当前位置:文档之家› 车桥设计说明书

车桥设计说明书

车桥设计说明书
车桥设计说明书

前言

汽车是现代交通工具中用得最多,最普遍,也是最方便的交通运输工具。汽车工业已经成为国民经济的支柱产业,汽车业是一项资金密集、技术密集、人才密集、经济效益高综合性强的产业。汽车驱动桥是汽车传动系的一个重要系统,它影响着汽车的动力性和经济性。汽车驱动桥技术工艺,是衡量一个企业是否具有先进性,是否具备市场竞争力,是否能不断领先于竞争者的重要指标依据。随着我国汽车驱动桥市场的迅猛发展,与之相关的核心生产技术应用与研发必将成为业内企业关注的焦点。总体而言,现在汽车向节能、环保、舒适等方面发展的趋势,要求车桥向轻量化、大扭矩、低噪声、宽速比、寿命长和低生产成本。设计中我参考国内外汽车驱动桥设计结构形式,并结合课题要求得到最终设计方案。

我这次设计的任务是完成微型面包后桥总成的设计。我采用圆弧锥齿轮作为单级主减速器减速齿轮,配用圆锥行星齿轮差速器,半轴为半浮式支撑半轴,驱动桥采用非断开式。

由于自己的水平和能力有限,再加上没有设计经验,因此在设计中还存在许多不足之处,希望老师不吝赐教,以便及时修改。

设计者

2011年5月

第一章驱动桥设计方案拟定

§1.1设计概述

一、驱动桥的组成

在一般的汽车结构中,驱动桥包括主减速器、差速器、驱动车轮的传动装置及桥壳等部件。

驱动桥的基本功用

1、将万向传动装置传来的转矩通过主减速器,差速器半轴等传到驱动车轮,实现降速,增大转矩;

2、通过主减速器圆锥齿轮副改变转矩的传递方向

3、通过差速器实现两侧车轮差速作用,保证内外车轮以不同的转速转向

4、承受作用于路面和车架或车厢之间的垂向力,纵向力和横向力

二、驱动桥设计的基本要求

1、所选择的主减速比应能满足汽车在给定条件下具有最佳的燃油经济性和动力性。

2、尺寸要小,保证有必要的离地间隙。

3、齿轮及其他传动件工作平稳,噪声小。

4、在各种转速和负荷下具有高的传动效率。

5、在保证足够强度、刚度的要求下,应力求质量小,尤其是簧下质量应尽量小,以改善汽车平顺性。

6、差速器在保证左右驱动车轮能以汽车运动学要求的差速滚动外并能将转矩平稳而连续不断地传递给左右驱动车轮。

7、结构简单,加工工艺性好,制造容易,拆装、调整方便。

8、驱动桥总成及零部件的设计应尽量满足零件的标准化、部件的通用化和产品的系列化及汽车变型的要求。

三、驱动桥的结构方案分析

驱动桥的结构形式与驱动车轮的悬架形式密切相关。当车轮采用非独立悬架时,驱动桥应为非断开式。当采用独立悬架时,为保证运动协调,驱动桥应为断开式。

非断开式驱动桥(图1-1a及图1-1b)结构简单,制造工艺性好、成本低、工作可靠、维修调整容易,广泛应用于各种载货汽车、乘用车及多数的越野汽车上。但整个驱动桥属于簧下质量,对汽车的平顺性和降低动载荷不利。断开式驱动桥结构较复杂,成本较高,但它大大地增加了离地间隙;减小了簧下质量,从而改善了行驶时作用在车轮和车桥上的动载荷,提高了零部件的使用寿命;由于驱动车轮与地面的接触情况及对各种地形的适应性较好,大大增强了车轮的抗侧滑能力;与之相配合的独立悬架导向机构设计的合理,可增加汽车的不足转向效应,提高汽车的操纵稳定性。

a b c

图1-1 驱动桥的总体布置式简图

a 普通的非断开式驱动桥,

b 带有摇摆式半轴的非断开式驱动桥,

c 断开式驱动桥

断开式驱动桥(图1-1c):结构复杂,成本较高,但它大大增加了离地间隙;减小了簧下质量,从而改善了行驶平顺性,提高了汽车的平均车速;减小了汽车在行驶时作用于车轮和车桥上的动载荷,提高了零部件的使用寿命;由于驱动车轮与地面的接触情况及对各种地形的适应性较好,大大增加了车轮的抗侧滑能力;与之相配合的独立悬架导向机构设计得合理,可增中汽车的不足转向效应,提高汽车的操纵稳定性。这种驱动桥在轿车和高通过性的越野汽车上应用相当广泛。

本设计根据所定车型及其动力布置形式(前置后驱)采用了非断开式驱

动桥。

§1.2主减速器结构形式的确定

主减速器的结构形式,主要是依据其齿轮类型和主动齿轮的安装方法及减速形式的不同而异。 一、主减速器传动齿轮的类型

1、“格里森”或“奥利康”制螺旋锥齿轮和双曲面齿轮传动;

2、圆柱齿轮传动;

3、涡轮涡杆。

螺旋锥齿轮传动(上图)的主、从动齿轮轴线垂直相交于一点,齿轮并不同时在全长上啮合,而是逐渐从一端连接平稳地转向另一端。另外,由于轮齿端面重叠的影响,至少有两对以上的轮齿同时啮合,所以它工作平稳、能承受较大的负荷、制造也简单。但是,工作中噪声大,对啮合精度很敏感,齿轮副锥顶稍有不吻合便会使工作条件急剧变坏,并伴随磨损增大和噪声增大。为保证齿轮副的正确啮合,必须将支承轴承预紧,提高支承刚度,增大壳体刚度。

综上述,本设计采用螺旋锥齿轮传动。

二、主减速器的减速形式主要有:

单级主减速器、 双级主减速器、 双速主减速器、 单级贯通式主减速器、

图1-2 螺旋锥齿轮传动

双级贯通式主减速器、

单级(或双级)主减速器附轮边减速器。

由于单级主减速器具有结构简单、质量小、尺寸紧凑及制造成本低等优点,因此,它广泛地用在主减速比小于等于7的各种中、小型汽车上。

根据本车总布置对传动比的要求。本设计采用单级主减速器(下图)。

图1-3 单机主减速器

注:计算得本设计主传动比为5.3<7(见主减速器参数确定)。

§1.3主减速器主、从动锥齿轮的支承方案

一、主动锥齿轮的支承:分悬臂式支承和跨置式支承两种。

悬臂式:

支承距离b应大于2.5倍的悬臂长度a,且应比齿轮节圆直径的70%还大,另外靠近齿轮的轴径应不小于尺寸a。支承刚度除了与轴承开式、轴径大小、支承间距离和悬臂长度有关以外,还与轴承与轴及轴承与座孔之间的配合紧度有关。

结构简单,支承刚度较差,用于传递转矩较小的轿车、轻型货车的单级主减速器及许多双级主减速器中。

a) 悬置式 b)跨置式

图1-4 主减速器主动锥齿轮支撑形式

跨置式:

增加支承刚度,减小轴承负荷,改善齿轮啮合条件,增加承载能力,布置紧凑,但是主减速器壳体结构复杂,加工成本提高。

本设计选用悬臂式支撑。

二、从动锥齿轮的支承

支承刚度与轴承的形式、支承间的距离及轴承之间的分布比例有关。

为了增加支承刚度,减小尺寸c+d;为了增强支承稳定性,c+d应不小于从动锥齿轮大端分度圆直径的70%;为了使载荷均匀分配,应尽量使尺寸

c等于或大于尺寸d。

辅助支承限制从动锥齿轮因受轴向力作用而产生偏

图1-5 主减速器从动齿轮支撑形式

图1-6 从动齿轮辅助支撑

第二章参考车型选择及基本参数确定

参考汽车型号:比亚迪福莱尔,其技术参数如下:

表2-1参考车型及主要参数

基本参数福莱尔0.8L 豪华型福莱尔0.8L 标准型产地国产国产

整车总质量(kg)720 720

外形尺寸3605*1468*1470 3605*1468*1470

最高车速(km/h) 118 118

变速器4挡AMT 4挡MT

轴距(mm) 2300 2300

前轮距(mm) 1215 1215

后轮距(mm) 1200 1200

离地间隙(mm) 150 150

排量(L) 0.796 0.796

最大功率(Kw) 29 29

最大功率转速

5000 5000

(rpm)

最大扭距(N·m) 62 62

最大扭距转速

4500 4500

(rpm)

发动机特有技术单顶置凸轮轴水冷前单顶置凸轮轴水冷驱动方式前置前驱前置前驱

基本参数福莱尔0.8L 豪华型福莱尔0.8L 标准型前悬挂类型滑柱摆臂式独立悬架麦弗逊独立悬架

后悬挂类型螺旋弹簧式悬架螺旋弹簧式悬架

前制动器类型盘式盘式

后制动器类型鼓式鼓式

前轮胎规格155/65 R13

155 是轮胎的宽度为

155毫米

65 是轮胎的扁平率

R 代表钢丝子午线

轮胎

13 是轮毂的直径

13英寸

轮胎直径

155X0.65X2+13X25.

4=531.7

155/65 R13

后轮胎规格155/65 R13 155/65 R13

主传动比(可供选择)37:9(4.11)41:9(4.56)43:9

(4.78)

设计选择参数如下:

项目基本参数

发动机(0.797) 额定功率:26.4Kw/5500r/min 最大转矩:52.6N.m/3500r/min

变速器5速(手动) ig1=3.652ig2=2.08ig3=1.25 ig4=1 ig5=0.789 车轮轮胎型号后轮45-12-8PR

前轮45-12-8PR

车轮滚动半径(mm) 8X25.4=20.32

最高车速(km/h)100

外形尺寸(mm)3505*1428*1860

轴距(mm)2300

前轮距(mm)1205

后轮距(mm) 1200

表2-2 设计项目及参数

第三章 主减速器设计

§3.1 主减速器的基本参数选择及设计计算 §3.1.1主减速器基本参数的选择

一、主减速比0i 的确定

主减速比i 0的大小,对主减速器的结构形式、轮廓尺寸及质量的大小影响很大,对汽车的动力性、燃油经济性有非常重大的影响,发动机的工作条件也和传动系的传动比有关为研究主减速比i 0对动力性的影响,图给出了变速器位于最高挡时,在三种不同主减速比且i 01

j f w T

e P P P P ++=

η

绘制的。式中:e P —发动机功率; T η—传动系的机械效率; w P —消耗在克服空气阻力上的功率;

f P —消耗在克服道路阻力上的功率;

j P —功率储备;

图3-1 不同i 0时的汽车功率平衡图

1-i 0t 2-i 0t 3-i 0t

(3-1)

i 0应按下式来确定:

gH

a p r i v n r m ax 0377

.0i =

式中:r r —车轮的滚动半径,m ;

P n —最大功率时的发动机转速,r/min ; max V a —汽车的最高车速,km/h ; gH i —变速器最高档传动比。

代入数据得i 0=28.5795

.01005500

2032.0377.0=???

。加大功率储备取i 0为5.30。.

二、主减速器齿轮计算载荷的确定

1、按发动机最大转矩和最低档传动比确定从动锥齿轮的计算转矩Tce

max 10d e f k T ki i i Tce n

η

= 式中:

ce T ——计算转矩,N m ?;

max e T ——发动机最大转矩,52.6N m ?

n ——计算驱动桥数,n =1;

i f ——分动器传动比,i f =1; i 0——主减速器传动比,i 0=5.30; η——变速器传动效率,取η=0.9; k ——液力变矩器变矩系数,K =1;

K d ——由于猛接离合器而产生的动载系数,K d =1; i 1——变速器最低挡传动比,i 1=3.652; 代入式(2-1),有:Tce =916.23N m ?

2、按驱动桥打滑转矩确定从动锥齿轮的计算转矩?j T

(3-2)

(3-3

))

m

m γcs i ηγG T ?=

?2

式中:

2G ——汽车满载时一个驱动桥给水平地面的最大负荷,后桥所承载

2G =0.55×(660+750)×9.8=7599.9N 的负荷(其中轴荷分配系数取0.55); ?——轮胎对地面的附着系数,对于安装一般轮胎的公路用车,取

?=0.85;对于越野汽车取1.0;对于安装有专门的防滑宽轮胎的高级轿车,

计算时可取1.25。

r r ——车轮的滚动半径,根据8X0.0254=0.2032 得r r =0.0.2032m

m η,m i ——分别为所计算的主减速器从动锥齿轮到驱动车轮之间的传动效率和传动比,LB η取0.9,由于没有轮边减速器m i 取1.0,

所以21.17509.0232.085.02.155.09.7599'

22=÷????==m

m r

cs i r m G T η?N m ?

3、按汽车日常行驶平均转矩确定从动锥齿轮的计算转矩cf T

对于公路车辆来说,使用条件较非公路车辆稳定,其正常持续的转矩根据所谓的平均牵引力的值来确定:

() a r cf

R H P m m G r T f f f i n

η?+??=

+

式中:a G ——汽车满载时的总重量,13818N ;

R f ——道路滚动阻力系数,

对于轿车可取0.010~0.015;在此取0.012; H f ——汽车正常行驶时的平均爬坡能力系数,在此取0.08;

p f ——汽车的性能系数在此取0;

m η——主减速器主动齿轮到车轮之间的效率,取0.9;

m i ——主减速器从动齿轮到车轮之间的传动比,取1;

(3-4)

(3-5)

n ——驱动桥数。 所以 () a r cf R H P m m G r T f f f i n

η?+??=

+

=

()008.0012.01

9.00.12032

.013818++???=280.78N m ?

三、主减速器齿轮基本参数的选择 1、技术要求

(1)为了磨合均匀和得到理想的齿面重叠系数,并避免小齿轮根切和两齿轮齿数有公约数,

(2)为了得到理想的齿面重合度和高的齿轮弯矩强度,主从动齿轮齿数和应不小于40。

(3)为了啮合平稳、噪音小和具有高的疲劳强度,对于轿车1Z 不小于9,对于货车1Z 一般不小于6。

(4)当主动比0i 较大时,应尽量使1Z 取得少些,以便得到满意的离地间隙。

(5)对于不同的主传动比,1Z 和2Z 应有适当的搭配。 2、齿数的选择

z 1

=9 z 2=45

0.59

45i 1

20===z

z

3、从动齿轮大端分度圆直径2D 和s m 根据经验公式初选

322c

d D k T =

式中k d 2为直径系数,一般取13.0~16;T c 为从动齿轮的计算转矩,

T c =min [Tce Tcs ]=864037N m ?;

(3-6)

(3-7)

代入数据得2D =152.4m

s m 由下式计算 根据

m s =

2

2

Z D =3.38mm

取3.5mm 。

另外s m 还要满足用下式校核:

3c m T K m = 式中:

m K —模数系数,取m K =0.3~0.4;

mm m 81.3~86.237.864)4.0~3.0(3=?= ;mm m 5.3=在此数值范

围内,满足要求。

4、主、从动齿轮的齿面宽1b 和2b

由公式螺旋锥齿轮和双曲面齿轮传动大齿轮齿面宽b,推荐不大于节锥矩A 的0.3倍,即b ≤0.3A.b 亦应满足b ≤10m 。

汽车主减速器螺旋锥齿轮亦推荐b ≤0.155D 2,D 2为从动锥齿轮大端分度圆直径。

b=0.155D 2=23.62mm 圆整为b=24mm

一般螺旋锥齿轮副的小齿轮宽度比大齿轮宽度大10%,故小齿轮齿宽为27mm.

5、螺旋角m β

螺旋角齿轮的螺旋角是延齿变化的。较齿大端的螺旋角最大,通常所说的锥齿轮螺旋角是指轮齿中点的螺旋角,螺旋角的大小影响轴向重合系数,轮齿的强度和轴向力大小,重合系数r ε越大,同时参与啮合的齿数越多,传动愈平稳,噪音愈低。一般螺旋角过大,齿轮的轴向力也较大,因此,螺旋

角应有一个适当的重合度系数,一般主减速器的螺旋角在35°~40°范围内,载重车为防止轴向力过大,一般采用35°螺旋角。(对于双曲面齿轮副,由于存在偏移距E,大小齿轮的螺旋角是不等的。其螺旋角为其平均值)。

(3-8)

(3-9)

设1m β-2m β=ε为偏移角,平均螺旋角β=

2

2

1

m m β

β+

2

ββ+

=m 2

ββ-

=m

则主动齿轮螺旋角可按下式确定:

000135.34525=++=i m β重合度就

大,同时啮合的齿数也越多,传动就平稳,噪声低。但是β过大,齿轮上受的轴向力也会过大。初选β= 35。

6、螺旋角方向的确定

锥齿轮螺旋角方向的选择是根据设计要求的轴向力方向确定的,要求在前进档时,主动齿轮轴向力的方向应使小齿轮紧靠在支承上,即离开锥顶的方向,这也是由大小齿轮相互分离的趋势以防卡住。由于以上原因,一般若发动机为顺时针旋转,主减速器的主动齿轮为左旋,从动齿轮为右旋。 7、法向压力角α

法向压力角大一些可以增加轮齿强度,减少不发生根切的最少齿数。轿车一般为 19或 20,本设计取α= 19

§3.1.2主减速器圆弧锥齿轮几何参数计算

表2-1 主减速器准圆弧锥齿轮几何尺寸计算用表(mm )

序号 项目 代号

公式、数值 (1) 小齿轮齿数 1Z

9 (2) 大齿轮齿数

2Z

45 (3) 模数 m 3.5

(4)

齿宽

21b b ,

24

b227b 1==,

(5) 齿顶高 a h 5.321===m h h a a (6)

节圆直径

d

5

.1575.31d 2211====mz d mz

(7) 齿高 h 7.72.221===m h h

序号 项目 代号

公式、数值

(8) 齿根高 f h 4.21.2m hf hf 21=== (9) 顶隙 c

7.02.0c ==m

(10) 节锥距 R

38.80sin 2/sin 2/R 2211===γγd d

(11)

节锥角

21γγ,

?

==?

==7.78/arctan 3.11/arctan 122211z z z z γγ

(12) 齿根圆直径

f d

85

.155cos 4.226

.23cos 4.22

22

1

11=-==-=γγm m m m Z d

Z d f f

(13) 齿顶圆直径

a d

88

.158cos 2m d d 4.38cos 2m d d 22a211a1=+==+=γγ

(14) 法向压力角 α

?19 (15) 轴交角) ∑

?90 (16) 螺旋角 β

?35

(17) 齿根角

f θ ?===3/arctan 2f1R h f f θθ

(18)

齿顶角

a θ ?===5.2/arctan 2a1R h a a θθ

§3.2 主减速器螺旋锥齿轮强度计算

在选好主减速器锥齿轮主要参数后,需按格里森公司推荐的表格或查用计算机软件计算锥齿轮的几何尺寸,之后进行强度计算,以保证其有足够的强度和寿命。安全可靠的工作。

轮齿的破坏形式有多种,常见的有轮齿折断,齿面点蚀及剥落。齿面胶合,齿面磨损等,强度计算是检验设计可靠的方法之一,淡漠前强度计算的方法多时近似的。

对于圆锥齿轮的验算性的强度计算,因齿轮质不同,其强度的计算方法也不同,一般主要是验算轮齿的弯曲应力和接触应力,弯曲强度表征轮齿的抗折断能力,接触强度表征齿面抗点蚀能力。 一、单位齿长上的圆周力 F

P

p =

式中:P —作用在齿轮上的圆周力,按发动机最大转矩m ax e T 和最大附着力矩 r r G ?2两种载荷工况进行计算,N ; F —从动齿轮的齿面宽,mm 。

按发动机最大转矩计算时:

F d i T p g e 2

101

3

max ?=

式中:m a x e T —发动机最大转矩,m N .; g i —变速器传动比;

1d —主动齿轮节圆直径,mm 。 代入数据计算:

mm N F d i T p g e /36.51662

.235.312

10652.36.522103131m ax =????=????=

按最大附着力矩计算时:

F d r

G p r 2

102

3

2?=?

(3-10)

(3-11)

(3-12)

(3-13)

代入数据得:

mm N p /7.70562

.235.138102232.085.055.08.914103

=???????=

许用单位齿长上的圆周力[p](N/mm),见表3-4 表3-4 许用单位齿长上的圆周力[p]N/mm

参数

汽车类别

F d i T p g e 2

/

101

3m ax ?= F d r G p r 2

102

32?=

?

轮胎与路面的附着系数?

Ⅰ档

Ⅱ档

直接档

轿车 893 536 321 893 0.85 工艺提高后

1071.6~1116.25

643.2~670.0

385.2~401.25

1071.6~1116.25

在现代汽车设计中,由于材质及加工工艺等制造质量的提高,单位齿长上的圆周力有时高出表3-4给出的许用值的20%~25%。

二、轮齿的弯曲强度计算

汽车主减速器螺旋锥齿轮与双曲面齿轮轮齿的计算弯曲应力为

J

Fzm K K K K T v m s c w 2

03102?=σ 2

/mm N (3-14)

式中:c T —该齿轮的计算转矩,N.m ; 0K —超载系数,取1; s K —尺寸系数,36.04

.254

==m

K s ; m K —载荷分配系数,取1.0; v K —质量系数,取1;

J —计算弯曲应力用的综合系数,主动齿轮取0.26,从动齿轮取0.24;

从动齿轮的计算弯曲应力为: ①按Tc=min[Tce ,Tcs]计算

23/18.20224

.05.15762.235.310

.1365.0137.864102mm N w =?????????=σ (3-15)

②按cf T 计算

23/519.6524

.05.15762.235.310

.1365.015.280102mm N w =?????????=σ (3-16)

主动齿轮的计算弯曲应力为: 0c z G

T T i η=

(3-17)

按c T =[]min ,ce cs T T 计算时,m N i T T G ce z .78.2809

.00.5864.37

0=?==

η w σ=89.1975.3126.0265.310.1365.0178.8021023=?

????????<21a MP

式中:

0k —超载系数;

s k —尺寸系,36.04

.254==m

K s v k —质量系数;

z —计算齿轮齿数

J —计算弯曲应力综合系数

三、轮齿接触强度计算

小齿轮轮齿工作频率高,且小齿轮曲率半径较大齿轮的小,因此小齿轮的接触强度较弱,故只校核小齿轮的接触强度即可。 按c T =[]cs ce T T ,min 计算

a MP <2800a

MP

桥梁设计说明

桥梁设计说明 一、工程概况 1老桥概况 毛家小桥位于平湖市曹桥街道马厩村,原老桥为南北方向,现状老桥为拱桥,全宽,桥长。由于原桥设计荷载过低,经过多年的使用,该桥已不能满足当前日益增加的交通流量及交通荷载,已经严重威胁到当地交通安全,因此对该桥进行拆除原位重建。桥两侧现有道路为水泥路面,桥梁桥头设置堆坡与现有老路进行接顺处理。 2测设经过 受平湖市曹桥街道马厩村股份经济合作社委托,我公司于2018年1月至现场踏勘桥梁情况,收集相关资料,并于2月4号完成了本桥施工图(送审稿)设计。 2018年2月8日下午,平湖市曹桥街道办事处组织召开了曹桥街道马厩村沈家浜桥、光明桥和毛家小桥施工图审查会议,平湖市交通运输局、公路管理段、交通工程质监站、曹桥街道办事处、马厩村等单位的代表及特邀专家参加了会议,并形成了《平湖市曹桥街道马厩村沈家浜桥、光明桥和毛家小桥施工图审查会议纪要》,我公司在综合考虑审查会纪要精神及进一步分析的基础上对送审稿进行了优化,最终形成了本次施工图(审后稿)。 3施工图审查会议纪要执行情况 1、建议对毛家小桥平面布置做进一步完善。 执行情况:考虑到桥梁西侧房屋可以拆迁,调整毛家小桥平面布置,桥梁由斜交80°改为正交。 2、要求设计单位根据修改好的设计图纸进一步完善施工图预算。 执行情况:根据审后稿完善施工图预算。 二、设计遵循的规范、依据和技术标准 1设计遵循的规范及依据 《公路工程技术标准》JTG B01--2014 《公路桥涵设计通用规范》JTG D60—2015 《公路钢筋混凝土及预应力混凝土桥涵设计规范》JTG D62--2004 《公路桥涵地基与基础设计规范》JTG D63—20072设计技术标准 1.汽车荷载等级:公路-Ⅱ级; 2.桥梁宽度:行车道宽5m,防撞护栏各宽0.5m,总宽6m。 3.设计基准期:100年。 4.环境类别:Ⅰ类。 三、桥梁设计 1桥梁布设情况 毛家小桥为新建桥梁,桥梁跨径为6+8+6m,梁板采用6米普通钢筋砼实心板和8米普通钢筋砼空心板。桥梁宽度为+5+=6米,横坡采用双向%,桥梁与河道正交。6米实心板高30cm,8米空心板高40cm。桥面铺装采用C40防水混凝土,防水等级为W8。桥面横坡由桥面铺装厚度调整,铺装厚度为10~。桥梁下部结构采用钻孔灌注桩基础接盖梁,钻基直径为,采用双桩。盖梁宽1.2m,桥墩盖梁高,桥台盖梁高。盖梁顶设置10cm厚支承垫石,方便更换支座。桥墩处设置桥面连续结构,桥台处设置异型钢伸缩装置。纵坡根据桥头两侧道路实际高程确定,北侧桥头10米范围内进行接坡,南侧桥头20米范围内进行接坡。桥梁设置防撞护栏。梁底标高按米控制,接坡路段采用20cm水泥砼路面+60cm宕渣填层。我公司于2018年1月对该桥桥位调查,在此基础上进行施工图设计。2主要材料 ⑴、混凝土:上部构造6米普通钢筋混凝土实心板、8米普通钢筋混凝土空心板采用C40混凝土;空心板铰缝采用C40小石子混凝土;封端采用C30混凝土;桥面铺装采用C40防水混凝土;护栏采用C30混凝土。下部构造墩台盖梁、挡块、耳背墙均采用C30混凝土;桩基采用C25混凝土。 ⑵、根据国家标准委2012年第35文《关于批准发布GB1499-2008〈钢筋混凝土用钢第1部分:热轧光圆钢筋〉国家标准第1号修改单的公告》,光圆钢筋采用HPB300。根据《钢筋混凝土用钢第二部分:热轧带肋钢筋》(GB 规定,带肋钢筋采用HRB400钢筋。焊接的钢筋应满足可焊要求。钢板:采用符合GB/T 700-2006规定的Q235钢板。 ⑶、支座:板式橡胶支座采用JT/T 663-2006行业标准,空心板采用GJZ板式橡胶支座。具体规格见相应图纸。 ⑷、伸缩缝:采用JT/T 327-2004行业标准,本项目采用GQF-C40型异型钢伸缩缝。

2015桥梁规范修订说明

JTG D60-2015 公路桥涵设计通用规范主要 修订内容介绍 重大提醒:《公路桥涵设计通用规范》(JTG D60-2015 )2015年9月9日发布,2015年12月1日起实施。 现行《公路桥涵设计通用规范》(JTG D60-2004)于2004年颁布实施。近几年的实践应用表明,规范总体上能够满足我国公路桥涵建设的需要,但随着我国公路运营状况、桥涵设计理念和方法的发展和变化,也有一些需要完善的内容:公路桥梁设计汽车荷载标准的适应性问题日渐突出;设计使用年限、耐久性设计、全寿命设计、风险评估、桥梁运营期结构安全监测等新方法、新理念逐渐得到广泛应用和发展;环境保护和可持续发展也成为工程设计中需考虑的重要因素。为了吸纳近年来的成熟经验和科研成果,提高规范的适应性,促进公路桥梁科学健康发展,交通运输部2009年下达了《公路桥涵设计规范》的修编任务。 在规范修订过程中,编写组进行了大量的科研工作,吸取了已有的成熟科研成果和实际工程设计经验,并且参考、借鉴国内外相关的标准规范。在规范条文初稿编写完成以后,通过多种方式广泛征求设计、施工、建设、管理等有关单位和个人的意见,并经过反复讨论、修改后定稿。 总体而言,本规范主要做了如下几个方面的修订: 1) 增加了桥涵结构的设计使用年限和耐久性要求;

2) 完善了极限状态的设计理论和方法; 3) 改进了作用组合分类及计算方法; 4) 调整了公路桥梁设计汽车荷载标准; 5) 增加、完善了各种作用标准值的计算规定; 6) 完善了有关桥涵总体设计、环境保护、交通安全保障工程等的相关规定; 7) 增加了桥涵风险评估和安全监测的相关规定。 为了清晰地说明本规范的具体修订内容,现将主要修订内容的确定理由及作用和影响分章节论述如下。 1第1章总则 1)公路桥涵的设计原则修改为“安全、耐久、适用、环保、经济和美观”。长期以来,公路桥涵设计都遵循着“技术先进、安全可靠、适用耐久、经济合理”的基本原则,这是与我国当时的经济条件和技术水平相适应的。安全、耐久、适用是公路桥涵结构最基本的要求。随着社会的发展和进步,环境保护日益引起重视。环保问题关系到社会的可持续发展,必须在交通基础设施建设中贯彻落实。在满足上述要求的前提下,还要注重桥涵设计的经济性,不能一味追求“新”、“最”、“第一”等,造成严重的浪费。另外,随着我国社会经济的发展,公众对于桥涵结构的要求也逐步提高,美观成为桥涵设计考虑的一个重要因素。因此,本次修订将公路桥涵的设计原则调整为“安

汽车车桥设计资料讲解

汽车设计课程设计说明 书 题目:汽车驱动桥的设计 姓名:张华生 学号:2009094643020 专业名称:车辆工程 指导教师:伍强 日期:2011.11.28-2011.12.04

一主减速器设计 主减速器是汽车传动系中减小转速、增大扭矩的主要部件,它是依靠齿数少的锥齿轮带动齿数多的锥齿轮。对发动机纵置的汽车,其主减速器还利用锥齿轮传动以改变动力方向。由于汽车在各种道路上行使时,其驱动轮上要求必须具有一定的驱动力矩和转速,在动力向左右驱动轮分流的差速器之前设置一个主减速器后,便可使主减速器前面的传动部件如变速器、万向传动装置等所传递的扭矩减小,从而可使其尺寸及质量减小、操纵省力。 驱动桥中主减速器、差速器设计应满足如下基本要求: a)所选择的主减速比应能保证汽车既有最佳的动力性和燃料经济性。 b)外型尺寸要小,保证有必要的离地间隙;齿轮其它传动件工作平稳,噪音小。 c)在各种转速和载荷下具有高的传动效率;与悬架导向机构与动协调。 d)在保证足够的强度、刚度条件下,应力求质量小,以改善汽车平顺性。 e)结构简单,加工工艺性好,制造容易,拆装、调整方便。 3.1 主减速器结构方案分析 主减速器的结构形式主要是根据齿轮类型、减速形式的不同而不同。 3.1.1 螺旋锥齿轮传动 图3-1螺旋锥齿轮传动 按齿轮副结构型式分,主减速器的齿轮传动主要有螺旋锥齿轮式传动、双曲面齿轮式传动、圆柱齿轮式传动(又可分为轴线固定式齿轮传动和轴线旋转式齿轮传动即行星齿轮式传动)和蜗杆蜗轮式传动等形式。 在发动机横置的汽车驱动桥上,主减速器往往采用简单的斜齿圆柱齿轮;在发动机纵置的汽车驱动桥上,主减速器往往采用圆锥齿轮式传动或准双曲面齿轮式传动。 为了减少驱动桥的外轮廓尺寸,主减速器中基本不用直齿圆锥齿轮而采用螺旋锥齿轮。因为螺旋锥齿轮不发生根切(齿轮加工中产生轮齿根部切薄现象,致使齿

桥梁设计方案说明书

桥涵设计说明一、工程概况与设计内容: 本座桥梁地处广西境内,属于亚热带季风气候,平均气温较高,雨量充足,雨 季较长。本次设计的桥梁属于一期建设范围。提供1:2000现状地形图; 本路段有大桥一座,中心桩号为:K0+750.00先张预应力砼空心板简支梁桥, 总跨180米,跨度采用9×20m,桥长192.0m,下部构造为柱式墩配桩基。 本路段主线共设涵洞2道,其中:钢筋砼圆管涵1道、倒虹吸1道。 涵洞结构类型和孔径的选择主要依据汇水面积、水力性能、水文计算、地质 情况、涵顶填土高度、沿线筑路材料分布及施工难易程度等因素。从结构安全、 保证农田灌溉和泄洪需要,尽量减小冲刷的角度出发。 钢筋砼圆管涵:孔径:1-1.5m;用途:灌溉、泄洪。 倒虹吸:孔径:1-1m;用途:过水。 二、技术标准及技术规范: 1.中华人民共和国行业标准《公路工程技术标准》JTG B01—2003; 2.中华人民共和国行业标准《公路桥涵设计通用规范》JTG D60—2004; 3.中华人民共和国行业标准《公路钢筋混凝土及预应力混凝土桥涵设计规范》JTG D62—2004; 4.中华人民共和国行业标准《公路桥涵施工技术规范》JTJ041—2000; 5.中华人民共和国国家标准《预应力混凝土用钢绞线》GB/T5224-2003; 6.中华人民共和国行业标准《公路交通安全设施设计规范》JTG D81—2006; 三、技术指标 技术指标表 四、地形地貌 拟建场地两岸高差较大,地势有起伏,地面标高为33.05~71.00,相对高差约为32m,未见岩石出露,拟建场地位于相对稳定的区域地质构造部位,无区域性大断裂及地裂通过,经调查场地及附近未发现崩塌、滑坡、岩溶地面塌陷等地质灾害,区域稳定性好,对桥梁施工期间及建成使用期间无影响。 桥梁主体工程范围内岩土体种类较简单,地面以下第一层为中砂,厚0.82m,汛期含沙率为7kg/m3;第二层粗砂含卵石土厚=1m;第三层土角砾含砂稍含土厚0.6m;第四层强风化泥岩,成土状,厚2m;第五层弱风化泥岩,棕红色,裂隙发育,厚2.2m;第六层弱风化粉砂质泥岩,厚5m,以下为灰紫色砂岩。两岸为棕红、紫色

汽车车桥设计

YC1090货车驱动桥的设计 汽车设计课程设计说明 书 题目:汽车驱动桥的设计 姓名:张华生 学号:2009094643020 专业名称:车辆工程 指导教师:伍强 日期:2011.11.28-2011.12.04

盐城工学院本科生毕业设计说明书2007 一主减速器设计 主减速器是汽车传动系中减小转速、增大扭矩的主要部件,它是依靠齿数少的锥齿轮带动齿数多的锥齿轮。对发动机纵置的汽车,其主减速器还利用锥齿轮传动以改变动力方向。由于汽车在各种道路上行使时,其驱动轮上要求必须具有一定的驱动力矩和转速,在动力向左右驱动轮分流的差速器之前设置一个主减速器后,便可使主减速器前面的传动部件如变速器、万向传动装置等所传递的扭矩减小,从而可使其尺寸及质量减小、操纵省力。 驱动桥中主减速器、差速器设计应满足如下基本要求: a)所选择的主减速比应能保证汽车既有最佳的动力性和燃料经济性。 b)外型尺寸要小,保证有必要的离地间隙;齿轮其它传动件工作平稳,噪音小。 c)在各种转速和载荷下具有高的传动效率;与悬架导向机构与动协调。 d)在保证足够的强度、刚度条件下,应力求质量小,以改善汽车平顺性。 e)结构简单,加工工艺性好,制造容易,拆装、调整方便。 3.1 主减速器结构方案分析 主减速器的结构形式主要是根据齿轮类型、减速形式的不同而不同。 3.1.1 螺旋锥齿轮传动 图3-1螺旋锥齿轮传动 按齿轮副结构型式分,主减速器的齿轮传动主要有螺旋锥齿轮式传动、双曲面齿轮式传动、圆柱齿轮式传动(又可分为轴线固定式齿轮传动和轴线旋转式齿轮传动即行星齿轮式传动)和蜗杆蜗轮式传动等形式。 在发动机横置的汽车驱动桥上,主减速器往往采用简单的斜齿圆柱齿轮;在发动机纵置的汽车驱动桥上,主减速器往往采用圆锥齿轮式传动或准双曲面齿轮式传动。 为了减少驱动桥的外轮廓尺寸,主减速器中基本不用直齿圆锥齿轮而采用螺旋锥齿轮。因为螺旋锥齿轮不发生根切(齿轮加工中产生轮齿根部切薄现象,致使齿

桥梁课程设计说明书-35m

课程设计封面: 成绩 评阅《桥梁工程》课程设计 姓名:粟峰 班级:交建12-1班 学号:02120482 中国矿业大学力学与建筑工程学院

二О一五年一月

中国矿业大学桥梁工程课程设计简支梁桥课程设计 装配式钢筋混凝土T型梁桥设计 设计说明书 课程编号:021141 《桥梁工程》课程设计大纲 2周2学分 一、课程设计性质、目的及任务 桥梁工程课程设计是土木工程专业交通土建专业方向重要的实践性教学环节,是学生修完《桥梁工程》课程后对梁式桥设计理论的一次综合性演练。其目的是使学生深入理解梁式桥的设计计算理论,为今后独立完成桥梁工程设计打下初步基础。其任务是通过本次课程设计,要求熟练掌握以下内容: 1.梁式桥纵断面、横断面的布置,上部结构构件主要尺寸的拟定。 2.梁式桥内力计算的原理,包括永久作用的计算、可变作用的计算(尤其是各种荷载横向分布系数的计算)、作用效应的组合。 3.梁式桥纵向受力主筋的配置、弯起钢筋和箍筋的配置,以及正截面抗弯、斜截面抗剪、斜截面抗弯和挠度的验算,预拱度的设置。 4.板式橡胶支座的设计计算。 二、适用专业 交通土建专业

三、先修课程 材料力学、弹性力学、结构力学、结构设计原理、地基与基础工程、交通规划与道路勘测设计、道路工程、桥涵水力水文 四、课程设计的基本要求 本设计为装配式钢筋混凝土简支T 型梁桥设计(上部结构),其下部结构为重力式桥墩和U 型桥台,支座拟采用板式橡胶支座。学生在教师的指导下,在两周设计时间内,综合应用所学理论知识和桥梁工程实习所积累的工程实践经验,贯彻理论联系实际的原则,独立、认真地完成装配式钢筋混凝土T 型梁桥的设计。 基本要求为:计算书应内容完整,计算正确,格式规范,叙述简洁,字迹清楚、端正,图文并茂;插图应内容齐全,尺寸无误,标注规范,布置合理。 五、课程设计内容 1.题目:装配式钢筋混凝土简支T 形梁桥设计(上部结构) 2.基本资料 (1)桥面净空:净m 129-?+ (2)永久荷载:桥面铺装层容重3m kN 23/=γ。其他部分3m kN 25/=γ。 (3)可变荷载:汽车荷载,公路-Ⅰ级,人群荷载2m kN 52/.;人行道+栏杆=2m kN 5/。 (4)材料:主筋采用Ⅲ级钢,其他用Ⅱ级钢,混凝土标号C40。 (5)桥梁纵断面尺寸: 标准跨径m 35L b =,计算跨径m 2634l .=,桥梁全长m 9634L .=。 3.设计内容 (1)纵横断面设计。 根据给定的基本设计资料,参考标准图、技术规范与经验公式,正确拟定桥梁纵断

桥梁公用构造图设计说明

说明 一、技术标准与设计规范 1.《公路工程技术标准》(JTG B01-2003) 2.《公路桥涵设计通用规范》(JTG D60-2004) 3.《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004) 4.《公路交通安全设施设计规范》(JTG D81-2006) 5.《公路交通安全设施设计细则》(JTG/T D81-2006) 6.《公路交通安全设施施工技术规范》(JTG F71-2006) 7.《高速公路交通工程及沿线设施设计通用规范》(JTG D80-2006) 8.《公路桥梁伸缩装置》(JT/T 327-2004) 9.《公路桥梁养护规范》(JTG H11-2004) 10.《公路桥涵施工技术规范》(JTG/T F50-2011) 11.《公路工程质量检验评定标准》(JTG F80/1-2004) 12.《公路排水设计规范》(JTG/T D33-2012) 13.《公路工程基桩动测技术规程》(JTG/T F81-01-2004) 14.《混凝土灌注桩用钢薄壁声测管及使用要求》(JT/T 705-2007) 15.《公路桥梁板式橡胶支座》(JT/T4-2004) 16.《公路桥梁板式橡胶支座规格系列》(JT/T 663-2006) 17.《公路桥梁盆式支座》(JT/T 391-2009) 18.《钢筋混凝土用钢第二部分:热轧带肋钢筋》(GB1499.2-2007) 19.《耐候结构钢》(GB/T 4171-2008) 20.《碳素结构钢》(GB/700-2006) 二、技术指标 主要技术标准及指标表

对于整体式路基,路线平面设计线为中间带的中心线;对于分离式路基:80km/h、100km/h 设计速度的平面设计线为路基边缘线,120km/h设计速度的平面设计线为路基边缘外0.25m 位置。 对于设计速度为80km/h、100km/h的高速公路,路线平面设计线距离桥梁边缘0.25m;对于设计速度为120km/h的高速公路,路线平面设计线距离桥梁边缘0.50m。 三、主要材料 原材料应有供应商提供的出厂检验合格证明书,并应按《公路桥涵施工技术规范》(JTG/T F50-2011)规定的检验项目、批次规定,严格实施进场检验。 1.混凝土 1) 水泥:应采用品质稳定的普通硅酸盐水泥或硅酸盐水泥,碱含量不宜大于0.60%,熟 料中C 3 A含量不应大于8.0%。其余技术要求尚应符合《通用硅酸盐水泥》(GB 175-2007)的规定,不应使用其它品种水泥。 2)细骨料:应采用硬质洁净的天然中粗河砂,也可使用经专门机组生产、并经试验确认的机制砂,其细度模数宜为2.6~3.2,含泥量不应大于2.0%,其余技术要求应符合《公路工程集料试验规程》(JTG E42-2005)的规定。 3)粗骨料:应采用坚硬耐久的碎石或卵石,空隙率宜小于40%,压碎指标宜小于20%,粗骨料母岩的抗压强度与混凝土设计强度之比应不小于1.5,含泥量不应大于1.0%,泥块含量不应大于0.5%,针片状含量宜小于10%;粒径宜为5mm~20mm,连续级配,最大粒径不应超过25mm,且不应大于钢筋最小净距的3/4。其余技术要求应符合《公路工程集料试验规程》(JTG E42-2005)的规定。 桥梁护栏、搭板混凝土采用C30;斜交搭板三角段混凝土采用C20;伸缩缝预留槽采用C50钢纤维混凝土。 2.普通钢筋 普通钢筋采用HRB400钢筋,钢筋应符合《钢筋混凝土用钢第二部分:热轧带肋钢筋》(GB1499.2-2007)的规定。 HRB400钢筋主要采用了直径d=10、12、16、20、22mm五种规格。 3.其他材料 1)钢板:应采用《碳素结构钢》(GB/700-2006)规定的Q235B。支座预埋钢板采用Q235NH 钢材,其性能应符合《耐候结构钢》(GB/T 4171-2008)的规定。 2)支座:采用板式橡胶支座,应采用氯丁橡胶(CR)生产,其材料和力学性能均应符合《公路桥梁板式橡胶支座》(JT/T4-2004)的规定,支座安装应按厂家要求进行。 3)泄水管宜采用PVC材料(白色),聚氯乙烯含量不应低于80%,其性能应符合《无压埋地排污、排水用硬聚氯乙烯(PVC-U)管材》(GB/T 20221-2006)的要求,管件联结应符合《建筑排水用硬聚氯乙烯(PVC-U)管件》(GB/T 5836.2-2006)的要求。泄水管及管盖配合应联结牢固,宜采用卡扣式联结。 四、桥梁防撞护栏 1. 桥梁护栏防撞等级 护栏纵向吸能,通过自体变形或者车辆爬高来吸收碰撞能量,从而改变车辆行驶方向、阻止车辆越出路外或者进入对向车道、最大限度地减少对乘员的伤害。 根据车辆驶出桥外或者进入对向车道可能造成的交通事故等级,依据《公路交通安全设施

桥梁课程设计说明书-35m

《桥梁工程》课程设计 姓名:粟峰 班级:交建12-1班 学号: 02120482 中国矿业大学力学与建筑工程学院 二О一五年一月

中国矿业大学桥梁工程课程设计简支梁桥课程设计 装配式钢筋混凝土T型梁桥设计 设计说明书 课程编号:021141 《桥梁工程》课程设计大纲 2周2学分 一、课程设计性质、目的及任务 桥梁工程课程设计是土木工程专业交通土建专业方向重要的实践性教学环节,是学生修完《桥梁工程》课程后对梁式桥设计理论的一次综合性演练。其目的是使学生深入理解梁式桥的设计计算理论,为今后独立完成桥梁工程设计打下初步基础。其任务是通过本次课程设计,要求熟练掌握以下内容: 1.梁式桥纵断面、横断面的布置,上部结构构件主要尺寸的拟定。 2.梁式桥内力计算的原理,包括永久作用的计算、可变作用的计算(尤其是各种荷载横向分布系数的计算)、作用效应的组合。 3.梁式桥纵向受力主筋的配置、弯起钢筋和箍筋的配置,以及正截面抗弯、斜截面抗剪、斜截面抗弯和挠度的验算,预拱度的设置。 4.板式橡胶支座的设计计算。 二、适用专业 交通土建专业 三、先修课程 材料力学、弹性力学、结构力学、结构设计原理、地基与基础工程、交通规划与道路勘测设计、道路工程、桥涵水力水文 四、课程设计的基本要求 本设计为装配式钢筋混凝土简支T型梁桥设计(上部结构),其下部结构为重力式桥墩和U型桥台,支座拟采用板式橡胶支座。学生在教师的指导下,在两周设计时间内,综合应用所学理论知识和桥梁工程实习所积累的工程实践经验,贯彻理论联系实际的原则,独立、认真地完成装配式钢筋混凝土T型梁桥的设计。 基本要求为:计算书应内容完整,计算正确,格式规范,叙述简洁,字迹清楚、端正,图文并茂;插图应内容齐全,尺寸无误,标注规范,布置合理。

桥梁方案设计说明

桥梁方案设计说明 导语:桥梁方案设计说明是为了更好地理解桥梁的设计。那么,现在,XX要和你们分享有关桥梁方案设计说明的文章,希望你们喜欢! 桥梁方案设计说明本工程位于泉州南安滨海工业园区,跨越三号排洪渠,桥梁中心设计桩号K0+。结构形式采用两跨20m预制空心板,全长47m,桥面总宽度为10m,桥面布置: ++++=。桥梁中心线与排洪渠正交。 1).《公路工程技术标准》 JTJ B01-XX 2).《公路桥涵设计通用规范》 JTG D60-XX 3).《公路圬工桥涵设计规范》 JTG D6l一XX 4).《公路桥涵钢筋混凝土及预应力混凝土设计规范》JTG D62-XX 5).《公路桥涵地基与基础设计规范》 JTG D63-XX 6).《公路桥梁抗震设计细则》JTG/TB02-01-XX 7).《公路桥涵施工技术规范》JTG/T F50-XX 8).《城市桥梁设计规范》 CJJ 11-XX 跨径的比选 桥梁的跨径选择主要从桥梁结构的受力性能、经济性,桥梁景观等方面考虑。 a、受力性能 从受力结构角度考虑,通常跨径35m范围内都是桥梁结

构的常见跨径,无论是现浇结构还是装配式结构都可以满足结构的受力要求。 b、经济性 桥梁的跨径对桥梁工程的造价影响较大:减小跨径可以减少上部结构的费用,但会增加下部结构的费用;反之则相反。因此,从经济性上考虑,桥梁跨径的选择是上下部结构费用平衡的结果。 结合考虑,本桥采用2跨20米简支梁桥。 上部结构的比选 城市桥梁的选型除了要满足以前的安全、适用、经济、美观以外,还要综合考虑桥梁结构在运营期间的服务水平,耐久性,后期养护,对环境、交通的影响等因素。本工程的桥梁结构形式选择即依据这样的原则进行。 a、结构的材料比选: 桥梁结构从材料类型上区分可以分为钢结构、混凝土结构以及钢-混凝土叠合结构。相对于混凝土,钢材具有强度-密度比大,跨越能力强,结构高度低等特点,因此对桥梁结构具有较高的适应性。但由于其造价相对昂贵,而且运营维护期内需多次涂装防护,费用较高。尤其泉州地区位于晋江、洛阳江入海口,钢结构的防腐问题尤其突出。另外,钢结构桥梁的桥面铺装施工工艺复杂,要求较高。因此除非节点跨径要求较高、结构高度受到控制、施工条件较差等因素

车桥结构

动力传递的纽带卡车车桥结构图文讲解 发动机,变速箱和车桥是卡车的三大动力核心总成,三者中车桥虽不像发动机和变速箱一样常被人们提及,但却在汽车动力传输的过程中发挥着纽带的作用,对整车的行驶的动力性和稳定性有着举足轻重的作用。 ● 什么是车桥? 车桥,通过悬架和车架(或承载式车身)相连,两端安装汽车车轮的桥式结构。 图为车桥总成 ● 车桥的作用 车桥的功能就是传递车架(或承载式车身)与车轮之间各方向作用力及其力矩,其对汽车的动力性,稳定性,承载能力等性能有着重要的影响。如果是作为驱动桥,除了承载作用外还起到驱动、减速和差速的作用。 ● 车桥的结构 卡车一般采用发动机前置,后轮驱动的布置方法。一般情况下,前桥都

是转向桥,而驱动桥在后桥。 前桥的结构 前桥定型结构 卡车前桥由主要由前梁,转向节,主销和轮毂等部分组成。车桥两端与转向节绞接。前梁的中部为实心或空心梁。 ● 驱动桥结构 驱动桥位于汽车传动系统的末端,主要由主减速器、差速器、半轴和驱动桥壳等组成。

驱动桥典型结构 1.主减速器 主减速器一般用来改变传动方向,降低转速,增大扭矩,保证汽车有足够的驱动力和适当的速度。主减速器类型较多,有单级、双级、双速、轮边减速器等。 卡车后桥主减速器 1)单级主减速器

由一对减速齿轮实现减速的装置,称为单级减速器。其结构简单,重量轻。 2)双级主减速器 对一些载重较大的载重汽车,要求较大的减速比,用单级主减速器传动,则从动齿轮的直径就必须增大,会影响驱动桥的离地间隙,所以采用两次减速,通常称为双级减速器。双级减速器有两组减速齿轮,实现两次减速增扭。 双级主减速器 为提高锥形齿轮副的啮合平稳性和强度,第一级减速齿轮副是螺旋锥齿轮。二级齿轮副是斜齿圆柱齿轮。 主动圆锥齿轮旋转,带动从动圆锥齿轮旋转,从而完成一级减速。第二级减速的主动圆柱齿轮与从动圆锥齿轮同轴而一起旋转,并带动从动圆柱齿轮旋转,进行第二级减速。因从动圆柱齿轮安装于差速器外壳上,所以,当从动圆柱齿轮转动时,通过差速器和半轴即驱动车轮转动。 3)轮边减速器 一般来说,采用轮边减速器是为了提高汽车的驱动力,以满足或修正整个传动系统驱动力的匹配。目前采用的轮边减速器,就是为满足整个传动系统匹

桥梁工程课程设计说明书(模板)

1.设计资料与结构布置1.1设计资料 1.1.1 跨径 标准跨径: 计算跨径: 主梁全长: 1.1.2 桥面净宽 净7m(行车道)+2×0.75(人行道)。 1.1.4设计荷载 公路-Ι级,人群荷载3.0kN/m2,结构重要性系数 01.0 r 。 1.1.5 桥面铺装 4cm厚沥青混凝土面层,其下为C25的混凝土垫层,设双向横坡,坡度为1.5%。两侧人行道外侧桥面铺装厚10cm(4cm厚沥青面层和6cm厚混凝土垫层)。 1.1.6 材料 混凝土:主梁C40,钢筋混凝土重度为25kN/m3; 沥青混凝土面层,重度为23kN/m3; C25混凝土垫层,重度为24kN/m3 1.1.7 主梁数及横隔梁数 主梁数:5;横隔梁数:5。 1.2结构布置 根据设计资料及装配式简支梁桥的构造要求,现拟定结构尺寸如下:主梁高1.3m,主梁间距为1.6m,梁肋宽为18cm,T形梁翼缘板与腹板交接处厚14cm,翼缘悬臂端厚8cm。设置五根横隔梁,横隔梁上缘16cm,下缘14cm。

图1-1 主梁横截面布置图 图1-2 横隔梁布置图

2.主梁恒载内力计算:2.1恒载集度计算: 主梁: 横隔梁: 对于边主梁: 对于中主梁: 桥面铺装层: 栏杆和人行道:52/52/ g=?= 4KN m 合计: 对于边主梁: 对于中主梁: 2.2、恒载内力计算 计算内梁与边梁的恒载内力。 2.2.1支点截面: x=0 M=0 边梁 内梁

2.2.2 l/4截面: x= l/4 边梁 内梁 2.2.3 跨中截面 x= l/2 Q=0 边梁 内梁 表2-1 主梁恒载内力 内力 剪力Q(kN)弯矩M(kN.m)截面位置x x=0 x=l/4 x=l/2

桥梁方案设计说明

桥梁方案设计说明 1 概况 本工程位于泉州南安滨海工业园区,跨越三号排洪渠,桥梁中心设计桩号K0+038.198。结构形式采用两跨20m预制空心板,全长47m,桥面总宽度为10m,桥面布置: 0.25m(栏杆)+1.25m (人行道)+7.00m(行车道)+1.25m(人行道)+0.25m(栏杆)=10.00m。桥梁中心线与排洪渠正交。 2 设计依据及规范 1).《公路工程技术标准》 JTJ B01-2003 2).《公路桥涵设计通用规范》 JTG D60-2004 3).《公路圬工桥涵设计规范》 JTG D6l一2005 4).《公路桥涵钢筋混凝土及预应力混凝土设计规范》 JTG D62-2012 5).《公路桥涵地基与基础设计规范》 JTG D63-2007 6).《公路桥梁抗震设计细则》JTG/TB02-01-2008 7).《公路桥涵施工技术规范》JTG/T F50-2011 8).《城市桥梁设计规范》 CJJ 11-2011 3 桥梁结构比选 (一)跨径的比选 桥梁的跨径选择主要从桥梁结构的受力性能、经济性,桥梁景观等方面考虑。 a、受力性能 从受力结构角度考虑,通常跨径35m范围内都是桥梁结构的常见跨径,无论是现浇结构还是装配式结构都可以满足结构的受力要求。 b、经济性 桥梁的跨径对桥梁工程的造价影响较大:减小跨径可以减少上部结构的费用,但会增加下部结构的费用;反之则相反。因此,从经济性上考虑,桥梁跨径的选择是上下部结构费用平衡的结果。 结合考虑,本桥采用2跨20米简支梁桥。 (二)上部结构的比选 城市桥梁的选型除了要满足以前的安全、适用、经济、美观以外,还要综合考虑桥梁结构在运营期间的服务水平,耐久性,后期养护,对环境、交通的影响等因素。本工程的桥梁结构形式选择即依据这样的原则进行。 a、结构的材料比选: 桥梁结构从材料类型上区分可以分为钢结构、混凝土结构以及钢-混凝土叠合结构。 相对于混凝土,钢材具有强度-密度比大,跨越能力强,结构高度低等特点,因此对桥梁结构具有较高的适应性。但由于其造价相对昂贵,而且运营维护期内需多次涂装防护,费用较高。尤其泉州地区位于晋江、洛阳江入海口,钢结构的防腐问题尤其突出。另外,钢结构桥梁的桥面铺装施工工艺复杂,要求较高。因此除非节点跨径要求较高、结构高度受到控制、施工条件较差等因素制约而采用钢结构外,一般推荐采用混凝土结构。 b、结构的形式比选: 桥梁的选型除了要满足安全、适用、经济、美观外,还要综合考虑桥梁结构在运营期间的服务水平,耐久性,后期养护,对环境、交通的影响等因素。 常见桥梁上部结构桥型综合比较表 由以上表格,综合考虑本项目桥梁的受力性能、经济性及桥梁景观,本桥选用装配式预应力砼空心板梁。空心板梁结构由工厂预制后运输至施工场地,现场吊装完成施工,是目前采用较多的桥梁上部结构形式。其结构高度低,工厂化程度高,运输、吊装方便,对地面交通影响

汽车车桥工艺装配

四川汽车职业技术学院毕业设计(论文) 论文题目:中国重汽汽车车桥装配工艺 系别:汽车工程系 专业班级: 12级汽车制造与装配技术2班学生姓名:周星 指导教师:蹇欣洲 二O一五年五月十八日

目录 引言 (4) 1.汽车的基本原理 (4) 1.1什么是车桥? (4) 1.2汽车车桥的种类 (5) 1.3汽车驱动桥的功能和结构 (7) 2 重汽MCY13系列单级减速驱动桥 (8) 3 中国重汽汽车车桥工艺装配 (10) 3.1 驱动桥装配与调试工艺 (10) 3.2 驱动桥的总装配工艺过程 (12) 4 车桥装配工安全操作规程 (14) 5 近期国内汽车车桥的发展 (15) 5.1 AGV(Automated Guided Vehicle)车桥装配生产线 (15) 5.2 中国重汽车桥及配套产品质量改进双提升显成效 (16) 参考文献 (19) 致谢 (20)

浅谈汽车车桥装配工艺的发展趋势 ----中国重汽MCY13系列驱动桥 【摘要】随着自动化工业的发展,我国工业自动化已经取得了举世瞩目的成果。其中制造业的发展尤为迅速,已经成为推动我国经济迅速发展的核心力量和支撑性行业。汽车配件制造诸如汽车车桥焊装生产线也在逐渐向自动化方向发展,国内汽车配件企业生产线的自动化程度也在想赢的提高。为了满足人们的各种需求,汽车行业得到空前的发展。车桥作为汽车重要零件之一,车桥装配也是汽车最关键最重要的装配岗位之一,车桥的这些性能的保证就在制造的过程中工艺的合理性充分能解决车桥的性能,同时也必须得到制造企业充分重视。本文介绍了中国重汽汽车车桥的基本情况与生产装配工艺特点,以及车桥MCY13系列的功能和结构,以及它的工作原理和国内近期车桥的发展,并对车桥装配技术的发展趋势做了说明和展望。 【关键词】社会经济车桥装配工艺现状提高性能技术发展

桥梁工程课程设计说明书

桥梁工程课程设计说明 书 文档编制序号:[KK8UY-LL9IO69-TTO6M3-MTOL89-FTT688]

1.设计资料与结构布置设计资料 跨径 标准跨径: 计算跨径: 主梁全长: 桥面净宽 净7m(行车道)+2×(人行道)。 设计荷载 公路-Ι级,人群荷载m2,结构重要性系数 01.0 r 。 桥面铺装 4cm厚沥青混凝土面层,其下为C25的混凝土垫层,设双向横坡,坡度为%。两侧人行道外侧桥面铺装厚10cm(4cm厚沥青面层和6cm厚混凝土垫层)。 材料 混凝土:主梁C40,钢筋混凝土重度为25kN/m3; 沥青混凝土面层,重度为23kN/m3; C25混凝土垫层,重度为24kN/m3 主梁数及横隔梁数 主梁数:5;横隔梁数:5。 结构布置

根据设计资料及装配式简支梁桥的构造要求,现拟定结构尺寸如下:主梁高,主梁间距为,梁肋宽为18cm,T形梁翼缘板与腹板交接处厚 14cm,翼缘悬臂端厚8cm。设置五根横隔梁,横隔梁上缘16cm,下缘 14cm。 图1-1 主梁横截面布置图 图1-2 横隔梁布置图

2.主梁恒载内力计算:恒载集度计算: 主梁: 横隔梁: 对于边主梁: 对于中主梁: 桥面铺装层: 栏杆和人行道:52/52/ g=?= 4KN m 合计: 对于边主梁: 对于中主梁: 、恒载内力计算

计算内梁与边梁的恒载内力。支点截面: x=0 M=0 边梁 内梁 l/4截面: x= l/4 边梁 内梁 跨中截面 x= l/2 Q=0 边梁

内梁 表2-1 主梁恒载内力 内 力 剪力Q(kN)弯矩M()截面位置x x=0 x=l/4 x=l/2 注:括号()内值为中主梁内力 3.主梁活载内力计算 支点处荷载横向分布系数 按《桥规》规定:汽车荷载距人行道边缘不小于。在横向影响线上确定荷载横向最不利的布置位置。采用杠杆原理法计算。

施工图说明 (桥梁)

湖北职业技术学院2005 —2006 学年度第一学期期末考核试卷 施工图说明 一、工程概况及设计依据 (一)设计内容 才子路B段Ⅰ标的施工图设计包括:道路工程、管线工程、桥梁工程。全套施工图设计文件共分两册; 第一分册:道路工程管线工程; 第二分册:桥梁工程。 本册为第二分册:桥梁工程。 才子路B段Ⅰ标的施工图设计内容如下: 1、道路工程 道路的线形设计; 道路的路基、路面设计、路基防护设计、交叉口设计; 道路的交通工程、附属工程; 2、管线工程 管线工程包括雨水管道、污水管道、管线综合、电力排管、通信管道和路灯的工程设计。 3、桥梁工程 桥梁的总体布置设计;桥梁上部结构设计、下部结构设计、基础设计;桥梁附属工程设计。 (二)概况 1、才子路桥跨径组合为(3×25)米。上部结构为上部采用装配式预应力混凝土小箱梁;下部结构桥台为装接盖梁式桥台,桥墩为柱式墩接盖梁,墩基及台基采用桩基础。桥梁起点桩号为K0+27.000,终点桩号为K0+107.000,桥梁中心桩号为:K0+67.000,桥梁全长为80m。按照道路标准横断面布置,桥梁宽24m,桥面布置为:4.5m(人行道)+15m(机动车道)+4.5m(人行道)=24m。桥梁右前角115°。 (三)设计依据 1、永川凤凰湖工业园李家嘴片区才子路B段Ⅰ标道路工程建设工程设计合同 2、凤凰湖工业园提供1:500地形图 3、凤凰湖工业园市政专项规划。 4、永川凤凰湖工业园李家嘴片区场平工程施工图设计 5、重庆市永川区凤凰湖工业园区临江河李家嘴片区才子路B段Ⅰ标地勘项目岩土工程勘察(一阶段详勘) 6、凤凰湖工业园临江河河道防洪工程可研报告 7、建设单位提供的其他相关资料 二、设计基本资料 (一)工程地质 1、地质地貌 拟建重庆市永川区凤凰湖工业园区临江河李家嘴片区才子路B段地勘项目场地位于重庆市永川区凤凰工业园区。拟建区地形总体较平缓,中部高两侧低,地形标高284.00~326.50m,相对高差42.50m。拟建线路沿斜坡、丘包与沟谷行进,于起点跨越临江河,河床地形平缓,坡降一般小于5%,两侧岸坡及河床大部基岩出露,地形坡角一般15°~32°,局部近直立,沟谷处地形较为平缓,一般5°~12°,丘包、斜坡处地形陡倾,一般15°~35°,局部陡坎处可达50°,该段大部已被改造为农田。最低点位于线路起点临江河河床,标高284.00m,最高点位于K0+480处丘包顶部,标高326.50m。地形坡角差异性较大。拟建场地地貌上总体属构造剥蚀丘陵地貌。 2、气象、水文 重庆永川区凤凰湖工业园区兴业路岩土工程勘察场地属亚热带湿润季风气候区,气候温和、四季分明、雨量充沛,具冬暖、夏热、秋长的气候特点。多年平均气温17.72℃,极端最高气温41.7℃(2006年8月15日),极端最低气温-1.8℃(1975年12月15日);多年无霜期314.9天,雾日平均30~40天;多年平均降雨量1163.3mm,

道路与桥梁工程课程设计

道路与桥梁工程课程设计 1 设计总说明书 1.1 设计依据 根据合肥学院建筑工程系工程管理专业《道路与桥梁工程课程设计任务书》 。 1.2 公路设计概况 1.2.1 概况 根据设计任务书要求,本路段按平原微丘三级公路技术标准勘察、设计。设计车速为 40 公里/ 小时,路基单幅两车道,宽 8.50 米。设计路段公路等级为三级,适应于将各种车 辆折 合成小客车的年平均日交通量为 2000~ 6000 辆。 1.2.2 规范 设计执行的部颁标准、规范有: 1.3 路线起讫点 本路段起点 A :K0+50.00 为所给地形图坐标 (6215.000 ,6680.000 ,205.70 ),终点 B : K1+ 450为所给地形图坐标( 7083.000 ,7721.000 ,215.50 ),全长 1.400 公里。 1.4 沿线自然地理概况 本路段为平原微丘区,多为中低山地貌,地势稍陡。该工程整个地形、地貌特征平坦, 地形起伏不大, 最高海拔高为 267.60 米,河谷海拔高为 205.60 米,总体高差在 62.00 米左 1.5 沿线筑路材料等建设条件 沿线地方材料有:碎石、砾石、砂、石灰、粉煤灰等。其 他材料如沥青、水泥、矿粉 需到外地采购。 1.6 路线 本路段按三级公路标准测设,设计车速 40KM/h ,测设中在满足《公路路线设计规范》 及在不增加工程造价的前提充分考虑了平、纵、 横三方面的优化组合设计,力求平面 型流畅,纵坡均衡,横断面合理,以达到视觉和心理上的舒展。 路线测设里程全长 1.400 公里,主要技术指标采用情况如下: 平曲线个数(个) 平均每公里交点个数(个) 平曲线最小半径 (米/ 个) 平曲线占路线长( %) 直线最大长 ( 米) 变坡点个数(个) 平均每公里变坡次数(次) 2 0.7 67/1 16 500 5 3.6 - 1 - 最大纵坡( %) 7 凸型竖曲线最小半径(米 / 处) 3000 凹型竖曲线最小半径(米 / 处) 2000 公路工程技术标准》 JTGB01-2003 公路路线设计规范》 JTGD20-2006 公路路基设计规范》 JTGD30-2004

工程计算手册(桥梁工程)

工程计算手册(桥梁工程)本页仅作为文档页封面,使用时可以删除 This document is for reference only-rar21year.March

桥梁工程 1、目的/使用范围 为确保桥梁施工的施工质量,达到设计及施工规范要求,提高产品质量,特制本作业指导书;本作业指导书适用于桥梁工程施工。 2、编制依据 《铁路桥涵工程施工质量验收标准》(TB10415–2003); 《铁路混凝土与砌体工程施工质量验收标准》(TB10424–2003); 3、作业内容及程序 地基处理→基地换填→墩台制作施工→梁的制作施工→支座安装→明桥面和桥梁附属设施施工 一、(1)桥梁地基处理: 1. 基坑开挖前应按地质、水文资料和环保要求,结合现场情况,制定 施工方案,确定开挖范围、开挖坡度、支持方案、弃土位置和防、排水等措施。 2.基坑土方施工应对支护结构、周围环境进行观察和观测,当发现异常情况应停止施工及时处理,待恢复正常后方可继续施工。 基地处理应符合下列规定:①基地处理应清除岩面松碎石块、淤泥、苔藓,凿出新鲜岩面,表面应清洗干净,应将去倾斜岩面凿平或凿成台阶;

②碎石类土及砂类土层基底成重面应修理平整,粘性土层基底整修时,应在天然状态下铲平,不得用回填土夯平; ③砌筑基础时,应在基础底面先铺一层5—10cm水泥砂浆 3.基坑平面位置、坑底尺寸必须满足设计和施工工艺设计要求。 4. 基坑开挖方式和支护必须满足设计要求。 5.基地地质条件必须满足设计要求。 基底高程的允许偏差和检验方法: (2)、基坑回填填料 1.基坑回填填料应符合设计要求,夯实应符合规定。 2.换填地基所用材料必须符合下列规定: 换填用砂应为中粗砂,有机质和泥量均不得大于5%; 碎石粒径不得大于100mm,含泥量不得大于5%; 石灰等级不得小于Ⅲ级。 3.换填范围必须符合设计要求。 4填料比例必须符合设计要求。 5.填筑和压实工艺必须符合设计和施工技术方案的要求。 6.压实密度必须符合设计要求。 换填地基和顶部高程允许偏差为±50 mm。 二、墩台制作施工 (1)钢筋加工绑扎

【汽车行业类】汽车单级主减速器及车桥设计指导书

(汽车行业)汽车单级主减速器及车桥设计指导书

第壹章课程设计的基本内容及要求 1.1课程设计的基本内容 本课程设计是根据给定的设计参数和要求,对某轻型货车整体式单级主减速器及驱动桥进行设计,设计的基本内容包括: 1)根据给定的设计参数及要求,对汽车主减速器进行详细的结构设计和参数计算; 2)对差速器、半轴、驱动桥壳等进行选型设计; 3)绘制出主减速器及驱动桥的装配图。 已知给定的设计参数和要求如下(范例): 第二章整体式单级主减速器设计 2.1主减速器的结构形式 1、主减速器齿轮的类型: 现代汽车单级主减速器中多采用螺旋锥齿轮和双曲面齿轮俩种。 (a)螺旋锥齿轮(b)双曲面齿轮 图1主减速器齿轮类型 1)螺旋锥齿轮如图1(a)所示,其主、从动齿轮轴线垂直相交于壹点,且俩者的螺旋角相等,可知螺旋锥齿轮的传动比为: (2-1) 式中:、—螺旋锥齿轮主、从动齿轮的平均分度圆半径。 2)双曲面齿轮如图1(b)所示,主、从动齿轮轴线偏移了壹个距离,称为偏移距,(如图2所示)。 根据啮合面上法向力相等,可求出主、从动齿轮圆周力之比为: (2-2) 式中:、—双曲面齿轮主、从动齿轮的圆周力;、—双曲面齿轮主、从动齿轮的螺旋角。 图2双曲面齿轮啮合时受力分析 双曲面齿轮传动比为: (2-3) 式中:、—双曲面齿轮主、从动齿轮的圆周力; 、—双曲面齿轮主、从动齿轮的螺旋角; 、—双曲面齿轮主、从动齿轮的平均分度圆半径 令,则。由于,所以,通常为1.25~1.50。 2、主减速器减速形式: 主减速器的减速形式主要有单级减速、双级减速、双速、单级贯通式、双级贯通式和轮边减速等形式。 单级主减速器由壹对锥齿轮传动,具有结构简单、质量小、成本低、使用简单等优点,广泛应用于主减速比≤7.6的各种轿车和轻、中型货车上(对于双曲面齿轮通常要求≤6.5);而双

相关主题
文本预览