当前位置:文档之家› 开关电源中电流互感器设计

开关电源中电流互感器设计

开关电源中电流互感器设计
开关电源中电流互感器设计

开关电源中电流互感器设计

摘要:开关电源的总体发展趋势是开关工作频率越来越高,从而对电流检测的实时性也要求越来越高,而且成本很备受关注。电流互感器具有能耗小、频带宽、信号还原性好、价格便宜、控制和主功率电路隔离等诸多优点,故电流互感器在开关电源中作用很大。本文介绍了开关电源中电流互感器的设计及注意事项。

关键词:电流互感器;开关电源;应用电路

1.引言

传统的电流检测技术主要分为基于磁场的检测方案和基于分流器的检测方案,以电流互感器(图1)和霍尔传感器(图2)为代表的基于磁场的检测方案由于具有良好的隔离和较低的功率损耗等优点已经广泛地采用。

图1电流互感器

电流互感器采用变压器电磁隔离原理,一般原边具有较少的匝数N1,副边具有较多的匝数N2。互感器原边接被测电流工,副边则为检测后的输出电流工_OUT,然后通过电阻R将电流转换为电压信号,通过磁感应方式实现了原、副边的电气隔离。

图2 霍尔传感器

目前一般将霍尔元件、聚磁电路以及放大电路集成在一起,作为霍尔传感器使用,可以实现直流、交流电流的隔离检测,不存在低频响应带宽问题。但霍尔元件以及放大电路存在温度飘移,存在频率响应上限,一般为数十或数百kHZ ,

同时成本也比较高,限制了在开关电源中的应用。

图3 线性光耦

应用线性光耦组成的电流检测隔离电路(图3)的线性度好,电路简单,能够检测直流电流,有效地解决了模拟信号与采样控制系统的电气隔离问题,而且精度高、成本低。但是线性光耦的一个显著缺点就是电流检测的延时,因为线性光耦的带宽一般在数十kHZ 以下,延时在数微秒以上。随着开关电源的发展,开关频率越来越高,这个问题也越来越突出。

2.电流互感器设计方法 2.1交流互感器

2.1.1基本原理

交流互感器一般采用环形磁芯,初级线圈N1 一匝或数匝,而次级N2 匝数较多。为便于测量,次级通常接有检测电阻R,将电流信号变换成电压信号,如图9-1 所示。假设初级流过正弦波交流电流I1 时,次级感应电压产生一个输出电流I2。根据回路安培定律有

1122

i N i N H l

-= (2-1)

式中 H -磁芯中磁场强度;

l -磁芯平均磁路长度;

i1和i2为初级和次级瞬时电流。

次级反射到初级的电流有效值 I2’为:

'

222

1

N I I N =

(2-2)

因此初级电流有效值为:

12m

I I I =+

(2-3)

式中m I

-磁化电流。等效电路和电流关系如图9-2所示。理想情况下互感器

的激磁电感无穷大,激磁电流0m I =

,则

12

I I =

(2-4)

图4 交流电流互感器

实际激磁电感不可能无穷大,总是存在激磁电流。为了维持2I

,次级感应电势为 222

e ()4.44

cu I R R fBAN =+=

(2-5)

式中

cu

R —次级线圈电阻(Ω);

f —电流频率(Hz );

B —磁芯工作峰值磁感应强度(T ); A — 磁芯截面积(2

m ); B — R -检测电阻。

图5 电流互感器等效电路(a)和相量图(b)

由相量图可知,次级反射电流与初级电流的相位差

'

1

a r c t a n

R

L θω= (2-6)

式中

'

2

2

12

()/cu R R R N N =+

—次级反射到初级的阻抗;

而初级激磁电感

2

110a

A L N l

μμ= (2-7)

式中

a

μ-磁芯的幅值磁导率;

考虑到2

2

2211

/L N L N =和

'22

12

()/cu R R R N N =+,则

2

()

arctan

cu R R L θω+= (2-8)

因此,次级检测电流与初级电流的幅值相对误差(检测幅值精度)

111

cos 1cos I I I θ

γθ

-=

=- (2-9)

cos θ

展开成级数,在θ很小的时候,忽略高次项,有

2

4

6

2

c o s 1....

1

2!

4!

6!

2!θ

θ

θ

θ

θ=

-

+

-

≈-

因此,

2

1c o s 2

θ

γθ=-=

(2-9a )

从式(2-8),(2-9)可知,要减少幅值和相位误差,在一定的频率下,应当减少检测电阻或增加次级激磁电感L2。在给定次级检测电压u2 的情况下,减少检测电阻R ,次级电流I2 将反比增加,次级匝数减少,将导致L2 的平方减少,检测误差加大。因此,为了减少检测误差,增加次级激磁电感是提高检测精度的唯一的方法。

2.2交流电流互感器设计

交流互感器设计前应当知道互感器的工作频率()f ω,检测的电流-初级电

流1I

,次级所需电压U2(有效值)和检测精度γ。

互感器设计原则是要保证电流检测精度。初始设计时可不考虑线圈电阻cu

R ,

在次级激磁电抗远远大于检测电阻时,式(2-8)可近似写为

2

R

L θω≈

考虑到

222211

//R U I u N I N ==以及

22

2022/a L

L N A l N A μμ==,可以得到

2

112L U I N N A

θω≈

(2-10)

式中0/L a A A l

μμ=—磁芯电感常数。一般初级线圈N1=1,考虑到式(2-9a),因

2

2

2112L U U N A I I ωθ

ωγ=

=

(2-10a)

根据给定允许的幅值误差γ或允许的相位误差δ选择磁芯尺寸和次级线圈匝数。选取较多的次级匝数对提高测量精度是有益的。但是次级匝数过多,一方面绕线困难,另一方面导线长度增长,线圈电阻增加,又降低了检测精度,一般N2在500匝以下。

根据工作频率选择磁芯材料,例如50Hz 选用钢片厚0.35mm 环形磁芯,400Hz 选用0.1mm 高硅薄带环形磁芯;高于10kHz 选用非晶态或铁氧体材料等等,选择尽量高的μ材料。如果要求检测相位误差极小,低频时应选择μ极高的皮莫合金或非晶态磁芯。还应当注意,这里

a

μ为幅值相对磁导率,在手册中没

有列出。在低磁感应强度时一般和初始磁导率i

μ相近,初始设计时,可用

i

μ代

a

μ。 在选定

2

N 后,由式(2-10a)求得

L

A 值。低频时硅钢片或非晶态材料手册中并

未给出

L

A 值,可根据手册中环形磁芯结构参数计算:

0e L i

e

A A l μμ= (2-11)

式中e l

—有效磁路长度(m);

e

A —磁芯有效截面积(2

m )。

已知 N2 后,就可决定次级检测电阻

2222

11

1

U N U N R I N I =

=

(2-12)

如果只关心幅值检测精度,幅值为γ=1%时,相位误差θ可达8o(约为0.14 弧

度),可选择较小的磁芯。

2.2脉冲直流互感器

如电流控制型变换器开关电源电中,需要检测电感电流或功率晶体管集电极电流的互感器(图6(a))以及双极型晶体管比例驱动电路(图6(b))用来检测集电极电流的反馈互感器,都是直流脉冲互感器。 2.2.1基本原理

脉冲直流互感器与交流电流互感器不同,交流信号使磁芯双向对称磁化,而直流而脉冲互感器是单向磁化,属于正激变换器工作方式(图6)。如果采用环形磁芯,当初级电流流通(Ton)时,磁芯由剩磁感应增大;当初级电流由通流变为零时,次级感应电势将二极管击穿,使磁芯复位到剩磁感应Br 。磁芯工作在局部磁化曲线上。以矩形波初级电流为例,图7为相关波形图。也可以在次级二极管前用一个大电阻完成磁芯复

位,如图6(b)中R ,为了复位,如果次级电感为L2,应当满足最小截止时间

24/of T L R

>。如

前所述,互感器是一种特殊的变压器。根据变压器原理,磁芯的正负伏秒面积相等,即

2e o n D B

r

T V

T

==

(2-13) 式中

2

e —次级感应电势,等于二极管压降与次级电流2i

在次级回路电阻上的压降

总和;

on

T —直流脉冲宽度; DB V —二极管击穿电压;

r

T —复位时间。

通常初级线圈为一匝,根据全电流定律,在 导通期间有:

图6 直流脉冲电流互感器

12

2

m i i i N -= (2-14)

式中m i

—磁化电流。

如果磁芯磁导率为无穷大,磁化电流为零,则次级电流

212

/i i N =

(2-15)

则次级检测电阻R 上的电压

2212

/u i R i R N ==

正比于输入电流1i

2.2.2直流脉冲互感器的设计

直流脉冲互感器设计与交流互感器设计相似。次级感应电势

22e e

dB N A dt

= (2-16)

如果初级电流波形为矩形波(图7),或次级负载是几个二极管的正向压降,而线圈电阻可以忽略时,次级感应电势近似为电压源。因此有

22e on e T N A B

=? (2-17)

如果磁芯增量磁导率μ?

为常数,并考虑到

1m e

i N H l =,互感器激磁电流

2012e on

m e

e l T i N N A μμ?=

(2-18)

图7 直流脉冲互感器波形

11

N =,上式改成

22on m l

e T i N A =

(2-18a )

式中

()

e l m 和

2

()

e A m 分别为磁芯的有效磁路长度和有效截面积;

μ?

为增量磁导率,一般比初始磁导率低。l

A —为磁芯的电感系数。

从波形图可以看到,

磁化电流随导通时间加长而增加,在导通时间结束时达

到最大。由式(2-14)可知,次级电流由于初级激磁电流增加而产生平顶降落,即波形失真,也就是检测误差。如果定义幅值误差为

21

12m o

n

l i e T i i N A

γ=

=

(2-19)

得到

2211m on l l

i e T N A i i A γ

=

=

(2-19a )

在给定次级电压和允许平顶降落γ后,就可以设计互感器。

对于比例驱动互感器,一般已知晶体管的工作电流下的β,为保证初始激励下进入比例驱动,当初级一般为1匝时,应满足2N β

<。次级电压为串联二极管

正向压降之和。因此

212

on

l e T A i N γ=

(2-20)

通常采用环形磁芯,互感器磁芯工作在局部磁化曲线上,不能应用矩形回线材料,应当选用剩磁感应小,而磁导率大的材料。

3.电流互感器检测电路

将电流互感器应用在Buck 变换器中来检测负载直流电流。不仅可以保证

Buck 变换器构成的开关电源负载电流取样的准确度,而且保证了功率开关器件过电流保护的及时性,同时提高了功率MOSFET

的散热特性。

图8、电流互感器应用于Buck 变换器

功率MOSFET VT1、VT2在SG3525的控制下,分别在各自的相位角180o

内交替导通,斩波电压经VD1续流,L1与C1储能滤波后输出所需直流电压。

MOSFET电流互感器T2的一次绕组为两个单线圈,分别检测VT1、VT2的电流,VT1的电流正向通过绕组,VT2的电流反向通过绕组,因此可以在电流互感器的二次侧感应出正负相间的脉冲电流信号,R5两端的脉冲电压的绝对值与通过功率MOSFET的电流成正比。

开关电源的电流取样一般分为峰值取样和平均值取样两种。电流检测的用途不同,取样最佳方式也不同。若作为过电流保护信号,电流峰值取样较好,它反应速度快、能及时保护功率开关管等器件图4中R5两端的电压信号可以用作电流峰值取样信号,整流后加一只电压比较器就可以构成过电流保护电路。

如果电流互感器的磁芯不能复位,将导致磁芯饱和,那电流互感器将失去作用。所以在使用时一定要注意防止电流互感器磁心饱和。

参考文献:

[1] 杨宏. 开关电源中的电流互感器. 通信广播与电视1996年1期68~70

[2] 王昭华. 开关电源中电流检测电路的探讨. 电源世界2005第8期.34~36

[3] 陶洪山、吴燮华. 电流互感器在开关电源中的应用. 电源技术应用2003(8)29~32

[4] 赵修科. 开关电源中磁性元器件. 南京航空航天大学

[5] 贾玉芬. 电流互感器在Buck变换器负载电流检测中的应用. 电气应用2010年第211期50~52

开关电源设计与制作

《自动化专业综合课程设计2》 课程设计报告 题目:开关电源设计与制作 院(系):机电与自动化学院 专业班级:自动化0803 学生姓名:程杰 学号:20081184111 指导教师:雷丹 2011年11月14日至2011年12月2日 华中科技大学武昌分校制

目录 1.开关电源简介 (2) 1.1开关电源概述 (2) 1.2开关电源的分类 (3) 1.3开关电源特点 (4) 1.4开关电源的条件 (4) 1.5开关电源发展趋势 (4) 2.课程设计目的 (5) 3.课程设计题目描述和要求 (5) 4.课程设计报告内容 (5) 4.1开关电源基本结构 (5) 4.2系统总体电路框架 (6) 4.3变换电路的选择 (6) 4.4控制方案 (7) 4.5控制器的选择 (8) 4.5.1 C8051F020的内核 (8) 4.5.2片内存储器 (8) 4.5.312位模/数转换器 (9) 4.5.4 单片机初始化程序 (9) 4.6 输出采样电路 (10) 4.6.1 信号调节电路 (10) 4.6.2 信号的采样 (11) 4.6.3 ADC 的工作方式 (11) 4.6.4 ADC的程序 (12) 4.7 显示电路 (13) 4.7.1 显示方案 (13) 4.7.2 显示程序 (14) 5.总结 (16) 参考文献 (17)

1.开关电源简介 1.1开关电源概述 开关电源是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源。它运用功率变换器进行电能变换,经过变换电能,可以满足各种对参数的要求。这些变换包括交流到直流(AC-DC,即整流),直流到交流(DC-AC,即逆变),交流到交流(AC-AC,即变压),直流到直流(DC-DC)。广义地说,利用半导体功率器件作为开关,将一种电源形式转变为另一种电源形式的主电路都叫做开关变换器电路;转变时用自动控制闭环稳定输出并有保护环节则称为开关电源(SwitchingPower Supply)。 将一种直流电压变换成另一种固定的或可调的直流电压的过程称为DC-DC交换完成这一变幻的电路称为DC-DC转换器。根据输入电路与输出电路的关系,DC-DC 转换器可分为非隔离式DC-DC转换器和隔离式DC-DC转换器。降压型DC-DC 开关电源属于非隔离式的。降压型DC-DC转换器主电路图如1: 图1 降压型DC-DC转换器主电路 其中,功率IGBT为开关调整元件,它的导通与关断由控制电路决定;L和C为滤波元件。驱动VT导通时,负载电压Uo=Uin,负载电流Io按指数上升;控制VT关断时,二极管VD可保持输出电流连续,所以通常称为续流二极管。负载电流经二极管VD续流,负载电压Uo近似为零,负载电流呈指数曲线下降。为了使负载电流连续且脉动小,通常串联L值较大的电感。至一个周期T结束,在驱动VT导通,重复上一周期过程。当电路工作于稳态时,负载电流在一个周期的初值和终值相等。负载电压的平均值为:

电流互感器设计

电流互感器设计 1 互感器设计目的及意义 (2) 2 电流互感器总体设计 (2) 2.1 电流互感器类型选取 (3) 2.2 电流互感器各部件设计 (3) 2.2.1 铁芯及绕组设计 (3) 2.2.2 外绝缘套管设计 (3) 2.2.3 复合绝缘子设计 (4) 2.2.4 出线套管内绝缘设计 (5) 2.2.5 屏蔽设计 (5) 2.2.6 密封结构设计 (5) 2.2.7 互感器其他部件及标准件 (5) 2.3 1100KV电流互感器总体装配图 (5) 2.3.1 画各部件三维图 (5) 2.3.2 装配体绘制及总质量估算 (5) 2.3.3 装配体材料清单 (6) 2.3.4 装配体电场和机械性能模拟分析 (6) 3 单件电流互感器组装 (6) 3.1 原材料的购买及检验 (6) 3.2 原材料的处理 (6) 3.3 线圈的缠绕 (7) 3.4 环氧套管的浇注及修整 (7) 3.5 电流互感器的装配 (7)

1 互感器设计目的及意义 电流互感器是一种专门用作变换电流大小的特殊变压器。由于发电和用电的不同需要,线路上的电流大小不一,而且相差悬殊。若要直接测量这些大小不一的电流,就需要制作相应等级的仪表,给仪表制造带来极大困难。此外,有些高压线路直接测量也是非常危险的。而电流互感器可以把不同等级的电流,按不同的比例,统一成大小相近的电流。电力系统用互感器是将电网高电压、大电流的信息传递到低电压、小电流二次侧的计量、测量仪表及继电保护、自动装置的一种特殊变压器,是一次系统和二次系统的联络单元,其一次绕组接入电网,二次绕组分别与测量仪表、保护装置等互相连接。互感器与测量仪表和计量装置配合,可以测量一次系统的电压、电流和电能;与继电保护和自动装置配合,可以构成对电网各种故障的电气保护和自动控制。互感器的好坏,直接影响到电力系统测量、计量的准确性和继电保护装置动作的可靠性。随着电力工业建设的迅速发展,电力系统输电容量不断扩大,远距离输电迅速增加,电网电压等级逐渐升高,对电流互感器的电压等级及设备技术参数提出了更高的要求。 2 电流互感器总体设计 ↓ →↑↑符合要求 是

开关电源课程设计报告

现代电源技术课程实践报告 院系:物理与电气工程学院 班级:电气自动化一班 姓名: 李向伟 学号: 111101007 指导老师:苗风东

一、设计要求 (1)输入电压:AC220±10%V (2)输出电压: 12V (3)输出功率:12W (4)开关频率: 80kHz 二、反激稳压电源的工作原理

图2-1 反激稳压电源的电路图 三、 反激电路主电路设计 (1)(1)Np Vdc Ton Vo Tr Nsm -=+ (3-1) 1. 反激变压器主电路工作原理 反激式变换器以其电路结构简单,成本低廉而深受广大开发工程师的喜爱,它特别适合小功率电源以及各种电源适配器.但是反激式变换器的设计难点是变压器的设计,因为输入电压范围宽,特别是在低输入电压,满负载条件下变压器会工作在连续电流模式(CCM),而在高输入电压,轻负载条件下变压器又会工作在不连续电流模式(DCM);另外关于CCM 模式反激变压器设计的论述文章极少,在大多数开关电源技术书籍的论述中, 反激变压器的设计均按完全能量传递方式(DCM

模式)或临界模式来计算,但这样的设计并未真实反映反激变压器的实际工作情况,变压器的工作状态可能不是最佳.因此结合本人的实际调试经验和心得,讲述一下不完全能量传递方式(CCM) 反激变压器的设计. 1)工作过程: S 开通后,VD 处于断态,W1绕组的电流线性增长,电感储能增加; S 关断后,W1绕组的电流被切断,变压器中的磁场能量通过W2绕组和VD 向输出端释放。 反激电路的工作模式: 反激电路的理想化波形 S u S i S i V D t o t o ff t t t t U i O O O O 反激电路原理图

开关电源设计与实现毕业设计(论文)

毕业论文(设计) 题目开关电源设计 英文题目switch source design

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

电子式电流互感器的技术及研究

电子式电流互感器的技术及研究 发表时间:2019-06-03T15:50:11.437Z 来源:《电力设备》2019年第3期作者:王迪 [导读] 摘要:随着我国经济的不断发展,促进我国电网的发展,同时电子式互感器有了显著的提高。 (国网吉林省电力有限公司长春供电公司吉林省长春市 130000) 摘要:随着我国经济的不断发展,促进我国电网的发展,同时电子式互感器有了显著的提高。在电子式互感器具有超高压的系统,只有优良的结缘性能能够承受高水平的电磁环境。与传统的互感器进行比较,技术性能和经济效益没有明显的提高。结合实际情况进行分析,职能变电站中主要的设备就是电流互感器。基于此,本文对电子式电流互感器的技术进行分析研究。 关键词:电子式电流互感器;核心技术;应用配置 传统的电磁式电流互感器对于当前电力系统传输容量不断加大,而且电压等级不断提升的情况其适用性越来越差,使电力系统的发展带来了一定的制约作用。在这种情况下,开发电子式电流互感器则具有必然性,由于于其通过利用光通信及微电子技术,并采用新型的传感原理,有效的规避了传统电力互感器所存在的不足之处,利用数字信号进行输出,确保了电力系统安全、稳定的运行,不仅实现了成本的节约,而且也实现了对二次设备的优化。目前数字化变电站的建设更是需要以电子式互感器和光纤通讯网作为其基础,所以电子式电流互感器在当前电力系统运行了具有极为重要的意义。 1电子式电流互感器类型及特点 目前在电子式电流互感器研究领域主要有三个研究方向:有源型;无源型;全光纤型。其中,后两种都属于无源光学电流互感器。 1.1有源型 有源型又可以称为混合型,所谓有源光纤电流互感器乃是高压侧电流信号通过采样传感头将电信号传递给发光元件而变成光信号,再由光纤传递到低电压侧,进行光电转换变成电信号后输出。有源型光纤电流互感器的方框图如图1所示: 有源型光纤电流互感器结构简单,长期工作稳定性好,容易实现高精度、性能稳定的实用化工业产品,是目前国内研究的主流。但是高压侧电源的产生方法比较复杂或者成本比较高,还有待于进一步研究。 1.2无源型 所谓无源型光学电流互感器乃是传感头部分不需要供电电源。传感头一般基于法拉第(Faraday)效应原理,即磁致光旋转效应。当一束线偏振光通过放置在磁场中的法拉第旋光材料后,若磁场方向与光的传播方向平行,则出射线偏振光的偏振平面将产生旋转,即电流信号产生的磁场信号对偏振光波进行调制。 无源型结构是近年来比较盛行的,其优点是结构简单,且完全消除了传统的电磁感应元件,无磁饱和问题,充分发挥了光学互感器的特点,尤其是在高压侧不需要电源器件,使高压侧设计简单化,互感器运行寿命有保证。 其缺点是光学器件制造难度大,测量的高精度不容易达到。尤其是此种电流互感器受费尔德(Verdet)常数和线性双折射影响严重。而目前尚没有更好的方法能解决费尔德常数随温度变化而出现的非线性变化即系统的线性双折射问题,所以很难在工业中得到实际应用。 1.3全光纤型 全光纤型电流互感器实际上也是无源型的,只是传感头即是光纤本身(而无源型光纤电流互感器的传感头一般是磁光晶体,不同于全光纤型的传感头是特殊绕制的光纤传感头),其余与无源型完全一样。 2电子式互感器的核心技术 2.1传感技术 对于传感技术主要是由罗氏线圈的电流传感器,但是对于罗氏线圈电流传感器具有一定的无磁性和磁饱等很多优点,适用的范围比较大,但是对于磁光玻璃传感器是一种合型电流互感器,主要是利用光纤进行传递能量,在磁光电流互感器的工作测量的过程中,只和磁光材料的维尔德常熟有一定的关系,这样能够准确的测量结果。对于光纤式电流传感器主要运行的原理是法拉第旋光效应,因为光纤的本身具有传感元件,在原理上可以进一步的对光纤进行分类。 2.2高压侧电子电路供能技术 高压侧电子电路主要由三个技术构成,主要包括激光功能技术、蓄电池供能技术和自励电源技术。 伴随着我国技术的发展,逐渐提高激光供能技术的可靠性,对于自动化自用与自励电源进行交替工作,采用这样的方式对非电气链接的能量传递方式进行干扰,在于特高磁场测量中有很好的应用前景。 蓄电池功能技术,对于充电源主要是通过特殊的设计的线圈从高压母线感应出电流,整个过程中经过对电流的调整和稳压调节后,对蓄电池进行充电。对于蓄电池的主要来源就是高压侧电子电路的工作电能供给,这种技术结构不仅简单,还能够提高工作效率,但是在实际工作中应该重视一个问题就是对蓄电池不能进行反复的充电,这样就减少电池的使用寿命,并且更换电池也是一件费事的事情。 自励电源技术,主要的核心技术就是独立式光隔离电流互感器,线圈由高压母线产生的规律变化的磁场激励得到的交流店,从而实现自供电。这样技术应用可以促进互感器摆脱有源实现。实现“无源化”,缺点是如果母线电流不稳定,影响供电稳定性。 3电子式电流互感器的应用配置 3.1电子式电流互感器的选型配置 根据电子式互感器研发现状,配电网IIOKV等级设备中光电、线圈电子式互感器均有挂网运行;35KV及以下配电网设备中,基本采用线圈电子式互感器为主。以某地区某110KV数字化变电站为例,110KV主设备采用GIS组合电器,配置了光纤电子式电流互感器,每个间隔1组保护线圈、1组计量线圈:额定一次电流600A,测量额定二次输出为01CF,精度0.5级;保护额定二次输出为2D41,精度5P:10KV主设备采用CGIS组合电器,线路间隔均配置了模拟量输出的低功率电子式电流互感器,额定一次电流600A,测量额定二次输出电压为150mV,精度0.5级:保护额定二次输出电压为1V,精度5P。 3.2电子式电流互感器的安装 按照安装方式,电子式互感器可分为独立支撑型、GIS型、套管型及独立悬挂型。目前,一些地区配电网一次设备主要采用集约型、小型化设备,比如GIS、CGIS、开关柜等。电子式电流互感器由于绝缘结构简单,体积和重量都远小于传统的电流互感器,更适用于小型化的设备的安装。低功率电子式电流互感器在开关柜内安装较传统电流互感器更为紧凑,节省空间。GIS设备配置了光纤电子式电流互感器。

LED开关电源设计

《开关电源课程设计》 指导教师:熊春宇 姓名:李丽丽 学号:200701071235 电话:136664664296

LED照明驱动开关电源设计 (李丽丽,大庆师范学院物电学院07级电子信息工程专业)摘要:LED照明驱动设计了恒流输出、空载保护、隔离输出及EMC等功能.系应用于LED 照明驱动的开关电源电路。采用PWM自动调节实现恒流输出,稳压管过压锁定实现空载保护,电磁隔离和光隔离实现隔离输出。经过多次的运行与检测,实践证明该电路恒流输出稳定,发热量低。本设计体积小,微调反馈电路可设置作为为LED驱动常用的350mA或700mA恒流输出。可广泛适用于生活照明,商用照明。 关键词:LED驱动电源;发热低恒流;隔离低成本 Abstract:LED lighting design drive the constant-current output, the output and protection, isolation no-load EMC etc. Function. Is applied to the switch power LED lighting driving circuit. Using PWM automatic adjustment output voltage, the constant-current over-voltage protection tube, electromagnetic no-load realize locking and isolation realize isolation output isolation. After many operation and test, the practice has proved that the constant-current circuits, low heat stable output. This design, small size, fine-tuning feedback circuit can be set as the common 350mA LED drive or 700mA constant-current output. Life can be widely used in commercial lighting, lighting. Key words:Leds driving power;Fever is low;Constant flow;Isolation;Low cost 0概述 0.1选题的目的与意义: 全球能源紧张,提高电器的效率是行之有效的方法。照明用电占据全球21%的总用电量,如果能提高照明用的的效率,可以有效缓解能源紧张。如何提高照明系统的能源利用率,延长照明系统的寿命,并且是绿色无污染的?取代白炽灯,荧光灯,节能灯的第四代照明灯具是什么?业界给出的答案就是LED灯照明。LED照明每W流明数可达到120lm。远高于白炽灯和日光灯,此外LED灯珠寿命可长达十万小时,并且绿色无污染。LED照明具备的这些优点决定了其应用前景是非常广阔的。LED照明应用上的限制在于LED有固定的正向压降,电流也有上限(工作电流是影响LED寿命的主要因素)。大功率白光LED上的正向压降一般为3-4V,不能直接使用市电驱动。因此一个和LED灯珠匹配的高效,环保,长寿命的电源是必须的,这正是这次选题的意义与目的所在。 0.2研究现状 开关电源的技术已经非常成熟,由于LED驱动的降压技术大部分采用开关电源。因此即使是LED驱动电源真正进入研究的时间不算长,却无碍其技术的成熟。LED驱动要求的技术特点是:寿命长,体积小(特别商用照明和家用照明,最好可以内嵌到灯头)。 众所周知,绝大部分开关电源都需要一个输出滤波的电解电容,即使高品质的电解电容,工作在100摄氏度左右,寿命也只有1Wh左右。毫无疑问,电解电容正是LED灯整体寿命的瓶颈。而内嵌式驱动板上的电解电容,由于LED的发热以及驱动板本身的发热,长期在

电子式互感器分类、特点及应用现状分析

电子式互感器的现状与发展前景 随着电力传输容量的增加,运行电压等级越来越高,传统的电磁式电流,电压互感器暴露出如绝缘要求高,磁饱和、铁磁谐振、动态范围小、频带窄以及有油易燃、易爆炸等一系列缺点。基于光学和电子学原理的电子式电压、电流互感器(分别简称为EVT和ECT)经过30多年的发展以其独特的优点,成为最有发展前途的一种超高压条件下电压、电流的测量设备。 早期的电子式互感器一次侧和二次侧通过光纤来传输信号,也称为光电式互感器。2002年,IEC根据新型电子式电压、电流互感器的发展趋势,制定了关于EVT的IEC60044-7标准和ECT的IEC60044 -8标准,明确了电子式互感器的定义及相成的技术规范。 根据IEC60044-7标准,EVT采用电阻分压器.电容分压器或光学装置作为一次转换部件,利用光纤怍为一次转换器和二次转换器之间的传输系统,并装有电子器件作测量信号的传输和放大,具有模拟量电压输出或数字量输出。 根据IEC600448标准,ECT采用传统电流互感器(CT)、霍尔传感器、Rogowski线圈或光学装置作为一次转换部件,利用光纤作为一次转换器和二次转换器之间的传输系统,并装有电子器件作测量信号的传输和放大,具有模拟量电压输出或数字量输出。 电子式互感器的分类 几十年来,电子式互感器产品的种类已经被开发出很多,根据原理的不同,电子式互感器可分为无源式和有源式2类。所谓无源式电子互感器是指高压侧传感头部分不需要供电电源的电于式互感器,而有源式电子互感器是指传感头部分需要供电电源的电子式互感器。 无源式电子互感器的优点是在传感头部分不需要复杂的供电装置,整个系统的线性度比较好,缺点是传感头部分有复杂而不稳定的光学系统,容易受到多种环境因素的影响,影响了实用化的进程,虽然各国学者不断的提出新方法以提高测量准确度,备种方法都在实验室条件下取得了一定成果,但都不同程度地存在着通用性差,装置复杂等缺点,未能有效克服这个困难,其研究还有待进一步深入。 有源式电子式互感器的原理大都比较简单,已被广泛接受。无源式EVT主要利用传统的电阻分压器,电容分压器以及单个电容器测量电压值。在有源式ECT中,作为一次电流采样传感头的元件有传统的电磁式电流互感器、分流器和Rogowski线圈等。

高频开关电源的设计与实现

电力电子技术课程设计报告 题目高频开关稳压电源 专业电气工程及其自动化 班级 学号 学生姓名 指导教师 2016年春季学期 起止时间:2016年6月25日至2016年6月27日

设计任务书11 高频开关稳压电源设计√ 一、设计任务 根据电源参数要求设计一个高频直流开关稳压电源。 二、设计条件与指标 1.电源:电压额定值220±10%,频率:50Hz; 2. 输出:稳压电源功率Po=1000W,电压Uo=50V; 开关频率:100KHz 3.电源输出保持时间td=10ms(电压从280V下降到250V); 三、设计要求 1.分析题目要求,提出2~3种电路结构,比较并确定主电路 结构和控制方案; 2.设计主电路原理图、触发电路的原理框图,并设置必要的 保护电路; 3.参数计算,选择主电路及保护电路元件参数; 4.利用PSPICE、PSIM或MATLAB等进行电路仿真优化; 5.撰写课程设计报告。 四、参考文献 1.王兆安,《电力电子技术》,机械工业出版社; 2.林渭勋等,《电力电子设备设计和应用手册》; 3.张占松、蔡宣三,《开关电源的原理与设计》,电子工业 出版社。

目录 一、总体设计 (1) 1.主电路的选型(方案设计) (1) 2.控制电路设计 (4) 3.总体实现框架 (4) 二、主要参数及电路设计 (5) 1.主电路参数设计 (5) 2.控制电路参数设计 (7) 3.保护电路的设计以及参数整定 (8) 4.过压和欠压保护 (8) 三、仿真验证(设计测试方案、存在的问题及解决方法) (9) 1、主电路测试 (9) 2、驱动电路测试 (10) 3、保护电路测试 (10) 四、小结 (11) 参考文献 (11)

1000A电流互感器的设计资料

沈阳化工大学 本科毕业论文 题目: 1000A测量级电流互感器的设计 院系:信息工程学院 专业:电气工程及其自动化 班级:电气0703 学生姓名:李宗霖 指导教师:肇巍 论文提交日期:2011年 6 月 25 日 论文答辩日期:2011年 6 月 28 日

毕业设计(论文)任务书 电气工程及自动化专业电气0703班学生:李宗霖

摘要 电流互感器是电力系统中最为关键的基础设备,起到测量和保护作用,是用来测量电路中电流大小的装置。当某一电路中的电流过大以至于不能通过仪器直接测量出来,这时在电路中电流互感器的另一侧会准确地产生成比例的小电流,这样就可以方便直接用仪器测量并记录。电流互感器同时可以隔绝待测电路中可能出现的高电压,以便保护测量仪器。 本次设计是根据对600A电流互感器的分析,进而设计1000A测量级的电流互感器。通过了解电流互感器的发展趋势,电磁场的基本知识,所需材料的相关参数,进行计算铁心截面积,绕线长度,平均磁路长,绕组阻抗,以及0.5准确级时对应的5%,20%,100%,120%倍额定电流及0.25倍额定电压,120%倍额定电流时所对应的磁场强度,铁损角及误差。通过计算出的比差值和相位差与误差限制表进行对比,得到所计算的误差处在误差限制之内。 通过对1000A测量级电流互感器的设计,达到对电流互感器的深入了解,对以后从事相关行业起到重要的帮助。 关键词:电流互感器;设计;测量

Abstract Current transformer is the key basic instrument in electrical power system. Current transformer is used for measurement and protection. It is a instrument used for measuring the current in a circuit. When current in a circuit is too high to directly apply to measuring instruments, a current transformer produces a reduced current accurately proportional to the current in the circuit, which can be conveniently connected to measuring and recording instruments. A current transformer also isolates the measuring instruments from what may be very high voltage in the monitored circuit. Current transformers are commonly used in metering and protective relays in the electrical power industry. This project is based on the analysis of a 600A current transformer, and then makes a design of a 1000A current transformer. Through the understanding of the development of current transformers and the basic knowledge of electromagnetic field to get the parameters of the material. And calculate responding current of 5%, 20%, 100%,120% when it at the accuracy of 0.5, and the magnetic power at 120% and the errors. Through the results of errors and comparing with the diagram we have already got . Through achieve above projects, to make the design of 1000A current transformer come true. The significance of the this design of current transformer is to get a more completed understanding of it, maybe of a help in the future. Keywords: current transformer; design; measure

开关电源设计教学内容

开关电源设计

开关直流稳压电源设计 摘要 直流稳压电源应用广泛,几乎所有电器,电力或者电子设备都毫不例外的需要稳定的直流电压(电流)供电,它是电子电路工作的“能源”和“动力”。不同的电路对电源的要求是不同的。在很多电子设备和电路中需要一种当电网电压波动或负载发生变化时,输出电压仍能基本保持不点的电源。电子设备中的电源一般由交流电网提供,如何将交流电压(电流)变为直流电压(电流)供电?又如何使直流电压(电流)稳定?这是电子技术的一个基本问题。解决这个问题的方案很多,归纳起来大致可分为线性电子稳压电源和开关稳压电源两类,他们又各自可以用集成电路或分立元件构成。开关稳压电源具有效率高,输出功率大,输入电压变化范围宽,节约能耗等优点。 一、引言 1.1基本要求 稳压电源。 1.基本要求 ①输出电压UO可调范围:12V~15V; ②最大输出电流IOmax:2A; ③U2从15V变到21V时,电压调整率SU≤2%(IO=2A); ④IO从0变到2A时,负载调整率SI≤5%(U2=18V); ⑤输出噪声纹波电压峰-峰值UOPP≤1V(U2=18V,UO=36V,IO=2A); ⑥DC-DC变换器的效率≥70%(U2=18V,UO=36V,IO=2A); ⑦具有过流保护功能,动作电流IO(th)=2.5±0.2A; 1.2发挥部分 (1)排除短路故障后,自动恢复为正常状态; (2)过热保护; 二、方案设计与论证 开关式直流稳压电源的控制方式可分为调宽式和调频式两种。实际应用中,调宽式应用较多,在目前开发和使用的开关电源集成电路中,绝大多数为脉宽调制(PWM)型。开关电源的工作原理就是通过改变开关器件的开通时间和工作周期的比值,即占空比来改变输出电压,通常有三种方式:脉冲宽度调制(PWM)、脉冲频率调制(PFM)和混合调制。PWM调制是指开关周期恒定,通过改变脉冲宽度来改变占空比的方式。因为周期恒定,滤波电路的设计比较简单,因此本次设计采用PWM调制方式实现电路设计要求。主要框架如图1所示。由变压器降压得到交流电压,再经过整流滤波电路,将交流电变成直流电,然后再经过DC-DC变换,由PWM的驱动电路去控制开关管的导通和截止,从而产生一个稳定的电压源。

基于空心线圈的电子式电流互感器设计大学论文

2013届毕业生毕业设计说明书 题目: 基于空心线圈的电子式电流互感器设计 学院名称:电气工程学院班级: xxx 学生姓名: xxx 学号: xxx 指导教师: xxx 教师职称: xxx

2013年05月15日

目次 引言 (1) 1 电子式电流互感器概述 (2) 1.1 电子式电流互感器的研究背景和意义 (2) 1.2 国内外研究现状 (3) 1.3 本课题研究的目的 (4) 2 系统方案设计 (5) 2.1 系统方案论证 (5) 2.2 课题方案设计 (5) 3 电子式电流互感器传感头介绍 (7) 3.1 Rogowski线圈的结构及其工作原理 (7) 3.2 计算Rogowski线圈的互感系数 (8) 3.3 Rogowski线圈两种工作状态 (9) 4 高压端电路和供电模块 (12) 4.1 积分电路 (12) 4.2 滤波电路 (14) 4.3 A/D转换电路 (15) 4.4 电源电路 (18) 4.5 光纤收发模块 (20) 5 低压端电路 (21) 总结 (22) 致谢 (23) 参考文献 (24) 附录: (26)

引言 随着电力系统的电压等级不断提高,对测量仪器的要求也越来越高,提高测量仪器的测量精度有利于电力系统安全和经济地运行。目前广泛使用的电流互感器是传统的电磁式电流互感器,但由于其本身存在缺点,人们不得不研究开发一种新型的互感器来代替它,在这个背景下,一种新型的电流互感器——电子式电流互感器随之兴起,它满足了目前电力系统中对电网电流的测量的要求,克服了传统的电磁式电流互感器的缺点,有广阔的发展空间。 本文设计的电子式电流互感器采用了Rogowski线圈、89C51单片机、MAX197 A/D转换芯片为主要部分。通过Rogowski线圈对电网中的电流进行采样,实时的分析和处理采样电流,将母线电流的实际状况显示出来,然后把信息反馈到控制室,如果电流出现异常,控制室向继电保护发出保护命令,保证电力系统的正常运行。

电流互感器的设计

CT设计计算说明 I1n-----额定一次电流 I2n-----额定二次电流 A S----铁芯截面积;cm2 L C----平均磁路长;cm N K----控制匝数 N L----励磁匝数 r2-----二次绕组的电阻 L2*N2 r2=ρ55 ,Ω S2 式中ρ55-----导线在55℃时的电阻系数, Ω·mm2/m,铜导线ρ55=0.02 ; ρ75=0.0214 L2-------二次绕组导线总长, m ; N2-------二次绕组匝数; S2--------二次绕组的导线截面积, mm2 。 X2----二次绕组的漏电抗; X2选取 当I1n≤600A 时X2≈0.05~0.1Ω I1n≥600A 时X2≈0.1~0.2Ω Z2 ----二次绕组组抗Z2=√r22+ X22 U2 ----二次绕组组抗压降U2=I0×Z2; V U0 ----二次绕组端电U0=U2+E2JG; V E2JG----二次极限感应电势;V (IN)1n------额定一次安匝 (IN)2n------额定二次安匝 N1n---------一次绕组额定匝数 N2n---------二次绕组额定匝数 W2n---------额定二次负荷标称值 Z2n---------额定二次负荷; Z2n= W2n/ I2n2{例50(V A)/5(A)2=2} Z2min-------最小二次负荷; Z2min=1/4 Z2n R2n --------额定二次负荷有功分量; R2n=Z2n cosφ2=0.8Z2n,Ω R2min ------最小二次负荷有功分量; R2min=Z2min cosφ2=0.8Z2min,Ω X2n --------额定二次负荷的无功分量;X2n=Z2n cosφ2=0.6Z2n

电子式电流互感器相关问题汇总

电子式电流互感器的定义 2000年,IEC根据基于光学和电子学原理的电流互感器(ECT)的发展趋势,制定了关于ECT的IEC60044-8标准,明确电子式电流互感器(Electronic Current Transformer: ECT)指采用传统电流互感器(CT),霍尔传感器、Rogowski线圈或光学装置作为一次转换部分,利用光纤作为一次转换器和一次转换器之间的传输系统,并且装有电子器件作测量信号的传输和放大,其输出可以是模拟量或数字量。由于其中某些类型要利用光学器件对电流传感且全部利用光纤传输信号,故电子式电流互感器亦称为光学电流互感器(Optical Current Transformer: OCT) 电磁互感器的优点在于性能比较稳定,适合长期运行.并且具有长期的运行经验。 电磁互感器的缺点: 磁式电流4.感器(Current Transformer: CT)己暴露出下述内在的致命弱点:1绝缘问题:传统电磁式电流互感器采用的空气绝缘,油纸绝缘,气体绝缘乃至串级绝缘都不能满足随电压等级日益增长而更为苛刻的运行条件,在超高压等级使用电磁式电流互感器会产生绝缘击穿的潜在危险;2误差问题:电磁式电流互感器的闭合铁芯由于电流的非周期分量作用而饱和,导磁率急剧降低,使误差在过渡过程中上升到不能允许的程度3铁磁谐振效应:由于电流互感器电感饱和作用引起的持续性、高幅值谐振过电压;4电磁式互感器含有铁芯,因此动态测量的范围小,频带窄面对暂态过程测量性能差;此外还有,输出端开路时导致高压危险; 体积重量均大,成本过高; 易产生干扰;不易与数字设备连接;因有绝缘油而导致易燃易爆炸等。已难以满足电力系统在线检测,高精度故障诊断,电力数字网发展需要 电子互感器的优点 1)数字化输出,简化了互感器与二次设备的接口,避免了信号在传输、储存 和处理中的附加误差,提高了系统可靠性。 2)信号光纤传输,抗电磁干扰性能好,在强电磁环境中保证信号的精确性 和可靠性。 3)无铁芯,不存在磁饱和、铁磁谐振现象,线性度好,绝缘简单,动态测量 范围大、频带宽、精度高。而且体积小、重量轻、低成本,减小了变电 站的面积,。 4)低压没有开路危险,没有因存在绝缘油而产生的易燃、易爆等危险 电子式电流互感器没有磁饱和、铁磁谐振等问题由于电磁式电流互感器使用了铁心,不可避免地存在磁饱和、铁磁共振和磁滞效应等问题,而电于式电流互感器采用的是磁光玻璃、光纤或电子线路。不存在这方面的问题。 电子式电流互感器绝缘结构简单,绝缘性能好。电磁式电流互感器的绝缘结构非常复杂,尤其是对于电压等级比较高的电流互感器来说,绝缘部分要消耗大量的电工材料,体积也非常庞大。而电子式电流互感器由于采用了光纤和比较轻便的绝缘子支往,其绝缘结构比较简单,绝缘性能也比较好、 (3)电子式电流互感器动态测量范围大,精度高。电网正常运行时,流过电流互感器的电流并不大,但短路电流一般很大,而且随着电网容量的增加,辣路故障时的电流越来越大。电磁式电流互感器f}I为存在磁饱和问题,难以实现大范围测量,不能同时满足高精度计量和继电保护的需要。电子式电流互感器有很宽的动态范围,测量额定电流的范围从几十安培至几千安培,过电流范围可达几万安墙。个电子式电流互感器可同时满足计量和继电保护的

开关电源设计

& 课程设计任务书 学生姓名:专业班级: 指导教师:工作单位: 题目: 开关电源设计 初始条件: 输入交流电源:单相220V,频率50Hz。 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)? 1、输出两路直流电压:12V,5V。 2、直流最大输出电流1A。 3、完成总电路设计和参数设计。 时间安排: 课程设计时间为两周,将其分为三个阶段。 第一阶段:复习有关知识,阅读课程设计指导书,搞懂原理,并准备收集设计资料,此阶段约占总时间的20%。 第二阶段:根据设计的技术指标要求选择方案,设计计算。 ) 第三阶段:完成设计和文档整理,约占总时间的40%。 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 ) 引言 (1) 1设计意义及要求 (2) 设计意义 (2) 开关电源的组成部分 (2) 开关电源的工作过程 (2) 开关电源的工作方式 (3) 脉宽调制器的基本原理 (3) 2方案设计 (5) ) 设计要求 (5) 方案选择 (5) 整流滤波部分 (6) 降压斩波电路 (7) 脉宽调制电路 (8) MOSFET管的驱动电路 (9) 总电路图 (11) 3主电路参数设定 (12) { 变压器、二极管、MOSFET管选择 (12) 反馈回路的设计 (13) MOSFET的驱动设计 (14) 结束语 (15) 参考文献 (16)

附录一 (17) ]

引言 随着电力电子技术的高速发展,电力电子设备与人们的工作、生活的关系日益密切,而电子设备都离不开可靠的电源,进入80年代计算机电源全面实现了开关电源化,率先完成计算机的电源换代,进入90年代开关电源相继进入各种电子、电器设备领域,远程控制交换机、通讯、电子检测设备电源、控制设备电源等都已广泛地使用了开关电源,更促进了开关电源技术的迅速发展。 开关电源高频化是其发展的方向,高频化使开关电源小型化,并使开关电源进入更广泛的应用领域,特别是在高新技术领域的应用,推动了高新技术产品的小型化、轻便化。开关电源是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)控制IGBT和MOSFET构成。随着电力电子技术的发展和创新,使得开关电源技术也在不断地创新。目前,开关电源以小型、轻量和高效率的特点被广泛应用几乎所有的电子设备,是当今电子信息产业飞速发展不可缺少的一种电源方式。 开关电源根据输入输出的性质不同可分为AC/DC和DC/DC两大类。AC/DC称为一次电源,也常称为开关整流器。值得指出的是,AC-DC变换不单是整流的意义,而是整流后又做DC-DC变换。所以说,DC-DC变换器是开关电源的核心。DC/DC称为二次电源,其设计技术及生产工艺在国内外均已成熟和标准化,所以学习设计开关电源有重要的意义。

关于电子式电流互感器的设计分析

关于电子式电流互感器的设计分析 近年来,由于社会对电能的需求量不断增加,电力企业的传输容量也在不断的增加,而电子式电流互感器的设计成功,有效的确保了电力系统运行的安全性,而且有效的降低了成本,为数字化变电站的建设奠定了良好的基础。文中从电子式电流互感器的类型和特点进行了分析,并进一步对电子式电流互感器的设计思想、光电池的选择及电源性能参数进行了具体的阐述。 标签:电子式电流互感器;高压侧电源;供能电路 前言 传统的电磁式电流互感器对于当前电力系统传输容量不断加大,而且电压等级不断提升的情况其适用性越来越差,使电力系统的发展带来了一定的制约作用。在这种情况下,开发电子式电流互感器则具有必然性,由于于其通过利用光通信及微电子技术,并采用新型的传感原理,有效的规避了传统电力互感器所存在的不足之处,利用数字信号进行输出,确保了电力系统安全、稳定的运行,不仅实现了成本的节约,而且也实现了对二次设备的优化。目前数字化变电站的建设更是需要以电子式互感器和光纤通讯网作为其基础,所以电子式电流互感器在当前电力系统运行了具有极为重要的意义。 1 电子式电流互感器类型及特点 1.1 无源式 无源式电子式电流互感器是不需要电源供电的光电电流和电压测量的装置,利用磁光晶体和光纤作为传感器,而且光纤不仅可以作为信号传输通道,而且也可作为传感元件,由于无源式互感器其种类较多,所以利用了较多的物理效应。 1.2 有源式 有源式电子式电流互感器其是以电子器件为其传感头,同时需要在一次侧提供电源,利用一次侧的采术传感器来进行取样,信号通道以光纤为主,将一次侧的光信号在地面进行处理后将其还原为被测信号。这种有源式的互感器具有非常好的绝缘性和抗电磁干扰性,而且不仅制造成本得到了有效的降低,而且无论是体积还是重量都有所减小,而且能够更好的将常规电流测量装置的优势有效的发挥出来,利用电子器件作为传感头,有效的规避了传统传感头光路复杂及对温度及振动敏感的问题。由于在有源式电流互感器上所采用的电阻和电容器件都是沿用了传统的器件,具有更高的精确度,而且结构更为简单,易与实现与计算机的联通,更具有实用性。 2 电子式电流互感器的设计思想

电流互感器设计实例

电流互感器设计实例 作为磁性元件设计的最后一部分内容,我们将设计一个电流互感器。使用电流互感器可以减小测量变换器原边电流时的损耗。 电流互感器与一般的电压变压器的区别在什么地方呢?这个问题即使是资深的磁性元件设计人员也很难回答。基本的区别在于:变压器试图把电压从原边变换到副边,而电流互感器试图把电流从原边变换到副边。电流互感器的电压大小由负载决定。 我们通过一个实际的设计例子,可以更好地理解电流互感器的工作原理。 假设用电流互感器测量变换器的原边电流,原边10A电流对应1V电压。当然,我们可以用一个1V/ 10A=100m^的电阻来测量,但是电阻将造成的损耗为1V X1OA=1OW这么大的损耗对几乎所有的设计来说都是不能接受的。所以,要选用电流互感器,如图5-26所示。 囹昴用电流菽厠互感跻碱小期耗 当然,为了减少绕组电阻,我们把原边的匝数取为1匝,同时为了使电流降到一个比较低的水平,畐I」边匝数应该比较多。如果副边匝数为N,由欧姆定律可得(10 /N)R=1V 在电阻中消耗的功率为P=(1V)2/R。我们假设消耗的功率为50mW也就是说,我们可以使用100mW规格的电阻),这就要求R不得小于20Q,如果采用20Q的电阻,由欧姆定律可得副边匝数N=200 现在我们来看磁芯,假设二极管是普通的一般的二极管,通态电压大约为1V,电流 为10A/200=50mA互感器输出电压为1V,加上二极管的通态电压1V,总电压大约2V。2 50kHz 频率工作时,磁芯上的磁感应强度不会超过 c (2Vx4ps}10B 4 ~ 200 匝XA -人 由于原边流过电流的时间不可能超过开关周期(否则,磁芯无法复位)。因此A可以很小,而B也不会很大。这个例子里磁芯的尺寸不能通过损耗要求或磁通饱和要求来确定,更大的可能是由原副边之间的隔离电压来确定。如果隔离电压没有要求,磁芯的大小一般由2 00匝的绕组所占体积来确定。你可以用40号的导线流过500mA勺峰值电流,但是这种导线实在太细,一般的变压器厂家不会为你绕制。 实用提示除非一定要用,一般情况下不要使用规格小于36号线的导线。 现在我们来分析为什么不能用电压变压器来替代电流互感器?已经知道副边电压只有2V,因此原边电压为2V/200=100mV如果输入直流电压为48V,那么电流互感器原边10 mV电压对48V电压来说是微不足道的一一那样你可以在副边得到50mA的电流,而对原边几乎没有什么影响。假设另一种情况(不现实的),原边的输入直流电压只有5mV那么互感器的原边不可能有10mV的电压,同时由于原边阻抗(如反射副边阻抗)也比较大,决定了副边根本不可能产生50mA的电流。即使整个5mV t压全部加在原边,畐寸边也只能产生 200X 5mV=1V勺电压:不能在转换电阻上产生足够的电压。因此,电压变压器只能用作变压器,不能用来检测电流。

相关主题
文本预览
相关文档 最新文档