (2) 3.1拉格朗日插值 (2) 3.2牛顿插值 (3) 3.3埃尔米特插值 (4) 3.4分段线性插值 (5)

3.5三次样条插值 (6) 4.五种插值法的对比研究 (6) 4.1拉格朗日插值与牛顿插值的比较 (6) 4.2多项式插值法与埃尔米特插值的比较 (7) 4.3多项式插值法与分段线性插值的比较 (7) 4.4 分段线性插值与样条插值的比较 (7) 5.插值法在实际生活中的应用 (7) 6.结束语 (8) 致谢 (8) 参考文献 (8)

各种插值法对比研究 摘要:插值法是一种古老数学办法,也是数值计算中一种算法.插值法不但是微分方程、数值积分、数值微分等计算办法基本,并且在医学、通讯、精密机械加工等领域都涉及到了它.本文一方面简介了插值背景以及惯用五种插值法基本思想,然后通过拉格朗日插值与牛顿插值、多项式插值与埃尔米特插值、多项式插值与分段线性插值、分段线性插值和样条函数插值给出相应算法与MATLAB 程序,依照已学知识对五种插值办法与被插函数逼近限度进行对比研究,找出不同办法间联系与区别,分析出它们优缺陷,最后在此基本上进一步研究插值法实际应用,以提高插值法实用性,从而能让咱们在后来应用中看到一种问题,就懂得哪种办法更适合于它,然后大大地迅速提高效率. 核心词:多项式插值;样条函数插值;MATLAB 程序;应用 1.引言 在诸多解题以及应用生活中,经常需要用数量关系来反映问题,但是有时没有办法通过数学语言精确地表达出来.已知有些变量之间存在一种函数关系,但没法用函数表达式表达出来.例如,)(x f 在某个区间上[]b a ,是存在某种数量关系,但是依照观测和测量或者实验只能得到有限个函数值,咱们可以运用这几点来拟定函数表达式.或者有某些函数表达式是已经懂得,但是它们计算是十分繁琐复杂,不容易发现它本质,并且它用法也比较局限.函数是表达数与数之间联系,为了能较好地用数学语言表达出函数关系,普通通过给定数据构造一种函数)(x P ,这样既能反映函数)(x f 特点,又以便计算,用)(x P 近似)(x f .普通选一种简朴函数)(x P ,并且=)(i x P )(i x f ()n i ,...,2,1,0=成立,这个时候)(x P ,从要表达函数规律来看,就是咱们需要插值函数[1] .所用办法就是插值法,由于所选用)(x P 多样化,得到不同插值法. 2.插值法历史背景

几种插值法比较与应用

多种插值法比较与应用 (一)Lagrange 插值 1. Lagrange 插值基函数 n+1个n 次多项式 ∏ ≠=--=n k j j j k j k x x x x x l 0)( n k ,,1,0ΛΛ= 称为Lagrange 插值基函数 2. Lagrange 插值多项式 设给定n+1个互异点))(,(k k x f x ,n k ,,1,0ΛΛ=,j i x x ≠,j i ≠,满足插值条件 )()(k k n x f x L =,n k ,,1,0ΛΛ= 的n 次多项式 ∏∏ ∏=≠==--==n k n k j j j k j k k n k k n x x x x x f x l x f x L 0 00 ))(()()()( 为Lagrange 插值多项式,称 ∏=+-+=-=n j j x n n x x n f x L x f x E 0 )1()()!1()()()()(ξ 为插值余项,其中),()(b a x x ∈=ξξ (二)Newton 插值 1.差商的定义 )(x f 关于i x 的零阶差商 )(][i i x f x f = )(x f 关于i x ,j x 的一阶差商

i j i j j i x x x f x f x x f --= ][][],[ 依次类推,)(x f 关于i x ,1+i x ,……,k i x +的k 阶差商 i k i k i i k i i k i i i x x x x f x x f x x x f --= +-+++++] ,,[],,[],,,[111ΛΛΛΛΛ 2. Newton 插值多项式 设给定的n+1个互异点))(,(k k x f x ,n k ,,1,0ΛΛ=,j i x x ≠,j i ≠, 称满足条件 )()(k k n x f x N =,n k ,,1,0ΛΛ= 的n 次多项式 )()](,,,[)](,[][)(10100100---++-+=n n n x x x x x x x f x x x x f x f x N ΛΛΛΛΛ 为Newton 插值多项式,称 ],[,)(],,,[)()()(010b a x x x x x x f x N x f x E n j j n n ∈-=-=∏=ΛΛ 为插值余项。 (三)Hermite 插值 设],[)(1b a C x f ∈,已知互异点0x ,1x ,…,],[b a x n ∈及所对应的函数值为0f ,1f ,…,n f ,导数值为'0f ,'1f ,…,'n f ,则满足条件 n i f x H f x H i i n i i n ,,1,0,)(,)(''1212Λ===++ 的12+n 次Hermite 插值多项式为 )()()(0 '12x f x f x H j n j j j n j i n βα∏∏=++= 其中 )())((,)]()(21[)(2 2'x l x x x l x l x x x j j j j j j j j ---=βα

插值方法比较Word版

1. 克里金法(Kriging) 克里金法是通过一组具有z 值的分散点生成估计表面的高级地统计过程。与其他插值方法不同,选择用于生成输出表面的最佳估算方法之前应对由z 值表示的现象的空间行为进行全面研究。 克里金插值与IDW插值的区别在于权重的选择,IDW仅仅将距离的倒数作为权重,而克里金考虑到了空间相关性的问题。它首先将每两个点进行配对,这样就能产生一个自变量为两点之间距离的函数。对于这种方法,原始的输入点可能会发生变化。在数据点多时,结果更加可靠。该方法通常用在土壤科学和地质中。 2. 反距离权重法(Inverse Distance Weighted,IDW) 反距离权重法(反距离权重法)工具所使用的插值方法可通过对各个待处理像元邻域中的样本数据点取平均值来估计像元值。点到要估计的像元的中心越近,则其在平均过程中的影响或权重越大。此方法假定所映射的变量因受到与其采样位置间的距离的影响而减小。例如,为分析零售网点而对购电消费者的表面进行插值处理时,在较远位置购电影响较小,这是因为人们更倾向于在家附近购物。 反距离权重法主要依赖于反距离的幂值。幂参数可基于距输出点的距离来控制已知点对内插值的影响。幂参数是一个正实数,默认值为2。 通过定义更高的幂值,可进一步强调最近点。因此,邻近数据将受到最大影响,表面会变得更加详细(更不平滑)。随着幂数的增大,内插值将逐渐接近最近采样点的值。指定较小的幂值将对距离较远的周围点产生更大影响,从而导致更加平滑的表面。 由于反距离权重公式与任何实际物理过程都不关联,因此无法确定特定幂值是否过大。作为常规准则,认为值为30 的幂是超大幂,因此不建议使用。此外还需牢记一点,如果距离或幂值较大,则可能生成错误结果。 3. 含障碍的样条函数(Spline with Barriers) 含障碍的样条函数工具使用的方法类似于样条函数法工具中使用的技术,其主要差异是此工具兼顾在输入障碍和输入点数据中编码的不连续性。 含障碍的样条函数工具应用了最小曲率方法,其实现方式为通过单向多格网技术,以初始的粗糙格网(在本例中是已按输入数据的平均间距进行初始化的格网)为起点在一系列精细格网间移动,直至目标行和目标列的间距足以使表面曲率接近最小值为止。 4. 地形转栅格(Topo to Raster) 地形转栅格和依据文件实现地形转栅格工具所使用插值技术是旨在用于创建可更准确地表示自然水系表面的表面,而且通过这种技术创建的表面可更好的保留输入等值线数据中的山脊线和河流网络。 5. 样条函数(Spline) 样条函数法工具所使用的插值方法使用可最小化整体表面曲率的数学函数来估计值,以生成恰好经过输入点的平滑表面。

几种插值法的应用和比较

插值法的应用与比较 信科1302 万贤浩 13271038 1格朗日插值法 在数值分析中,拉格朗日插值法是以法国十八世纪数学家约瑟夫·路易斯·拉格朗日命名的一种多项式插值方法.许多实际问题中都用函数来表示某种内在联系或规律,而不少函数都只能通过实验和观测来了解.如对实践中的某个物理量进行观测,在若干个不同的地方得到相应的观测值,拉格朗日插值法可以找到一个多项式,其恰好在各个观测的点取到观测到的值.这样的多项式称为拉格朗日(插值)多项式.数学上来说,拉格朗日插值法可以给出一个恰好穿过二维平面上若干个已知点的多项式函数.拉格朗日插值法最早被英国数学家爱德华·华林于1779年发现,不久后由莱昂哈德·欧拉再次发现.1795年,拉格朗日在其著作《师范学校数学基础教程》中发表了这个插值方法,从此他的名字就和这个方法联系在一起. 1.1拉格朗日插值多项式 图1 已知平面上四个点:(?9, 5), (?4, 2), (?1, ?2), (7, 9),拉格朗日多项式:)(x L (黑色)穿过所有点.而每个基本多项式:)(00x l y ,)(11x l y , )(22x l y 以及)(x l y ??各穿过对应的一点,并在其它的三个点的x 值上取零. 对于给定的若1+n 个点),(00y x ,),(11y x ,………),(n n y x ,对应于它们的次数不超过n 的拉格朗日多项式L 只有一个.如果计入次数更高的多项式,则有无穷个,因为所有与L 相差 ))((10x x x x --λ……)(n x x -的多项式都满足条件. 对某个多项式函数,已知有给定的1+k 个取值点: ),(00y x ,……,),(k k y x ,

各种插值方法比较

空间插值可以有很多种分类方法,插值种类也难以举尽。在网上看到这篇文章,觉得虽然作者没能进行分类,但算法本身介绍地还是不错的。 在科学计算领域中,空间插值是一类常用的重要算法,很多相关软件都内置该算法,其中GodenSoftware 公司的Surfer软件具有很强的代表性,内置有比较全面的空间插值算法,主要包括: Inverse Distance to a Power(反距离加权插值法) Kriging(克里金插值法) Minimum Curvature(最小曲率) Modified Shepard's Method(改进谢别德法) Natural Neighbor(自然邻点插值法) Nearest Neighbor(最近邻点插值法) Polynomial Regression(多元回归法) Radial Basis Function(径向基函数法) Triangulation with Linear Interpolation(线性插值三角网法) Moving Average(移动平均法) Local Polynomial(局部多项式法) 下面简单说明不同算法的特点。 1、距离倒数乘方法 距离倒数乘方格网化方法是一个加权平均插值法,可以进行确切的或者圆滑的方式插值。方次参数控制着权系数如何随着离开一个格网结点距离的增加而下降。对于一个较大的方次,较近的数据点被给定一个较高的权重份额,对于一个较小的方次,权重比较均匀地分配给各数据点。计算一个格网结点时给予一个特定数据点的权值与指定方次的从结点到观测点的该结点被赋予距离倒数成比例。当计算一个格网结点时,配给的权重是一个分数,所有权重的总和等于1.0。当一个观测点与一个格网结点重合时,该观测点被给予一个实际为1.0 的权重,所有其它观测点被给予一个几乎为0.0 的权重。换言之,该结点被赋给与观测点一致的值。这就是一个准确插值。距离倒数法的特征之一是要在格网区域内产生围绕观测点位置的"牛眼"。用距离倒数格网化时可以指定一个圆滑参数。大于零的圆滑参数保证,对于一个特定的结点,没有哪个观测点被赋予全部的权值,即使观测点与该结点重合也是如此。圆滑参数通过修匀已被插值的格网来降低"牛眼"影响。 2、克里金法 克里金法是一种在许多领域都很有用的地质统计格网化方法。克里金法试图那样表示隐含在你的数据中的趋势,例如,高点会是沿一个脊连接,而不是被牛眼形等值线所孤立。克里金法中包含了几个因子:变化图模型,漂移类型和矿块效应。 3、最小曲率法 最小曲率法广泛用于地球科学。用最小曲率法生成的插值面类似于一个通过各个数据值的,具有最小弯曲量的长条形薄弹性片。最小曲率法,试图在尽可能严格地尊重数据的同时,生成尽可能圆滑的曲面。使用最小曲率法时要涉及到两个参数:最大残差参数和最大循环次数参数来控制最小曲率的收敛标准。 4、多元回归法 多元回归被用来确定你的数据的大规模的趋势和图案。你可以用几个选项来确定你需要的趋

几种常用的插值方法

数学系 信息与计算科学1班 李平 指导老师:唐振先 摘要:插值在诸如机械加工等工程技术和数据处理等科学研究中有许多直接的应用,在很多领域都要用插值的办法找出表格和中间值,插值还是数值积分微分方程数值解等数值计算的基础。本文归纳了几种常用的插值方法,并简单分析了其各自的优缺点。 关键词:任意阶多项式插值,分段多项式插值。 引言:所谓插值,通俗地说就是在若干以知的函数值之间插入一些未知函数值,而插值函数的类型最简单的选取是代数多项式。用多项式建立插值函数的方法主要用两种:一种是任意阶的插值多项式,它主要有三种基本的插值公式:单项式,拉格朗日和牛顿插值;另一种是分段多项式插值,它有Hermite 和spine 插值和分段线性插值。 一.任意阶多项式插值: 1.用单项式基本插值公式进行多项式插值: 多项式插值是求通过几个已知数据点的那个n-1阶多项式,即P n-1(X)=A 1+A 2X+…A n X n-1,它是一个单项式基本函数X 0,X 1…X n-1的集合来定义多项式,由已知n 个点(X,Y )构成的集合,可以使多项式通过没数据点,并为n 个未知系数Ai 写出n 个方程,这n 个方程组成的方程组的系数矩阵为Vandermonde 矩阵。 虽然这个过程直观易懂,但它都不是建立插值多项式最好的办法,因为Vandermonde 方程组有可能是病态的,这样会导致单项式系数不确定。另外,单项式中的各项可能在大小上有很大的差异,这就导致了多项式计算中的舍入误差。 2.拉格朗日基本插值公式进行插值: 先构造一组插值函数L i (x ) =011011()()()() ()()()() i i n i i i i i i n x x x x x x x x x x x x x x x x -+-+--------,其中i=0,… n.容易看出n 次多项式L i (x )满足L i (x )=1,(i=j );L i (x )=0,(i ≠j ),其中i=0,1…n ,令L i (x )=0()n i i i y l x =∑这就是拉格朗日插值多项式。与单项式基本 函数插值多项式相比,拉格朗日插值有2个重要优点:首先,建立插值多项式不需要求解方程组;其次,它的估计值受舍入误差要小得多。拉格朗日插值公式结构

常见插值方法及其介绍

常见插值方法及其介绍 Inverse Distance to a Power(反距离加权 插值法)”、 “Kriging(克里金插值法)”、 “Minimum Curvature(最小曲率)”、 “Modified Shepard's Method(改进谢别德法)”、 “Natural Neighbor(自然邻点插值法)”、 “Nearest Neighbor(最近邻点插值法)”、 “Polynomial Regression(多元回归法)”、 “Radial Basis Function(径向基函数法)”、 “Triangulation with Linear Interpolation(线性插值三角网法)”、 “Moving Average(移动平均法)”、 “Local Polynomial(局部多项式法)” 1、距离倒数乘方法 距离倒数乘方格网化方法是一个加权平均插值法,可以进行确切的或者圆滑的方式插值。方次参数 控制着权系数如何随着离开一个格网结点距离的增加而下降。对于一个较大的方次,较近的数据点被 给定一个较高的权重份额,对于一个较小的方次,权重比较均匀地分配给各数据点。 计算一个格网结点时给予一个特定数据点的权值与指定方次的从结点到观测点的该结点被赋予距 离倒数成比例。当计算一个格网结点时,配给的权重是一个分数,所有权重的总和等于1.0。当一个 观测点与一个格网结点重合时,该观测点被给予一个实际为 1.0 的权重,所有其它观测点

被给予一 个几乎为0.0 的权重。换言之,该结点被赋给与观测点一致的值。这就是一个准确插值。 距离倒数法的特征之一是要在格网区域内产生围绕观测点位置的"牛眼"。用距离倒数格网化时可 以指定一个圆滑参数。大于零的圆滑参数保证,对于一个特定的结点,没有哪个观测点被赋予全部的 权值,即使观测点与该结点重合也是如此。圆滑参数通过修匀已被插值的格网来降低"牛眼"影响。 2、克里金法 克里金法是一种在许多领域都很有用的地质统计格网化方法。克里金法试图那样表示隐含在你的数 据中的趋势,例如,高点会是沿一个脊连接,而不是被牛眼形等值线所孤立。 克里金法中包含了几个因子:变化图模型,漂移类型和矿块效应。 3、最小曲率法 最小曲率法广泛用于地球科学。用最小曲率法生成的插值面类似于一个通过各个数据值的,具有最 小弯曲量的长条形薄弹性片。最小曲率法,试图在尽可能严格地尊重数据的同时,生成尽可能圆滑的 曲面。 使用最小曲率法时要涉及到两个参数:最大残差参数和最大循环次数参数来控制最小曲率的收敛 标准。 4、多元回归法 多元回归被用来确定你的数据的大规模的趋势和图案。你可以用几个选项来确定你需要的趋势面类 型。多元回归实际上不是插值器,因为它并不试图预测未知的Z 值。它实际上是一个趋势面分析作

插值法的分类与应用

插值法的方法与应用 武汉科技大学城市建设学院 琚婷婷 结构工程 201108710014 【摘要】文章讨论插值法在数值分析中的中心地位和重要作用,比较插值法间的优缺点,应用以及各种方法之间的相互联系。 【关键词】插值法;应用。 1.插值问题的提出 在许多实际问题及科学研究中,因素之间往往存在着函数关系,但是这些关系的显示表达式不一定都知道,通常只是由观察或测试得到一些离散数值,所以只能从这些数据构造函数的近似表达式,有时虽然给出了解析表达式,但由于解析表达式过于复杂,使用或计算起来十分麻烦。这就需要建立函数的某种近似表达,而插值法就是构造函数的近似表达式的方法。 2.插值法的数学表达 由于代数多项式是最简单而又便于计算的函数,所以经常采用多项式作为插值函数,称为多项式插值。多项式插值法有拉格朗日插值法,牛顿插值法、埃尔米特插值法,分段插值法和样条插值法等。其基本思想都是用高次代数多项式或分段的低次多项式作为被插值函数f (x)的近似解析表达式。 3.常用多项式插值公式构造 (I)拉格朗日插值 n 次拉格朗日插值多项式p n (x)对可表示为 p n (x)= y i l i (x)n i=0= y i ( x ?x j x i ?x j n j ≠0i ≠j n i=0) 其中l i x ,i =0,1,2???,n 称为插值基函数,插值余项为: R n (x)= f (x)- p n (x)=f n +1 (ξ) n+1 ! (x ?x i )n i=0 拉格朗日插值多项式在理论分析中非常方便,因为它的结构紧凑,利用基函

数很容易推导和形象的描述算法,但是也有一些缺点,当插值节点增加、减少或其位置变化时,整个插值多项式的结构都会改变,这就不利于实际计算,增加了算法复杂度,此时我们通常采用牛顿插值多项式算法。 (2)牛顿插值多项式 牛顿插值多项式为 N(x)=f(x0)+f x0,x1(x?x0)++???+f[x0,x1,???,x n](x?x0)(x?x1)???(x?x n?1)用它插值时,首先要计算各阶差商,而各高阶差商可归结为一阶差商的逐次计算。一般情况讨论的插值多项式的节点都是任意分布的,但是在实际应用中,出现了很多等距节点的情形,这时的插值公式可以进一步简化,在牛顿均差插值多项式中各阶均差用相应的差分代替,就得到了各种形式的等距节点插值公式,常用的是牛顿前插与后插公式。 (3)分段插值 在整个插值区间上,随着插值节点的增多,插值多项式的次数必然增高,而高次插值会产生Runge现象,不能有效的逼近被插函数,人们提出用分段的低次多项式分段近似被插函数,这就是分段插值法。构造分段插值多项式的方法仍然是基函数法,即先在每个插值节点上构造分段线性插值基函数,再对基函数作线性组合。它的优点在于只要节点间距充分小,总能获得所要求的精度,即收敛性总能得到保证,另一优点是它的局部性质,即如果修改某个数据,那么插值曲线仅仅在某个局部范围内受到影响。 (4)Hermite插值 分段线性插值的算法简单,计算量小,然而从整体上看,逼近函数不够光滑,在节点处,逼近函数的左右导数不相等,若要求逼近函数与被逼近函数不仅在插值节点上取相同的函数值,而且还要求逼近函数与被逼近函数在插值节点上取相同的若干阶导数值,这类问题称为Hermite插值。 (5)样条插值 通常我们用到的分段三次埃尔米特插值构造的是一个整体上具有一阶光滑性的插值多项式,但在实际中,对光滑性的要求更高。如飞机外形的理论模型,舶体放样等型值线等常要求有二阶的光滑度。工程上常用的是3次样条函数s(x)。其基本思想是将插值区间n等分后,在每一个小区间上,采用分段3次Hermite

各种插值法的对比研究

各种插值法的对比研究

目录 1.引言 (1) 2.插值法的历史背景 (1) 3.五种插值法的基本思想 (2) 3.1拉格朗日插值 (2) 3.2牛顿插值 (3) 3.3埃尔米特插值 (3) 3.4分段线性插值 (4) 3.5三次样条插值 (5) 4.五种插值法的对比研究 (5) 4.1拉格朗日插值与牛顿插值的比较 (5) 4.2多项式插值法与埃尔米特插值的比较 (6) 4.3多项式插值法与分段线性插值的比较 (6) 4.4 分段线性插值与样条插值的比较 (6) 5.插值法在实际生活中的应用 (6) 6.结束语 (6) 致谢 (7) 参考文献 (7)

各种插值法的对比研究 摘要:插值法是一种古老的数学方法,也是数值计算中的一个算法.插值法不仅是微分方程、数值积分、数值微分等计算方法的基础,而且在医学、通讯、精密机械加工等领域都涉及到了它.本文首先介绍了插值的背景以及常用的五种插值法的基本思想,然后通过拉格朗日插值与牛顿插值、多项式插值与埃尔米特插值、多项式插值与分段线性插值、分段线性插值和样条函数插值给出相应的算法与MATLAB 程序,根据已学的知识对五种插值方法与被插函数的逼近程度进行对比研究,找出不同方法间的联系与区别,分析出它们的优缺点,最后在此基础上进一步研究插值法的实际应用,以提高插值法的实用性,从而能让我们在以后的应用中看到一个问题,就知道哪种方法更适合于它,然后大大地快速的提高效率. 关键词:多项式插值;样条函数插值;MATLAB 程序;应用 1.引言 在很多解题以及应用生活中,常常需要用数量关系来反映问题,但是有时没有办法通过数学语言准确地表达出来.已知有些变量之间存在一种函数关系,但没法用函数的表达式表示出来.比如,)(x f 在某个区间上[]b a ,是存在某种数量关系的,但是根据观察和测量或者实验只能得到有限个函数值,我们可以利用这几点来确定函数表达式.或者有一些函数表达式是已经知道的,但是它们的计算是十分繁琐复杂的,不容易发现它的本质,而且它的使用方法也比较局限.函数是表达数与数之间的联系,为了能很好地用数学语言表达出函数的关系,一般通过给定的数据构造一个函数)(x P ,这样既能反映函数)(x f 的特点,又方便计算,用)(x P 近似)(x f .通常选一个简单的函数)(x P ,而且=)(i x P )(i x f ()n i ,...,2,1,0=成立,这个时候的)(x P ,从要表达的函数规律来看,就是我们需要的插值函数[1] .所用方法就是插值法,由于所选用的)(x P 的多样化,得到不同的插值法. 2.插值法的历史背景 插值法的历史源远流长,在很早的时候就涉及到了它.它是数值计算中一个古老的分支,它来源于生产实践. 因为牛顿力学的物理理论知识在一千年前没有出现,所以我们的祖先没有办法用很准确的数学解析式来表达日月五星的运行规律.后来,古代的人们有着聪慧的头脑,想出了插值方法,然后发现了日月五星的运行规律.例如唐朝数学家张遂提出了插值法的概念以及不等距

相关主题
文本预览
相关文档 最新文档