当前位置:文档之家› 浇注型电流互感器自动设计软件的研究

浇注型电流互感器自动设计软件的研究

浇注型电流互感器自动设计软件的研究
浇注型电流互感器自动设计软件的研究

开口( 开合)式电流互感器

开口式电流互感器AKH-0.66K-160*80开合式电流互感器厂家 开启式电流互感器也称为开口式(分列式)电流互感器、开合式电流互感器、卡式电流互感器、铁芯分离式电流互感器,主要适用于工业中城网、农网改造项目,改装线路时可随意安装在线路的任何地方,而不用重新布线,安装方便,可带电操作,不影响客户正常用电,为用户改造项目节省人力、物力、财力,提高效率。该系列电流互感器可与继电器保护、测量以及计量装置配套使用。开启式电流互感器的知名品牌有:哈尔滨三达德KH系列、北京宁达众合CTKK系列、北京中凯科电LZKM1-10、24型、江苏安科瑞AKH-0.66/K系列、浙江迪克森DP(DBP)系列、涌纬自控YWKH0.66系列、深圳市中凯国电LZKK-10系列、德阳蜀电LMKK、广州明睿电子MR-LXZK-0.66、北京恒源力创LCZK1-10、北京微能汇通LDK-10型、北京卓川电子SY.35-0.66系列。 下面以江苏安科瑞电器制造有限公司的AKH-0.66/K系列开启式电流互感器为例,介绍开启式电流互感器的功能和技术参数。 江苏安科瑞电器制造有限公司AKH-0.66/K

AKH-0.66/K系列电流互感器外壳采用阻燃、耐温140℃的进口聚碳酸酯注塑成形,铁芯采用取向冷轧硅钢带卷绕而成,二次导线采用高强度电磁漆包线,产品结构新颖,造型美观,安装方便,体积小,质量轻,准确度高,容量大。 符合标准 产品符合国标GB1208-2006。 技术指标 开启式CT一次电流100-5000A,二次电流5A,1A 额定工作电压AC0.66kV(等效AC0.69kV,GB/T156-2007) 额定频率50-60Hz 环境温度-30℃~70℃,最高耐温120℃ 海拔高度≤3000m 工频耐压3000V/1min50Hz 用于没有雨雪直接侵袭,无严重污染及剧烈震动的场所 选型说明 根据一次电流及母线截面等参数选择对应的规格产品。一次导线穿越互感器窗孔。打开翻盖,通过压线片进行二次接线,二次接线引出后翻盖复位。计量电能可直接利用翻盖小孔加封铅印,以防窃电。 工作电流长期不超过1.1倍额定值,允许在1.2倍额定值时短时使用,时间不超过1h; 根据被测电流大小,选定额定电流比,一般选用比被测电流大2/3左右的额定电流; 产品极性表示为:一次接线标志P1、P2,相应二次接线标志S1、S2;S1表示P1的同名端,S2表示P2的同名端; 测量仪表接于S1、S2端上,此时所接回路的总负荷不应超过互感器的额定负荷,当安装仪表位置与电流互感器相距甚远或回路负载较大时,应优先选用二次电流为1A的规格; 注意根据母排的规格和根数,选用相匹配窗口大小的互感器。 规格尺寸

电流互感器和电压互感器

1.电流互感器 1.1 5A还是1A? 电流互感器的作用是将一次设备的大电流转换成二次设备使用的小电流,其工作原理相当于一个阻抗很小的变压器。其一次绕组与一次主电路串联,二次绕组接负荷。电流互感器的变比一般为X:5A(X不小于该设备可能出现的最大长期负荷电流),如此即可保证电流互感器二次侧电流不大于5A。 在超高压电厂和变电站中,如果高压配电装置远离控制室,为了增加电流互感器的二次允许负荷,减小连接电缆的导线界面及提高精确等级,多选用二次额定电流为1A的电流互感器。相应的,微机保护装置也应选用交流电流输入为1A的产品。 根据目前新建110kV变电站的规模及布局,绝大多数都是选用二次侧电流为5A的电流互感器。 1.2 10P10、0.5还是0.2S?在变电站中,电流互感器用于三种回路:微机保护、测量和计量,而这三种回路对电流互感器的准确级要求是不同的。根据准确级的不同可将电流互感器的绕组划分为10P10(保护)、0.5(测量)和0.2S(计量)。用于测量和计量的绕组着重于精度,用于保护的绕组着重于容量,以避免铁芯饱和影响实际变比。 1.3 星形还是三角形? 电流互感器二次绕组的接线常用的有三种,完全星形接线、不完全星形接线和三角形接线,如图2-1所示。 图2-1 完全星形接线:可以反映单相接地故障、相间短路及三相短路故障。目前,110kV线路、变压器、10kV电容器等设备配置的电流互感器均采用此接线方式。 不完全星形接线:反映相间短路及A、C相接地故障。目前,35kV及10kV架空线路在不考虑“小电流接地选线”功能(以后简称“选线”)的情况下多采用此接线方式,以节省一组电流互感器;否则,必须配置三组电流互感器,以获得零序电流实现“选线”功能。电缆出线时,配置了专用的零序电流互感器实现“选线”功能,也按此方式配置。 三角形接线:以往,这种接线用于采用Y,d11接线的变压器的差动保护,使变压器星形侧二次电流超前一次电流30°,从而和变压器三角形侧(电流互感器接成完全星形)二次电流相位相同。目前,主变微机差动保护本身可以实现因主变组别造成的相位角差的校正,主变星形侧和三角形侧电流互感器均采用完全星形接线。

电流互感器分类及原理

1、电流互感器(Current Transformer,CT) 电力系统电能计量和保护控制的重要设备,是电力系统电能计量、继电保护、系统诊断与监测分析的重要组成部分,其测量精度、运行可靠性是实现电力系统安全、经济运行的前提。目前在电力系统中广泛应用的是电磁式电流互感器。 2、电流互感器国标(GB 1208-87S) 1)准确级:以该准确级在额定电流下所规定的最大允许电流误差百分数标称。 2)测量用电流互感器的标准准确级有:0.1、0.2、0.5、1、3、5; 特殊要求的电流互感器的准确级有:0.2S和0.5S; 保护用电流互感器准确级有:5P和10P两级。 3、电磁式电流互感器 1)原理: 一次线圈串联于被测电流线路中,二次线圈串接电流测量设备,一二次侧线圈绕在同一铁芯上,通过铁芯的磁耦合实现一次二次侧之间的电流传感过程。一二次侧线圈之间以及线圈与铁芯之间要采取一定的绝缘措施,以保证一次侧与二次侧之间的电气隔离。根据应用场合以及被测电流大小的不同,通过合理改变一二次侧线圈匝数比可以将一次侧电流值按比例变换成标准的1A或5A电流值,用于驱动二次侧电器设备或供测量仪表使用。 2)缺点: ①.绝缘要求复杂,体积大,造价高,维护工作量大; ②.输出端开路产生的高电压对周围人员和设备存在潜在的威胁; ③.固有的磁饱和、铁磁谐振、动态范围小、频率响应范围窄; ④.输出信号不能直接和微机相连,难以适应电力系统自动化、数字化的发展趋势。 4、电子式电流互感器 1)特征: ①.可以采用传统电流互感器、霍尔传感器、空心线圈(或称为Rogowski coils)或光学装置 作为一次电流传感器,产生与一次电流相对应的信号; ②.可以利用光纤作为一次转换器和二次转换器之间的信号传输介质; ③.二次转换器的输出可以是模拟量电压信号或数字量。 2)分类 (1)按传感原理的不同划分:光学电流互感器和光电式电流互感器 I、光学电流互感器(Optical Current Transformer,简称OCT) 原理:传感器完全基于光学技术和光学器件来实现。 II、光电式电流互感器(Opto-Electronic Current Transformer,简称OECT) 原理:传感部分采用电子器件而信号的传输采用光学器件和光学技术,是光电子技术的结合。 (2)按传感侧是否需要电源划分:无源型电流互感器和有源型电流互感器 I、无源型电流互感器:光学电流互感器的传感和传输部分均采用无源光学器件,其利用Farady 磁光效应,传感和传输信号都是来自二次侧的光信号,一次侧不需要额外能量供给。因此光学电流互感器属于无源型电流互感器。 II、有源型电流互感器:一种基于传统电流传感原理、采用有源器件调制技术、由光纤将高压端转换得到的光信号传送到低压端解调处理并得到被测电流信号的新型电流互感器、由于其电路

零序电流互感器的原理及应用

零序电流互感器的原理及应用 在三相四线电路中,三相电流的相量和等于零,即Ia+Ib+IC=0 如果在三相四线中接入一个电流互感器,这时感应电流为零。当电路中发生触电或漏电故障时,回路中有漏电电流流过,这时穿过互感器的三相电流相量和不等零,其相量和为:Ia+Ib+Ic=I(漏电电流)这样互感器二次线圈中就有一个感应电压,此电压加于检测部分的电子放大电路,与保护区装置预定动作电流值相比较,如大于动作电流,即使灵敏继电器动作,作用于执行元件掉闸。这里所接的互感器称为零序电流互感器,三相电流的相量和不等于零,所产生的电流即为零序电流。 三相电路不对称时,电流均可分解正序、负序和零序电流。正序指正常相序的三相交流电(即A、B、C三相空间差120度,相序为正常相序),负序指三相相序与正常相序相反(三相仍差120度,仍平衡),零序指(A、B、C电流分解出来三个大小相同、相位相同的相量。零序电流互感器套在三芯电缆上,三相不平衡时在外部就表现出零序电流(因为相量相同加强) 零序电流互感器 零序电流互感器为一种线路故障监测器,一般儿只有一个铁芯与二次绕组,使用时,将一次三芯电缆穿过互感器的铁芯窗孔,二次通过引线接至专用的继电器,再由继电器的输出端接到信号装置或报警系统。在正常情况下,一次回路中三相电流基本平衡,其所产生合成磁通也近于零。在互感器的二次绕组中不感生电流,当一次线路中发生单相接地等故障时,一次回路中产生不平衡电流(意即零序电流),在二次绕组中感生微小的电流使继电器动作,发生信号。这个使继电器动作的电流很小(mA级),称作二次电流或零序电流互感器的灵敏度(也可用一次最小动作电流表示),为主要动作指标。 零序电流互感器保护的基本原理是基于基尔霍夫电流定律:流入电路中任一节点的复电

电流互感器结构及原理

一、电流互感器结构原理 1 普通电流互感器结构原理 电流互感器的结构较为简单,由相互绝缘的一次绕组、二次绕组、铁心以及构架、壳体、接线端子等组成。其工作原理与变压器基本相同,一次绕组的匝 数(N1)较少,直接串联于电源线路中,一次负荷电流()通过一次绕组时,产生 的交变磁通感应产生按比例减小的二次电流();二次绕组的匝数(N 2 )较多,与仪表、继电器、变送器等电流线圈的二次负荷(Z)串联形成闭合回路,见图1。 图1 普通电流互感器结构原理图 由于一次绕组与二次绕组有相等的安培匝数,I 1N 1 =I 2 N 2 ,电流互感器额定电 流比:。电流互感器实际运行中负荷阻抗很小,二次绕组接近于短路状态,相当于一个短路运行的变压器。 2 穿心式电流互感器结构原理 穿心式电流互感器其本身结构不设一次绕组,载流(负荷电流)导线由L1至L2穿过由硅钢片擀卷制成的圆形(或其他形状)铁心起一次绕组作用。二次绕组直接均匀地缠绕在圆形铁心上,与仪表、继电器、变送器等电流线圈的二次负荷串联形成闭合回路,见图2。

图2 穿心式电流互感器结构原理图 由于穿心式电流互感器不设一次绕组,其变比根据一次绕组穿过互感器铁心中的匝数确定,穿心匝数越多,变比越小;反之,穿心匝数越少,变比越大,额 定电流比:。 式中I1——穿心一匝时一次额定电流; n——穿心匝数。 3 特殊型号电流互感器 3.1 多抽头电流互感器。这种型号的电流互感器,一次绕组不变,在绕制二次绕组时,增加几个抽头,以获得多个不同变比。它具有一个铁心和一个匝数固定的一次绕组,其二次绕组用绝缘铜线绕在套装于铁心上的绝缘筒上,将不同变比的二次绕组抽头引出,接在接线端子座上,每个抽头设置各自的接线端子,这样就形成了多个变比,见图3。 图3 多抽头电流互感器原理图

电流互感器使用注意事项

电流互感器使用注意事项 主要注意下面七个方面 1)电流互感器的接线应遵守串联原则 即一次绕阻应与被测电路串联 而二次绕阻则与所有仪表负载串联。 2)按被测电流大小 选择合适的变化 否则误差将增大。同时 二次侧一端必须接地 以防绝缘一旦损坏时 一次侧高压窜入二次低压侧 造成人身和设备事故 3)二次侧绝对不允许开路 因一旦开路 一次侧电流I1全部成为磁化电流 引起φm和E2骤增 造成铁心过度饱和磁化 发热严重乃至烧毁线圈;同时 磁路过度饱和磁化后 使误差增大。电流互感器在正常工作时 二次侧近似于短路 若突然使其开路 则励磁电动势由数值很小的值骤变为很大的值 铁芯中的磁通呈现严重饱和的平顶波 因此二次侧绕组将在磁通过零时感应出很高的尖顶波 其值可达到数千甚至上万伏 危机工作人员的安全及仪表的绝缘性能。 另外 二次侧开路使E2达几百伏 一旦触及造成触电事故。因此 电流互感器二次侧都备有短路开关 防止一次侧开路。如图l中K0 在使用过程中 二次侧一旦开路应马上撤掉电路负载 然后 再停车处理。一切处理好后方可再用。 4)为了满足测量仪表、继电保护、断路器失灵判断和故障录波等

装置的需要 在发电机、变压器、出线、母线分段断路器、母联断路器、旁路断路器等回路中均设具有2 8个二次绕阻的电流互感器。对于大电流接地系统 一般按三相配置;对于小电流接地系统 依具体要求按二相或三相配置 5)对于保护用电流互感器的装设地点应按尽量消除主保护装置的不保护区来设置。例如 若有两组电流互感器 且位置允许时 应设在断路器两侧 使断路器处于交叉保护范围之中 6)为了防止支柱式电流互感器套管闪络造成母线故障 电流互感器通常布置在断路器的出线或变压器侧。 7)为了减轻发电机内部故障时的损伤 用于自动调节励磁装置的电流互感器应布置在发电机定子绕组的出线侧。为了便于分析和在发电机并入系统前发现内部故障 用于测量仪表的电流互感器宜装在发电机中性点侧。

开口式电流互感器

开口式电流互感器 开口式电流互感器主要应用于配电系统改造项目,安装方便,无须拆一次母线,亦可带电操作,不影响客户正常用电,为用户改造项目节省人力、物力、财力,提高效率。该系列电流互感器可与继电器保护、测量以及计量装置配套使用。 下面以江苏安科瑞电气股份公司AKH-0.66K系列开口式电流互感器为例,介绍开口式电流互感器的功能和技术参数。 江苏安科瑞AKH-0.66K AKH-0.66系列电流互感器外壳采用阻燃、耐温140℃的进口聚碳酸酯注塑成形,铁芯采用取向冷轧硅钢带卷绕而成,二次导线采用高强度电磁漆包线,产品结构新颖,造型美观,安装方便,体积小,质量轻,准确度高,容量大。 符合标准 ●产品符合国标GB1208-2006。 技术指标 ●开口式CT一次电流100-6300A,二次电流5A,1A ●额定工作电压AC0.66kV(等效AC0.69kV,GB/T156-2007) ●额定频率50-60Hz ●环境温度-30℃~70℃,最高耐温120℃ ●海拔高度≤3000m ●工频耐压3000V/1min 50Hz ●用于没有雨雪直接侵袭,无严重污染及剧烈震动的场所 选型说明 ●根据一次电流及母线截面等参数选择对应的规格产品。一次导线穿越互感

器窗孔。打开翻盖,通过压线片进行二次接线,二次接线引出后翻盖复位。 计量电能可直接利用翻盖小孔加封铅印,以防窃电。 ●工作电流长期不超过1.1倍额定值,允许在1.2倍额定值时短时使用,时 间不超过1h; ●根据被测电流大小,选定额定电流比,一般选用比被测电流大2/3左右的 额定电流; ●产品极性表示为:一次接线标志P1、P2,相应二次接线标志S1、S2;S1 表示P1的同名端,S2表示P2的同名端; ●测量仪表接于S1、S2端上,此时所接回路的总负荷不应超过互感器的额 定负荷,当安装仪表位置与电流互感器相距甚远或回路负载较大时,应优先选用二次电流为1A的规格; ●注意根据母排的规格和根数,选用相匹配窗口大小的互感器。

电子式互感器分类、特点及应用现状分析

电子式互感器的现状与发展前景 随着电力传输容量的增加,运行电压等级越来越高,传统的电磁式电流,电压互感器暴露出如绝缘要求高,磁饱和、铁磁谐振、动态范围小、频带窄以及有油易燃、易爆炸等一系列缺点。基于光学和电子学原理的电子式电压、电流互感器(分别简称为EVT和ECT)经过30多年的发展以其独特的优点,成为最有发展前途的一种超高压条件下电压、电流的测量设备。 早期的电子式互感器一次侧和二次侧通过光纤来传输信号,也称为光电式互感器。2002年,IEC根据新型电子式电压、电流互感器的发展趋势,制定了关于EVT的IEC60044-7标准和ECT的IEC60044 -8标准,明确了电子式互感器的定义及相成的技术规范。 根据IEC60044-7标准,EVT采用电阻分压器.电容分压器或光学装置作为一次转换部件,利用光纤怍为一次转换器和二次转换器之间的传输系统,并装有电子器件作测量信号的传输和放大,具有模拟量电压输出或数字量输出。 根据IEC600448标准,ECT采用传统电流互感器(CT)、霍尔传感器、Rogowski线圈或光学装置作为一次转换部件,利用光纤作为一次转换器和二次转换器之间的传输系统,并装有电子器件作测量信号的传输和放大,具有模拟量电压输出或数字量输出。 电子式互感器的分类 几十年来,电子式互感器产品的种类已经被开发出很多,根据原理的不同,电子式互感器可分为无源式和有源式2类。所谓无源式电子互感器是指高压侧传感头部分不需要供电电源的电于式互感器,而有源式电子互感器是指传感头部分需要供电电源的电子式互感器。 无源式电子互感器的优点是在传感头部分不需要复杂的供电装置,整个系统的线性度比较好,缺点是传感头部分有复杂而不稳定的光学系统,容易受到多种环境因素的影响,影响了实用化的进程,虽然各国学者不断的提出新方法以提高测量准确度,备种方法都在实验室条件下取得了一定成果,但都不同程度地存在着通用性差,装置复杂等缺点,未能有效克服这个困难,其研究还有待进一步深入。 有源式电子式互感器的原理大都比较简单,已被广泛接受。无源式EVT主要利用传统的电阻分压器,电容分压器以及单个电容器测量电压值。在有源式ECT中,作为一次电流采样传感头的元件有传统的电磁式电流互感器、分流器和Rogowski线圈等。

穿心式电流互感器

穿心式电流互感器结构原理 注意:穿心匝数是以穿过空心的根数为准,而不是以外围的匝数计算,否则将误差1匝。 请教穿心式电流互感器在中间一次穿过的导线,在互感器模型中,算1匝线圈吗? 答:是1匝。 穿心式电流互感器其本身结构不设一次绕组,载流(负荷电流) 导线由L1至L2穿过由硅钢片擀卷制成的圆形(或其他形状)铁心起一次绕组作用。二次绕组直接均匀地缠绕在圆形铁心上,与仪表、继电器、变送器等电流线圈的二次负荷串联形成闭合回路,见图5-2。 图5-2 穿心式电流互感器结构原理图 来源:https://www.doczj.com/doc/8913456340.html,

由于穿心式电流互感器不设一次绕组,其变比根据一次绕组穿过互感器铁心中的匝数确定,穿心匝数越多,变比越小;反之,穿心匝数越少,变比越大,额定电流比:I1/n。 式中I1——穿心一匝时一次额定电流; n——穿心匝数。 穿芯式电流互感器的正确使用 2007-09-19 来源:中国自动化网浏览:149 简介:穿芯式电流互感器是一种常见电工器件,因其接线简单,安装方便,广泛应用于计量、检测及保护线路中,但使用中稍不注意,就能引起极大误差而造成计量不准,保护失灵,发生电气事故,这与电流互感器安匝容量有关。 关键字:穿芯式电流互感器检测保护线路安匝容量 1 事故现象

河北临漳县电镀厂有三台电动机其型号规格为Y180M--422kW,配用LMZ1-0.5、100/5,300安匝电流互感器,电流表为0~100A。实际运行中发现电流值总是很小,约27A左右,用钳型电流表测一次侧实际工作电流为82A,两者明显不相符,三台电动机情况基本类似,我们对一台电动机更换了电流互感器、二次线路、电流表,情况依然。 2 事故分析 仔细分析,我们发现一个共同规律,一、二次侧检测、计量电流都是将近相差三倍,这才引起我们警觉,仔细查看互感器铭牌,才发现忽略一个重要问题:安匝容量,注明300安匝,故用于100/5线路中,就应该绕三次,而不应该是常规一匝穿芯。 3 事故处理 我们将一次线路互感器上绕了三圈,检测电流为81A,一次线路用钳型电流表测为82A,两者基本相符。这说明我们不应忽略这个问题。 穿芯式电流互感器是一种常见电工器件,因其接线简单,安装方便,广泛应用于计量、检测及保护线路中,但使用中稍不注意,就能引起极大误差而造成计量不准,保护失灵,发生电气事故,这与电流互感器安匝容量有关。所谓安匝容量,系指电流互感器一次侧单心穿线时最大额定电流值,也即额定电流与穿芯匝数积。

如何正确选择及使用电流互感器

浅谈如何正确选择及使用电流互感器 1.前言 近几年来,随着我国电力工业中城网及农网的改造,以及供电系统的自动化程度不断提高,电流互感器作为电力系统的一种重要电气设备,已被广泛地应用于继电保护、系统监测和电力系统分析之中。电流互感器作为一次系统和二次系统间联络元件,起着将一次系统的大电流变换成二次系统的小电流,用以分别向测量仪表、继电器的电流线圈供电,正确反映电气设备的正常运行参数和故障情况,使测量仪表和继电器等二次侧的设备与一次侧高压设备在电气方面隔离,以保证工作人员的安全。同时,使二次侧设备实现标准化、小型化,结构轻巧,价格便宜,便于屏内安装,便于采用低压小截面控制电缆,实现远距离测量和控制。当一次系统发生短路故障时,能够保护测量仪表和继电器等二次设备免受大电流的损害。下面就有关电流互感器的选择和使用作一浅薄探讨,以飨各位读者朋友。 2电流互感器的原理 互感器,一般W1≤W2,可见电流互流感器为一“变流”器,基本原理与变压器相同,工作状况接近于变压器短路状态,原边符号为L1、L2,副边符号为K1、K2。互感器的原边串接入主线路,被测电流为I1,原边匝数为W1,副边接内阻很小的电流表或功率表的电流线圈,副边电流为I2,副边匝数为W2。原副边电磁量及规定正方向由电工学规定。 由原理可知,当副边开路时,原边电流I1中只有用来建立主磁通Φm的磁化电流I0,当副边电流不等于零时,则产生一个去磁磁化力I2W1,它力图改变Φm,但U1一定时,Φm是基本不变的,即保持I0W1不变,因为I2的出现,必使原边电流Il增加,以抵消I2W2的去磁作用,从而保证I0W1不变,故有:I1W1=I0W1+(-I2W2) (1) 即I0=I1+W2I2/W1 (2) 在理想情况下,即忽略线圈的电阻,铁心损耗及漏磁通可得: I1W1=-I2W2 有:Il/I2=-W2/W1 3 电流互感器的选择 3.1 电流互感器选择与检验的原则 1)电流互感器额定电压不小于装设点线路额定电压; 2)根据一次负荷计算电流IC选择电流互感器变化; 3)根据二次回路的要求选择电流互感器的准确度并校验准确度; 4)校验动稳定度和热稳定度。 3.2 电流互感器变流比选择 电流互感器一次额定电流I1n和二次额定电流I2n之比,称为电流互感器的额定变流比,Ki=I1n/I2n ≈N2/N1。 式中,N1和N2为电流互感器一次绕组和二次绕组的匝数。 电流互感器一次侧额定电流标准比(如20、30、40、50、75、100、150(A)、2Xa/C)等多种规格,二次侧额定电流通常为1A或5A。其中2Xa/C表示同一台产品有两种电流比,通过改变产品顶部储油柜外的连接片接线方式实现,当串联时,电流比为a/c,并联时电流比为2Xa/C。一般情况下,计量用电流互感器变流比的选择应使其一次额定电流I1n不小于线路中的负荷电流(即计算IC)。如线路中负荷计算电流为350A,则电流互感器的变流比应选择400/5。保护用的电流互感器为保证其准确度要求,可以将变比选得大一些。 表1 电流互感器准确级和误差限值 3.3 电流互感器准确度选择及校验 所谓准确度是指在规定的二次负荷范围内,一次电流为额定值时的最大误差。我国电流互感器的准确度和误差限值如表1所示,对于不同的测量仪表,应选用不同准确度的电流互感器。

电子式电流互感器相关问题汇总

电子式电流互感器的定义 2000年,IEC根据基于光学和电子学原理的电流互感器(ECT)的发展趋势,制定了关于ECT的IEC60044-8标准,明确电子式电流互感器(Electronic Current Transformer: ECT)指采用传统电流互感器(CT),霍尔传感器、Rogowski线圈或光学装置作为一次转换部分,利用光纤作为一次转换器和一次转换器之间的传输系统,并且装有电子器件作测量信号的传输和放大,其输出可以是模拟量或数字量。由于其中某些类型要利用光学器件对电流传感且全部利用光纤传输信号,故电子式电流互感器亦称为光学电流互感器(Optical Current Transformer: OCT) 电磁互感器的优点在于性能比较稳定,适合长期运行.并且具有长期的运行经验。 电磁互感器的缺点: 磁式电流4.感器(Current Transformer: CT)己暴露出下述内在的致命弱点:1绝缘问题:传统电磁式电流互感器采用的空气绝缘,油纸绝缘,气体绝缘乃至串级绝缘都不能满足随电压等级日益增长而更为苛刻的运行条件,在超高压等级使用电磁式电流互感器会产生绝缘击穿的潜在危险;2误差问题:电磁式电流互感器的闭合铁芯由于电流的非周期分量作用而饱和,导磁率急剧降低,使误差在过渡过程中上升到不能允许的程度3铁磁谐振效应:由于电流互感器电感饱和作用引起的持续性、高幅值谐振过电压;4电磁式互感器含有铁芯,因此动态测量的范围小,频带窄面对暂态过程测量性能差;此外还有,输出端开路时导致高压危险; 体积重量均大,成本过高; 易产生干扰;不易与数字设备连接;因有绝缘油而导致易燃易爆炸等。已难以满足电力系统在线检测,高精度故障诊断,电力数字网发展需要 电子互感器的优点 1)数字化输出,简化了互感器与二次设备的接口,避免了信号在传输、储存 和处理中的附加误差,提高了系统可靠性。 2)信号光纤传输,抗电磁干扰性能好,在强电磁环境中保证信号的精确性 和可靠性。 3)无铁芯,不存在磁饱和、铁磁谐振现象,线性度好,绝缘简单,动态测量 范围大、频带宽、精度高。而且体积小、重量轻、低成本,减小了变电 站的面积,。 4)低压没有开路危险,没有因存在绝缘油而产生的易燃、易爆等危险 电子式电流互感器没有磁饱和、铁磁谐振等问题由于电磁式电流互感器使用了铁心,不可避免地存在磁饱和、铁磁共振和磁滞效应等问题,而电于式电流互感器采用的是磁光玻璃、光纤或电子线路。不存在这方面的问题。 电子式电流互感器绝缘结构简单,绝缘性能好。电磁式电流互感器的绝缘结构非常复杂,尤其是对于电压等级比较高的电流互感器来说,绝缘部分要消耗大量的电工材料,体积也非常庞大。而电子式电流互感器由于采用了光纤和比较轻便的绝缘子支往,其绝缘结构比较简单,绝缘性能也比较好、 (3)电子式电流互感器动态测量范围大,精度高。电网正常运行时,流过电流互感器的电流并不大,但短路电流一般很大,而且随着电网容量的增加,辣路故障时的电流越来越大。电磁式电流互感器f}I为存在磁饱和问题,难以实现大范围测量,不能同时满足高精度计量和继电保护的需要。电子式电流互感器有很宽的动态范围,测量额定电流的范围从几十安培至几千安培,过电流范围可达几万安墙。个电子式电流互感器可同时满足计量和继电保护的

10KV电流互感器应用

10KV电流互感器应用 摘要:随着大容量和高电压电力系统的发展,广泛用于电力系统中,起到测量和保护作用的电流互感器,开始变得越发重要。在电气工程中电流互感器是用来测量电路中电流大小的装置。电流互感器与电压互感器也称为仪器用变压器。当某一电路中的电流过大以至于不能通过仪器直接测量出来,这时在电路中电流互感器的另一侧会准确的产生成比例的小电流,这样就可以方便直接用仪器测量并记录。电流互感器同时可以隔绝待测电路中可能出现的高电压,以便保护测量仪器。在电力行业中,电流互感器广泛用在测量和保护延迟中。 一:原理 电流互感器原理是依据电磁感应原理的。电流互感器是由闭合的铁心和绕组组成。它的一次侧绕组匝数很少,串在需要测量的电流的线路中,因此它经常有线路的全部电流流过,二次侧绕组匝数比较多,串接在测量仪表和保护回路中,电流互感器在工作时,它的二次侧回路始终是闭合的,因此测量仪表和保护回路串联线圈的阻抗很小,电流互感器的工作状态接近短路。电流互感器是把一次侧大电流转换成二次侧小电流来使用,二次侧不可开路。 二:作用 电流互感器的作用是可以把数值较大的一次电流通过一定的变 比转换为数值较小的二次电流,用来进行保护、测量等用途。如变比为400/5的电流互感器,可以把实际为400A的电流转变为5A的电流。1)电流互感器的接线应遵守串联原则:即一次绕阻应与被测电路串联,而二次绕阻则与所有仪表负载串联.

2)按被测电流大小,选择合适的变化,否则误差将增大。同时,二次侧一端必须接地,以防绝缘一旦损坏时,一次侧高压窜入二次低压侧,造成人身和设备事故. 3)二次侧绝对不允许开路。因一旦开路,一次侧电流I1全部成为磁化电流,引起φm和E2骤增,造成铁心过度饱和磁化,发热严重乃至烧毁线圈;同时,磁路过度饱和磁化后,使误差增大。电流互感器在正常工作时,二次侧近似于短路,若突然使其开路,则励磁电动势由数值很小的值骤变为很大的值,铁芯中的磁通呈现严重饱和的平顶波,因此二次侧绕组将在磁通过零时感应出很高的尖顶波,其值可达到数千甚至上万伏,危及工作人员的安全及仪表的绝缘性能。 另外,一次侧开路使二次侧电压达几百伏,一旦触及将造成触电事故。因此,电流互感器二次侧都备有短路开关,防止一次侧开路。在使用过程中,二次侧一旦开路应马上撤掉电路负载,然后,再停车处理。一切处理好后方可再用。 4)为了满足测量仪表、继电保护、断路器失灵判断和故障滤波等装置的需要,在发电机、变压器、出线、母线分段断路器、母线断路器、旁路断路器等回路中均设2~8个二次绕阻的电流互感器。对于大电流接地系统,一般按三相配置;对于小电流接地系统,依具体要求按二相或三相配置. 5)对于保护用电流互感器的装设地点应按尽量消除主保护装置的不保护区来设置。例如:若有两组电流互感器,且位置允许时,应设在断路器两侧,使断路器处于交叉保护范围之中. 6)为了防止支柱式电流互感器套管闪络造成母线故障,电流互感器通常布置在断路器的出线或变压器侧. 7)为了减轻发电机内部故障时的损伤,用于自动调节励磁装置的电流互感器应布置在发电机定子绕组的出线侧。为了便于分析和在发电机并入系统前发现内部故障,用于测量仪表的电流互感器宜装在发电机中性点侧。

LDZK-10开启式电流互感器的分类及功能

微型电流互感器与变压器类似也是根据电磁感应原理工作,变压器变换的是电压而微型电流互感器变换的是电流罢了。如图绕组N1接被测电流,称为一次绕组(或原边绕组、初级绕组);绕组N2接测量仪表,称为二次绕组(或副边绕组、次级绕组)。 微型电流互感器一次绕组电流I1与二次绕组I2的电流比,叫实际电流比K。微型电流互感器在额定工作电流下工作时的电流比叫电流互感器额定电流比,用Kn表示。Kn=I1n/I2n微型电流互感器大致可分为两类,测量用电流互感器和保护用电流互感器。 测量用电流互感器主要与测量仪表配合,在线路正常工作状态下,用来测量电流、电压、功率等。 保护用互感器主要要求:1、绝缘可靠,2、足够大的准确限值系数,3、足够的热稳定性和动稳定性。 保护用互感器在额定负荷下能够满足准确级的要求最大一次电流叫额定准确限值一次电流。准确限值系数就是额定准确限值一次电流与额定一次电流比。当一次电流足够大时铁芯就会饱和起不到反映一次电流的作用,准确限值系数就是表示这种特性。保护用互感器准确等级5P、10P 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解相关互感器产品的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城。https://www.doczj.com/doc/8913456340.html,/

110-220KV变电所电流互感器通用配置原则

附件一、福建省网110-220KV变电所电流互感器通用配置原则 一、总则 1、全网220千伏变电站的CT变比要整齐统一,并适应未来十年的短路电流发展水平。 2、充分发挥线路的输电能力和变压器的各侧容量。 3、CT抽头的选择要满足计量专业的精度要求,在设关口表的220KV线路上,计量用0.2S 级次。 4、继电保护用CT的配置原则 A、电网设备的两套主保护的CT不公用,经负荷校核后备保护、故障录波器、失灵启 动、安控装置的电流可与主保护串用同一组CT。 B、220千伏和110千伏侧主变旁代按旁路开关旁代一套差动保护方式。 C、母差保护用CT的型式要相同。 D、线路保护两侧CT的一次电流差小于4倍,主变高中低压侧的额定二次电流在4 倍以内。 E、保护均要选用P级(5P或10P),其CT的额定准确限值一次电流按大于30倍额 定电流确定,容量要30VA以上。 二、各电压等级的CT配置原则 1、220KV电压等级: ①线路型号2*LGJ(F)-300 P 2*750/5A 线路保护1、故障录波 P 2*750/5A 线路保护2 P 2*750/5A :母差失灵保护1 P 2*750/5A :母差失灵保护2 0.5 2*750/5A 抽头2*300/5A:仪表 0.2S 2*750/5A 抽头2*300/5A:计量

②线路型号2*LGJ(F)-400 2*LGJ(F)-500 P 2*1000/5A :线路保护1、故障录波P 2*1000/5A :线路保护2 P 2*1000/5A :母差失灵保护1 P 2*1000/5A :母差失灵保护2 0.5 2*1000/5A 抽头2*600/5A:仪表0.2S 2*1000/5A 抽头2*600/5A:计量 ③母联开关间隔CT P 2*1000/5A :母差失灵保护1 P 2*1000/5A :母差失灵保护2 P 2*1000/5A :母联过流保护 P 2*1000/5A :故障录波 0.5 2*1000/5A :抽头2*600/5A:仪表 ④主变间隔(120-180-240MVA)开关CT P 2*600/5A :主变保护1、故障录波P 2*600/5A :主变保护2 P 2*600/5A :母差失灵保护1 P 2*600/5A :母差失灵保护2 P 2*600/5A :备用 0.2 2*600/5A 抽头2*300/5A:计量 ⑤分段开关间隔CT P 2*1000/5A :Ⅰ/Ⅲ母差失灵保护1 P 2*1000/5A :Ⅰ/Ⅲ母差失灵保护2 P 2*1000/5A :Ⅱ/Ⅳ母差失灵保护1 P 2*1000/5A :Ⅱ/Ⅳ母差失灵保护2 P 2*1000/5A :过流保护、故障录波0.5 2*1000/5A:仪表

10KV电流互感器应用

10KV电流互感器使用 摘要:随着大容量和高电压电力系统的发展,广泛用于电力系统中,起到测量和保护作用的电流互感器,开始变得越发重要。在电气工程中电流互感器是用来测量电路中电流大小的装置。电流互感器和电压互感器也称为仪器用变压器。当某一电路中的电流过大以至于不能通过仪器直接测量出来,这时在电路中电流互感器的另一侧会准确的产生成比例的小电流,这样就可以方便直接用仪器测量并记录。电流互感器同时可以隔绝待测电路中可能出现的高电压,以便保护测量仪器。在电力行业中,电流互感器广泛用在测量和保护延迟中。 一:原理 电流互感器原理是依据电磁感应原理的。电流互感器是由闭合的铁心和绕组组成。它的一次侧绕组匝数很少,串在需要测量的电流的线路中,因此它经常有线路的全部电流流过,二次侧绕组匝数比较多,串接在测量仪表和保护回路中,电流互感器在工作时,它的二次侧回路始终是闭合的,因此测量仪表和保护回路串联线圈的阻抗很小,电流互感器的工作状态接近短路。电流互感器是把一次侧大电流转换成二次侧小电流来使用,二次侧不可开路。 二:作用 电流互感器的作用是可以把数值较大的一次电流通过一定的变 比转换为数值较小的二次电流,用来进行保护、测量等用途。如变比为400/5的电流互感器,可以把实际为400A的电流转变为5A的电流。1)电流互感器的接线应遵守串联原则:即一次绕阻应和被测电路串联,而二次绕阻则和所有仪表负载串联. 2)按被测电流大小,选择合适的变化,否则误差将增大。同时,二 次侧一端必须接地,以防绝缘一旦损坏时,一次侧高压窜入二次低压侧,造成人身和设备事故.

3)二次侧绝对不允许开路。因一旦开路,一次侧电流I1全部成为磁化电流,引起φm和E2骤增,造成铁心过度饱和磁化,发热严重乃至烧毁线圈;同时,磁路过度饱和磁化后,使误差增大。电流互感器在正常工作时,二次侧近似于短路,若突然使其开路,则励磁电动势由数值很小的值骤变为很大的值,铁芯中的磁通呈现严重饱和的平顶波,因此二次侧绕组将在磁通过零时感应出很高的尖顶波,其值可达到数千甚至上万伏,危及工作人员的安全及仪表的绝缘性能。 另外,一次侧开路使二次侧电压达几百伏,一旦触及将造成触电事故。因此,电流互感器二次侧都备有短路开关,防止一次侧开路。在使用过程中,二次侧一旦开路应马上撤掉电路负载,然后,再停车处理。一切处理好后方可再用。 4)为了满足测量仪表、继电保护、断路器失灵判断和故障滤波等装置的需要,在发电机、变压器、出线、母线分段断路器、母线断路器、旁路断路器等回路中均设2~8个二次绕阻的电流互感器。对于大电流接地系统,一般按三相配置;对于小电流接地系统,依具体要求按二相或三相配置. 5)对于保护用电流互感器的装设地点应按尽量消除主保护装置的不保护区来设置。例如:若有两组电流互感器,且位置允许时,应设在断路器两侧,使断路器处于交叉保护范围之中. 6)为了防止支柱式电流互感器套管闪络造成母线故障,电流互感器通常布置在断路器的出线或变压器侧. 7)为了减轻发电机内部故障时的损伤,用于自动调节励磁装置的电流互感器应布置在发电机定子绕组的出线侧。为了便于分析和在发电机并入系统前发现内部故障,用于测量仪表的电流互感器宜装在发电机中性点侧。 三:分类 1 按用途分 1)电流互感器(或电流互感器的测量绕组):在正常电压范围内,

GIS用电子式电流互感器整体解决方案样本

该ECVT 整体解决方案有以下特点: 1. 一次结构可靠、稳定。由GIS厂家成熟技术保证的安装结构,其电场结构、密封结构经过实例充分的验证,从而保证产品主体可靠、稳定的运行; 2. 按GIS技术要求合理设计,可根据设计需要安装多组罗氏、低功率线圈。电容环优化设计,测量精度高; 3. 与GIS其它部件的标准化对接,满足GIS整体结构设计且有利于旧站改造项目; 4. 计量精度高、动态范围宽、无磁饱和问题、无CT二次开路问题; 5. 外观造型符合GIS整体设计风格,保证了产品的整体美观性。 二、电子式电流电压互感器(ECVT) 图3 ECVT 典型结构示意图 ECVT 由电子式电流互感器和电子式电压互感器有机组合而成。通常包含图中所示12 项(图3 中序号1-12)主要部件,这些主要部件大致可分为一次结构部分和二次测量部分,配置方式见表3 表3 ECVT 主要零部件配置清单注:“○”表示西开电气制造并供货,”√”表示由西开电气供货或选配其它专业厂家产品,但线圈尺寸、结构、装配方式以及电气参数等需满足一次设备要求。

产品概述 GIS 用电子式电流互感器(简称ECT) 及电子式电流电压互感器(简称ECVT)作为GIS 的一个重要元件,其主要组成部分如图1-3 所示。按照GIS 设备整体化、系统化要求,为保证GIS的整体安全性、可靠性,西安西电开关电气有限公司(以下简称西开电气)作为GIS 主设备生产厂家,提供整体设计和解决方案。 以满足GIS 整体布置结构需求和保证GIS 整体安全性、可靠性。 图1 罗氏线圈+低功率线圈式ECT 典型结构示意图 该解决方案通常包含图中所示11 项(图1 中序号1-11)主要部件,这些主要部件大致可分为一次结构部分和二次测量部分,配置方式见表1。 表1 主要零部件配置清单 注:“○”表示西开电气制造并供货,”√”表示由西开电气供货或选配其它专业厂家产品,但线圈尺寸、结构、装配方式以及电气参数等需满足一次设备要求。 该ECT 整体解决方案有以下特点: 1. 一次结构可靠、稳定。由GIS厂家成熟技术保证的安装结构,其电场结构、密封结构经过实例充分的验证,从而保证产品主体可靠、稳定的运行; 2. 按GIS技术要求合理设计,可根据设计需要安装多组罗氏、低功率线圈; 3. 与GIS其它部件的标准化对接,满足GIS整体结构设计且有利于旧站改造项目; 4. 计量精度高、动态范围宽、无磁饱和问题、无CT二次开路问题; 5. 外观造型符合GIS整体设计风格,保证了产品的整体美观性。 2 . 全光纤式ECT 图2 全光纤式ECT 典型结构示意图 该解决方案通常包含图中所示9 项(图2 中序号1-9)主要部件,这些主要部件大致可分为一次结构部分和二次测量部分,配置方式见表2。 表2 主要零部件配置清单 注:“○”表示西开电气制造并供货,”√”表示由西开电气供货或选配其它专业厂家产品,但线圈尺寸、结构、装配方式以及电气参数等需满足一次设备要求。 该ECT 整体解决方案有以下特点: 1. 一次结构可靠、稳定。由GIS厂家成熟技术保证的安装结构,其电场结构、密封结构经过实例充分的验证验证,从而保证产品主体可靠、稳定的运行; 2. 按GIS技术要求合理设计,可根据设计需要安装多组光纤线圈、并可与其它线圈混合安装; 3. 与GIS其它部件的标准化对接,满足GIS整体结构设计且有利于旧站改造项目; 4. 计量精度高、动态范围宽、无磁饱和问题、无CT二次开路问题,良好的抗震抗干扰能力,不存在破坏性损坏; 5. 外观造型符合GIS整体设计风格,保证了产品的整体美观性。 一、电子式电流互感器ECT 电子式电流互感器可根据技术原理分为罗氏线圈+低功率线圈式和全光纤式。 1. 罗氏线圈+低功率线圈式ECT 24小时客服电话:400-887-0823 二次测量 2线圈(低功率+罗氏线圈)√8采集器 √10数据传输光纤√11合并单元√

计量用电流互感器该如何选择

计量用电流互感器该如何选择 电能计量装置主要由电能表、计量用电压互感器、电流互感器及二次回路等部分组成,电流互感器是能计量装置的重要组成部分,现介绍计量用电流互感器的选择原则和使用注意事项。 1 选择的原则 1.1额定电压的确定 电流互感器的额定电压UN应与被测线路的电压UL相适应,即UN≥UL。 1.2额定变比的确定 通常根据电流互感器所接一次负荷来确定额定一次电流I1,即: I1=P1/UNcosψ 式中UN——电流互感器的额定电压,kV; P1——电流互感器所接的一次电力负荷,kVA; cosψ——平均功率因数,一般按cosψ=0.8计算。 为保证计量的准确度,选择时应保证正常运行时的一次电流为其额定值的60%左右,至少不得低于30%。电流互感器的额定变比则由额定一次电流与额定二次电流的比值决定。 1.3额定二次负荷的确定 互感器若接入的二次负荷超过额定二次负荷时,其准确度等级将下降。为保证计量的准确性,一般要求电流互感器的二次负荷S2必须在额定二次负荷S2N的25%~100%范围内,即: 0.25S2N≤S2≤S2N 1.4额定功率因数的确定 计量用电流互感器额定二次负荷的功率因数应为0.8~1.0。 1.5准确度等级的确定 根据电能计量装置技术管理规程(DL/T448-2000)规定,运行中的电能计量装置按其所计量电能量的多少和计量对象的重要程度,分为I、II、III、IV、V五类,不同类别的电能计量装置对电流互感器准确度等级的要求也不同 电流互感器的配置 1.6互感器的接线方式

计量用电流互感器接线方式的选择,与电网中性点的接地方式有关,当为非有效接地系统时,应采用两相电流互感器,当为有效接地系统时,应采用三相电流互感器,一般地,作为计费用的电能计量装置的电流互感器应接成分相接线(即采用二相四线或三相六线的接线方式),作为非计费用的电能计量装置的电流互感器可采用二相三线或三相线的接线方式,各种接线方式如下图所示: 1.7互感器二次回路导线的确定 由于电流互感器二次回路导线的阻抗是二次负荷阻抗的一部分,直接影响着电流互感器的误差,因而哪二次回路连接导线的长度一定时,其截面积需要进行计算确定。 一般计量用互感器要求一次电流要经常运行在20%-100%之间.这样它的二次电流一般不会超过5A,请教各位老师如果测得它的二次电流为6A的话,那它的计量还准吗?如果不准的话那是多计量了还是少计量了呢? 计量用电流互感器一般要求准确级在0.2s级以上。 电流互感器检测的标准: 五个点:1%;%5;20%;100%;120%。 所以,可以肯定的说,6A的点是准确的。计量用电流互感器一般要求准确级在0.2s级以上。 应该是445KVA吧?也就是千伏安,代表主变容量,PT就是电压互感器,10KV/100V 就是指互感器的一次侧即高压侧额定电压为10KV,二次侧即低压侧(接入仪表侧)额定电压为100V,100V是通用的标准电压。CT是电流互感器,30/5A 是指一次侧额定电流三十安时二次侧电流是5安,5安是通用的标准电流。电力部门给你们装表时都要经过基本计算,不会瞎装的,有一公式:主变容量(445KVA)等于根号3倍的高压侧额定电压(10KV)和额定电流的乘机。反算过来,电流约25.7安,躲过主变励磁涌流,选30安是正确合适的,如果选用CT-50/5A 的互感器,你想想看,是不是对于你发电方就不合适了?再选大点儿,你就白白的发吧,电表可能就不转了。所以作为计量,发电方互感器越小越好.

相关主题
文本预览
相关文档 最新文档