当前位置:文档之家› KAMCOS说明操作(卡尔迈耶)

KAMCOS说明操作(卡尔迈耶)

KAMCOS说明操作(卡尔迈耶)
KAMCOS说明操作(卡尔迈耶)

迈耶分析

迈耶作品分析(转载) 2010-04-01 13:10:02| 分类:我的专业|字号订阅 以R·迈耶为代表的晚期现代建筑,或称新理性主义,从60年代开始成为现代建筑的主要流派。他比较正统地继承了现代建筑的基本观点,在设计中强调功能,认为“建筑师应当把90%的精力用于研究功能”。在建筑艺术方面,晚期现代建筑克服了国际式的简单化倾向,比较重视建筑体型的处理,使建筑具有雕塑感。迈耶在设计中很注意空间和光影的处理,经常运用空架子增加过渡空间,丰富空间层次。在建筑风格上他强调表现时代感,认为建筑应当体现它们自己的时代。对于新旧建筑的关系,他认为应当在尺度和空间关系上考虑建筑的群体关系,而在风格上则强调新旧建筑的对比。例如在美国印地安纳州新哈孟尼城的亚森南美术馆设计中,他采用了与地方风格截然不同的白派手法,建成后确实很具有吸引力,但也有人批评它象一个“不明飞行物”。迈耶的白派风格独树一帜,在西方建筑界影响很大。但他的设计手法比较单一,其主要作品如布朗克斯康复中心(本刊8801)、亚特兰大美术馆法兰克福工艺美术馆(本刊8606)以及最近设计的俄勒岗医科大学眼科中心等基本上都表现着类似 的风格。他承认自己深受柯布西埃的影响,但他并没有完全继承柯氏衣钵。柯布的“隐喻” 观点却相反地被后现代建筑师接过去了。 如何阅读大师的作品? 大一时,老师说:“可以看图片”; 大二时,老师说:“应该看文字” 前者让我从形象上去感受建筑;后者让我从本质上去思考建筑;在此两点的基础上,我开始阅读大师的作品。 迈耶的建筑是“Slab”,是由“面”所构成的;迈耶的建筑是从平面开始的。在此两点的基础上,我开始阅读迈耶。 观察与分析(一):从内部。在迈耶的许多建筑中,有双向分层的概念,即在垂直方向上分层的同时,水平方向上分“层”,而且一般是以“私用空间”与“共有空间”区分,划为两部分。这样就存在着对立的空间体系,一边是多米诺体系:方格柱网与混凝土楼板结构体系,水平处理空间;一边是由承重墙构成,垂直处理空间,使人感兴趣的是这两者的交界处:开敞与封闭,水平与垂直,同在一所建筑中,他们将如何会面呢?迈耶的做法很巧妙。以道格拉斯住宅为例,(图一)在垂直向上,在实的垂直的墙上开有相当大的洞,使空间水平流通起来,这与水平部分的空间性质相同;而在水平方向上,两者交界的各楼层面有着不同形式的开口,屋顶开有长条形天窗,形成了四层的垂直流通空间,这又与垂直部分相一致。因此,是不是可以这样去概括交界面处处理的思路:垂直元素形成水平空间;水平元素形成垂直空

飞思卡尔智能车摄像头组freescale程序代码

extern int left,w,top,h; extern HDC m_hdc; CBrush brush3(RGB(0,255,0)); CBrush brush4(RGB(255,0,0)); CBrush brush5(RGB(255,255,0)); #else #include #include "math.h" // #include "LQfun.h" #endif #ifdef ccd #define MAX_VIDEO_LINE 39 #define MAX_VIDEO_POINT 187 #else //#define MAX_VIDEO_LINE 26 // #define MAX_VIDEO_POINT 301 #define MAX_VIDEO_LINE 78 #define MAX_VIDEO_POINT 57 #endif extern unsigned char g_VideoImageDate[MAX_VIDEO_LINE][MAX_VIDEO_POINT]; #define INT8U unsigned char #define INT8S signed char #define INT16U unsigned int #define INT16S int #define INT32S int #define NO_DATA_180 254 //#define INT32U unsigned int unsigned char LIMIT=((MAX_VIDEO_POINT)/2); unsigned char MIDDLE[MAX_VIDEO_LINE]; #define MAX_BLACK_NUM 7 INT8S n;

理查德迈耶的简介

资料一 引言 20世纪60年代是美国战后经济的黄金时期,由于生活逐渐 富裕,人的精神生活的要求越来越高,战前现代建筑单一的火柴 盒式的建筑形象,使人感到厌倦。现代建筑何去何从,看到以理 查德·迈耶(Richard Meier)为代表的建筑大师坚持现代主义的原 则和美学观,并为现代主义的发扬光大进行着不懈的探索,并取 得了令人瞩目的成就。 理查德·迈耶(Richard Meier)是美国建筑师,现代建筑中自色 派的重要代表。白色派的建筑作品以白色为主,具有一种超凡脱 俗的气派和明显的非天然效果,被称为美围当代建筑中的“阳春 白雪”。他的设计思想和理论原则深受风格派和柯布西耶的影 响,对纯净的建筑空间、体量和阳光下的立体主义构图、光影变化 十分偏爱,故被称为早期现代主义建筑的复兴主义。 白色派建筑 的主要特点是:1)建筑形式纯净,局部处理干净利落、整体条理清 楚。2)在规整的结构体系中,通过蒙太奇的虚实凹凸安排,以活 泼、跳跃、耐人寻味的姿态突出了空间的多变,赋予建筑以明显的 雕塑风味。3>基地选择强调人工与天然的对比,一般不顺从地 段,而是在建筑与环境强烈对比,互相补充、相得益彰之中寻求新 的协调。4)注重功能分区,特别强调公共空间(Public Spaces)与 私密空间(PHvate Spaces)的严格区分。 迈耶设计的史密斯住宅(Smith Hottse,1965年~1967年)是 白色派作品中较有代表性的一个。 1走进史密斯住宅, 史密斯住宅位于美国康涅狄格州达瑞安海滨,这里是康涅狄 格州的边垂地带,位置远离市中心,是一块没有都市尘嚣的世外 桃源。而基地的周围环境也提供了极为良好的自然景观,尤其它 面临长岛湾,更为基地提供了那一望无际的蔚蓝海景。 从公路进入基地时,由于建筑物受到树林阻挡,所以整栋建 筑在视觉上并不明显,但是那纯白的建筑体量和自然景观所形成 的对比,引导着人们的视线,使人不致迷失方向。顺着道路引导 向前,首先出现在眼前的是,位于道路末端的车库,转了45。角之 后,整幢房子才出现于眼前。而住宅这一侧入口立面比较简洁 ,只开了一些所需的方窗,将自然景观最为精彩的海景完 全阻碍了,令人只想赶快进入屋内,才能欣赏美景。一进入到房 间的内部,会有一种出人意料、豁然开朗的感觉,透过客厅的大片 玻璃,将建筑师精心安排的美景尽收眼底。整幢房子共有三层 楼,在底层的部分,作公共空间使用,设有餐厅、厨房、洗衣间和佣房。而中间楼层,则作为家人平时交流的空间和接待客人的地方。设有客厅和主卧室,客厅上下两层贯通,到了顶层则是小孩房、客房与书房。在功能布局上公共与私密空间分开,使每个家 庭成员有各自的天地,在建筑艺术上迈耶在追求一种简约、纯净的现代主义精神。 2史密斯住宅设计亮点

卡尔曼滤波简介及其实现(附C代码)

卡尔曼滤波简介及其算法实现代码(C++/C/MATLAB) 卡尔曼滤波器简介 近来发现有些问题很多人都很感兴趣。所以在这里希望能尽自己能力跟大家讨论一些力所能及的算法。现在先讨论一下卡尔曼滤波器,如果时间和能力允许,我还希望能够写写其他的算法,例如遗传算法,傅立叶变换,数字滤波,神经网络,图像处理等等。 因为这里不能写复杂的数学公式,所以也只能形象的描述。希望如果哪位是这方面的专家,欢迎讨论更正。 卡尔曼滤波器– Kalman Filter 1.什么是卡尔曼滤波器 (What is the Kalman Filter?) 在学习卡尔曼滤波器之前,首先看看为什么叫“卡尔曼”。跟其他著名的理论(例如傅立叶变换,泰勒级数等等)一样,卡尔曼也是一个人的名字,而跟他们不同的是,他是个现代人! 卡尔曼全名Rudolf Emil Kalman,匈牙利数学家,1930年出生于匈牙利首都布达佩斯。1953,1954年于麻省理工学院分别获得电机工程学士及硕士学位。1957年于哥伦比亚大学获得博士学位。我们现在要学习的卡尔曼滤波器,正是源于他的博士论文和1960年发表的论文《A New Approach to Linear Filtering and Prediction Problems》(线性滤波与预测问题的新方法)。如果对这编论文有兴趣,可以到这里的地址下载: https://www.doczj.com/doc/ff11690744.html,/~welch/media/pdf/Kalman1960.pdf。 简单来说,卡尔曼滤波器是一个“optimal recursive data processing algorithm(最优化自回归数据处理算法)”。对于解决很大部分的问题,他是最优,效率最高甚至是最有用的。他的广泛应用已经超过30年,包括机器人导航,控制,传感器数据融合甚至在军事方面的雷达系统以及导弹追踪等等。近年来更被应用于计算机图像处理,例如头脸识别,图像分割,图像边缘检测等等。 2.卡尔曼滤波器的介绍 (Introduction to the Kalman Filter) 为了可以更加容易的理解卡尔曼滤波器,这里会应用形象的描述方法来讲解,而不是像大多数参考书那样罗列一大堆的数学公式和数学符号。但是,他的5 条公式是其核心内容。结合现代的计算机,其实卡尔曼的程序相当的简单,只要你理解了他的那5条公式。 在介绍他的5条公式之前,先让我们来根据下面的例子一步一步的探索。

卡尔曼滤波的原理说明

卡尔曼滤波的原理说明 2009年10月23日星期五 01:19 在学习卡尔曼滤波器之前,首先看看为什么叫“卡尔曼”。跟其他著名的理论(例如傅立叶变换,泰勒级数等等)一样,卡尔曼也是一个人的名字,而跟他们不同的是,他是个现代人! 卡尔曼全名Rudolf Emil Kalman,匈牙利数学家,1930年出生于匈牙利首都布达佩斯。1953,1954年于麻省理工学院分别获得电机工程学士及硕士学位。1957年于哥伦比亚大学获得博士学位。我们现在要学习的卡尔曼滤波器,正是源于他的博士论文和1960年发表的论文《A New Approach to Linear Filtering and Prediction Problems》(线性滤波与预测问题的新方法)。如果对这编论文有兴趣,可以到这里的地址下 载:.edu/~welch/kalman/media/pdf/Kalman1960.pdf 简单来说,卡尔曼滤波器是一个“optimal recursive data processing algorithm(最优化自回归数据处理算法)”。对于解决很大部分的问题,他是最优,效率最高甚至是最有用的。他的广泛应用已经超过30年,包括机器人导航,控制,传感器数据融合甚至在军事方面的雷达系统以及导弹追踪等等。近年来更被应用于计算机图像处理,例如头脸识别,图像分割,图像边缘检测等等。 2.卡尔曼滤波器的介绍 (Introduction to the Kalman Filter) 为了可以更加容易的理解卡尔曼滤波器,这里会应用形象的描述方法来讲解,而不是像大多数参考书那样罗列一大堆的数学公式和数学符号。但是,他的5条公式是其核心内容。结合现代的计算机,其实卡尔曼的程序相当的简单,只要你理解了他的那5条公式。 在介绍他的5条公式之前,先让我们来根据下面的例子一步一步的探索。 假设我们要研究的对象是一个房间的温度。根据你的经验判断,这个房间的温度是恒定的,也就是下一分钟的温度等于现在这一分钟的温度(假设我们用一分钟来做时间单位)。假设你对你的经验不是100%的相信,可能会有上下偏差几度。我们把这些偏差看成是高斯白噪声(White Gaussian Noise),也就是这些偏差跟前后时间是没有关系的而且符合高斯分配(Gaussian Distribution)。另外,我们在房间里放一个温度计,但是这个温度计也不准确的,测量值会比实际值偏差。我们也把这些偏差看成是高斯白噪声。 好了,现在对于某一分钟我们有两个有关于该房间的温度值:你根据经验的预测值(系统的预测值)和温度计的值(测量值)。下面我们要用这两个值结合他们各自的噪声来估算出房间的实际温度值。 假如我们要估算k时刻的是实际温度值。首先你要根据k-1时刻的温度值,来预测k时刻的温度。因为你相信温度是恒定的,所以你会得到k时刻的温度预测值

卡尔曼滤波的基本原理及应用

卡尔曼滤波的基本原理及应用卡尔曼滤波在信号处理与系统控制领域应用广泛,目前,正越来越广泛地应用于计算机应用的各个领域。为了更好地理解卡尔曼滤波的原理与进行滤波算法的设计工作,主要从两方面对卡尔曼滤波进行阐述:基本卡尔曼滤波系统模型、滤波模型的建立以及非线性卡尔曼滤波的线性化。最后,对卡尔曼滤波的应用做了简单介绍。 卡尔曼滤波属于一种软件滤波方法,其基本思想是:以最小均方误差为最佳估计准则,采用信号与噪声的状态空间模型,利用前一时刻的估计值和当前时刻的观测值来更新对状态变量的估计,求出当前时刻的估计值,算法根据建立的系统方程和观测方程对需要处理的信号做出满足最小均方误差的估计。 最初的卡尔曼滤波算法被称为基本卡尔曼滤波算法,适用于解决随机线性离散系统的状态或参数估计问题。卡尔曼滤波器包括两个主要过程:预估与校正。预估过程主要是利用时间更新方程建立对当前状态的先验估计,及时向前推算当前状态变量和误差协方差估计的值,以便为下一个时间状态构造先验估计值;校正过程负责反馈,利用测量更新方程在预估过程的先验估计值及当前测量变量的基础上建立起对当前状态的改进的后验估计。这样的一个过程,我们称之为预估-校正过程,对应的这种估计算法称为预估-校正算法。以下给出离散卡尔曼滤波的时间更新方程和状态更新方程。 时间更新方程: 状态更新方程: 在上面式中,各量说明如下: A:作用在X k-1上的n×n 状态变换矩阵 B:作用在控制向量U k-1上的n×1 输入控制矩阵 H:m×n 观测模型矩阵,它把真实状态空间映射成观测空间 P k-:为n×n 先验估计误差协方差矩阵 P k:为n×n 后验估计误差协方差矩阵 Q:n×n 过程噪声协方差矩阵 R:m×m 过程噪声协方差矩阵 I:n×n 阶单位矩阵K k:n×m 阶矩阵,称为卡尔曼增益或混合因数 随着卡尔曼滤波理论的发展,一些实用卡尔曼滤波技术被提出来,如自适应滤波,次优滤波以及滤波发散抑制技术等逐渐得到广泛应用。其它的滤波理论也迅速发展,如线性离散系统的分解滤波(信息平方根滤波,序列平方根滤波,UD 分解滤波),鲁棒滤波(H∞波)。 非线性样条自适应滤波:这是一类新的非线性自适应滤波器,它由一个线性组合器后跟挠性无记忆功能的。涉及的自适应处理的非线性函数是基于可在学习

理查德·迈耶的设计思想与手法

理查德·迈耶的设计思想与手法

————————————————————————————————作者:————————————————————————————————日期: ?

理查德·迈耶的设计思想与手法 指导老师:马贺红 专业:建筑学1101B 姓名:lxl 学号:1137120102

理查德·迈耶的设计思想与手法 【摘要】现代主义建筑风格遭受巨变,建筑师陷入两难境地,许多建筑师众叛亲离、改头换面,还有一些建筑师不改初衷,在现代主义上寻求回归与超越,从而衍生出新现代主义风格。本文将对新现代主义代表理查德·迈耶进行介绍并对其设计思想和设计手法进行重点分析 【关键词】新现代主义;理查德·迈耶;设计思想;设计手法 20世纪是个充满巨变的世纪,20世纪初尚未完全摆脱古典建筑形式窠臼的 折中主义、古典复兴式建筑历经新艺术运动、风格派、分离主义……等异彩纷呈 的美学思想影响,最终还是以现代主义风格的问世而画上了句号。然而好景不长, 到了20世纪后叶,现代主义风格招来了许多的质疑和非议,似乎是尚未充分辉 煌,便有随即凋萎之势。 在现代建筑遭此厄运的情况下,许多建筑师便众叛亲离、改换门庭,一时间 使人感受到一种四面楚歌的凄婉之情。还有一些建筑师仍不改初衷,沿着现代建 筑的基本轨迹继续探索,趋利避害,试图在现代建筑中寻觅出新的出路,从而衍 生出一种焕发生机的新现代主义建筑风格。新现代主义拒绝对历史与传统形式 的模仿,发展了现代主义高度理性化、抽象化的经典形式语言,尊重自然和人文 环境,通过场所精神的塑造克服了“国际式”风格的单调与冷漠,并赋予其更为 丰富的形式与文化内涵。 这种建筑风格受到评论界关注是从“纽约五人”(New York Five)的出 现开始的。他们拒绝对历史片段的模仿,追求纯净的建筑空间和体量,强调线条、 平面、体块的穿插和光影变化,呈现出白色的、无文脉的、高度抽象的风格,这 种风格在理查德·迈耶的作品中达到了登峰造极的程度。 理查德·迈耶,美国建筑师、新现代主义代表、白色派的重要代表。1935年, 生于美国新泽西东北部的城市纽华克,曾就学于纽约州伊萨卡城康奈尔大学,曾 兼任过许多大学的教职。大学毕业后在马塞尔·布劳耶等建筑师的指导下继续学 习和工作,是“建筑界五巨头”之一。由于受到勒·柯布西耶的影响,其大部分早

几种卡尔曼滤波算法理论

自适应卡尔曼滤波 卡尔曼滤波发散的原因 如果卡尔曼滤波是稳定的,随着滤波的推进,卡尔曼滤波估计的精度应该越来越高,滤波误差方差阵也应趋于稳定值或有界值。但在实际应用中,随着量测值数目的增加,由于估计误差的均值和估计误差协方差可能越来越大,使滤波逐渐失去准确估计的作用,这种现象称为卡尔曼滤波发散。 引起滤波器发散的主要原因有两点: (1)描述系统动力学特性的数学模型和噪声估计模型不准确,不能直接真实地反映物理过程,使得模型与获得的量测值不匹配而导致滤波发散。这种由于模型建立过于粗糙或失真所引起的发散称为滤波发散。 (2)由于卡尔曼滤波是递推过程,随着滤波步数的增加,舍入误差将逐渐积累。如果计算机字长不够长,这种积累误差很有可能使估计误差方差阵失去非负定性甚至失去对称性,使滤波增益矩阵逐渐失去合适的加权作用而导致发散。这种由于计算舍入误差所引起的发散称为计算发散。 针对上述卡尔曼滤波发散的原因,目前已经出现了几种有效抑制滤波发散的方法,常用的有衰减记忆滤波、限定记忆滤波、扩充状态滤波、有限下界滤波、平方根滤波、和自适应滤波等。这些方法本质上都是以牺牲滤波器的最优性为代价来抑制滤波发散,也就是说,多数都是次优滤波方法。 自适应滤波 在很多实际系统中,系统过程噪声方差矩阵Q和量测误差方差阵R事先是不知道的,有时甚至连状态转移矩阵 或量测矩阵H也不能确切建立。如果所建立的模型与实际模型不符可能回引起滤波发散。自适应滤波就是这样一种具有抑制滤波发散作用的滤波方法。在滤波过程中,自适应滤波一方面利用量测值修正预测值,同时也对未知的或不确切的系统模型参数和噪声统计参数进行估计修正。自适应滤波的方法很多,包括贝叶斯法、极大似然法、相关法与协方差匹配法,其中最基本也是最重要的是相关法,而相关法可分为输出相关法和新息相关法。 在这里只讨论系统模型参数已知,而噪声统计参数Q和R未知情况下的自适应滤波。由于Q和R等参数最终是通过增益矩阵K影响滤波值的,因此进行自适应滤波时,也可以不去估计Q和R等参数而直接根据量测数据调整K就可以了。

卡尔曼滤波简介和实例讲解.

卡尔曼,美国数学家和电气工程师。1930年5月 19日生于匈牙利首都布达佩斯。1953年在美国麻省理工学院毕业获理学士学位,1954年获理学硕士学位,1957年在哥伦比亚大学获科学博士学位。1957~1958年在国际商业机器公司(IBM)研究大系统计算机控制的数学问题。1958~1964年在巴尔的摩高级研究院研究控制和数学问题。1964~1971年到斯坦福大学任教授。1971年任佛罗里达大学数学系统理论研究中心主任,并兼任苏黎世的瑞士联邦高等工业学校教授。1960年卡尔曼因提出著名的卡尔曼滤波器而闻名于世。卡尔曼滤波器在随机序列估计、空间技术、工程系统辨识和经济系统建模等方面有许多重要应用。1960年卡尔曼还提出能控性的概念。能控性是控制系统的研究和实现的基本概念,在最优控制理论、稳定性理论和网络理论中起着重要作用。卡尔曼还利用对偶原理导出能观测性概念,并在数学上证明了卡尔曼滤波理论与最优控制理论对偶。为此获电气与电子工程师学会(IEEE)的最高奖──荣誉奖章。卡尔曼著有《数学系统概论》(1968)等书。 什么是卡尔曼滤波 最佳线性滤波理论起源于40年代美国科学家Wiener和前苏联科学家Kолмогоров等人的研究工作,后人统称为维纳滤波理论。从理论上说,维纳滤波的最大缺点是必须用到无限过去的数据,不适用于实时处理。为了克服这一缺点,60年代Kalman把状态空间模型引入滤波理论,并导出了一套递推估计算法,后人称之为卡尔曼

滤波理论。卡尔曼滤波是以最小均方误差为估计的最佳准则,来寻求一套递推估计的算法,其基本思想是:采用信号与噪声的状态空间模型,利用前一时刻地估计值和现时刻的观测值来更新对状态变量的估计,求出现时刻的估计值。它适合于实时处理和计算机运算。 卡尔曼滤波的实质是由量测值重构系统的状态向量。它以“预测—实测—修正”的顺序递推,根据系统的量测值来消除随机干扰,再现系统的状态,或根据系统的量测值从被污染的系统中恢复系统的本来面目。 释文:卡尔曼滤波器是一种由卡尔曼(Kalman)提出的用于时变线性系统的递归滤波器。这个系统可用包含正交状态变量的微分方程模型来描述,这种滤波器是将过去的测量估计误差合并到新的测量误差中来估计将来的误差。 卡尔曼滤波的应用 斯坦利.施密特(Stanley Schmidt)首次实现了卡尔曼滤波器.卡尔曼在NASA埃姆斯研究中心访问时,发现他的方法对于解决阿波罗计划的轨道预测很有用,后来阿波罗飞船的导航电脑使用了这种滤波器. 关于这种滤波器的论文由Swerling (1958), Kalman (1960)与 Kalman and Bucy (1961)发表.

卡尔曼滤波的原理及应用自己总结

卡尔曼滤波的原理以及应用 滤波,实质上就是信号处理与变换的过程。目的是去除或减弱不想要成分,增强所需成分。卡尔曼滤波的这种去除与增强过程是基于状态量的估计值和实际值之间的均方误差最小准则来实现的,基于这种准则,使得状态量的估计值越来越接近实际想要的值。而状态量和信号量之间有转换的关系,所以估计出状态量,等价于估计出信号量。所以不同于维纳滤波等滤波方式,卡尔曼滤波是把状态空间理论引入到对物理系统的数学建模过程中来,用递归方法解决离散数据线性滤波的问题,它不需要知道全部过去的数据,而是用前一个估计值和最近一个观察数据来估计信号的当前值,从而它具有运用计算机计算方便,而且可用于平稳和不平稳的随机过程(信号),非时变和时变的系统的优越性。 卡尔曼滤波属于一种软件滤波方法,概括来说其基本思想是:以最小均方误差为最佳估计准则,采用信号与噪声的状态空间模型,利用前一时刻的估计值和当前时刻的观测值来更新对状态变量的估计,求出当前时刻的估计值,算法根据建立的系统方程和观测方程对需要处理的信号做出满足最小均方误差的估计。其所得到的解是以估计值的形式给出的。 卡尔曼滤波过程简单来说主要包括两个步骤:状态变量的预估以及状态变量的校正。预估过程是不考虑过程噪声和量测噪声,只是基于系统本身性质并依靠前一时刻的估计值以及系统控制输入的一种估计;校正过程是用量测值与预估量测值之间的误差乘以一个与过程

噪声和量测噪声相关的增益因子来对预估值进行校正的,其中增益因子的确定与状态量的均方误差有关,用到了使均方误差最小的准则。而这一过程中体现出来的递归思想即是:对于当前时刻的状态量估计值以及均方误差预估值实时进行更新,以便用于下一时刻的估计,使得系统在停止运行之前能够源源不断地进行下去。 下面对于其数学建模过程进行详细说明。 1.状态量的预估 (1)由前一时刻的估计值和送给系统的可控制输入来预估计当前时刻状态量。 X(k|k-1)=A X(k-1|k-1)+B U(k) 其中,X(k-1|k-1)表示前一时刻的估计值,U(k)表示系统的控制输入,X(k|k-1)表示由前一时刻估计出来的状态量的预估计值,A表示由k-1时刻过渡到k时刻的状态转移矩阵,B表示控制输入量与状态量之间的一种转换因子,这两个都是由系统性质来决定的。 (2)由前一时刻的均方误差阵来预估计当前时刻的均方误差阵。 P(k|k-1)=A P(k-1|k-1)A’+Q 其中,P(k-1|k-1)是前一时刻的均方误差估计值,A’代表矩阵A 的转置,Q代表过程噪声的均方误差矩阵。该表达式具体推导过程如下: P(k|k-1)=E{[Xs(k|k)-X(k|k-1)][Xs(k|k)-X(k|k-1)]’}------ 其中Xs(k|k)=A Xs(k-1|k-1)+B U(k)+W(k-1)表示当前时刻的实际值,Xs(k-1|k-1)表示前一时刻的实际值,可以看出与当前时刻的预估计值

Kalman滤波原理及程序(手册)解析

Kalman 滤波原理及仿真手册 KF/EKF/UKF 原理+应用实例+MATLAB 程序 本手册的研究内容主要有Kalman 滤波,扩展Kalman 滤波,无迹Kalman 滤波等,包括理论介绍和MATLAB 源程序两部分。本手册所介绍的线性滤波器,主要是Kalman 滤波和α-β滤波,交互多模型Kalman 滤波,这些算法的应用领域主要有温度测量、自由落体,GPS 导航、石油地震勘探、视频图像中的目标检测和跟踪。 EKF 和UKF 主要在非线性领域有着重要的应用,目标跟踪是最主要的非线性领域应用之一,除了讲解目标跟踪外,还介绍了通用非线性系统的EKF 和UKF 滤波处理问题,相信读者可以通过学习本文通用的非线性系统,能快速掌握EKF 和UKF 滤波算法。 本文所涉及到的每一个应用实例,都包含原理介绍和程序代码(含详细的中文注释)。 一、四维目标跟踪Kalman 线性滤波例子 在不考虑机动目标自身的动力因素,将匀速直线运动的船舶系统推广到四 维,即状态[]T k y k y k x k x k X )() ()()()( =包含水平方向的位置和速度和纵向的位置和速度。则目标跟踪的系统方程可以用式(3.1)和(3.2)表示, )()()1(k u k X k X Γ+Φ=+ (2-4-9) )()()(k v k HX k Z += (2-4-10) 其中,? ? ???? ??? ???=Φ10 00 1000010 001 T T ,???? ???????? ??=ΓT T T T 05.00005.022,T H ?? ??????????=00100001 ,T y y x x X ? ????? ??????= ,??? ???=y x Z ,u ,v 为零均值的过程噪声和观测噪声。T 为采样周期。为了便于理解, 将状态方程和观测方程具体化:

卡尔曼滤波文献综述

华北电力大学 毕业设计(论文)文献综述 所在院系电力工程系 专业班号电自0804 学生姓名崔海荣 指导教师签名黄家栋 审批人签字 毕业设计(论文)题目基于卡尔曼滤波原理的电网频率综合检测和预测方法的研究

基于卡尔曼滤波原理的电网频率综合检测和预测方法的研究 一、前言 “频率”概念源于针对周期性变化的事物的经典物理学定义,由于电力系统中许多物理变量具有(准)周期性特征,故这一概念得到广泛应用【1】。 电网频率是电力系统运行的主要指标之一,也是检测电力系统工作状态的重要依据,频率质量直接影响着电力系统安全、优质、稳定运行。因此,频率检测和预测在电网建设中起着至关重要的作用。 随着大容量、超高压、分布式电力网网络的形成以及现代电力电子设备的应用,基于传统概念的电力系统频率和测量技术在解决现代电网频率问题上遇到了诸多挑战。 目前,用于频率检测和预测的方法很多,主要有傅里叶变换法、卡尔曼滤波法、最小均方误差法、正交滤波器法、小波变换法、自适应陷波滤波器以及它们和一些算法相结合来解决电网频率检测和预测问题。 本文着重讲述卡尔曼滤波原理、分类以及它在电力系统频率检测中的应用历程进行系统性分析,并对今后的研究方向做出展望。 二、主题 1 常规卡尔曼滤波 常规卡尔曼滤波是卡尔曼等人为了克服维纳滤波的不足,于60年代初提出的一种递推算法。卡尔曼滤波不要求保留用过的观测数据,当测得新的数据后,可按照一套递推公式算出新的估计量,不必重新计算【2】。 下面对其进行简单介绍: 假设线性离散方程为 1k k k k x A x ω+=+(1) k k k k z H x ν=+ (2) 式子中:k x n R ∈为状态向量;m k z R ∈为测量向量;k ωp R ∈为系统噪声或过程噪 声向量;k νm R ∈为量测噪声向量;k A 为状态转移矩阵;k H 为量测转移转移矩阵。假设系统噪声和量测噪声是互不相关的高斯白噪声,方差阵为k Q 、k R ,定义/1k k x ∧ -=1(|)k k E x y - 其他递推,则卡尔曼滤波递推方程如下: 状态1步预测为 /1k k x ∧ -=k A 1k x ∧ -(3) 1步预测误差方差阵为 /1k k P -=1k A -1k P -1T k A -+1k Q -(4) 状态估计为 k x ∧=/1k k x ∧-+k K (k z -k H /1k k x ∧ -)(5)

飞思卡尔智能车比赛个人经验总结

先静下心来看几篇技术报告,可以是几个人一起看,边看边讨论,大致了解智能车制作的过程及所要完成的任务。 看完报告之后,对智能车也有了大概的了解,其实总结起来,要完成的任务也很简单,即输入模块——控制——输出。 (1)输入模块:各种传感器(光电,电磁,摄像头),原理不同,但功能都一样,都是用来采集赛道的信息。这里面就包含各种传感器的原理,选用,传感器电路的连接,还有传感器的安装、传感器的抗干扰等等需要大家去解决的问题。 (2)控制模块:传感器得到了我们想要的信息,进行相应的AD转换后,就把它输入到单片机中,单片机负责对信息的处理,如除噪,筛选合适的点等等,然后对不同的赛道信息做出相应的控制,这也是智能车制作过程中最为艰难的过程,要想出一个可行而又高效的算法,确实不是一件容易的事。这里面就涉及到单片机的知识、C语言知识和一定的控制算法,有时为了更直观地动态控制,还得加入串口发送和接收程序等等。 (3)输出模块:好的算法,只有通过实验证明才能算是真正的好算法。经过分析控制,单片机做出了相应的判断,就得把控制信号输出给电机(控制速度)和舵机(控制方向),所以就得对电机和舵机模块进行学习和掌握,还有实现精确有效地控制,又得加入闭环控制,PID算法。 明确了任务后,也有了较为清晰的控制思路,接下来就着手弄懂每一个模块。虽然看似简单,但实现起来非常得不容易,这里面要求掌握电路的知识,基本的机械硬件结构知识和单片机、编程等计算机知识。最最困难的是,在做的过程中会遇到很多想得到以及想不到的事情发生,一定得细心地发现问题,并想办法解决这些问题。 兴趣是首要的,除此之外,一定要花充足的时间和精力在上面,毕竟,有付出就会有收获,最后要明确分工和规划好进度。

飞思卡尔智能车程序

Main.c #include /* common defines and macros */ #include /* derivative information */ #pragma LINK_INFO DERIVATIVE "mc9s12db128b" #include "define.h" #include "init.h" // variable used in video process volatile unsigned char image_data[ROW_MAX][LINE_MAX] ; // data array of picture unsigned char black_x[ROW_MAX] ; // 0ne-dimensional array unsigned char row ; // x-position of the array unsigned char line ; // y-position of the array unsigned int row_count ; // row counter unsigned char line_sample ; // used to counter in AD unsigned char row_image ; unsigned char line_temp ; // temperary variable used in data transfer unsigned char sample_data[LINE_MAX] ; // used to save one-dimension array got in interruption // variables below are used in speed measure Unsigned char pulse[5] ; // used to save data in PA process Unsigned char counter; // temporary counter in Speed detect Unsigned char cur_speed; // current speed short stand; short data; unsigned char curve ; // valve used to decide straight or turn short Bounds(short data); short FuzzyLogic(short stand); /*----------------------------------------------------------------------------*\ receive_sci \*----------------------------------------------------------------------------*/ unsigned char receive_sci(void) // receive data through sci { unsigned char sci_data; while(SCI0SR1_RDRF!=1); sci_data=SCI0DRL; return sci_data; } /*----------------------------------------------------------------------------*\ transmit_sci \*----------------------------------------------------------------------------*/ void transmit_sci(unsigned char transmit_data) // send data through sci { while(SCI0SR1_TC!=1); while(SCI0SR1_TDRE!=1);

卡尔曼滤波简介及其算法MATLAB实现代码

卡尔曼滤波简介说明及其算法MATLAB实现代码 卡尔曼滤波算法实现代码(C,C++分别实现) 卡尔曼滤波器简介 近来发现有些问题很多人都很感兴趣。所以在这里希望能尽自己能力跟大家讨论一些力所能及的算法。现在先讨论一下卡尔曼滤波器,如果时间和能力允许,我还希望能够写写其他的算法,例如遗传算法,傅立叶变换,数字滤波,神经网络,图像处理等等。 因为这里不能写复杂的数学公式,所以也只能形象的描述。希望如果哪位是这方面的专家,欢迎讨论更正。 卡尔曼滤波器– Kalman Filter 1.什么是卡尔曼滤波器 (What is the Kalman Filter?) 在学习卡尔曼滤波器之前,首先看看为什么叫“卡尔曼”。跟其他著名的理论(例如傅立叶变换,泰勒级数等等)一样,卡尔曼也是一个人的名字,而跟他们不同的是,他是个现代人! 卡尔曼全名Rudolf Emil Kalman,匈牙利数学家,1930年出生于匈牙利首都布达佩斯。1953,1954年于麻省理工学院分别获得电机工程学士及硕士学位。1957年于哥伦比亚大学获得博士学位。我们现在要学习的卡尔曼滤波器,正是源于他的博士论文和1960年发表的论文《A New Approach to Linear Filtering and Prediction Problems》(线性滤波与预测问题的新方法)。如果对这编论文有兴趣,可以到这里的地址下载: https://www.doczj.com/doc/ff11690744.html,/~welch/media/pdf/Kalman1960.pdf。 简单来说,卡尔曼滤波器是一个“optimal recursive data processing algorithm(最优化自回归数据处理算法)”。对于解决很大部分的问题,他是最优,效率最高甚至是最有用的。他的广泛应用已经超过30年,包括机器人导航,控制,传感器数据融合甚至在军事方面的雷达系统以及导弹追踪等等。近年来更被应用于计算机图像处理,例如头脸识别,图像分割,图像边缘检测等等。 2.卡尔曼滤波器的介绍 (Introduction to the Kalman Filter) 为了可以更加容易的理解卡尔曼滤波器,这里会应用形象的描述方法来讲解,而不是像大多数参考书那样罗列一大堆的数学公式和数学符号。但是,他的5条公式是其核心内容。结合现代的计算机,其实卡尔曼的程序相当的简单,只要你理解了他的那5条公式。 在介绍他的5条公式之前,先让我们来根据下面的例子一步一步的探索。 假设我们要研究的对象是一个房间的温度。根据你的经验判断,这个房间的温度是恒定的,也就

卡尔曼滤波算法及其在组合导航中的应用综述

卡尔曼滤波算法及其在组合导航中的应用综述 摘要:由于描述系统特性的数学模型和噪声的统计模型不准确,不能真实反映物理过程,使模型与获得的观测值不匹配从而会导致滤波器发散。文章在描述组合导航基本特性和卡尔曼滤波原理的基础上提出了滤波发散的问题并提出了抑制发散的方法,最后介绍了卡尔曼滤波在组合导航中的应用。 关键词:卡尔曼滤波;组合导航;发散 随着计算机技术的迅速发展,它有条件提供运算速度高、存贮量大的机载计算机,这为组合导航系统的发展创造了一个很好的技术条件,现代控制理论中最优估计理论的数据处理方法为组合导航系统提供了理论基础。Kalman滤波是R.E.Kalman于1960年提出的从众多与被提取信号有关的观测量中通过算法估计出所需信号的一种滤波算法。他把状态空间的概念引入到随机估计理论中,把信号过程视为白噪声作用下的一个线性系统的输出,用状态方程来描述这种输入-输出关系,估计过程中利用系统状态方程、观测方程、系统噪声和观测噪声的统计特性形成滤波算法。 1组合导航系统基本特性描述 要描述一个实际系统,首先要对其进行建模,即建立系统的状态方程和测量方程。对于组合导航系统,要进行滤波计算必须建立数学模型,此模型具有以下特点。 1.1非线性 组合导航系统本质上是非线性系统,有时为了减少计算量及提高系统实时性,在某些假设条件下组合导航系统的非线性因素可以忽略,其可以用线性化的数学模型来近似描述。但当假设条件不满足时,组合导航系统就必须采用能反映自身实际特性的非线性模型来描述。所以说,非线性是组合导航系统本质的特性。 1.2模型不确定性 组合导航系统处于实际运行环境当中时,受系统本身以及外部应用环境不确定性因素的影响,系统实际模型与建立的理论模型不能完全匹配,即组合导航系统具有模型不确定性。造成系统模型不确定性的主要原因如下: ①模型简化。采用较少的状态变量来描述系统,忽略掉实际系统某些不重要的状态特征。由此造成模型与实际不匹配。②系统噪声统计不准确。所建模型的噪声统计特性与实际系统噪声统计特性有较大差异。③对实际系统初始状态的统计特性建模不准确。④实际系统出现器件老化、损坏等使系统参数发生了变动,造成模型与实际系统不匹配。

卡尔曼滤波的原理说明(通俗易懂)

卡尔曼滤波的原理说明(通俗易懂) 以下是为大家整理的卡尔曼滤波的原理说明(通俗易懂)的相关范文,本文关键词为尔曼,滤波,原理,说明,通俗易懂,尔曼,滤波,原理,说明,学,您可以从右上方搜索框检索更多相关文章,如果您觉得有用,请继续关注我们并推荐给您的好友,您可以在综合文库中查看更多范文。 卡尔曼滤波的原理说明 在学习卡尔曼滤波器之前,首先看看为什么叫“卡尔曼”。跟其他著名的理论(例如傅立叶变换,泰勒级数等等)一样,卡尔曼也是一个人的名字,而跟他们不同的是,他是个现代人!

卡尔曼全名RudolfemilKalman,匈牙利数学家,1930年出生于匈牙利首都布达佩斯。1953,1954年于麻省理工学院分别获得电机工程学士及硕士学位。1957年于哥伦比亚大学获得博士学位。我们现在要学习的卡尔曼滤波器,正是源于他的博士论文和1960年发表的论文《AnewApproachtoLinearFilteringandpredictionproblems》(线性滤波与预测问题的新方法)。如果对这编论文有兴趣,可以到这里的地址下载:https://www.doczj.com/doc/ff11690744.html,/~welch/kalman/media/pdf/Kalman1960.pdf 简单来说,卡尔曼滤波器是一个“optimalrecursivedataprocessingalgorithm(最优化自回归数据处理算法)”。对于解决很大部分的问题,他是最优,效率最高甚至是最有用的。他的广泛应用已经超过30年,包括机器人导航,控制,传感器数据融合甚至在军事方面的雷达系统以及导弹追踪等等。近年来更被应用于计算机图像处理,例如头脸识别,图像分割,图像边缘检测等等。 2.卡尔曼滤波器的介绍 (IntroductiontotheKalmanFilter) 为了可以更加容易的理解卡尔曼滤波器,这里会应用形象的描述方法来讲解,而不是像大多数参考书那样罗列一大堆的数学公式和数学符号。但是,他的5条公式是其核心内容。结合现代的计算机,其实卡尔曼的程序相当的简单,只要你理解了他的那5条公式。 在介绍他的5条公式之前,先让我们来根据下面的例子一步一步的探索。

白色的魅力理查德迈耶道格拉斯住宅分析

迈耶建筑的普遍形象:轻盈、白色、轻质金属板。 1.立体主义。迈耶的立体主义,是一种综合立体主义,是在“透明机制”的设计思想影响下产生的。包含两层意思:一、真正的透明,如大片玻璃幕墙的运用;二、概念上的透明,即想象中的透明,如交叉的板墙体现出建筑内部的体量变化关系。 2.纯粹主义,也是他一贯的设计哲学。迈耶对现代主义功能做法的坚持,对白色风格的坚持,对立体构成风格的坚持,对片墙、玻璃幕墙的坚持……这些本身就是一种纯粹,理念的纯粹。 而在这一种纯粹里面,白色更是他的精髓。迈耶的建筑几乎都是白色,体量关系并非都很复杂,建筑所处的环境甚至可能会异常单调,但他所有作品都是那么完整而成熟。建筑或室内装修要素尽可能简洁且均为白色,只有光影变化而无色彩的表现,这样因质地不同产生出不同层次感和空间感,从而突出室内主体——人的活动与装饰品的陈列。他善于利用白色表达建筑本身与周围环境的和谐关系,表面材料常用白色,辅以绿色自然景物衬托,使人觉得清新脱俗。在建筑内部,他运用垂直空间和天然光线在建筑上的反射达到富于光影的效果,他以新的观点解释旧的建筑,并重新组合几何空间。 麦耶设计的产品都颇为简练,既包括居家设计也包括商用设计。他设计的作品最大的特点是永远有自己的特性而不是在风格上受别人的影响而迷惑。由于其大胆的风格和值得称颂的忠诚,麦耶创造出颇为独特的粗壮风格。为了在展示方面做得更好,他将斜格、正面以及明暗差别强烈的外形等方面和谐地融合在一起。 这种强健的设计呈立方体状,似在召唤一种超现实主义的高科技仙境,其中包含着纯洁、宁静的简单结构。建筑的视觉感相当强大,也暗指所包括的空间。麦耶注重立体主义构图和光影的变化,强调面的穿插,讲究纯净的建筑空间和体量。在对比例和尺度的理解上,他扩大了尺度和等级的空间特征。麦耶着手的是简单的结构,这种结构将室内外空间和体积完全融合在一起。通过对空间、

相关主题
文本预览
相关文档 最新文档