当前位置:文档之家› 牛顿动力学

牛顿动力学

牛顿动力学
牛顿动力学

x x ma F =y y ma F =z

z ma F =第四讲 牛顿动力学

4.1、惯性系

牛顿定律成立的参考系叫惯性系。

一切相对惯性系作匀速直线运动的参考系也是惯性系。实验证明:地球参考系可以近似看做惯性系。相对地面静止或匀速直线运动物体上的参考系可视为惯性系。

4.2牛顿运动定律

4.2.1牛顿第一定律:任何物体都保持静止或匀速直线运动状态,直到其他物体的作用迫使它改变这种状态为止。

任何物体都有保持自已原有运动状态不变的性质叫惯性。惯性是物体固有的属性,可用质量来量度,惯性是维持物体运动状态的原因,力是物体运动状态变化的原因.

4.2.2牛顿第二定律:在外力作用下,物体所获得的加速度的大小与所受合外力的大小成正比,与物体的质量成反比,加速度的方向与合外力的方向相同,其数学表达式为 ma F =

该定律只适用于质点或做平动的物体,只在惯性系中成立,遵从力的独立性原理(叠加原理):作用在质点上的每一个力都各自产生对应的加速度,即∑=a F m i

如在直角坐标系中,有分量式

在自然坐标系中,则有:

ρττ2,v m ma F dt dv m ma F n n ==== 由加速度的定义,可以给出第二定律的微分形式 4.2.3牛顿第三定律 当物体A 以F 1作用在物体B 上时,物体B 也必同时以F 2作用在物体B 上,F 1和F 2在同一直线上,大小相等而方向相反,数学表达式为

21F F -=

牛顿三定律只适用于宏观、低速(远小于光速)的机械运动。

例1、如图所示,小球1的质量是棒2质量的1.8倍。棒的长度l=100cm ,滑轮和绳子的质量以及摩擦可以忽略不计。小球置于与棒的下端相同的水平面上,然后放开系统。问经过多长时间小球与棒的上端处于同一水平面?

22d d dt

r d m t v m F ==

例2、如图所示,不可伸长的轻绳跨搭在半径为R 的定滑轮滑轮上,滑轮与绳间的摩擦因素为μ,绳的左右下端分别挂有质量为M ,m 的两物体,(M>m )系统从静止自由释放后,为使物体动起来,试求M 的取值范围。(将m 当做已知量)

4.3、牛顿定律在曲线中的应用

4.3.1物体作曲线运动的条件:物体的初速度不为零,受到的合外力与初速度不共线且指向曲线“凹侧”。如图该时刻物体受到的合外力F 与速度的夹角为θ,θ满足的条件是o o 1800<<θ。

4.3.2圆周运动

物体做匀速圆周运动的条件是,物体受到始终与速度方向垂直、沿半径指向圆心、大小恒定的力作用,其大小是R m R

v m ma F n 22ω=== 变速圆周运动中,合外力在法线方向和切向方向都有分量,法向分量产生向心加速度

R m R v m ma F n n 22ω===,切向分量产生切向加速度t

v m ma F r r ??==。 4.3.3一般曲线运动

与变速圆周运动类似没在一般曲线运动中,合外力在法线方向和切线方向都有分量,法向分量的大小为R

v m ma F n n 2==,R 为曲线在该处的曲率半径,切向分量的大小为t

v m

ma F r r ??==。

例3、一物体已初速度V 0在空气中水平抛出,重力加速度g 恒定,设物体所受空气阻力与速度满足2kv f =(k 为常数),试写出物体的运动学方程。

4.4非惯性系中的动力学

4.4.1、非惯性系 相对惯性系做变速运动的参考系,牛顿运动定律不适用,称为非惯性系。

4.4.2惯性力

(1)直线加速参考系中的惯性力

设一个参考系K ’相对于惯性系K 以不变加速度0a

运动,质量为m 的质点相对于K ’系和K 系的加速度分别为a 和a '

,则根据相对运动公式有: a a a '+= 0

在惯性系K 中,牛顿第二定律成立,有:)(0a a m a m F '+==

变形为:0a m -a m a m

=' 则,在K ’系中牛顿第二定律可表示为:惯F F a m +='

其中:a m F =为实际受到的合力,0a m -F =惯为惯性力。

注意:惯性力起源于参考系的加速运动,而不是物体间的相互作用,没有反作用力。

(2)离心惯性力

)(离r m -F '??= ωω

例4、水平转盘以角速度ω绕中心轴匀速转动,在圆盘上方用长为r 的轻质细绳将质量为m 的小球系于盘心O 出,小球相对于圆盘静止。求细绳对小球的拉力,并写出小球在转盘参考系下的牛顿第二定律的形式。

(3)切向惯性力

若上述例题中的角速度ω再随时间变化,相对于转盘静止地物体在此非惯性系中还会受

到与角加速度β有关的切向惯性力:r m -F '?=

β切

(4)科里奥利力

若上述例题中的小球相对于转盘的运动速度为v ’,则小球在此非惯性系中还会受到科

里奥利力:v m -2F c

'?= ω 例5、半径为R 的轮子以恒定的速度v 在水平面上沿直线做无滑滚动,将一质量为m 的小石块以相对于轮子顶端静止地速度放在轮子顶端,试问经多长时间,石块与轮子发生相对滑动,摩擦因数为μ。

练习1、如图所示,不可伸长的轻绳穿过光滑的、竖直的固定细管,两端分别拴着质量为M、m的小球。当小球绕管子的几何轴转动时,m到管口的绳长为l,细管的半径可以忽略。(1)求小球的速度和它所受的向心力;

(2)求θ和小球运动的周期。

练习2、一根光滑的钢丝弯成如图所示曲线的形状,其上套一小环。当钢丝绕y轴以角速度ω转动时;小环在钢丝任意位置均能保持相对静止,求钢丝的形状(x,y的函数关系式)。

练习3、一倾角θ=37°的斜面固定在一水平转盘上。一木块在外力作用下静止在斜面上,斜面和木块的静摩擦因数μ=0.25.此木块在距离圆心为r=40cm处。若撤去外力后木块始终与斜面保持相对静止,求转盘转动的角速度ω的取值范围(P116)。

练习4、将两本书逐页交叉地叠放在一起,纸与纸之间的静摩擦系数μ=0.3.设每页纸的质量为1g,每本书共200页,且书A固定不动。今用向右的水平力F把B书抽出,试问F 至少要多大?(P97)

牛顿第二定律的系统表达式及应用一中

牛顿第二定律的系统表达式 一、整体法和隔离法处理加速度相同的连接体问题 1.加速度相同的连接体的动力学方程: F 合 = (m 1 +m 2 +……)a 分量表达式:F x = (m 1 +m 2 +……)a x F y = (m 1 +m 2 +……)a y 2. 应用情境:已知加速度求整体所受外力或者已知整体受力求整体加速度。 例1、如图,在水平面上有一个质量为M的楔形木块A,其斜面倾角为α,一质量为m的木块B放在A的斜面上。现对A施以水平推力F, 恰使B与A不发生相对滑动,忽略一切摩擦,则B对 A的压力大小为( BD ) A 、 mgcosα B、mg/cosα C、FM/(M+m)cosα D、Fm/(M+m)sinα ★题型特点:隔离法与整体法的灵活应用。 ★解法特点:本题最佳方法是先对整体列牛顿第二定律求出整体加速度,再隔离B受力分析得出A、B之间的压力。省去了对木楔受力分析(受力较烦),达到了简化问题的目的。 例2.质量分别为m1、m2、m3、m4的四个物体彼此用轻绳连接,放在光滑的桌面上,拉力F1、F2分别水平地加在m1、m4上,如图所示。求物体系的加速度a和连接m2、m3轻绳的张力F。(F1>F2) 例3、两个物体A和B,质量分别为m1和m2,互相接触放在光滑水平面上,如图所示,对物体A施以水平的推力F,则物体A对B的作用力等于 ( ) A.F F F F 3、B 解析:首先确定研究对象,先选整体,求出A、B共同的加速度,再单独研究B,B 在A施加的弹力作用下加速运动,根据牛顿第二定律列方程求解. 将m1、m2看做一个整体,其合外力为F,由牛顿第二定律知,F=(m1+m2)a,再以m2为研究对象,受力分析如右图所示,由牛顿第二定律可得:F12=m2a,以上两式联立可得:F12= ,B正确. 例4、在粗糙水平面上有一个三角形木块a,在它的两个粗糙斜面上分别放有质量为m1和m2的两个木块b和c,如图1所示,已知m1>m2,三木块均处于静止, 则粗糙地面对于三角形木块( D ) A.有摩擦力作用,摩擦力的方向水平向右。B.有摩擦力作用,摩擦力的方向水平向左。C.有摩擦力作用,组摩擦力的方向不能确定。D.没有摩擦力的作用。 二、对加速度不同的连接体应用牛顿第二定律1.加速度不同的连接体的动力学方程:b c a

(完整版)高一物理牛顿第一定律

必修一 4.1 牛顿第一定律学案 课前预习学案 A.预习目标 1、知道牛顿第一定律。知道惯性及惯性现象。 2、知道日常生活中由于惯性而产生的简单现象。会解释日常生活中的惯性现象。 二、预习内容 1、一切物体总保持_______状态或________状态,除非__________________,这就是牛顿第一定律.牛顿第一定律揭示了运动和力的关系:力不是_________的原因,而是______________的原因. 2、物体的这种保持_________或__________的性质叫做惯性,惯性是物体的____性质. 三、提出疑惑 课内探究学案 (一)学习目标 (一)知识与技能 1、理解力和运动的关系,知道物体的运动不需要力来维持。 2、理解牛顿第一定律,知道它是逻辑推理的结果,不受力的物体是不存在的。 3、理解惯性的概念,知道质量是惯性大小的量度. (二)过程与方法 1、培养学生分析问题的能力,要能透过现象了解事物的本质,不能不加研究、分析而只凭经验,对物理问题决不能主观臆断.正确的认识力和运动的关系. 2、帮助学生养成研究问题要从不同的角度对比研究的习惯. 3、培养学生逻辑推理的能力,知道物体的运动是不需要力来维持的。 (三)情感、态度与价值观 1、利用动画演示伽利略的理想实验,帮助学生理解问题。 2、利用生活中的例子来认识惯性与质量的关系。培养学生大胆发言,并学以致用。 教学重难点 1、理解力和运动的关系。 2、理解牛顿第一定律,知道惯性与质量的关系。 二、学习过程 (一)下面你就利用桌子上的器材来研究一下这个问题。让学生利用桌子上的器材,自主设计实验,分别研究: l、力推物动,力撤物停。 2、力撤物不停。 提问:你还能举出其他的例子来说明这个问题吗? 刚才的两个实验为什么会出现两种现象呢?矛盾出在哪呢? 总结:物体的运动是不需要力来维持的。(力撤物停的原因是因为摩擦力。如果没有摩擦力,运动的物体会一直运动下去)。最早发现这一问题的科学家是伽利略。伽利略是

高中物理牛顿运动定律题20套(带答案)

高中物理牛顿运动定律题20套(带答案) 一、高中物理精讲专题测试牛顿运动定律 1.如图所示,质量M=0.4kg 的长木板静止在光滑水平面上,其右侧与固定竖直挡板问的距离L=0.5m ,某时刻另一质量m=0.1kg 的小滑块(可视为质点)以v 0=2m /s 的速度向右滑上长木板,一段时间后长木板与竖直挡板发生碰撞,碰撞过程无机械能损失。已知小滑块与长木板间的动摩擦因数μ=0.2,重力加速度g=10m /s 2,小滑块始终未脱离长木板。求: (1)自小滑块刚滑上长木板开始,经多长时间长木板与竖直挡板相碰; (2)长木板碰撞竖直挡板后,小滑块和长木板相对静止时,小滑块距长木板左端的距离。 【答案】(1)1.65m (2)0.928m 【解析】 【详解】 解:(1)小滑块刚滑上长木板后,小滑块和长木板水平方向动量守恒: 解得: 对长木板: 得长木板的加速度: 自小滑块刚滑上长木板至两者达相同速度: 解得: 长木板位移: 解得: 两者达相同速度时长木板还没有碰竖直挡板 解得: (2)长木板碰竖直挡板后,小滑块和长木板水平方向动量守恒: 最终两者的共同速度: 小滑块和长木板相对静止时,小滑块距长木板左端的距离: 2.地震发生后,需要向灾区运送大量救灾物资,在物资转运过程中大量使用了如图所示的传送带.已知某传送带与水平面成37θ=o 角,皮带的AB 部分长 5.8L m =,皮带以恒定的速率4/v m s =按图示方向传送,若在B 端无初速度地放置一个质量50m kg =的救灾物资

(P 可视为质点),P 与皮带之间的动摩擦因数0.5(μ=取210/g m s =,sin370.6)=o , 求: ()1物资P 从B 端开始运动时的加速度. ()2物资P 到达A 端时的动能. 【答案】()1物资P 从B 端开始运动时的加速度是()2 10/.2m s 物资P 到达A 端时的动能 是900J . 【解析】 【分析】 (1)选取物体P 为研究的对象,对P 进行受力分析,求得合外力,然后根据牛顿第三定律即可求出加速度; (2)物体p 从B 到A 的过程中,重力和摩擦力做功,可以使用动能定律求得物资P 到达A 端时的动能,也可以使用运动学的公式求出速度,然后求动能. 【详解】 (1)P 刚放上B 点时,受到沿传送带向下的滑动摩擦力的作用,sin mg F ma θ+=; cos N F mg θ=N F F μ=其加速度为:21sin cos 10/a g g m s θμθ=+= (2)解法一:P 达到与传送带有相同速度的位移2 1 0.82v s m a == 以后物资P 受到沿传送带向上的滑动摩擦力作用 根据动能定理:()()2211sin 22 A mg F L s mv mv θ--=- 到A 端时的动能2 19002 kA A E mv J = = 解法二:P 达到与传送带有相同速度的位移2 1 0.82v s m a == 以后物资P 受到沿传送带向上的滑动摩擦力作用, P 的加速度2 2sin cos 2/a g g m s θμθ=-= 后段运动有:2 22212 L s vt a t -=+, 解得:21t s =, 到达A 端的速度226/A v v a t m s =+=

高中物理牛顿运动定律典型例题精选讲解

牛顿运动定律典型精练 基础知识回顾 1、牛顿第一定律:一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。 对牛顿第一定律的理解要点:(1)运动是物体的一种属性,物体的运动不需要力来维持;(2)它定性地揭示了运动与力的关系,即力是改变物体运动状态的原因,是使物体产生加速度的原因;(3)定律说明了任何物体都有一个极其重要的属性——惯性;(4)不受力的物体是不存在的,牛顿第一定律不能用实验直接验证,但是建立在大量实验现象的基础之上,通过思维的逻辑推理而发现的。它告诉了人们研究物理问题的另一种方法,即通过大量的实验现象,利用人的逻辑思维,从大量现象中寻找事物的规律;(5)牛顿第一定律是牛顿第二定律的基础,不能简单地认为它是牛顿第二定律不受外力时的特例,牛顿第一定律定性地给出了力与运动的关系,牛顿第二定律定量地给出力与运动的关系。 2、牛顿第二定律:物体的加速度跟所受的外力的合力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同。公式F=ma. 对牛顿第二定律的理解要点:(1)牛顿第二定律定量揭示了力与运动的关系,即知道了力,可根据牛顿第二定律研究其效果,分析出物体的运动规律;反过来,知道了运动,可根据牛顿第二定律研究其受力情况,为设计运动,控制运动提供了理论基础;(2)牛顿第二定律揭示的是力的瞬时效果,即作用在物体上的力与它的效果是瞬时对应关系,力变加速度就变,力撤除加速度就为零,注意力的瞬时效果是加速度而不是速度;(3)牛顿第二定律是矢量关系,加速度的方向总是和合外力的方向相同的,可以用分量式表示, F x =ma x ,F y =ma y ,F z =ma z ;(4)牛顿第二定律F=ma 定义了力的基本单位——牛顿(定义使质量为1kg 的物体产生1m/s 2 的加速度的作用力为 1N,即1N=1kg.m/s 2 . 3、牛顿第三定律:两个物体之间的作用力与反作用力总是大小相等,方向相反,作用在同一直线上。 对牛顿第三定律的理解要点:(1)作用力和反作用力相互依赖性,它们是相互依存,互以对方作为自已存在的前提;(2)作用力和反作用力的同时性,它们是同时产生、同时消失,同时变化,不是先有作用力后有反作用力;(3)作用力和反作用力是同一性质的力;(4)作用力和反作用力是不可叠加的,作用力和反作用力分别作用在两个不同的物体上,各产生其效果,不可求它们的合力,两个力的作用效果不能相互抵消,这应注意同二力平衡加以区别。 4.物体受力分析的基本程序:(1)确定研究对象;(2)采用隔离法分析其他物体对研究对象的作用力;(3)按照先重力,然后环绕物体一周找出跟研究对象接触的物体,并逐个分析这些物体对研究对象的弹力和摩擦力,最后分析其他场力;(4)画物体受力图,没有特别要求,则画示意图即可。 5.超重和失重:(1)超重:物体有向上的加速度称物体处于超重。处于失重的物体的物体对支持面的压力F (或对悬挂物的拉力)大于物体的重力,即F=mg+ma.;(2)失重:物体有向下的加速度称物体处于失重。处于失重的物体对支持面的压力F N (或对悬挂物的拉力)小于物体的重力mg ,即F N =mg -ma ,当a=g 时,F N =0,即物体处于完全失重。 6、牛顿定律的适用范围:(1)只适用于研究惯性系中运动与力的关系,不能用于非惯性系;(2)只适用于解决宏观物体的低速运动问题,不能用来处理高速运动问题;(3)只适用于宏观物体,一般不适用微观粒子。 二、解析典型问题 问题1:必须弄清牛顿第二定律的矢量性。 牛顿第二定律F=ma 是矢量式,加速度的方向与物体所受合外力的方向相同。在解题时,可以利用正交分解法进行求解。 练习1、如图1所示,电梯与水平面夹角为300 ,当电梯加速向上运动时,人对梯面压力是其重力的6/5,则人与梯面间的摩擦力是其重力的多少倍? 分析与解:对人受力分析,他受到重力mg 、支持力F N 和摩擦力F f 作用,如图1所示.取水平向右为x 轴正向, 竖直向上为y 轴正向,此时只需分解加速度,据牛顿第二定律可得:F f =macos300, F N -mg=masin300 因为 56=mg F N ,解得5 3 =mg F f . 练习2.一物体放置在倾角为θ的斜面上,斜面固定于加速上升的电梯中,加速度为a ,如图3-1-15所示.在物体始终相对于斜 面静止的条件下,下列说法中正确的是( ) A .当θ一定时,a 越大,斜面对物体的正压力越小 B .当θ一定时,a 越大,斜面对物体的摩擦力越大 C .当a 一定时,θ越大,斜面对物体的正压力越小 D .当a 一定时,θ越大,斜面对物体的摩擦力越小 练习3.一物体放置在倾角为θ的斜面上,斜面固定于在水平面上加速运动的小车中,加速度为a ,如图3—1-16所示,在物体始终相对于斜面静止的条件下,下列说法中正确的是() A .当θ一定时,a 越大,斜面对物体的正压力越大 B .当θ一定时,a 越大,斜面对物体的摩擦力越大 C .当θ一定时,a 越大,斜面对物体的正压力越小 D .当θ一定时,a 越大,斜面对物体的摩擦力越小 问题2:必须弄清牛顿第二定律的瞬时性。 1.物体运动的加速度a 与其所受的合外力F 有瞬时对应关系,每一瞬时的加速度只取决于这一瞬时的合外力.若合外力的大小或方向改变,加速度的大小或方向也立即(同时)改变;或合外力变为零,加速度也立即变为零(物体运动的加速度可以突变). 2.中学物理中的“绳”和“线”,是理想化模型,具有如下几个特性: A .轻:即绳(或线)的质量和重力均可视为等于零,由此特点可知,同一根绳(或线)的两端及其中间各点的张力大小相等. 30a F m g F f 图1 x y x a a 图图

高中物理-牛顿运动的典型试题

应用牛顿运动定律解决几类典型问题 学习目标: 1.学会分析含有弹簧的瞬时问题. 2.应用整体法和隔离法解决简单的连接体问题. 3.掌握临界问题的分析方法. 课前预习: 1.牛顿第二定律的表达式F=_____,其中加速度a与合力F存在着_______对应关系,a与F同时产生、___________、同时消失;a的方向与_________的方向始终相同.2.解决动力学问题的关键是做好两个分析:__________分析和__________分析,同时抓住受力情况和运动情况联系的桥梁——________. 学习·探究区 一、瞬时加速度问题 根据牛顿第二定律,加速度a与合外力F存在着瞬时对应关系:合外力恒定,加速度恒定;合外力变化,加速度变化;合外力等于零,加速度等于零.所以分析物体在某一时刻的瞬时加速度,关键是分析该时刻物体的受力情况及运动状态,再由牛顿第二定律求出瞬时加速度.应注意两类基本模型的区别: (1)刚性绳(或接触面)模型:这种不发生明显形变就能产生弹力的物体,剪断(或脱离) 后,弹力立即改变或消失,形变恢复几乎不需要时间. (2)弹簧(或橡皮绳)模型:此种物体的特点是形变量大,形变恢复需要较长时间,在 瞬时问题中,其弹力的大小往往可以看成是不变的. 例1图中小球M处于静止状态,弹簧与竖直方向的夹角为θ,烧断BO绳的瞬间,试求小球M的加速度大小和方向. 二、动力学中的临界问题分析 若题目中出现“最大”、“最小”、“刚好”等词语时,一般都有临界状态出现.分析时,可用极限法,即把问题(物理过程)推到极端,分析在极端情况下可能出现的状态和满足的条件. 在某些物理情景中,由于条件的变化,会出现两种不同状态的衔接,在这两种状态的分界处,某个(或某些)物理量取特定的值,例如具有最大值或最小值. 1

牛顿第二定律教学设计市级一等奖

牛顿第二定律 教学设计 教材分析 牛顿第二定律是动力学部分的核心内容,它具体地、定量地回答了物体运动状态的变化,即加速度与它所受外力的关系,以及加速度与物体自身的惯性——质量的关系;况且此定律是联系运动学与力学的桥梁,它在中学物理教学中的地位和作用不言而喻,所以本节课的教学对力学是至关重要的.本节课是在上节探究结果的基础上加以归纳总结得出牛顿第二定律的内容,关键是通过实例分析强化训练让学生深入理解,全面掌握牛顿第二定律,会应用牛顿第二定律解决有关问题. 学情分析???? 学生学习了第二节实验课:探究加速度与力/质量的关系,?对a?m?F三者关系都有了初步了解,并且总结出了相关规律,所以对本节理论课内容做好了铺垫,对掌握本节内容具有重要作用,? 教学目标: 知识与技能 1、能准确表述牛顿第二定律 2、理解数学表达式中各物理量的意义及相互关系 3、知道在国际单位制中力的单位“牛顿”是怎样定义的 4、能运用牛顿第二定律分析和处理简单的问题 过程与方法 通过对上节课实验结论的归纳,培养学生概括和分析推理能力

情感与态度 1、渗透物理学研究方法的教育——由实验归纳总结物理规律 2、让学生感受到物理学在认识自然上的本质性、深刻性、有效性 教学重点: 牛顿第二定律 教学难点: 1、牛顿第二定律公式的理解 2、理解k=1时,F=ma 教学方法和程序:探讨、归纳、数字化实验、讯飞多媒体辅助互动等。具体步骤是:创设物理情景→回顾与思考→数字化演示实验→总结规律→讯飞多媒体辅助互动。 教学过程:

板书设计: 牛顿第二定律 1.内容:物体的加速度跟所受的合外力成正比,跟物体的质量成反比.加速度的方向跟合外力的方向相同 2.表达式:a =F 合m 或F 合=ma 说明:①a =F m 是加速度的决定式②力是产生加速度的原因③m =F a 中m 与F 、a 无关 1. 3.对牛顿第二定律的理解:①矢量性 ②因果性 ③瞬时性 ④同体性 ⑤独立性 ⑥局限性 4.应用牛顿第二定律解题的一般步骤 备用习题: 1.如图所示,一物体以一定的初速度沿斜面向 上滑动,滑到顶点后又返回斜面底端.试分析在物 体运动的过程中加速度的变化情况. 解析:在物体向上滑动的过程中,物体运动受到重力和斜面的摩擦力作用,其沿斜面的合力平行于斜面向下,所以物体运动的加速度方向是平行斜面向下的,与物体运动的速度方向相反,物体做减速运动,直至速度减为零.在物体向下滑动的过程中, 物体运动也是受到重力和斜面的摩擦力作用,但摩擦力的方向平行斜面向上,其沿斜面的合力仍然是

高中物理牛顿运动定律基础练习题

牛顿运动定律 第一课时牛顿运动定律 一、基础知识回顾: 1、牛顿第一定律 一切物体总保持,直到有外力迫使它改变这种状态为止。 注意:(1)牛顿第一定律进一步揭示了力不是维持物体运动(物体速度)的原因,而是物体运动状态(物体速度)的原因,换言之,力是产生的原因。(2)牛顿第一定律不是实验定律,它是以伽利略的“理想实验“为基础,经过科学抽象,归纳推理而总结出来的。 2、惯性 物体保持原来的匀速直线运动状态或静止状态的性质叫惯性。 3、对牛顿第一运动定律的理解 (1)运动是物体的一种属性,物体的运动不需要力来维持。 (2)它定性地揭示了运动与力的关系,力是改变物体运动状态的原因,是使物体产生加速度的原因。 (3)定律说明了任何物体都有一个极其重要的性质——惯性。 (4)牛顿第一定律揭示了静止状态和匀速直线运动状态的等价性。 4、对物体的惯性的理解 (1)惯性是物体总有保持自己原来状态(速度)的本性,是物体的固有属性,不能克服和避免。 (2)惯性只与物体本身有关而与物体是否运动,是否受力无关。任何物体无论它运动还是静止,无论运动状态是改变还是不改变,物体都有惯性,且物体质量不变惯性不变。质量是物体惯性的唯一量度。 (3)物体惯性的大小是描述物体保持原来运动状态的本领强弱。物体惯性(质量)大,保持原来的运动状态的本领强,物体的运动状态难改变,反之物体的运动状态易改变。(4)惯性不是力。 5、牛顿第二定律的内容和公式 物体的加速度跟成正比,跟成反比,加速度的方向跟合外力方向相同。公式是:a=F合/ m 或F合 =ma 6、对牛顿第二定律的理解 (1)牛顿第二定律定量揭示了力与运动的关系,即知道了力,可根据牛顿第二定律得出物体的运动规律。反过来,知道运动规律可以根据牛顿第二运动定律得出物体的受力情况,在牛顿第二运动定律的数学表达式F合=ma中,F合是力,ma是力的作用效果,特别要注意不能把ma看作是力。 (2)牛顿第二定律揭示的是力的瞬时效果,即作用在物体上的力与它的效果是瞬时对应关系,力变加速度就变,力撤除加速度就为零,注意力的瞬时效果是加速度而不是速度。(3)牛顿第二定律公式:F合=ma是矢量式,F、a都是矢量且方向相同。 (4)牛顿第二定律F合=ma定义了力的单位:“牛顿”。 7、牛顿第三定律的内容 两个物体之间的作用力与反作用力总是大小相等、方向相反,作用在同一条直线上 8、对牛顿第三定律的理解 (1)作用力和反作用力的同时性。它们是同时产生同时变化,同时消失,不是先有作

高中物理牛顿运动定律提高训练含解析

高中物理牛顿运动定律提高训练含解析 一、高中物理精讲专题测试牛顿运动定律 1.如图所示为工厂里一种运货过程的简化模型,货物(可视为质点质量4m kg =,以初速度010/v m s =滑上静止在光滑轨道OB 上的小车左端,小车质量为6M kg =,高为 0.8h m =。在光滑的轨道上A 处设置一固定的障碍物,当小车撞到障碍物时会被粘住不 动,而货物继续运动,最后恰好落在光滑轨道上的B 点。已知货物与小车上表面的动摩擦因数0.5μ=,货物做平抛运动的水平距离AB 长为1.2m ,重力加速度g 取210/m s 。 ()1求货物从小车右端滑出时的速度; ()2若已知OA 段距离足够长,导致小车在碰到A 之前已经与货物达到共同速度,则小车 的长度是多少? 【答案】(1)3m/s ;(2)6.7m 【解析】 【详解】 ()1设货物从小车右端滑出时的速度为x v ,滑出之后做平抛运动, 在竖直方向上:2 12 h gt = , 水平方向:AB x l v t = 解得:3/x v m s = ()2在小车碰撞到障碍物前,车与货物已经到达共同速度,以小车与货物组成的系统为研 究对象,系统在水平方向动量守恒, 由动量守恒定律得:()0mv m M v =+共, 解得:4/v m s =共, 由能量守恒定律得:()2201122 Q mgs mv m M v μ==-+共相对, 解得:6s m =相对, 当小车被粘住之后,物块继续在小车上滑行,直到滑出过程,对货物,由动能定理得: 22 11'22 x mgs mv mv 共μ-= -, 解得:'0.7s m =, 车的最小长度:故L ' 6.7s s m =+=相对;

高中物理牛顿运动定律经典练习题

牛顿运动定律 一、基础知识回顾: 1、牛顿第一定律 一切物体总保持,直到有外力迫使它改变这种状态为止。 注意:(1)牛顿第一定律进一步揭示了力不是维持物体运动(物体速度)的原因,而是物体运动状态(物体速度)的原因,换言之,力是产生的原因。(2)牛顿第一定律不是实验定律,它是以伽利略的“理想实验“为基础,经过科学抽象,归纳推理而总结出来的。 2、惯性 物体保持原来的匀速直线运动状态或静止状态的性质叫惯性。 3、对牛顿第一运动定律的理解 (1)运动是物体的一种属性,物体的运动不需要力来维持。 (2)它定性地揭示了运动与力的关系,力是改变物体运动状态的原因,是使物体产生加速度的原因。 (3)定律说明了任何物体都有一个极其重要的性质——惯性。 (4)牛顿第一定律揭示了静止状态和匀速直线运动状态的等价性。 4、对物体的惯性的理解 (1)惯性是物体总有保持自己原来状态(速度)的本性,是物体的固有属性,不能克服和避免。 (2)惯性只与物体本身有关而与物体是否运动,是否受力无关。任何物体无论它运动还是静止,无论运动状态是改变还是不改变,物体都有惯性,且物体质量不变惯性不变。质量是物体惯性的唯一量度。 (3)物体惯性的大小是描述物体保持原来运动状态的本领强弱。物体惯性(质量)大,保持原来的运动状态的本领强,物体的运动状态难改变,反之物体的运动状态易改变。(4)惯性不是力。 5、牛顿第二定律的内容和公式 物体的加速度跟成正比,跟成反比,加速度的方向跟合外力方向相同。公式是:a=F合/ m 或F合 =ma 6、对牛顿第二定律的理解 (1)牛顿第二定律定量揭示了力与运动的关系,即知道了力,可根据牛顿第二定律得出物体的运动规律。反过来,知道运动规律可以根据牛顿第二运动定律得出物体的受力情况,在牛顿第二运动定律的数学表达式F合=ma中,F合是力,ma是力的作用效果,特别要注意不能把ma看作是力。 (2)牛顿第二定律揭示的是力的瞬时效果,即作用在物体上的力与它的效果是瞬时对应关系,力变加速度就变,力撤除加速度就为零,注意力的瞬时效果是加速度而不是速度。(3)牛顿第二定律公式:F合=ma是矢量式,F、a都是矢量且方向相同。 (4)牛顿第二定律F合=ma定义了力的单位:“牛顿”。 7、牛顿第三定律的内容 两个物体之间的作用力与反作用力总是大小相等、方向相反,作用在同一条直线上 8、对牛顿第三定律的理解 (1)作用力和反作用力的同时性。它们是同时产生同时变化,同时消失,不是先有作用力后有反作用力。

高一物理牛顿运动定律测试题

(三)牛顿运动定律测验卷 一.命题双向表 二. 期望值:65 三. 试卷 (三)牛顿运动定律测验卷 一.选择题(每道小题 4分共 40分 ) 1.下面关于惯性的说法正确的是() A.物体不容易停下来是因为物体具有惯性 B.速度大的物体惯性一定大 C.物体表现出惯性时,一定遵循惯性定律 D.惯性总是有害的,我们应设法防止其不利影响 2.一个物体受到多个力作用而保持静止,后来物体所受的各力中只有一个力逐渐减小到零后 又逐渐增大,其它力保持不变,直至物体恢复到开始的受力情况,则物体在这一过程中A.物体的速度逐渐增大到某一数值后又逐渐减小到零 B.物体的速度从零逐渐增大到某一数值后又逐渐减小到另一数值 C.物体的速度从零开始逐渐增大到某一数值 D.以上说法均不对 3.质量为m1和m2的两个物体,分别以v1和v2的速度在光滑水平面上做匀速直线运动, 且v1

图-1 图 3-3-7 A .力F 与v1、v2同向,且m1>m2 B .力F 与v1、v2同向,且m1m2 D .力F 与v1、v2反向,且m1 2a 1 D a 2 = 2a 1 9、质量为m 1和m 2的两个物体,由静止从同一高度下落,运动中所受的空气阻力分别是F 1和F2.如果发现质量为m 1的物体先落地,那么 A. m 1>m 2 B. F 1<F 2 C. F 1/m 1<F 2/m 2 D. F 1/m 1>F 2/m 2 10、如图所示,将质量为m =0.1kg 的物体用两个完全一样的竖直轻弹簧固定在升降机内,当升降机和物体以4m/s 2的加速度匀加速向上运动时,上面的弹簧对物体的拉力为0.4N ,当升降机和物体以8m/s 2的加速度向上运动 时,上面弹簧的拉力为 A 、0.6N B 、0.8N C 、1.0N D 、 1.2N

牛顿第二定律两类动力学问题及答案解析

牛顿第二定律两类动力学问题 知识点、两类动力学问题 1.动力学的两类基本问题 第一类:已知受力情况求物体的运动情况。 第二类:已知运动情况求物体的受力情况。 2.解决两类基本问题的方法 以加速度为“桥梁”,由运动学公式和牛顿第二定律列方程求解,具体逻辑关系如图: 对牛顿第二定律的理解 1.牛顿第二定律的“五个性质”

2.合力、加速度、速度的关系 (1)物体的加速度由所受合力决定,与速度无必然联系。 (2)合力与速度夹角为锐角,物体加速;合力与速度夹角为钝角,物体减速。 (3)a=Δv Δt 是加速度的定义式,a与v、Δv无直接关系;a= F m 是加速度的决定式。 3.[应用牛顿第二定律定性分析]如图1所示,弹簧左端固定,右端自由伸长到O点并系住质量为m的物体,现将弹簧压缩到A点,然后释放,物体可以一直运动到B点。如果物体受到的阻力恒定,则( ) 图1 A.物体从A到O先加速后减速 B.物体从A到O做加速运动,从O到B做减速运动 C.物体运动到O点时,所受合力为零 D.物体从A到O的过程中,加速度逐渐减小 解析物体从A到O,初始阶段受到的向右的弹力大于阻力,合力向右。随着物体向右运动,弹力逐渐减小,合力逐渐减小,由牛顿第二定律可知,加速度向右且逐渐减小,由于加速度与速度同向,物体的速度逐渐增大。当物体向右运动至AO间某点(设为点O′)时,弹力减小到与阻力相等,物体所受合力为零,加速度为零,速度达到最大。此后,随着物体继续向右运动,弹力继续减小,阻力大于弹力,合力方向变为向左。至O点时弹力减为零,此后弹力向左且逐渐增大。所以物体越过O′点后,合力(加速度)方向向左且逐渐增大,由于加速度与速度反

大学物理题库第二章牛顿运动定律.doc

第二章牛顿运动定律 一、填空题(本大题共16小题,总计48分) 1.(3分)如图所示,一个小物体A靠在一辆小车的竖直前壁上,A和车壁间静摩擦系数是丛,若要使物体A不致掉下来,小车的加速度的最小值应为1=. J A i 疽 3.(3分)如果一个箱子与货车底板之间的静摩擦系数为〃,当这货车爬一与水平方向 成。角的平缓山坡时,若不使箱了在车底板上滑动,车的最大加速度%域=. 4.(3分)质量m = 40kg的箱子放在卡车的车厢底板上,巳知箱子与底板之间的静摩擦系数为从=0.40,滑动摩擦系数为角=0.25,试分别写出在下列情况下,作用在箱了上的摩擦力的大小和方向. (1)卡车以。=2m/s2的加速度行驶,/ =,方向. (2)卡车以a = -5m/s2的加速度急刹车,/ =,方向? 5.(3分)一圆锥摆摆长为/、摆锤质量为在水平面上作匀速圆周运动,摆线与铅直线夹角。,则 (1)摆线的张力§= 2 (3分)质量相等的两物体A和B,分别固定在弹簧的两端,竖直放在光滑水平支持面C 上,如图所示.弹簧的质量与物体A、B的质量相比,M以忽略不计.若把支持面C迅速移走,则在移开的一瞬间,A的加速度大小心= ,B的加速度的大小% = .

⑵ 摆锤的速率V= I 6.(3分)质量为m的小球,用轻绳AB. BC连接,如图,其中AB水平.剪断绳AB前后的瞬间,绳BC中的张力比F T:E;=. 7.(3分)有两个弹簧,质量忽略不计,原长都是10 cm,第一个弹簧上端固定,下挂一个质量为m的物体后,长为11 cm,而第二个弹簧上端固定,下挂一质量为m的物体后,R为13 cm,现将两弹簧串联,上端固定,下面仍挂一质量为〃,的物体,则两弹簧的总长为 . 8.(3分)如图,在光滑水平桌面上,有两个物体A和B紧靠在一起.它们的质量分别为 = 2kg , = 1kg .今用一水平力F = 3N推物体B,则B推A的力等于.如 用同样大小的水平力从右边推A,则A推B的力等于? 9.(3分)一物体质量为M,置于光滑水平地板上.今用一水平力斤通过一质量为m的绳拉动物体前进,贝U物体的加速度但=,绳作用于物体上的力. 10.(3分)倾角为30°的一个斜而体放置在水平桌面上.一个质量为2 kg的物体沿斜面下滑, 下滑的加速度为3.0m/s2.若此时斜面体静止在桌面上不动,则斜面体与桌面间的静摩擦力

牛顿第二定律 两类动力学问题

课时跟踪检测(九) 牛顿第二定律 两类动力学问题 对点训练:牛顿第二定律的理解 1.若战机从“辽宁号”航母上起飞前滑行的距离相同,牵引力相同,则( ) A .携带弹药越多,加速度越大 B .加速度相同,与携带弹药的多少无关 C .携带弹药越多,获得的起飞速度越大 D .携带弹药越多,滑行时间越长 2.(多选)如图所示,一木块在光滑水平面上受一恒力F 作用,前方固定一足够长的水平轻弹簧,则当木块接触弹簧后,下列判断正确的是( ) A .木块立即做减速运动 B .木块在一段时间内速度仍增大 C .当F 等于弹簧弹力时,木块速度最大 D .弹簧压缩量最大时,木块速度为零但加速度不为零 3.如图所示,在倾角为θ=30°的光滑斜面上,物块A 、B 质量分别为m 和2m 。物块A 静止在轻弹簧上面,物块B 用细线与斜面顶端相连,A 、B 紧挨在一起但A 、B 之间无弹力。已知重力加速度为g ,某时刻把细线剪断,当细线剪断瞬间,下列说法正 确的是( ) A .物块A 的加速度为0 B .物块A 的加速度为g 3 C .物块B 的加速度为0 D .物块B 的加速度为g 2 4.(多选)如图所示,在动摩擦因数μ=0.2的水平面上有一个质量m =1 kg 的小球,小球与水平轻弹簧及与竖直方向成θ=45°角的不可伸长的轻绳一端相连,此时小球处于静止状态,且水平面对小球的弹力恰好为零。在剪断轻绳的瞬间(g 取10 m/s 2),下列说法中正确的是( ) A .小球受力个数不变 B .小球立即向左运动,且a =8 m/s 2 C .小球立即向左运动,且a =10 m/s 2 D .若剪断的是弹簧,则剪断瞬间小球加速度为零 5.如图所示,两根长度分别为L 1和L 2的光滑杆AB 和BC 在B 点垂直焊接,当按图示方式固定在竖直平面内时,将一滑环从B 点由静止释放,分别沿BA 和BC 滑到杆的底端经历的时间相同,则这段时间为( ) A. 2L 1L 2g B. 2L 1L 2g

高中物理牛顿运动定律解题技巧及练习题

高中物理牛顿运动定律解题技巧及练习题 一、高中物理精讲专题测试牛顿运动定律 1.如图甲所示,一长木板静止在水平地面上,在0t =时刻,一小物块以一定速度从左端滑上长木板,以后长木板运动v t -图象如图所示.已知小物块与长木板的质量均为 1m kg =,小物块与长木板间及长木板与地面间均有摩擦,经1s 后小物块与长木板相对静 止( )2 10/g m s =,求: ()1小物块与长木板间动摩擦因数的值; ()2在整个运动过程中,系统所产生的热量. 【答案】(1)0.7(2)40.5J 【解析】 【分析】 ()1小物块滑上长木板后,由乙图知,长木板先做匀加速直线运动,后做匀减速直线运 动,根据牛顿第二定律求出长木板加速运动过程的加速度,木板与物块相对静止时后木板与物块一起匀减速运动,由牛顿第二定律和速度公式求物块与长木板间动摩擦因数的值. ()2对于小物块减速运动的过程,由牛顿第二定律和速度公式求得物块的初速度,再由能 量守恒求热量. 【详解】 ()1长木板加速过程中,由牛顿第二定律,得 1212mg mg ma μμ-=; 11m v a t =; 木板和物块相对静止,共同减速过程中,由牛顿第二定律得 2222mg ma μ?=; 220m v a t =-; 由图象可知,2/m v m s =,11t s =,20.8t s = 联立解得10.7μ= ()2小物块减速过程中,有: 13mg ma μ=; 031m v v a t =-; 在整个过程中,由系统的能量守恒得

2012 Q mv = 联立解得40.5Q J = 【点睛】 本题考查了两体多过程问题,分析清楚物体的运动过程是正确解题的关键,也是本题的易错点,分析清楚运动过程后,应用加速度公式、牛顿第二定律、运动学公式即可正确解题. 2.我国的动车技术已达世界先进水平,“高铁出海”将在我国“一带一路”战略构想中占据重要一席.所谓的动车组,就是把带动力的动力车与非动力车按照预定的参数组合在一起.某中学兴趣小组在模拟实验中用4节小动车和4节小拖车组成动车组,总质量为m=2kg ,每节动车可以提供P 0=3W 的额定功率,开始时动车组先以恒定加速度21/a m s =启动做匀加速直线运动,达到额定功率后保持功率不变再做变加速直线运动,直至动车组达到最大速度v m =6m/s 并开始匀速行驶,行驶过程中所受阻力恒定,求: (1)动车组所受阻力大小和匀加速运动的时间; (2)动车组变加速运动过程中的时间为10s ,求变加速运动的位移. 【答案】(1)2N 3s (2)46.5m 【解析】 (1)动车组先匀加速、再变加速、最后匀速;动车组匀速运动时,根据P=Fv 和平衡条件求解摩擦力,再利用P=Fv 求出动车组恰好达到额定功率的速度,即匀加速的末速度,再利用匀变速直线运动的规律即可求出求匀加速运动的时间;(2)对变加速过程运用动能定理,即可求出求变加速运动的位移. (1)设动车组在运动中所受阻力为f ,动车组的牵引力为F ,动车组以最大速度匀速运动时:F= 动车组总功率:m P Fv =,因为有4节小动车,故04P P = 联立解得:f=2N 设动车组在匀加速阶段所提供的牵引力为F?,匀加速运动的末速度为v ' 由牛顿第二定律有:F f ma '-= 动车组总功率:P F v ='',运动学公式:1v at '= 解得匀加速运动的时间:13t s = (2)设动车组变加速运动的位移为x ,根据动能定理: 2211 22 m Pt fx mv mv = -'- 解得:x=46.5m 3.如图所示,在光滑水平面上有一段质量不计,长为6m 的绸带,在绸带的中点放有两个紧靠着可视为质点的小滑块A 、B ,现同时对A 、B 两滑块施加方向相反,大小均为F=12N 的水平拉力,并开始计时.已知A 滑块的质量mA=2kg ,B 滑块的质量mB=4kg ,A 、B 滑块

高中物理牛顿运动定律的应用解析版汇编含解析

高中物理牛顿运动定律的应用解析版汇编含解析 一、高中物理精讲专题测试牛顿运动定律的应用 1.如图甲所示,一倾角为37°的传送带以恒定速度运行.现将一质量m=1 kg的小物体抛上传送带,物体相对地面的速度随时间变化的关系如图乙所示,取沿传送带向上为正方向,g=10 m/s2,sin 37°=0.6,cos 37°=0.8:求: (1)物体与传送带间的动摩擦因数; (2) 0~8 s内物体机械能的增加量; (3)物体与传送带摩擦产生的热量Q。 【答案】(1)μ=0.875.(2)ΔE=90 J(3)Q=126 J 【解析】 【详解】 (1)由图象可以知道,传送带沿斜向上运动,物体放到传送带上的初速度方向是沿斜面向下的,且加速大小为的匀减速直线运动,对其受力分析,由牛顿第二定律得: 可解得:μ=0.875. (2)根据v-t图象与时间轴围成的“面积”大小等于物体的位移,可得0~8 s 内物体的位移 0~8 s s内物体的机械能的增加量等于物体重力势能的增加量和动能增加量之和,为 (3) 0~8 s内只有前6s发生相对滑动. 0~6 s内传送带运动距离为: 0~6 s内物体位移为: 则0~6 s内物体相对于皮带的位移为 0~8 s内物体与传送带因为摩擦产生的热量等于摩擦力乘以二者间的相对位移大小, 代入数据得:Q=126 J 故本题答案是:(1)μ=0.875.(2)ΔE=90 J(3)Q=126 J 【点睛】 对物体受力分析并结合图像的斜率求得加速度,在v-t图像中图像包围的面积代表物体运动做过的位移。

2.如图,质量分别为m A =2kg 、m B =4kg 的A 、B 小球由轻绳贯穿并挂于定滑轮两侧等高H =25m 处,两球同时由静止开始向下运动,已知两球与轻绳间的最大静摩擦力均等于其重力的0.5倍,且最大静摩擦力等于滑动摩擦力.两侧轻绳下端恰好触地,取g =10m/s 2,不计细绳与滑轮间的摩擦,求:, (1)A 、B 两球开始运动时的加速度. (2)A 、B 两球落地时的动能. (3)A 、B 两球损失的机械能总量. 【答案】(1)2 5m/s A a =27.5m/s B a = (2)850J kB E = (3)250J 【解析】 【详解】 (1)由于是轻绳,所以A 、B 两球对细绳的摩擦力必须等大,又A 得质量小于B 的质量,所以两球由静止释放后A 与细绳间为滑动摩擦力,B 与细绳间为静摩擦力,经过受力分析可得: 对A :A A A A m g f m a -= 对B :B B B B m g f m a -= A B f f = 0.5A A f m g = 联立以上方程得:2 5m/s A a = 27.5m/s B a = (2)设A 球经t s 与细绳分离,此时,A 、B 下降的高度分别为h A 、h B ,速度分别为V A 、V B ,因为它们都做匀变速直线运动 则有:212A A h a t = 21 2 B B h a t = A B H h h =+ A A V a t = B B V a t = 联立得:2s t =,10m A h =, 15m B h =,10m/s A V =,15m/s B V = A 、 B 落地时的动能分别为kA E 、kB E ,由机械能守恒,则有: 21()2kA A A A A E m v m g H h = +- 400J kA E = 2 1()2kB B B B B E m v m g H h =+- 850J kB E = (3)两球损失的机械能总量为E ?,()A B kA kB E m m gH E E ?=+-- 代入以上数据得:250J E ?=

高一物理牛顿运动定律练习及答案

相关习题:(牛顿运动定律) 一、牛顿第一定律练习题 一、选择题 1.下面几个说法中正确的是 [ ] A.静止或作匀速直线运动的物体,一定不受外力的作用 B.当物体的速度等于零时,物体一定处于平衡状态 C.当物体的运动状态发生变化时,物体一定受到外力作用 D.物体的运动方向一定是物体所受合外力的方向 2.关于惯性的下列说法中正确的是 [ ] A.物体能够保持原有运动状态的性质叫惯性 B.物体不受外力作用时才有惯性 C.物体静止时有惯性,一开始运动,不再保持原有的运动状态,也就失去了惯性 D.物体静止时没有惯性,只有始终保持运动状态才有惯性 3.关于惯性的大小,下列说法中哪个是正确的 [ ] A.高速运动的物体不容易让它停下来,所以物体运动速度越大,

惯性越大 B.用相同的水平力分别推放在地面上的两个材料不同的物体,则难以推动的物体惯性大 C.两个物体只要质量相同,那么惯性就一定相同 D.在月球上举重比在地球上容易,所以同一个物体在月球上比在地球上惯性小 4.火车在长直的轨道上匀速行驶,门窗紧闭的车厢内有一人向上跳起,发现仍落回到原处,这是因为 [ ] A.人跳起后,车厢内空气给他以向前的力,带着他随火车一起向前运动 B.人跳起的瞬间,车厢的地板给人一个向前的力,推动他随火车一起运动 C.人跳起后,车继续前进,所以人落下必然偏后一些,只是由于时间很短,偏后的距离不易观察出来 D.人跳起后直到落地,在水平方向上人和车具有相同的速度 5.下面的实例属于惯性表现的是 [ ] A.滑冰运动员停止用力后,仍能在冰上滑行一段距离

B.人在水平路面上骑自行车,为维持匀速直线运动,必须用力蹬自行车的脚踏板 C.奔跑的人脚被障碍物绊住就会摔倒 D.从枪口射出的子弹在空中运动 6.关于物体的惯性定律的关系,下列说法中正确的是 [ ] A.惯性就是惯性定律 B.惯性和惯性定律不同,惯性是物体本身的固有属性,是无条件的,而惯性定律是在一定条件下物体运动所遵循的规律C.物体运动遵循牛顿第一定律,是因为物体有惯性 D.惯性定律不但指明了物体有惯性,还指明了力是改变物体运动状态的原因,而不是维持物体运动状态的原因 7.如图所示,劈形物体M的各表面光滑,上表面水平,放在固定的斜面上.在M的水平上表面放一光滑小球m,后释放M,则小球在碰到斜面前的运动轨迹是 [ ] A.沿斜面向下的直线

相关主题
文本预览
相关文档 最新文档