当前位置:文档之家› 巧用构造法解不等式问题

巧用构造法解不等式问题

巧用构造法解不等式问题
巧用构造法解不等式问题

巧用构造法解不等式问题

河南省渑池高级中学 丁二虎

数学中有许多相似性,如数式相似,图形相似,命题结论的相似等,利用这些相似性,通过构造辅助模型,促进转化,以期不等式得到证明。可以构造函数、方程、数列、向量、复数和图形等数学模型,针对欲证不等式的结构特点,选择恰当的模型,将不等式问题转化为上述数学模型问题,顺利解决不等式的有关问题。

一、根据不等式特征,构造恰当的初等函数,再根据函数单调性、奇偶性等特征来证明不等式。

例 1 证明:对于任意的,,(0,1),x y z ∈不等式(1)(1)(1)1x y y z z x ?-+?-+?-<成立。

证明 设()(1)(1),f x y z x y z z =--?+?-+显然该函数是以x 为主元的一次函数。 当(0,1)x ∈时,()f x 是单调函数,且(0)(1)(1)11,f y y z z y z =-?+=-?-+< (1)1 1.f y z =-?<

所以,当(0,1)x ∈时,()f x 的最大值小于1,即(1)(1)(1)1x y y z z x ?-+?-+?-<

例2 如果(1x y ++=,那么0x y +=

证明 构造函数()lg().f x x x R =∈可以证明函数()f x 在R 上是奇函数且 单调递增。

(1,x y ++=

()()lg(lg(f x f y x y ∴+=+lg (x y ??=??=lg1=0 ()(),()(),f x f y f x f y x y ∴=-=-=-即所以即0x y +=

通过构造函数,利用函数单调性和奇偶性,把一些看似与函数无缘的问题转化为函数问题来解决,思路灵活新颖,简洁巧妙,可出奇制胜。

二、有些不等式分析可知它与数列有关,可构造出相应的数列,再利用数列的单调性来研究。

例 3 证明不等式2

(1)(1)22

n n n ++<+< 对所有正 整数n 成立。

分析: 是一个与n 无关的量,将它与左右两端作差 构造出相应的数列,在利用数列的单调性来研究。

解:

设31)()n a n N ++∈ ,构造数列{}n x ,令(1)2n n n n x a +=-,

则11(1)(2)(1)(1)0,22

n n n n n n n n x x a a n +++++-=--+=+> ()n N ∈,所以1n n x x +>,{}n x

为单调数列,首相11x 为最小值。

所以110n x x >=>,即(1)2n n n a +>,又令2

(1)2

n n n y a +=-,

则2211(1)(2)23222

n n n n n n n y y a a +++++-=-+-=, 所以1n n y y +<,{}n y

为单调递减数列,首相12y 为最大项,

所以120n y y <<,即2

(1)2

n n a +<. 综上所述,2

(1)(1)()22

n n n n a n N ++<<∈ 用构造单调数列证明不等式,若不等式的一边为和(积)式,则构造数列{}n a ,使其通项等于和(积)式与另一端的差(商),然后通过比较法确定数列{}n a 的单调性,利用数列的单调性即可使不等式获证。

三、对某些不等式,根据条件和结论,可将其转化为向量形式,利用向量数量积及不等关系m n m n ?≤ ,使问题得到解决。

例4 已知,,a b c R +∈,求证:222,,2a b c a b c a b c R b c c a a b +

++∈++≥+++ 证明

设m =

n = ,则 2222a b c m b c c a a b ++=≥+++ 222()()2()2m n a b c a b c a b c n ?++++==++ 利用向量虽是一种构造性的证明方法,但它与传统的综合法有很大不同,能避免繁杂的凑配技巧,使证明过程既直观又容易接受。

四、有些不等式若采用通法解很繁琐,用变量替换法又不可行,利用数形结合的思想方法将抽象的式用形表示,则使问题中的各变量关系更具体明确,使问题简明直观。

例5

12

x > 析 本题若转化为不等式组来解很繁琐,利用数形结合的思想方法将抽象的式用形表

示,则使问题变得简明直观

解:令12

y y x ==, 它们对应的图象为半圆22(1)1(0)x y y -+=≥与直线1

y x =

,问题转化

为22(1)1(0)x y y -+=≥的图象在12y x =

上方时x 的范围,如图 12x =得085

x = 故原不等式的解为:805x x ?

?<

五、一类属函数图象的问题,与求最值结合,利用数形结合是基本的指导思想,但还需结合复合函数求导,使不等式的证明水到渠成。

例6 如图,设曲线(0)x y e x -=≥在点(,)t M t e -处的切线l x y 与轴轴所围成的三角形面 积为()S t ,求(1)切线l 的方程;2)求证2()S t e

≤ (1)解: ''()()x x f x e e --==- ,∴切线l 的斜率为t e

-- 故切线l 的方程为()t t y e e x t ---=--,即(1)0t t e x y e t --+-+=

(2)证明:令01y x t ==+得,又令0(1)t x y e t -==+得,

211()(1)(1)(1)22

t t S t t e t t e --∴=+?+=+ 从而'1()(1)(1).2t S t e t t -=-+ '(0,1),()0,t S t ∈> 当时'(1,),()0,t S t ∈+∞<当时

()S t ∴的最大值为2(1)S e =,即2()S t e

≤ 应用导数法求函数的最值,并结合函数图象,可快速获解,也充分体现了求导法在证明 不等式中的优越性。

证明不等式不但用到不等式的性质,不等式证明的技能、技巧,还要注意到横向结合内容的方方面面.如与数列的结合,与“二次曲线”的结合,与“三角函数”的结合,与“一元二次方程,一元二次不等式、二次函数”这“三个二次”间的互相联系、互相渗透和互相制约,这些也是近年命题的重点.

高中不等式的证明方法

不等式的证明方法 不等式的证明是高中数学的一个难点,证明方法多种多样,近几年高考出现较为形式较为活跃,证明中经常需与函数、数列的知识综合应用,灵活的掌握运用各种方法是学好这部分知识的一个前提,下面我们将证明中常见的几种方法作一列举。 注意ab b a 22 2 ≥+的变式应用。常用2 222b a b a +≥ + (其中+ ∈R b a ,)来解决有关根式不等式的问题。 一、比较法 比较法是证明不等式最基本的方法,有做差比较和作商比较两种基本途径。 1、已知a,b,c 均为正数,求证: a c c b b a c b a ++ +++≥++1 11212121 证明:∵a,b 均为正数, ∴ 0) (4)(44)()(14141)(2 ≥+=+-+++=+-+-b a ab b a ab ab b a a b a b b a b a b a 同理 0)(41 4141)(2 ≥+= +-+-c b bc c b c b c b ,0) (414141)(2 ≥+=+-+-c a ac a c a c a c 三式相加,可得 01 11212121≥+-+-+-++a c c b b a c b a ∴a c c b b a c b a ++ +++≥++111212121 二、综合法 综合法是依据题设条件与基本不等式的性质等,运用不等式的变换,从已知条件推出所要证明的结论。 2、a 、b 、),0(∞+∈c ,1=++c b a ,求证: 31222≥ ++c b a 证:2 222)(1)(3c b a c b a ++=≥++?∴ 2222)()(3c b a c b a ++-++0 )()()(222222222222≥-+-+-=---++=a c c b b a ca bc ab c b a 3、设a 、b 、c 是互不相等的正数,求证:)(4 4 4 c b a abc c b a ++>++ 证 : ∵ 2 2442b a b a >+ 2 2442c b c b >+ 2 2442a c a c >+∴ 222222444a c c b b a c b a ++>++ ∵ c ab c b b a c b b a 2 2222222222=?>+同理:a bc a c c b 222222>+ b ca b a a c 222222>+ ∴ )(222222c b a abc a c c b b a ++>++ 4、 知a,b,c R ∈,求证: )(22 2 2 2 2 2 c b a a c c b b a ++≥++ ++ + 证明:∵ ) (2 2 2 2 2 2 2 2)(22b a b a b a b a ab ab +≥++≥+∴≥+

构造函数法解不等式问题(学生版)

专题2.3构造函数法解不等式问题(小题) 在函数中解决抽象函数问题首要的前提是对函数四种基本性质的熟练掌握,导数是函数单调性的延伸,如果把题目中直接给出的增减性换成一个'()f x ,则单调性就变的相当隐晦了,另外在导数中的抽象函数不等式问题中,我们要研究的往往不是()f x 本身的单调性,而是包含()f x 的一个新函数的单调性,因此构造函数变的相当重要,另外题目中若给出的是'()f x 的形式,则我们要构造的则是一个包含()f x 的新函数,因为只有这个新函数求导之后才会出现'()f x ,因此解决导数抽象函数不等式的重中之重是构造函数。 例如:'()0f x >,则我们知道原函数()f x 是单调递增的,若'()10f x +>,我们知道()()g x f x x =+这个函数是单调递增的,因此构造函数的过程有点类似于积分求原函数的过程,只不过构造出的新函数要通过题目中给出的条件能判断出单调性才可。 既然是找原函数,那么就可能遇上找不到式子的原函数的时候,但是我们判断单调性只需要判断导函数的正负即可,例如()g x 的原函数是不能准确的找到的,但是如果我们知道一个式子的导函数里面包含()g x ,则也能大致将那个函数看成是原函数,例如'()()g x m x x =,或者()m x 的导函数中包含一个能判断符号的式子和()g x 相乘或相除的形式,我们也可以将()m x 大致看成()g x 的原函数。构造函数模型总结: 关系式为“加”型: (1)'()()0f x f x +≥构造''[()][()()] x x e f x e f x f x =+(2)'()()0xf x f x +≥构造''[()]()() xf x xf x f x =+(3)'()()0xf x nf x +≥构造''11'[()]()()[()()] n n n n x f x x f x nx f x x xf x nf x --=+=+(注意对x 的符号进行讨论) 关系式为“减”型

34用构造局部不等式法证明不等式

用构造局部不等式法证明不等式 有些不等式的证明,若从整体上考虑难以下手,可构造若干个结构完全相同的局部不等式,逐一证明后,再利用同向不等式相加的性质,即可得证。 例1. 若a b R ,∈*,a b +=2,求证:212123a b +++≤ 分析:由a ,b 在已知条件中的对称性可知,只有当a b ==1,即213a +=时,等号才能成立,所以可构造局部不等式。 证明:213321333213233 2a a a a +=+≤++=+···()() 同理,2133 2b b +≤+() ∴212133233223a b a b +++≤ +++=()() 例2. 设x x x n 12,,…,是n 个正数,求证:x x x x x x x x x x n n n 1222231221 12++++≥+-… ++…x n 。 证明:题中这些正数的对称性,只有当x x x n 12===…时,等号才成立,构造局部不等式如下: x x x x x x x x x x x x x x x x n n n n n n 122212233212121 12222+≥+≥+≥+≥--,,…,,。 将上述n 个同向不等式相加,并整理得: x x x x x x x x x x x n n n n 1222231221 12++++≥+++-……。 例3. 已知a a a n 12,,…,均为正数,且a a a n 121+++=…,求证: a a a a a a a a a n n 121222232112 ++++++≥…。 证明:因a a a n 12,,…,均为正数,故a a a a a a 12121214 +++≥,

构造函数法证明导数不等式的八种方法(新)

构造函数法证明不等式的八种方法 1、利用导数研究函数的单调性极值和最值,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点。 2、解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键。 以下介绍构造函数法证明不等式的八种方法: 一、移项法构造函数 【例1】 已知函数x x x f -+=)1ln()(,求证:当1->x 时,恒有x x x ≤+≤+-)1ln(1 11 分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数 11 1)1ln()(-++ +=x x x g ,从其导数入手即可证明。 【解】1111)(+-=-+='x x x x f ∴当01<< -x 时,0)(>'x f ,即)(x f 在)0,1(-∈x 上为增函数 当0>x 时,0)(<'x f ,即)(x f 在),0(+∞∈x 上为减函数 故函数()f x 的单调递增区间为)0,1(-,单调递减区间),0(+∞ 于是函数()f x 在),1(+∞-上的最大值为0)0()(max ==f x f ,因此,当1->x 时,0)0()(=≤f x f , 即0)1ln(≤- +x x ∴x x ≤+)1ln( (右面得证), 现证左面,令111)1ln()(-++ +=x x x g , 22)1()1(111)(+=+-+='x x x x x g 则 当0)(,),0(;0)(,)0,1(>'+∞∈<'-∈x g x x g x 时当时 , 即)(x g 在)0,1(-∈x 上为减函数,在),0(+∞∈x 上为增函数, 故函数)(x g 在),1(+∞-上的最小值为0)0()(min ==g x g , ∴当1->x 时,0)0()(=≥g x g ,即0111)1ln(≥-++ +x x ∴111) 1ln(+-≥+x x ,综上可知,当x x x x ≤+≤-+->)1ln(11 1,1有时 【警示启迪】如果()f a 是函数()f x 在区间上的最大(小)值,则有()f x ≤()f a (或()f x ≥()f a ),那么要 证不等式,只要求函数的最大值不超过0就可得证. 2、作差法构造函数证明 【例2】已知函数.ln 2 1)(2x x x f += 求证:在区间),1(∞+上,函数)(x f 的图象在函数332)(x x g =的图象的下方; 分析:函数)(x f 的图象在函数)(x g 的图象的下方)()(x g x f =F

导数选择题之构造函数法解不等式的一类题

导数选择题之构造函数法解不等式的一类题 一、单选题 1.定义在上的函数的导函数为,若对任意实数,有,且为奇函数,则不等式的解集为 A.B.C.D. 2.设函数是奇函数的导函数,,当时,,则使得成立的的取值范围是() A.B. C.D. 3.定义在上的偶函数的导函数,若对任意的正实数,都有恒成立,则使成立的实数的取值范围为() A.B.C.D. 4.已知函数定义在数集,,上的偶函数,当时恒有,且,则不等式的解集为() A.,,B.,, C.,,D.,, 5.定义在上的函数满足,,则不等式的解集为() A.B.C.D. 6.设定义在上的函数满足任意都有,且时,有,则、、的大小关系是() A.B. C.D. 7.已知偶函数满足,且,则的解集为 A.或B. C.或D. 8.定义在R上的函数满足:是的导函数,则不等式 (其中e为自然对数的底数)的解集为( )

9.已知定义在上的函数的导函数为,满足,且,则不等式的解集为() A.B.C.D. 10.定义在上的函数f(x)满足,则不等式的解集为A.B.C.D. 11.已知定义在上的函数满足,其中是函数的导函数.若 ,则实数的取值范围为() A.B.C.D. 12.已知函数f(x)是定义在R上的可导函数,且对于?x∈R,均有f(x)>f′(x),则有() A.e2017f(-2017)e2017f(0) B.e2017f(-2017)f(0),f(2017)>e2017f(0) D.e2017f(-2017)>f(0),f(2017)

利用导数构造函数解不等式

构造函数解不等式 1.(2015全国2理科).设函数f’(x)是奇函数()()f x x R ∈的导函数,f (-1)=0,当0x >时,'()()0xf x f x -<,则使得()0f x >成立的x 的取值范围是 (A ) (B )(C ) (D ) 2若定义在R 上的函数()f x 是奇函数, ()02=f ,当x >0时,()()2x x f x f x -'<0,恒成立,则不等式()x f x 2>0的解集 A ()2,-∞-?()+∞,2 B ()0,2- ? ()+∞,2 C ()2,-∞-?()2,0 D .()0,2-?()2,0 3定义在R 上的函数()f x 满足:()()1(0)4f x f x f '+>=,, 则不等式()3x x e f x e >+(其中e 为自然对数的底数)的解集为( ) A .()0,+∞ B . ()(),03,-∞+∞U C .()(),00,-∞+∞U D .()3,+∞ 4. 定义在R 上的函数()f x 满足:()1()f x f x '>-,(0)6f =,()f x '是()f x 的导函数, 则不等式()5x x e f x e >+(其中e 为自然对数的底数)的解集为 A .()0,+∞ B .()(),03,-∞+∞U C .()(),01,-∞+∞U D .()3,+∞ 5.定义在R 上的函数()f x 满足 则不等式(其中e 为自然对数的底数)的解集为

6.定义域为R 的可导函数()x f y =的导函数为'()f x ,满足()()x f x f '>,且(),10=f 则不等式()1

构造法解函数不等式

龙源期刊网 https://www.doczj.com/doc/f917767716.html, 构造法解函数不等式 作者:余建国 来源:《新高考·高二数学》2015年第12期 什么是函数不等式?先看一个问题. 例1 已知定义在R上的函数f(x)满足f(2)=1,且f(x)的导函数f'(x)>x1,则不 等式f(x) 我们并不知道问题中的函数f(x)的解析式,只知道它满足两个条件:①f(2)=1,②导函数.f'(x)>x-l,求解不等式f(x) g'(x)=f'(x) -x+1.由条件②知,g'(x)>o,所以g(x)在(-∞,+∞)上为增函数.又 由条件①,知g(2)=f(2)-1/2×4+2-1=0,故由g(x) 由此可见,解此类函数不等式的步骤是: Sl结合题设中的导数条件和所要求解的函数不等式,构造一个新函数; S2确定新函数的导数符号,以确定新函数的单调性; S3利用新函数的单调性及图象中的特殊点,得到函数不等式的解集. 例2 函数f(x)的定义域是R,f(o)=2,对任意x∈R,f(x)+f'(x)>1,则不等式ex·f(x)>ex+1的解集为__________. 解析记函数g(x)=ex·f(x)-ex1,则g'(x)=ex(f(x)+f'(x)-1). 因为对任意x∈R,f(x)+'(x)>1,所以g '(x)>0恒成立,所以g(x)在(-∞,+∞)上为增函数,因为g(0)=f(o)-11=0,所以不等式ex·f(x)>ex+1,即g(x)>g(0)的解集是x>o,所以不等式e·f(x)>ex+1的解集为(o,+∞). 评析最简单的构造函数方法是“g(x)一左边-右边”,这样目标就是解不等式g(x)>o. 例3 已知f(x),g(x)(g,(x)≠0)分别是定义在R上的奇函数和偶函数,当x 解析 当x 由f(-3) =0,得h(-3)=-h(3)=0.

【高考数学】构造函数法证明导数不等式的八种方法

第 1 页 共 6 页 构造函数法证明不等式的八种方法 1、利用导数研究函数的单调性极值和最值,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点。 2、解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键。 以下介绍构造函数法证明不等式的八种方法: 一、移项法构造函数 【例1】 已知函数x x x f -+=)1ln()(,求证:当1->x 时,恒有 x x x ≤+≤+-)1ln(1 11 分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数 11 1)1ln()(-++ +=x x x g ,从其导数入手即可证明。 【解】1111)(+-=-+='x x x x f ∴当01<<-x 时,0)(>'x f ,即)(x f 在)0,1(-∈x 上为增函数 当0>x 时,0)(<'x f ,即)(x f 在),0(+∞∈x 上为减函数 故函数()f x 的单调递增区间为)0,1(-,单调递减区间),0(+∞ 于是函数()f x 在),1(+∞-上的最大值为0)0()(max ==f x f ,因此,当1->x 时,0)0()(=≤f x f ,即0)1ln(≤-+x x ∴x x ≤+)1ln( (右面得证), 现证左面,令111)1ln()(-+++=x x x g , 22) 1()1(111)(+=+-+='x x x x x g 则 当0)(,),0(;0)(,)0,1(>'+∞∈<'-∈x g x x g x 时当时 , 即)(x g 在)0,1(-∈x 上为减函数,在),0(+∞∈x 上为增函数, 故函数)(x g 在),1(+∞-上的最小值为0)0()(min ==g x g , ∴当1->x 时,0)0()(=≥g x g ,即011 1)1ln(≥-++ +x x ∴111)1ln(+-≥+x x ,综上可知,当x x x x ≤+≤-+->)1ln(11 1,1有时 【警示启迪】如果()f a 是函数()f x 在区间上的最大(小)值,则有()f x ≤()f a (或()f x ≥()f a ), 那么要证不等式,只要求函数的最大值不超过0就可得证. 2、作差法构造函数证明 【例2】已知函数.ln 21)(2x x x f += 求证:在区间),1(∞+上,函数)(x f 的图象在函数33 2)(x x g =的图象的下方;

构造函数解导数综合题

构造辅助函数求解导数问题 对于证明与函数有关的不等式,或已知不等式在某个范围内恒成立求参数取值范围、讨论一些方程解的个数等类型问题时,常常需要构造辅助函数,并求导研究其单调性或寻求其几何意义来解决;题目本身特点不同,所构造的函数可有多种形式,解题的繁简程度也因此而不同,这里是几种常用的构造技巧.技法一:“比较法”构造函数 [典例](2017·广州模拟)已知函数f(x)=e x-ax(e为自然对数的底数,a为常数)的图象在点(0,1)处的切线斜率为-1. (1)求a的值及函数f(x)的极值; (2)证明:当x>0时,x2<e x. [解](1)由f(x)=e x-ax,得f′(x)=e x-a. 因为f′(0)=1-a=-1,所以a=2, 所以f(x)=e x-2x,f′(x)=e x-2, 令f′(x)=0,得x=ln 2, 当x<ln 2时,f′(x)<0,f(x)单调递减; 当x>ln 2时,f′(x)>0,f(x)单调递增. 所以当x=ln 2时,f(x)取得极小值,且极小值为f(ln 2)=e ln 2-2ln 2=2-ln 4,f(x)无极大值. (2)证明:令g(x)=e x-x2,则g′(x)=e x-2x. 由(1)得g′(x)=f(x)≥f(ln 2)>0, 故g(x)在R上单调递增. 所以当x>0时,g(x)>g(0)=1>0,即x2<e x. [方法点拨] 在本例第(2)问中,发现“x2,e x”具有基本初等函数的基因,故可选择对要证明的“x2<e x”构造函数,得到“g(x)=e x-x2”,并利用(1)的结论求解.[对点演练] 已知函数f(x)=x e x,直线y=g(x)为函数f(x)的图象在x=x0(x0<1)处的切线, 求证:f(x)≤g(x).

常见构造函数解不等式归纳

常见构造函数解不等式归纳 1. 对于不等式()(0)f x k k '>≠,构造函数()()g x f x kx b =-+ 2. 对于不等式()()0xf x f x '+>,构造函数()()g x xf x = 3. 对于不等式()()0xf x f x '->,构造函数()()(0)f x g x x x = ≠ 4. 对于不等式()()0xf x nf x '+>,构造函数()()n g x x f x = 5. 对于不等式()()0xf x nf x '->,构造函数()()(0)n f x g x x x = ≠ 6. 对于不等式()()0f x f x '+>,构造函数()()x g x e f x = 7. 对于不等式()()0f x f x '->,构造函数()()x f x g x e = 8. 对于不等式()()0f x kf x '+>,构造函数()()kx g x e f x = 9. 对于不等式()2()0f x xf x '+>,构造函数2()()x g x e f x = 10. 对于不等式0)(ln )('>+x af x f a x ,构造函数()()x g x a f x = 11. 对于不等式()()tan 0f x f x x '+>,构造函数()()sin g x f x x = 12. 对于不等式()()tan 0f x f x x '->,构造函数()()cos g x f x x = 13. 对于不等式:0cos )(sin )(' >-x x f x x f ,构造 x x f x h sin )()(= 14.对于不等式:0sin )(cos )('>+x x f x x f ,构造 x x f x h cos )()(= 15. 对于不等式()0() f x f x '>,构造函数()ln () g x f x = 16.对于不等式()()ln 0f x f x x x '+ >,构造函数()()ln g x f x x = 17.对于不等式:0)()()()(''>+x g x f x g x f ,构造 )()()(x g x f x h = 18.对于不等式:0)()()()(''>-x g x f x g x f ,构造 )()()(x g x f x h =

构造函数法证明不等式的八种方法

构造函数法证明不等式的八种方法 利用导数研究函数的单调性极值和最值,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点。 解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键。 1、从条件特征入手构造函数证明 【例1】若函数y =)(x f 在R 上可导且满足不等式x )(x f '>-)(x f 恒成立,且常数a ,b 满足a >b , 求证:.a )(a f >b )(b f 【变式1】若函数y =)(x f 在R 上可导且满足不等式)(x f >)(x f ',且1)(-=x f y 为奇函数. 求不等式)(x f 2 x . 求不等式0)2(4)2015()2015(2 >--++f x f x 的解集. 2、移项法构造函数 【例2】已知函数x x x f -+=)1ln()(,求证:当1->x 时,恒有x x x ≤+≤+- )1ln(1 1 1 分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数11 1 )1ln()(-+++=x x x g ,从其导数入手即可证明。 3、作差法构造函数证明 【例3】已知函数.ln 21)(2x x x f += 求证:在区间),1(∞+上,函数)(x f 的图象在函数33 2 )(x x g =的图象的下方; 分析:函数)(x f 图象在函数)(x g 的图象的下方)()(x g x f + 都成立. 分析:本题是山东卷的第(II )问,从所证结构出发,只需令 x n =1,则问题转化为:当0>x 时,恒有32)1ln(x x x ->+成立,现构造函数)1ln()(2 3 ++-=x x x x h ,求导即可达到证明。

高中数学解题方法之构造法(含答案)

十、构造法 解数学问题时,常规的思考方法是由条件到结论的定向思考,但有些问题用常规的思维 方式来寻求解题途径却比较困难,甚至无从着手。在这种情况下,经常要求我们改变思维方 向,换一个角度去思考从而找到一条绕过障碍的新途径。 历史上有不少著名的数学家,如欧几里得、欧拉、高斯、拉格朗日等人,都曾经用“构 造法”成功地解决过数学上的难题。数学是一门创造性的艺术,蕴含着丰富的美,而灵活、 巧妙的构造令人拍手叫绝,能为数学问题的解决增添色彩,更具研究和欣赏价值。近几年来, 构造法极其应用又逐渐为数学教育界所重视,在数学竞赛中有着一定的地位。 构造需要以足够的知识经验为基础,较强的观察能力、综合运用能力和创造能力为前提, 根据题目的特征,对问题进行深入分析,找出“已知”与“所求(所证)”之间的联系纽带, 使解题另辟蹊径、水到渠成。 用构造法解题时,被构造的对象是多种多样的,按它的内容可分为数、式、函数、方程、 数列、复数、图形、图表、几何变换、对应、数学模型、反例等,从下面的例子可以看出这 些想法的实现是非常灵活的,没有固定的程序和模式,不可生搬硬套。但可以尝试从中总结 规律:在运用构造法时,一要明确构造的目的,即为什么目的而构造;二要弄清楚问题的特 点,以便依据特点确定方案,实现构造。 再现性题组 1、求证: 3 10910 22≥++=x x y (构造函数) 2、若x > 0, y > 0, x + y = 1,则4 2511≥???? ??+??? ??+ y y x x (构造函数) 3、已知01a <<,01b <<,求证: 22)1()1()1()1(22222222≥-+-+-+++-++b a b a b a b a (构造图形、复数) 4、求证:9)9(272≤-+x x ,并指出等号成立的条件。(构造向量) 5、已知:a>0、b>0、c>0 ,求证:222222c ac a c bc b b ab a ++≥+-++-当且仅当 c a b 111+=时取等号。(构造图形) 6 、求函数y = 再现性题组简解: 1、解:设)3(92 ≥+=t x t 则t t y t f 1)(2+==,用定义法可证:f (t )在),3[+∞上单调递增,令:3≤12t t < 则0)1)((11)()(2 1212122212121>--=+-+=-t t t t t t t t t t t f t f ∴310313)3(9 10322=+=≥++= f x x y

四种构造函数法证明不等式

四种构造函数法证明不等式 利用导数证明不等式,关键是要找出与待证不等式紧密联系的函数,然后以导数为工具来研究该函数的单调性、极值、最值(值域),从而达到证明不等式的目的,这时常常需要构造辅助函数来解决.题目本身特点不同,所构造的函数可有多种形式,解题的繁简程度也因此而不同,如何恰当构造函数,往往成为解题的关键. 考点一“比较法”构造函数证明不等式 当试题中给出简单的基本初等函数,例如f(x)=x3,g(x)=ln x,进而证明在某个取值范围内不等式f(x)≥g(x)成立时,可以类比作差法,构造函数h(x)=f(x)-g(x)或φ(x)=g(x)-f(x),进而证明h(x)min≥0或φ(x)max≤0即可,在求最值的过程中,可以利用导数为工具.此外,在能够说明g(x)>0(f(x)>0)的前提下,也可 以类比作商法,构造函数h(x)=f(x) g(x)? ? ? ? ? φ(x)= g(x) f(x),进而证明h(x)min≥1(φ(x)max≤1). 【例题】已知函数f(x)=e x-ax(e为自然对数的底数,a为常数)的图象在点(0,1)处的切线斜率为-1. (1)求a的值及函数f(x)的极值; (2)求证:当x>0时,x2<e x. 【解析】(1)由f(x)=e x-ax,得f′(x)=e x-a. 因为f′(0)=1-a=-1,所以a=2, 所以f(x)=e x-2x,f′(x)=e x-2, 令f′(x)=0,得x=ln 2, 当x<ln 2时,f′(x)<0,f(x)单调递减; 当x>ln 2时,f′(x)>0,f(x)单调递增. 所以当x=ln 2时,f(x)取得极小值,且极小值为f(ln 2)=e ln 2-2ln 2=2-2ln 2,f(x)无极大值. (2)证明:令g(x)=e x-x2,则g′(x)=e x-2x. 由(1)得g′(x)=f(x)≥f(ln 2)>0, 故g(x)在R上单调递增.

构造法解导数不等式问题

构造法解导数不等式问题 一.知识梳理 常见的构造函数方法有如下法则构造函数 1.利用和差函数求导法则构造函数 (1)对于不等式()()() 00<>'+'或x g x f ,可构造函数()()()x g x f x F +=。 (2)对于不等式()()() 00<>'-'或x g x f ,可构造函数()()()x g x f x F -=。 特别地,对于不等式()() ()0≠<>'k k k x f 或,可构造函数()()kx x f x F -=。 2. 利用积商函数求导法则构造函数 (3)对于不等式()()()()() 00<>'+'或x g x f x g x f ,可构造函数()()()x g x f x F =。 (4)对于不等式()()()()() 00<>'-'或x g x f x g x f ,可构造函数()()() x g x f x F =。 ! (5)对于不等式()()() 00<>+'或x f x f x ,可构造函数()()x xf x F =。 (6)对于不等式()()() 00<>-'或x f x f x ,可构造函数()()()0≠= x x x f x F 。 (7)对于不等式()()() 00<>+'或x nf x f x ,可构造函数()()x f x x F n =。 (8)对于不等式()()() 00<>-'或x nf x f x ,可构造函数()()()0≠= x x x f x F n 。 (9)对于不等式()()() 00<>+'或x f x f ,可构造函数()()x f e x F x =。 (10)对于不等式()()() 00<>+'或x f x f ,可构造函数()()x e x f x F = 。 (11)对于不等式()()() 00<>+'或x kf x f ,可构造函数()()x f e x F kx =。 (12)对于不等式()()() 00<>-'或x kf x f ,可构造函数()()kx e x f x F = 。 (13)对于不等式()()() 00tan <>'+或x x f x f ,可构造函数()()x xf x F sin =。

高中数学解题方法与技巧---构造函数法证明导数不等式的六种方法

高中数学解题方法与技巧 构造函数法证明不等式的六种方法 1、利用导数研究函数的单调性极值和最值,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点。 2、解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键。 以下介绍构造函数法证明不等式的六种方法: 一、移项法构造函数 【例1】 已知函数x x x f ?+=)1ln()(,求证:当1?>x 时,恒有 x x x ≤+≤+?)1ln(1 11 分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数 11 1)1ln()(?++ +=x x x g ,从其导数入手即可证明。 【解】1111)(+?=?+=′x x x x f ∴当01<′x f ,即)(x f 在)0,1(?∈x 上为增函数 当0>x 时,0)(<′x f ,即)(x f 在),0(+∞∈x 上为减函数 故函数()f x 的单调递增区间为)0,1(?,单调递减区间),0(+∞ 于是函数()f x 在),1(+∞?上的最大值为0)0()(max ==f x f ,因此,当1?>x 时,0)0()(=≤f x f ,即0)1ln(≤?+x x ∴x x ≤+)1ln( (右面得证), 现证左面,令111)1ln()(?+++=x x x g , 2 2)1()1(111)(+=+?+=′x x x x x g 则 当0)(,),0(;0)(,)0,1(>′+∞∈<′?∈x g x x g x 时当时 , 即)(x g 在)0,1(?∈x 上为减函数,在),0(+∞∈x 上为增函数, 故函数)(x g 在),1(+∞?上的最小值为0)0()(min ==g x g ,

用构造局部不等式法证明不等式

用构造局部不等式法证明不等式 有些不等式的证明,若从整体上考虑难以下手,可构造若干个结构完全相同的局部不等式,逐一证明后,再利用同向不等式相加的性质,即可得证。 例1. 若a b R ,∈*,a b +=2,求证:212123a b +++≤ 分析:由a ,b 在已知条件中的对称性可知,只有当a b ==1,即213a +=时,等号才能成立,所以可构造局部不等式。 证明:213321333213233 2a a a a +=+≤++=+···()() 同理,2133 2b b +≤+() ∴212133233223a b a b +++≤ +++=()() 例2. 设x x x n 12,,…,是n 个正数,求证:x x x x x x x x x x n n n 1222231221 12++++≥+-… ++…x n 。 证明:题中这些正数的对称性,只有当x x x n 12===…时,等号才成立,构造局部不等式如下: x x x x x x x x x x x x x x x x n n n n n n 122212233212121 12222+≥+≥+≥+≥--,,…,,。 将上述n 个同向不等式相加,并整理得: x x x x x x x x x x x n n n n 1222231221 12++++≥+++-……。 例3. 已知a a a n 12,,…,均为正数,且a a a n 121+++=…,求证: a a a a a a a a a n n 121222232112 ++++++≥…。

证明:因a a a n 12,,…,均为正数,故a a a a a a 12121214 +++≥, a a a a a a a a a a a a n n n n 222323221144 +++≥+++≥,…,。 又∵a a a a a a a a a n n 12231124441212 ++++++=+++=……(), ∴把以上各个同向不等式相加,整理得: a a a a a a a a a a a a n n n 12122223211212 1+++++++≥+++=…… 故a a a a a a a a a n n 121222232112 ++++++≥…。 例4. 设a b c R ,,∈*,且abc =1,求证: 111333a b c b c a c a b ()()()+++++≥32。 (第36届IMO ) 证明:由a ,b ,c 在条件中的对称性知,只有当a b c ===1时,才有可能达到最小值32,此时刚好1412 3a b c b c bc ()+=+=。所以,可构造如下局部不等式。 ∵14214133a b c b c bc a bc a ()+++≥=, 14214133b a c a c ac b ac b ()+++≥=, 14214133c a b a b ab c ab c ()+++≥=, ∴ 11111114333a b c b c a c a b a b c b c bc a c ac a b ab ()()()()()+++++≥++-+++++ =++≥=1211132132 3()a b c abc 例5. 设a b c R ,,∈*,且a b c ++=2,求证:a b c b c a c a b 222 1+++++≥。

构造函数解不等式小题

专题:构造函数解决问题 ——函数单调性与导数 1:设()()f x g x 、 是R 上的可导函数,'()'()f x g x 、分别为()()f x g x 、的导函数,且满足'()()()'()0f x g x f x g x +<,则当a x b <<时,有( ) .()()()()A f x g b f b g x > .()() ()(B f x g a f a g x > .()()()()C f x g x f b g b > .()()()(D f x g x f b g a > 变式1:设()()f x g x 、 是R 上的可导函数,'()()()'()0f x g x f x g x +<,(3)0g -=,则不等式()()0f x g x <的解集. 变式2::设()()f x g x 、分别是定义在R 上的奇函数、偶函数,当0x <时,'()()()'()f x g x f x g x +>,(3)0g -=,则不等式()()0f x g x <的解集. 2.已知定义在R 上的函数()()f x g x 、满足()() x f x a g x =,且'()()()'()f x g x f x g x <,(1)(1)5(1)(1)2f f g g -+=-,若有穷数列*()()()f n n N g n ??∈???? 的前n 项和等于3132,则n 等于 . 变式:已知定义在R 上的函数()()f x g x 、满足()()x f x a g x =,且'()()()'()f x g x f x g x <,若若(1)(1)5(1)(1)2 f f g g -+=-,则关于x 的不等式log 1a x >的解集 . 3:已知定义域为R 的奇函数()f x 的导函数为'()f x ,当0x ≠时,()'()0f x f x x + >,若)2(ln 2 1ln ,)2(2,)21(21f c f b f a =--== ,则下列关于,,a b c 的大小关系正确的是( ) .A a b c >> .B a c b >> .C c b a >> a c b D >>. 4已知函数()f x 为定义在R 上的可导函数,且()'()f x f x <对于任意x R ∈恒成立,e 为自然对数的底数,则( ) 2013.(1)(0)(2013)(0)A f e f f e f >??、 2013.(1)(0)(2013)(0)C f e f f e f >?>?、 2013.(1)(0)(2013)(0)D f e f f e f

不等式证明之函数构造法(教师)

高三导数复习---构造辅助函数研究导数问题 利用导数研究函数的单调性极值和最值,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是高考的常见题型。应对策略是构造辅助函数(如利用比较法构造差函数等),把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键。 课前热身1.(2017·湖北襄阳模拟)函数f (x )的定义域为R.f (-1)=2,对任意x ∈R ,f ′(x )>2,则f (x )>2x +4的解集为( ) A .(-1,1) B .(-1,+∞) C .(-∞,-1) D .(-∞,+∞) 解析:选B 由f (x )>2x +4,得f (x )-2x -4>0.设F (x )=f (x )-2x -4,则F ′(x )=f ′(x )-2.因为f ′(x )>2,所以F ′(x )>0在R 上恒成立,所以F (x )在R 上单调递增,而F (-1)=f (-1)-2×(-1)-4=2+2-4=0,故不等式f (x )-2x -4>0等价于F (x )>F (-1),所以x >-1,选B. 2.已知函数f (x )(x ∈R)满足f (1)=1,且f (x )的导数f ′(x )<12,则不等式f (x 2)1,即x ∈(-∞,-1)∪(1,+∞). 一、导数结构法构造函数 【例1】若函数y =)(x f 在R 上可导且满足不等式x )(x f '>-)(x f 恒成立,且常数a ,b 满足a >b ,求 证:.a )(a f >b )(b f 【解】由已知 x )(x f '+)(x f >0 ∴构造函数 )()(x xf x F =,则=)('x F x )(x f '+)(x f >0, 从而)(x F 在R 上为增函数。 b a > ∴)()(b F a F > 即 a )(a f >b )(b f 练习1:、)(x f 是定义在(0,+∞)上的非负可导函数,且满足)()(x f x f x -'≤0,对任意正数a 、b ,若a < b ,则必有 ( ) (A )af (b )≤bf (a ) (B )bf (a )≤af (b ) (C )af (a )≤f (b ) (D )bf (b )≤f (a ) 简单分析:x x f x F )()(=,0)()()(2 '≤-='x x f x xf x F ,故x x f x F )()(=在(0,+∞)上是减函数,由b a < 有b b f a a f )()(≥? af (b )≤bf (a ) 故选(A ) 【原理】由条件移项后)()(x f x f x +',容易想到是一个积的导数,从而可以构造函数)()(x xf x F =, 求导即可完成证明。若题目中的条件改为)()(x f x f x >',则移项后)()(x f x f x -',要想到 是一个商的导数的分子。 例2.(2017·沈阳质监)已知函数f (x )=12 x 2-a ln x +b (a ∈R). (1)若曲线y =f (x )在x =1处的切线的方程为3x -y -3=0,求实数a ,b 的值;

相关主题
文本预览
相关文档 最新文档