当前位置:文档之家› 第六章 概与概率分布

第六章 概与概率分布

第六章 概与概率分布
第六章 概与概率分布

第六章概率与概率分布

本章是推断统计的基础。

主要内容包括:基础概率,概率的数学性质,概率分布、期望值与变异数推断统计研究如何依据样本资料对总体性质作出推断,这是以概率论为基础的。

第一节基础概率

概率论起源于17世纪,当时在人口统计、人寿保险等工作中,要整理和研究大量的随机数据资料,这就需要一种专门研究大量随机现象的规律性的数学。

参赌者就想:如果同时掷两颗骰子,则点数之和为9 和点数之和为10 ,哪种情况出现的可能性较大?

例如17世纪中叶,贵族德·梅尔发现:将一枚骰子连掷四次,出现一个6 点的机会比较多,而同时将两枚掷24次,出现一次双6 的机会却很少。

概率论的创始人是法国的帕斯卡(1623—1662)和费尔马(1601—1665),他们在以通信的方式讨论赌博的机率问题时,发表了《骰子赌博理论》一书。棣莫弗(1667—1754)发现了正态方程式。同一时期瑞士的伯努利(1654一1705)提出了二项分布理论。1814年,法国的拉普拉斯(1749—1827)发表了《概率分析论》,该书奠定了古典概率理论的基础,并将概率理论应用于自然和社会的研究。此后,法国的泊松(1781—1840)提出了泊松分布,德国的高斯(1777—1855)提出了最小平方法。

1、随机现象和随机事件

概率是与随机现象相联系的一个概念。所谓随机现象,是指事先不能精确预言其结果的现象,如即将出生的婴儿是男还是女?一枚硬币落地后其正面是朝上还是朝下?等等。所有这些现象都有一个共同的特点,那就是在给定的条件下,观察所得的结果不止一个。随机现象具有非确定性,但内中也有一定的规律性。例如,事先我们虽不能准确预言一个婴儿出生后的性别,但大量观察,我们会发现妇女生男生女的可能性几乎一样大,都是0.5,这就是概率。

随机现象具有一定条件呈现多种可能结果的特性。

人们把随机现象的结果以及这些结果的集合体称作随机事件。

在统计学中,我们把类似掷一枚硬币的行为(或对某一随机现象进行观察)称之为随机试验。随机试验必须符合以下三个条件:

①它可以在相同条件下重复进行; ②试验的所有结果事先已知;

③每次试验只出现这些可能结果中的一个,但不能预先断定出现哪个结果。 1.样本点

随机试验的每一个可能的结果,称为基本事件(或称样本点)

2.样本空间

所有样本点的全体称作样本空间(Sample space),记作Ω [例] 掷一颗骰子,试列出它的基本事件和样本空间。 随机事件:

简单事件:仅含样本空间中一个样本点的事件。 复合事件:含样本空间中一个样本点以上的的事件。 极端的随机事件:

不可能事件:从样本空间来看 ,不含任何基本事件,记作Φ 。 必然事件:从样本空间来看 ,该事件事件是由其全部基本事件所组成,记作S 。

[例 ] 对掷一颗骰子的试验,我们研究如下

事件:①A 为“点数是3”;②B 为“出现奇数点”;③C 为“出现点数不超过6”; ④D 为“点数是7”。

[解] 因为Ω={1,2,3,4,5,6},所以 ①A ={3} ,为简单事件; ②B ={1,3,5},为复合事件;

③C ={1,2,3,4,5,6},为必然事件;

1

)(0≤≤E P

④D ={7},为不可能事件。

2. 事件之间的关系

(1)事件和(Or conjunction)——事件A 与事件B 至少有一个事件发生所

构成的事件C 称为A 与B 的事件和,记作

(2)事件积(As-well-as conjunction)——事件A 与事件B 同时发生所构成的事件C 称为A 与

B 的事件积,记作

(3)事件的包含与相等——事件A 发生必然导致事件B 发生,则称为B 包含A 记作

如果 则A=B

(4)互斥事件——事件A 和事件B 不能同时发生,则称B 和A 是互斥事件,或互不相容事件,记作

(5发生,称A 与B

(6)相互独立事件——事件A 的发生与事件B 是否发生毫无关系,称A 与B 为相互独立事件,记作

B A B A Y 或+B

A A

B I 或A

B B A ??或B

A B A ??同时Φ

=B A I A

B B B A A //==或

两随机事件之间的关系:

3. 先验概率

在统计学中,有两种常见的确定概率的方法:古典法和频率法。

用古典法求出的概率

由普拉斯1814年提出。以想象总体为对象,利用模型本身所具有的对称性来事先求得概率,故被称为先验概率。

条件:

(1)在一样本空间中,各样本点出现的机会均等;

(2)该样本空间只有有限(n)个样本点。

这样对于含有m 个样本点的事件A ,其出现的概率为:

用古典法求算概率,在应用上有两个缺点:①它只适用于有限样本点的情况;②它假设机会均等,但这些条件实际上往往不能得到满足。

n

m

A P )(

[例] 掷两枚均匀的硬币,①求“两枚都朝上”的概率;②求“一枚朝上,一枚朝下”的概率。

4、经验概率

求算概率的另一途径是运用频率法。设想有一个与某试验相联系的事件A,

A是否发生了。假如做了n

m 次),则频数与试验次数

频率稳定到概率这个事实,给了“机会大小”即概率一个浅显而说得通的解释,这在统计学上具有很重要的意义。坚持这种观点的统计学派也就被称为频率学派。

比如:

法国统计学家蒲丰(Buffon)把铜板抛了4040次,正面的次数是2048,比例是0.5069 。

1900年,英国统计学家皮尔逊把硬币抛了24000次,正面的次数是12012,比例是0.5005

南非数学家柯屈瑞在监狱时,把硬币抛了10000次,正面的次数是5067,比例是0.5067 。

再如:

保险公司会利用概率进行人寿保险经营,比如研究表明20-24岁的男性中

明年死亡的概率是0.0015,同龄的女性是0.0005,保险公司对男性的保费就多收一些。

第二节 概率的数学性质 1.非负性 2.加法规则

如果事件A 和事件B 互斥,那么

如果A 和B 是任何事件(不一定互斥),加法规则更普通地表示为如下形式

[例]从一副普通扑克牌中抽一张牌,求抽到一张红桃或者方块的概率。 [例] 在一副52张扑克牌中,求单独抽取一次抽到一张红桃或爱司的概率。 [例] 根据上海市职业代际流动的统计,向下流动的概率是0.07,静止不动的概率是0.6,求向上流动的概率是多少?

[例] 为了研究父代文化程度对子代文化程度的影响,某大学统计出学生中父亲具有大学文化程度的占30%,母亲具有大学文化程度的占20%,而双方都具有文化程度的占有10%,问从学生中任抽一名,父代至少有一名具有大学文

)

()()(B P A P B A P +=或)

()()()(B A P B P A P B A P 且或-+=

化程度的概率是多少?

加法规则可推广到对两个以上的事件,若事件A ,B ,C …K 都互斥,那么有

P (A 或B 或C …或K)=P(A)+P(B)+P(C)… +P(K)

3.乘法规则

式中符号 和 代表条件概率。 应理解为,“在B 已经发生条件下A 发生的概率”。条件概率的意思是,

A 发生的概率可能与

B 是否发生有关系。换言之,B 已经发生时A 发生的概率可能有别于B 没有发生时A 发生的概率。

理解统计独立的概念,对于灵活运用概率的乘法规则很重要。现在用条件

概率来加以表达,统计独立是指

若A 和B 在统计上相互独立(无关) ,这时乘法规则可以简化为

[例1]假定有下列3000个社区的数据,如果随机地从这个总体中抽取一个社区,得到一个中等的而且犯罪率低的社区的概率是多少?

例2]假定数据变动如下,随机地从这个总体中抽取一个社区,得到一个中等的而且犯罪率低的社区的概率又是多少?

[例3]根据统计结果,男婴出生的概率是22/43,女婴出生的概率是21/43,某单位有两名孕妇,问两名孕妇都生男婴的概率是多少?都生女婴的概率是多少?其中一男一女的概率是多少?

[例4] 某居民楼共20户,其中核心家庭为2户,问访问两户都是核心家庭的概率是多少?问访问第二户才是核心家庭的概率是多少?

)/()()/()()(B A P B P A B P A P B A P ==且)/(B A P )/(A B P )/(B A P )

)或B P A B P A P B A P ()/(()/(==)()()(B P A P B A P =且

在抽样方法中还经常涉及到回置抽样和不回置抽样。如前所述,所谓回置抽样,就是抽取的单位登记后又被放回总体中去,然后再进行下一次抽取。使用回置抽样法,先后两次抽取是彼此独立的。因为每一次抽取后抽取到的单位都得返还,总体保持不变,前一次的结果不可能影响到后一次。所谓不回置抽样,就是不再把抽取到的单位退还总体。这样先后两次抽取就不再独立了,必须使用条件概率的概念。

例1:用回置法从一幅普通扑克牌抽取两次,计算得到两张A的概率。

例2:用不回置法从一幅普通扑克牌抽取两次,计算得到两张A的概率。

例3:为了研究父代文化程度对子代文化程度的影响,某大学统计出学生中父亲具有大学文化程度的占30%,母亲具有大学文化程度的占20%,而双方都具有文化程度的占有10%,问从学生中任抽一名,父代至少有一名具有大学文化程度的概率是多少?

在抽样方法中还经常涉及到回置抽样和不回置抽样。如前所述,所谓回置抽样,就是抽取的单位登记后又被放回总体中去,然后再进行下一次抽取。使用回置抽样法,

必须使用条件概率的概念。

A的概率。

用不回置法从一幅普通扑克牌抽取两次,计算得到两张A的概率。

4、排列和样本点的计数

要正确解决概率问题,往往光考虑乘法规则还不够,还要同时考虑使用加法规则。一般最简单的做法是:首先确定一种符合要求的排列方式并计算它们发生

的概率,然后再考虑还有没有其他同样符合要求的排列方式。如果存在着其他实现方式,

所有N N!

N 个元素中,若其中第一组中有r1个不能区分的元素,第2组中有r2个不能区分的元素,…,第k 组中有rk 个不能区分的元素,且各组彼此是可以区分的,则总的排列数为::

[例] 从一幅洗得很好的扑克牌中做了3次抽取,假定使用回置法,求至少得到1张A 和一张K 的概率是多少?

[解]按照题意,要在不同样本空间中考虑三种复合事件:抽到

1张A 和1张K ,另l 张非A

非K ,用符号(AKO)表示(其中“O ”表示其他);抽到

1张A 和2张K ,用符号(AKK)表示;抽到2张A 和1张K ,用符号(AAK)表示。因为在不同样本空间中基本事件实现的概率不同,必须对它们加以区别。 次序为AKO 的样本点实现的概率是 次序为AKK 的样本点实现的概率是 次序为AAK 的样本点实现的概率是

(AAK)含有3!/2!=3种排列方式 (AKO)含有3!=6种排列方式

所以,在三次抽取中,至少得到1张A 和1张K 的概率是

[例] 假如对1000个大学生进行歌曲欣赏调查,发现其中有500个学生喜欢民族歌曲,400个学生喜欢流行歌曲,而这些学生中有100人属于既喜欢民族歌曲又喜欢流行歌曲的,剩下来的学生两种歌曲都不喜欢。如果我们随机地从该总体中抽取一个学生,并设事件A 为该学生喜欢民族歌曲,事件B 为该学生喜

()())

13/11(13/113/1??()()2

13/113/1?()()13/113/12?

欢流行歌曲。

①用数字证明P(A且B)=P(A)P(B/A)=P(B)P(A/B)

②得到一个喜欢两种风格歌曲之一的学生的概率是多少?

③随机地选取一个由3个学生组成的样本,要求这三个学生全都有相同的欣赏方式,得到这种样本的概率是多少?

5.运用概率方法进行统计推断的前提

(1)随机抽样

(2)样本容量相对于总体来说,是较小的

(3)总体中个体的组合具有被同等抽中的概率

(4)注意独立性问题

简单随机抽样要求每一个个体拥有相同的被选入样本的机会。

严格来讲,由于我们实际上总是做不回置抽样,因此独立性的假定,是难以完全满足的。只有在样本非常大,可以忽略。

一个随机样本具有以下的性质:不仅要给每一个个体以相等的被抽中的机会,而且要给每一种个体的组合以相等的被抽中的机会。

在要概括社区或其他空间上限定区域的单位的情况时,也必须注意到缺乏独立性的问题。

第三节概率分布、期望值与变异数

随机事件及其概率回答的是随机现象某一局部结果,例如对给定的复合事件求先验概率。而概率分布则要在满足完备性(穷举)和互不相容性(互斥)的前提下,回答随机现象一共会出现多少种结果,以及每种结果所伴随的概率是多少。

应该指出,在统计中,概率分布是就随机现象呈现的宏观结果而言的。所谓宏观结果,是指可以在宏观层次加以识别的而与特定排列次序无关的样本空间的子集。

频率分布与概率分布的区别:

经验分布:频率分布是经资料整理而来;频率分布随样本不同而不同;频率分

布有对应的频数分布。

理论分布:概率分布是先验的;概率分布是唯一的;概率分布无频率分布

所对应的频数分布。

1. 离散型随机变量的概率分布

离散型随机变量的取值是可数的,如果对X 的每个可能取值xi 计 算其实现的概率Pi ,我们便得到了离散型随机变量的概率分布,即

离散型随机变量的概率分布也可以用表格和图形两种形式来表示。由于离散型随机变量的特点,表示离散型随机变量概率分布多为折线图。

2. 连续型随机变量的概率分布

连续型随机变量的取值充满某一区间,因而取某一数值讨论其概率

是无意义的。为此,我们引进概率密度 的概念来表达连续型随机 变量的概率分布。

频率密度等于频率除以组距。以频率密度为纵坐标,可以作出频率分布直方图。类似地,以概率密度 为纵坐标,可以作出概率密度曲线。所不同的是,概率密度由于对组距求了Δx →0的极限,其图形乃平滑曲线。

i i P

x X P ==)()

(x ?x

x x X x x P x X ??+≤≤?-=→?)

(lim

)(0?)(x ?

这样一来,随机变量X 取值在区间{x1 ,x2}上的概率等于概率密度曲线 下面x1与x2两点之间面积,即

因为概率不可能是负的,且

3. 分布函数

为了从数学上能够统一对随机变量的概率进行研究引入分布函 数 的概念,它被定义为

有了分布函数,就可以很容易得到随机变量X 取值在任意区间 {x1 ,x2}上的概率,即

)(x ??

=

≤≤2

1

)()(21x x dx

x x X x P ?1

)()(==+∞≤≤-∞ΩP X P )

(x F )

()(x X P x F ≤=)

()()(1221x F x F x X x P -=≤≤?????=?∑∞

-≤x

x X dx x X P x F )()()(?

和 (离散变量)或 (连续变量)的关系,就像向上累计频率和频率的关系一样。不同之处在于, 累计的是概率。但使用分布函数的好处是很明显的,它不仅在数学上统一了对离散型随机变量和连续型随机变量概率的研究,而且由于它计算概率的起点都固定为―∞,因而可以把概率值换算成表,以易于求得任何区间的概率,从而达到计算快捷和应用广泛之目的。

4. 数学期望

在前面统计分组的讨论中,我们在得到频数(或频率)分布后,为了对变量有系统概括的认识,分别研究了集中趋势和离中趋势。而对集中趋势和离中趋势量度,我们分别得到了平均指标和变异指标,其中最有代表性的是算术平均数和标准差。很显然,现在当我们面对随机变量的理论分布时,也要对随机变量的集中趋势和离中趋势作概括性的描述,这就引出数学期望和变异数这两个概念。 所谓数学期望,是反映随机变量X 取值的集中趋势的理论均值(算术平均),记作E(X)。

[例]

1000

200元,试求每一保单的保费。

解题意知,利润的期望值 E(X)=200(元)

设x1表示保费,x2为理赔费[x2=-(500000- x1)],则可得

所以,x1=7700(元)。即每一保单每年的保费应定在7700元。

数学期望也常常记为μ,在推论统计中同总体均值的记号,而 则在推论统计中被作为样本均值的记号。数学期望和总体均值一样,都是唯一的,不过它是一个先验的理论值。由于它是用随机变量各取值分别乘以取值的概率来计算的,因此数学期望又可称为随机变量的加权算术平均数。样本均值依据统计数据计算而来,但它具有随机性。在统计推论中,E(X) ,是“估计”。

)(x F )

(i x X P =)

(x ?)(x F ∑=xP

X E )(

数学期望的几个基本性质:

(1)常数c 的期望等于该常数,即 E(c)=c

(2)常数c 与随机变量X 之积的期望等于X 的期望与c 的积,即 E(cX)=cE(X)

(3)两个随机变量之和的期望等于它们的期望之和,即 E (X+Y)=E(X)+ E(Y)

(4)两个独立随机变量乘积的期望等于它们的期望之积,即E(XY)=E(X)·E(Y)

5. 变异数

数学期望反映了随机变量的集中趋势,还应该知道随机变量在均值周围的离散程度,值分散程度的指标,其功能相当于描述统计中已讨论过的方差及标准差,记用D(X)。

由于变异数的单位是随机变量单位的平方。为了使随机变量变异指标的单位与其本身的单位相同,将D(X)开方(取正值)称作随机变量X 的标准差σ;同时为了更明确的表示D(X) 与标准差之间只是开方关系,索性把D(X)写成σ2,并直接称D(X)为随机变量X 的方差。于是有

当然不难理解,在推论统计中随机变量变异数的记号常常同总体方差的记号,即用σ2表示之。而S2 则被作为样本方差的记号。变异数和总体方差一样,都是唯一的,不过它是一个先验的理论值。样本方差S2 依据统计数据计算而来,但它具有随机性。

变异数的几个基本性质:

(1)常数c 的方差等于0,即D(c)=0

(2)常数c 与随机变量X 之积的方差,等于随机变量X 的方差c2倍,即D(cX)=c2D(X)

(3)随机变量与常数之和的方差等于随机变量的方差,即D(X+c)=D(X) (4)两个独立随机变量之和的方差等于它们的方差和,即D(X+Y)=D(X) +D(Y)

)(2x D =σ

第五章 概率与概率分布(ok)

第五章概率与概率分布 5.1写出下列随机试验的样本空间: (1)记录某班一次统计学测验的平均分数。 (2)某人骑自行车在公路上行驶,观察该骑车人在遇到第一个红灯停下来以前遇到的绿灯次数。 (3)生产产品,直到有10件正品为止,记录生产产品的总件数。 解:(1)测验的平均分数为0至100分,故样本空间为 Ω=≤≤ {|0100} x x (2)遇到第一个红灯停下来以前遇到的绿灯次数为0至∞,故样本空间为 Ω=∞ {0,1,,} (3)与(2)类似,到有10件正品为止,生产产品的总件数的样本空间为 Ω=∞ {10,11,,} 5.2某市有50%的住户订日报,有65%的住户订晚报,有85%的住户至少订两种报纸中的一种,求同时订这两种报纸的住户的百分比。 解:设A = {订日报},B = {订晚报},C = {同时订两种报纸} 则P(C) = P(A∩B) = P(A) + P(B) – P(A∪B) 由题意可知: P(A) = 0.5,P(B) = 0.65,P(A∪B) = 0.85 于是P(C) = 0.5+0.65 – 0.85 = 0.3 即同时订两种报纸的住户百分比为30%。 5.3设A与B是两个随机事件,已知A与B至少有一个发生的概率是1/3,A发生且B不发生的概率是1/9,求B发生的概率。 解:由题意可知,P(A∪B) = 1/3,()1/9 P A B=。 因为()()()() P A B P A P B P A B =+-,而()()() =-,故有 P A B P A P A B

()()[()()] ()()112399 P B P A B P A P A B P A B P A B =--=-=-= 5.4 设A 与B 是两个随机事件,已知P(A) = P(B) = 1/3,P(A|B) = 1/6,求 ()P A B 。 解:首先,我们有P(AB) = P(B)P(A|B)=(1/3)*(1/6)=1/18, 其次, ()()1() (|)1()()() 1()()()1()11/31/31/1811/3712 P A B P A B P A B P A B P B P B P B P A P B P AB P B -= == ---+= ---+= -= 5.5 有甲、乙两批种子,发芽率分别是0.8和0.7。在两批种子中各随机抽取一粒,求: (1)两粒都发芽的概率。 (2)至少有一粒发芽的概率。 (3)恰有一粒发芽的概率。 解:设A = {甲种子发芽},B = {甲种子发芽}。 由题意可知,P(A) = 0.8,P(B) = 0.7。 (1)记C={两粒种子都发芽},因A 与B 独立, 故P(C) = P(A)P(B) = 0.8*0.7 = 0.56 (2)记D= {至少有一粒发芽} P(D) = P(A) + P(B) – P(AB) = 0.8+0.7-0.56 = 0.84 (3)记E = {恰有一粒发芽} 则P(E) = P(D) – P(C) = 0.84 – 0.56 = 0.28

概率与概率分布

第六章概率与概率分布 本章是推断统计的基础。 主要内容包括:基础概率,概率的数学性质,概率分布、期望值与变异数推断统计研究如何依据样本资料对总体性质作出推断,这是以概率论为基础的。 第一节基础概率 概率论起源于17世纪,当时在人口统计、人寿保险等工作中,要整理和研究大量的随机数据资料,这就需要一种专门研究大量随机现象的规律性的数学。 参赌者就想:如果同时掷两颗骰子,则点数之和为9 和点数之和为10 ,哪种情况出现的可能性较大? 例如17世纪中叶,贵族德·梅尔发现:将一枚骰子连掷四次,出现一个6 点的机会比较多,而同时将两枚掷24次,出现一次双6 的机会却很少。 概率论的创始人是法国的帕斯卡(1623—1662)和费尔马(1601—1665),他们在以通信的方式讨论赌博的机率问题时,发表了《骰子赌博理论》一书。棣莫弗(1667—1754)发现了正态方程式。同一时期瑞士的伯努利(1654一1705)提出了二项分布理论。1814年,法国的拉普拉斯(1749—1827)发表了《概率分析论》,该书奠定了古典概率理论的基础,并将概率理论应用于自然和社会的研究。此后,法国的泊松(1781—1840)提出了泊松分布,德国的高斯(1777—1855)提出了最小平方法。 1、随机现象和随机事件 概率是与随机现象相联系的一个概念。所谓随机现象,是指事先不能精确预言其结果的现象,如即将出生的婴儿是男还是女?一枚硬币落地后其正面是朝上还是朝下?等等。所有这些现象都有一个共同的特点,那就是在给定的条件下,观察所得的结果不止一个。随机现象具有非确定性,但内中也有一定的规律性。例如,事先我们虽不能准确预言一个婴儿出生后的性别,但大量观察,我们会发现妇女生男生女的可能性几乎一样大,都是0.5,这就是概率。

【免费下载】概率论与数理统计 第三章 二维随机变量及其概率分布 例题

概率论与数理统计 第三章 二维随机变量及其概率分布 例题1.甲乙两人独立地进行两次射击,命中率分别为0.2、0.5,把X 、Y 分别表示甲乙命中的次数,求(X,Y )联合分布律。2.袋中有两只白球,两只红球,从中任取两只以X 、Y 表示其中黑球、白球的数目,求(X,Y )联合分布律。3.设,且P{}=1,求()的X 1=(?1011/41/21/4) X 2=(011/21/2)X 1X 2=0X 1,X 2联合分布律,并指出是否独立。 X 1,X 24.设随机变量X 的分布律为Y=,求(X,Y )联合分布律。X 2X Y 01

概率论与数理统计 第三章 二维随机变量及其概率分布 例题 5.设(X,Y )的概率分布为 且事件{X=0}与{X+Y=1}独立求a ,b 。6. 设某班车起点上车人数X 服从参数λ(λ>0)的泊松分布,每位乘客中途下车的概率为P (0

概率论与数理统计 第三章 二维随机变量及其概率分布 例题 (1)C 的值 (2), (3)P{X+Y ≤1}并判别X 与Y 是否独立。f z (x)f Y (y)9.设f(x,y)= 为(X,Y )的密度函数,求{10 |y |1/2|Y>0}(2) f Y|X (y|x ), f X|Y (x|y )10. 设f(x,y)= 为(X,Y )的密度函数,求 {12x 2y 0 1x ≤y ≤x,x ≥1 其它 f X|Y (x|y )11. 设f(x,y)= 为(X,Y )的密度函数,求的联合分布 {4xy 0 0≤x ≤1,0≤y ≤1 其它 (X,Y )

第六章-概率分布Word版

第六章概率分布 一、单选题 180,一个随机样本n=16,其均值大于85的概率是()。 A. 2.52% B. 4.78% c. 5.31% D. 6.44% 2.让64位大学生品尝A.、B两种品牌的可乐并选择一种自己比较喜欢的。如果这两种品牌的可乐味道实际没有任何区别,有39人或39人以上选择品牌B的概率是(不查表): () A.2.28% B.4 .01% C.5.21% D. 39.06% 3. 某个单峰分布的众数为15,均值是10,这个分布应该是( ) A.正态分布 B.正偏态分布 C.负偏态分布 D.无法确定 4.一个单项选择有48单侧检验标准,至少应对多少题成绩显著优于单凭猜测()。 A.16题 B.17题 C.18题 D.19题 5. 在一个二择一实验中,被试挑12次,结果他挑对10次,那么在Z值等于() A.4.05 B.2.31 C.1.33 D. 2.02 6. 某班200人的考试成绩呈正态分布,其平均数=l2,S=4分,成绩在8分和16分之间的人数占全部人数的()。 A.34.13% B.68.26% C.90% D. 95% 7. 在一个二择一实验中,被试挑12次,结果他挑对10次,那么在Z=(X-M)/S这个公式中X应为() A.12 B.10 C.9.5 D. 10.5 8. 在处理两类刺激实验结果时,在下列哪种情况下不可以用正态分布来表示二项分布的近似值?() A.N<10 B.N>=10 C.N>30 D. N>10 9. t分布是平均数的对称的分布,当样本n趋于∞时,t分布为() A. 二项分布 B. 正态分布 C. F分布 10. 概率和统计学中,把随机事件发生的可能性大小称作随机事件发生的() A.概率 B.频率 C.频数 D. 相对频数 11. 在一次实验中,若事件B的发生不受事件A的影响,则称AB两事件为() A.不影响事件 B.相容事件 C.不相容事件 D. 独立事件 12. 正态分布由()于1733年发现的 A.高斯 B.拉普拉斯 C.莫弗 D. 高赛特

统计学习题 第六章 概率与概率分布

第六章 概率与概率分布 第一节 概率论 随机现象与随机事件·事件之间的关系(事件和、事件积、事件的包含与相等、互斥事件、对立事件、互相独立事件)·先验概率与古典法·经验概率与频率法 第二节 概率的数学性质 概率的数学性质(非负性、加法规则、乘法规则)·排列与样本点的计数·运用概率方法进行统计推断的前提 第三节 概率分布、期望值与变异数 概率分布的定义·离散型随机变量及其概率分布·连续型随机变量及其概率分布·分布函数·数学期望与变异数 一、填空 1.用古典法求算概率.在应用上有两个缺点:①它只适用于有限样本点的情况;②它假设( 机会均等 )。 2.分布函数)(x F 和)(x P 或 )(x 的关系,就像向上累计频数和频率的关系一样。所不同的是,)(x F 累计的是( 概率 )。 3.如果A 和B ( 互斥 ),总合有P(A/B)=P 〔B/A 〕=0。 4.( 大数定律 )和( 中心极限定理 )为抽样推断提供了主要理论依据。 5.抽样推断中,判断一个样本估计量是否优良的标准是( 无偏性 )、( 一致性 )、( 有效性 )。 6.抽样设计的主要标准有( 最小抽样误差原则 )和( 最少经济费用原则 )。 7.在抽样中,遵守( 随机原则 )是计算抽样误差的先决条件。 8.抽样平均误差和总体标志变动的大小成( 正比 ),与样本容量的平方根成( 反比 )。如果其他条件不变,抽样平均误差要减小到原来的1/4,则样本容量应( 增大到16倍 )。 9.若事件A 和事件B 不能同时发生,则称A 和B 是( 互斥 )事件。 10.在一副扑克牌中单独抽取一次,抽到一张红桃或爱司的概率是( 1/4 );在一副扑克牌中单独抽取一次,抽到一张红桃且爱司的概率是( 1/52 )。 二、单项选择 1.古典概率的特点应为(A ) A 、基本事件是有限个,并且是等可能的; B 、基本事件是无限个,并且是等可能的; C 、基本事件是有限个,但可以是具有不同的可能性;

第六章 概率分布

第六章概率分布 第一节概率的基本概念 一、什么是概率 概率指用一个比值来概括某事件出现的可能性大小。因为纯粹利用概率的概念是无法计算出概率的,所以它有几个用于不同情况下的计算办法: (一)古典概率(先验概率) 基本事件:如果某一随机实验可以分成有限的n种可能结果,这n种结果之间是互不交叉的,而且这些结果出现的可能性相等,我们把这n种可能结果称为基本事件。如抛置骰子这一随机试验的基本事件为:{1}{2}{3}{4}{5}{6}。 基本事件必须具备如下的五个条件: ①等可能性:实验中基本事件发生的概率相等(根据对称性来判断)。 ②互斥性:各个基本事件不可能在一次试验中同时发生,或者说一次试验中只能发生基本事件中的一个。 ③完备性:一次试验中所有基本事件必然有一个发生,即所有基本事件概率之和为100%。 ④有限性:全部结果只有有限的n种。 ⑤不可再分性:不可能有比基本事件范围更小的事件。若把抛置骰子的基本事件取为:A={1,2,3},B={4,5,6},则它满足前面的所有4上条件,但它们可以再分。 古典概率的定义:在只含有有限个基本事件的试验中,任意事件A发生的概率定义为: (二)统计概率(后验概率) 统计概率常用于随机现象不满足“基本事件等可能发生”的条件,或者某些试验不可能分为等可能的互不相交的事件。 在相同条件下进行n次试验,事件A出现了m次,如果试验次数n充分地大,且事件A 出现的频率稳定在某一数值p附近,则称p为事件A的概率。由于p也是一抽象的值, 常常用n在充分大时的代替。即: 。 二、概率的基本性质 1、概率的加法定理 两个互不相容事件A、B之和的概率,等于两个事件概率之和,P(A+B)=P(A)+P(B) 2、概率的乘法定理 两个独立事件同时出现的概率等于该两事件概率的乘积,P(AB)=P(A)×P(B) 例6-1:一枚硬币掷三次,或三枚硬币各掷一次,问出现两次或两次以上H的概率是多 少?

第5章概率与概率分布

第5章 概率与概率分布 一、思考题 、频率与概率有什么关系 、独立性与互斥性有什么关系 、根据自己的经验体会举几个服从泊松分布的随机变量的实例。 、根据自己的经验体会举几个服从正态分布的随机变量的实例。 二、练习题 、写出下列随机试验的样本空间: (1)记录某班一次统计学测试的平均分数。 (2)某人在公路上骑自行车,观察该骑车人在遇到第一个红灯停下来以前遇到的绿灯次数。 (3)生产产品,直到有10件正品为止,记录生产产品的总件数。 、某市有50%的住户订阅日报,有65%的住户订阅晚报,有85%的住户至少订两种报纸中的一种,求同时订这两种报纸的住户的百分比。 、设A 与B 是两个随机事件,已知A 与B 至少有个发生的概率是3 1 ,A 发生且B 不发生的概率是 9 1 ,求B 发现的概率。 、设A 与B 是两个随机事件,已知P(A)=P(B)= 31,P(A |B)= 6 1 ,求P(A |B ) 、有甲、乙两批种子,发芽率分别是和。在两批种子中各随机取一粒,试求: (1)两粒都发芽的概率。 (2)至少有一粒发芽的概率。 (3)恰有一粒发芽的概率。 、某厂产品的合格率为96%,合格品中一级品率为75%,从产品中任取一件为一级品的概率是多少 、某种品牌的电视机用到5000小时未坏的概率为 43,用到10000小时未坏的概率为2 1。现在有一台这种品牌的电视机已经用了5000小时未坏,它能用到10000小时的概率是多少

、某厂职工中,小学文化程度的有10%,初中文化程度的有50%,高中及高中以上文化程度的有40%,25岁以下青年在小学、初中、高中及高中以上文化程度各组中的比例分别为20%,50%,70%。从该厂随机抽取一名职工,发现年龄不到25岁,他具有小学、初中、高中及高中以上文化程度的概率各为多少 、某厂有A ,B ,C ,D 四个车间生产同种产品,日产量分别占全厂产量的30%,27%,25%,18%。已知这四个车间产品的次品率分别为,,和,从该厂任意抽取一件产品,发现为次品,且这件产品是由A ,B 车间生产的分布。 、考虑抛出两枚硬币的试验。令X 表示观察到正面的个数,试求X 的概率分布。 、某人花2元钱买彩票,他抽中100元奖的概率是%,抽取10元奖的概率是1%,抽中1元奖的概率是20%,假设各种奖不能同时抽中,试求: (1)此人收益的概率分布。 (2)此人收益的期望值。 、设随机变量X 的概率密度为: F(x)= 3 2 3θ X ,01)= 8 7 ,求θ的值。 (2) 求X 的期望值与方差。 、一张考卷上有5道题目,同时每道题列出4个备选答案,其中有一个答案是正确的。某学生凭猜测能答对至少4道题的概率是多少 设随机变量X 服从参数为的泊松分布,且已知P {X=1}= P {X=2},求P {X=4}。 、设随机变量X 服从参数为λ的泊松分布:

16种常见概率分布概率密度函数、意义及其应用

目录 1. 均匀分布 (1) 2. 正态分布(高斯分布) (2) 3. 指数分布 (2) 4. Beta分布(:分布) (2) 5. Gamm 分布 (3) 6. 倒Gamm分布 (4) 7. 威布尔分布(Weibull分布、韦伯分布、韦布尔分布) (5) 8. Pareto 分布 (6) 9. Cauchy分布(柯西分布、柯西-洛伦兹分布) (7) 2 10. 分布(卡方分布) (7) 8 11. t分布................................................ 9 12. F分布 ............................................... 10 13. 二项分布............................................ 10 14. 泊松分布(Poisson 分布)............................. 11 15. 对数正态分布........................................

1. 均匀分布 均匀分布X ~U(a,b)是无信息的,可作为无信息变量的先验分布。

2. 正态分布(高斯分布) 当影响一个变量的因素众多,且影响微弱、都不占据主导地位时,这个变量 很可能服从正态分布,记作 X~N (」f 2)。正态分布为方差已知的正态分布 N (*2)的参数」的共轭先验分布。 1 空 f (x ): —— e 2- J2 兀 o' E(X), Var(X) _ c 2 3. 指数分布 指数分布X ~Exp ( )是指要等到一个随机事件发生,需要经历多久时间。其 中,.0为尺度参数。指数分布的无记忆性: Plx s t|X = P{X t}。 f (X )二 y o i E(X) 一 4. Beta 分布(一:分布) f (X )二 E(X) Var(X)= (b-a)2 12 Var(X)二 1 ~2

概率与概率分布(一)

第六章 概率与概率分布(一) 第一节 概率论 随机现象与随机事件·事件之间的关系(事件和、事件积、事件的包含与相等、互斥事件、对立事件、互相独立事件)·先验概率与古典法·经验概率与频率法 第二节 概率的数学性质 概率的数学性质(非负性、加法规则、乘法规则)·排列与样本点的计数·运用概率方法进行统计推断的前提 第三节 概率分布、期望值与变异数 概率分布的定义·离散型随机变量及其概率分布·连续型随机变量及其概率分布·分布函数·数学期望与变异数 一、填空 1.用古典法求算概率.在应用上有两个缺点:①它只适用于有限样本点的情况;②它假设( 机会均等 )。 2.分布函数)(x F 和)(x P 或 )(x 的关系,就像向上累计频数和频率的关系一样。所 不同的是,)(x F 累计的是( 概率 )。 3.如果A 和B ( 互斥 ),总合有P(A/B)=P 〔B/A 〕=0。 4.( 大数定律 )和( 中心极限定理 )为抽样推断提供了主要理论依据。 5.抽样推断中,判断一个样本估计量是否优良的标准是( 无偏性 )、( 一致性 )、( 有效性 )。 6.抽样设计的主要标准有( 最小抽样误差原则 )和( 最少经济费用原则 )。 7.在抽样中,遵守( 随机原则 )是计算抽样误差的先决条件。 8.抽样平均误差和总体标志变动的大小成( 正比 ),与样本容量的平方根成( 反比 )。如果其他条件不变,抽样平均误差要减小到原来的1/4,则样本容量应( 增大到16倍 )。 9.若事件A 和事件B 不能同时发生,则称A 和B 是( 互斥 )事件。 10.在一副扑克牌中单独抽取一次,抽到一张红桃或爱司的概率是( 1/4 );在一副扑克牌中单独抽取一次,抽到一张红桃且爱司的概率是( 1/52 )。 二、单项选择 1.古典概率的特点应为(A ) A 、基本事件是有限个,并且是等可能的; B 、基本事件是无限个,并且是等可能的; C 、基本事件是有限个,但可以是具有不同的可能性;

概率论第6章练习答案

第6章《二维随机变量》练习题 一、判断题 1.设(ξ,η)为连续型随机向量,如果联合密度等于各自边际密度的乘积,则ξ,η相互独立.( 1 ) 2.等边三角形域上二维均匀分布的边缘分布仍是均匀分布. ( 0) 3.二维均匀分布的边缘分布仍是均匀分布. ( 0 ) 4.设0)(=A P ,则随机事件A 与任何随机事件B 一定相互独立.( 0 ) 1.设ξ服从参数为λ的普阿松分布,P(ξ=1)=P(ξ=3),则λ 2.设(ξ,η)~N(0,1;1,4,0.5),则ξ,η分别服从3.设ξξ12,的概率密度函数分别为f t f t 12 (),(),且ξξ12,相互独立, 则(ξξ12,)的联4.设(,)X Y 的联合概率分布为 已知(11)P X Y === 2 3 ,则a=_0.2___,X 的概率分布为_____________=。 5.已知),(Y X 的联合分布函数为),(y x F ,且d c b a <<,,则 (,)P a X b c Y d <≤<≤= 6.设),(Y X 的联合概率分布为

则X 7.设二维连续型随机变量),(Y X 的联合概率密度函数为 其它 当0 ,00),()43(>>? ? ?=+-y x ke y x f y x ,则系数=k 12, 三、计算题 1.设随机变量(,)X Y 的联合密度函数 ?? ?<<<=他 其 ,20),(x y x A y x f 求 (1) 常数A ; (2) 边际密度函数; (3) 讨论X 与Y 的相关性. (1) .4/1=A (3) ?==2 2 ,3/4)2/()(dx x X E ??==-2 ,0)4/()(x x dy y dx Y E ??==-2 ,0)4/()(x x dy y xdx XY E c o v (,)()()X Y E X Y E X E Y =-= 所以X 与Y 不相关. 2.设(,)X Y 的联合密度函数为???∈=其它 ,0),(,6),(D y x x y x p ,其中D 为由0,0 x y ==及1x y +=所围区域。(1)求();PY X ≤(2)求(,)X Y 的边际密度函数(),(),X Y p x p y

离散型+l连续型概率分布

一、 离散型分布 1、 两点分布:binom (1,p ) 意义:一次实验中有二个事件:成功(记1)与失败(记0),出现的概率分别为p 和1p -,则一次试验(称为贝努利试验)成功的次数服从一个参数为p 的贝努利试验。例子(投一次硬币) 分布律: 1(|)(1),0,1(01)x x f x p p p x p -=-=<< 数字特征: (X),Var(X)(1)E p p p ==- 2、 二项分布:binom (n ,p ) 意义:贝努利试验独立重复n 次,则试验成功的次数服从一个参数为(n ,p )的二项分布。(投n 次硬币) 分布律: (|)(1),0,1, ,.(01)x n x n f x p p p x n p p -??=-=<< ??? 数字特征: (X),Var(X)(1)E np np p ==- 3、 多项分布:1(,,,)k multinon n p p 意义:一试验中有k 个时间,1,2,,i A i k =,且1()(01 ,1)k i i i i i PA p p p ==<<=∑ 将此试验独立地重复n 次,则时间12,,,k A A A 出现的次数服从一个参数 (,)n p 的多项式分布,其中12(,, ,)k P p p p =(仍骰子问题) 分布律:

12 11 (, ,|,),0,k k x x x k i i i n f x x n p p p p x n x n p =?? =≤≤= ??? ∑ 数字特征: (X),Var(X)(1),Cov(X ,X )i j i j E np np p np p ==-=- 4、 负二项分布:(,)nbinom k p 意义:贝努利试验独立地重复进行,一直到出现k 次成功时停止试验,则试验失败的次数服从一个参数(,)k p 的负二项分布。 分布律: ()(|,)(1),0,1, ()() k x k x f x k p p p x k x Γ+= -=Γ Γ 数字特征: 2(1)(1) (X ),V a r (X )k p k p E p p --= = 5、 几何分布:()geom p 意义:伯努利试验独立地重复进行,一直到出现有成功出现时停止试验,则试验失败的次数服从一个参数p 的集合分布。 分布律: (|)(1),0,1,2, x f x p p p x =- = 数字特征: 2(1)(1) (X),Var(X)p p E p p --= = 6、 超几何分布:(,,)hyper N M n 意义:从装有N 个白球和M 个黑球的罐子中不放回地取出k 其中 k N M ≤+则其中的白球服从超几何分布。 分布律:

概率分布函数各种类型

Diagram of distribution relationships Probability distributions have a surprising number inter-connections. A dashed line in the chart below indicates an approximate (limit) relationship between two distribution families. A solid line indicates an exact relationship: special case, sum, or transformation. Click on a distribution for the parameterization of that distribution. Click on an arrow for details on the relationship represented by the arrow. Other diagrams on this site:

The chart above is adapted from the chart originally published by Lawrence Leemis in 1986 (Relationships Among Common Univariate Distributions, American Statistician 40:143-146.) Leemis published a larger chart in 2008 which is available online.

第五章 概率与概率分布基础

第五章概率与概率分布基础 第一节什么是概率 第二节概率分布 第三节常用离散型随机变量分布举例 第四节常用连续型随机变量分布举例 为什么学习概率? 概率是公共和非盈利性事业管理中最有用的数量分析方法之一.利用概率及相关知识,公共和非盈利事业的管理者可以判断和解决各种各样的问题. 比如,维修机构的负责人可以运用概率来决定公共设施发生故障的频率,并依此部署维护力量.公共交通部门可以用概率来分析某一站点某一时段内可能候车人数,从而决定公共交通的车次间隔. 本章内容包括一些基本的概率法则和假定. 最常用的适于作定量研究的方法--抽样调查就是通过概率的理论使我们掌握一种媒介,它可以做我们推断和分析的平台. 第一节什么是概率 一、随机事件与概率 (一)随机试验与随机事件 随机现象的特点是:在条件不变的情况下,一系列的试验或观测会得到不同的结果,并且在试验或观测前不能预见何种结果将出现。对随机现象的试验或观测称为随机试验,它必须满足以下的性质: (1)每次试验的可能结果不是唯一的; (2)每次试验之前不能确定何种结果会出现; (3)试验可在相同条件下重复进行。 比如:标准大气压下,水沸腾的温度是100度. 必然事件 扔100次硬币,正面朝上的次数.随机事件. 历史上曾有人做过试验,试图证明抛掷匀质硬币时,出现正反面的机会均等。 实验者n nH fn(H) De Morgan 2048 1061 0.5181 Buffon 4040 2048 0.5069 K. Pearson 12000 6019 0.5016 K. Pearson 24000 12012 0.5005 在经济与社会领域,随机命题是常见的,而必然命题是十分少见的. 任何一种社会现象,社会行为其产生的原因都是复杂的,事物单个出现的时候难免有偶然性和非确定性,但是对于大量事物的研究,由于平衡与排除了单个孤立事件所具有的偶然性,从而可以发现其内部的规律性. 在随机试验中(对随机现象的观察)可能出现也可能不出现,而在大量重复试验中却具有某种规律性的事件,称之为随机事件。 试验的结果可能是一个简单事件,也可能是一个复杂事件。简单事件就是不可以再分解的事件,又称为基本事件。复杂事件是由简单事件组合而成的事件。基本事件 还可称为样本点,设试验有n个基本事件,分别记为(i=1,2,…,n)。集合Ω={ω1 ,ω2 , …,ωn}称为样本空间,Ω中的元素就是样本点。

16种常见概率分布概率密度函数、意义及其应用

目录 1.均匀分布 (1) 2.正态分布(高斯分布) (2) 3.指数分布 (2) 4.Beta分布(β分布) (2) 5.Gamma分布 (3) 6.倒Gamma分布 (4) 7.威布尔分布(Weibull分布、韦伯分布、韦布尔分布) (5) 8.Pareto分布 (6) 9.Cauchy分布(柯西分布、柯西-洛伦兹分布) (7) χ分布(卡方分布) (7) 10.2 11.t分布 (8) 12.F分布 (9) 13.二项分布 (10) 14.泊松分布(Poisson分布) (10) 15.对数正态分布 (11) 1.均匀分布 均匀分布~(,) X U a b是无信息的,可作为无信息变量的先验分布。

1()f x b a = - ()2 a b E X += 2 ()()12 b a Var X -= 2. 正态分布(高斯分布) 当影响一个变量的因素众多,且影响微弱、都不占据主导地位时,这个变量很可能服从正态分布,记作2~(,)X N μσ。正态分布为方差已知的正态分布 2(,)N μσ的参数μ的共轭先验分布。 22 ()2()x f x μσ-- = ()E X μ= 2()Var X σ= 3. 指数分布 指数分布~()X Exp λ是指要等到一个随机事件发生,需要经历多久时间。其中0λ>为尺度参数。指数分布的无记忆性:{}|{}P X s t X s P X t >+>=>。 (),0 x f x e x λλ-=> 1 ()E X λ = 2 1 ()Var X λ = 4. Beta 分布(β分布)

Beta 分布记为~(,)X Be a b ,其中Beta(1,1)等于均匀分布,其概率密度函数可凸也可凹。如果二项分布(,)B n p 中的参数p 的先验分布取(,)Beta a b ,实验数据(事件A 发生y 次,非事件A 发生n-y 次),则p 的后验分布(,)Beta a y b n y ++-,即Beta 分布为二项分布(,)B n p 的参数p 的共轭先验分布。 10 ()x t x t e dt ∞--Γ=? 1 1()()(1)()() a b a b f x x x a b --Γ+= -ΓΓ ()a E X a b = + 2 ()()(1) ab Var X a b a b = +++ 5. Gamma 分布 Gamma 分布即为多个独立且相同分布的指数分布变量的和的分布,解决的

统计学课后答案(第3版)第5章概率与概率分布基础习题答案

第五章 概率与概率分布基础习题答案 一、单选 1.A ; 2.D ; 3.C ; 4.A ; 5.D ; 6.C ; 7.A ; 8.D ; 9.B ;10.C 二、多选 1.ABCE ; 2.ABCE ; 3.ABD ; 4.ACE ; 5.ABCE 6.ABD ; 7.ABCD ; 8.ABCDE ; 9.ABCDE ;10.ACD 三、计算分析题 1、(1)C B A ;C B A ;C B A (2)C AB (3) C B A C B A C B A (4) C B A C B A 或 2、6.0)(1=A P ;4.0)(2=A P ;95.0)(1=A B P ;90.0)(2=A B P (2)16.0889.001.0101.05001.010)(=÷+?+?+?=x E (元) 说明2元彩票平均中奖额为0.16元。 4、包含对6道、7道、8道、9道和10道题的五种情况的概率为: 4661037710288109910101010)43()41()43()41()43()41()43()41()41 (C C C C C ++++ %202.098.01)4 3()41()43()41()43()41()43()41()43)(41()43(15551064410733108221091100010==-=+++++-=C C C C C C 5、!2)2()1(2λ λλλ--=====e X P e X P ,则λ=2 22432!42)4(e e X P ===- 6、(1)化为标准正态分布有: )22 3()2123()2()2()2(-<-+->-=-<+>=>x P x P x P x P x P

第六章 概率与概率分布练习题

第六章 概率与概率分布 一、填空 1.用古典法求算概率.在应用上有两个缺点:①它只适用于有限样本点的情况;②它假设(机会均等 )。 2.分布函数)(x F 和)(x P 或 ?)(x 的关系,就像向上累计频数和频率的关系一样。所不同的是,)(x F 累计的是(概率 ) 。 3.如果A 和B (互斥 ),总合有P(A/B)=P 〔B/A 〕=0。 4.(大数定律 )和( 中心极限定理 )为抽样推断提供了主要理论依据。 6.抽样设计的主要标准有(最小抽样误差原则 )和(最少经济费用原则 )。 7.在抽样中,遵守(随机原则 )是计算抽样误差的先决条件。 9.若事件A 和事件B 不能同时发生,则称A 和B 是(互斥 )事件。 10.在一副扑克牌中单独抽取一次,抽到一张红桃或爱司的概率是(1/4 );在一副扑克牌中单独抽取一次,抽到一张红桃且爱司的概率是( 1/52 )。 二、单项选择 1.随机试验所有可能出现的结果,称为( D )。A 基本事件; B 样本;C 全部事件;D 样本空间。 2.在次数分布中,频率是指( ) A.各组的频率相互之比 B.各组的分布次数相互之比 C.各组分布次数与频率之比 D.各组分布次数与总次数之比 3.若不断重复某次调查,每次向随机抽取的100人提出同一个问题,则每次都能得到一个回答“是”的人数百分数,这若干百分数的分布称为:( D )。 A .总体平均数的次数分布 B .样本平均的抽样分布 C .总体成数的次数分布 D .样本成数的抽样分布 4.以等可能性为基础的概率是(A )。A 古典概率;B 经验概率;C 试验概率;D 主观概率。 5.古典概率的特点应为( A )。 A 基本事件是有限个,并且是等可能的; B 基本事件是无限个,并且是等可能的; C 基本事件是有限个,但可以是具有不同的可能性; D 基本事件是无限的,但可以是具有不同的可能性。 6.任一随机事件出现的概率为( D )。A 在–1与1之间;B 小于0;C 不小于1;D 在0与1之间。 7.若P (A )=0.2,P(B )=0.6,P (A/B )=0.4,则)(B A P =( D )。A 0.8 B 0.08 C 0.12 D 0.24。 8.若A 与B 是任意的两个事件,且P (AB )=P (A )·P (B ),则可称事件A 与B (C )。 A 等价 B 互不相容 C 相互独立 D 相互对立。 9.若相互独立的随机变量X 和Y 的标准差分别为6与8,则(X +Y )的标准差为(B )。A 7 B 10 C 14 D 无法计算。 10.对于变异数D (X ),下面数学表达错误的是( D )。 A D (X )=E (X 2)―μ2 B D (X )=E [(X ―μ)2] C D (X )= E (X 2)―[E (X ) ] 2 D D (X )=σ 11.如果在事件A 和B 存在包含关系A ?B 的同时,又存在两事件的反向包含关系A ?B ,则称事件A 与事件B (A )A 相等 B 互斥 C 对立 D 互相独立 三、多项选择 1.随机试验必须符合以下几个条件(ABD )。 A .它可以在相同条件下重复进行; B .每次试验只出现这些可能结果中的一个; C .预先要能断定出现哪个结果; D .试验的所有结果事先已知; E .预先要能知道哪个结果出现的概率。 2.重复抽样的特点是(ACE )。 A 每次抽选时,总体单位数始终不变; B 每次抽选时,总体单位数逐渐减少; C 各单位被抽中的机会在每次抽选中相等; D 各单位被抽中的机会在每次抽选中不等; E 各次抽选相互独立。 3.关于频率和概率,下面正确的说法是(BCE )。 A .频率的大小在0与1之间; B .概率的大小在0与1之间; C .就某一随机事件来讲,其发生的频率是唯一的; D .就某一随机事件来讲,其发生的概率是唯一的; E .频率分布有对应的频数分布,概率分布则没有。

第二章随机变量及其函数的概率分布

第二章 随机变量及其函数的概率分布 §2.1 随机变量与分布函数 §2.2 离散型随机变量及其概率分布 一、 填空题 1. 某射手每次命中目标的概率为0.8,若独立射击了三次,则三次中命中目标次数为k 的概率==)(k X P 3,2,1,0,) 2.0()8.0(33=-k C k k k ; 2. 设随机变量X 服从泊松分布,且)2()1(===X P X P ,则==)4(X P 0.0902 ; 3. 设X 服从参数为p 的两点分布,则X 的分布函数为 ?? ? ??≥<≤-<=1 ,110 ,10 ,0)(x x p x x F ; 4. 已知随机变量X 的概率分布:P(X =1)=0.2, P(X =2)=0.3, P(X =3)=0.5, 则其分布 函数)(x F = 0 10.2 120.5 231 3x x x x =λ==则且,0),,2,1()(b k b k X P k 为(B ) (A) λ>0的任意实数; (B) ;11+=b λ (C) λ=b +1; (D) 1 1 -=b λ. 三、 计算下列各题 1. 袋中有10个球,分别编号为1~10,从中任取5个球,令X 表示取出5个球的最大号码,试求X 的分布列。 解 X 的可能取值为5,6,7,8,9,10 且10,9,8,7,6,5 ,)(5 10 41 ===-k C C k X P k 所以X 的分布列为

概率与概率分布(二)

第六章 概率与概率分布(二) 一、填空题 1.甲、乙各射击一次,设事件A 表示甲击中目标,事件B 表示乙击中目标,则甲、乙两人中恰好有一人不击中目标可用事件_表示. 2.已知甲、乙两个盒子里各装有2个新球与4个旧球,先从甲盒中任取1个球放入乙盒,再从乙盒中任取1个球,设事件A 表示从甲盒中取出新球放入乙盒,事件B 表示从乙盒中取出新球,则条件概率P(B A )=__. 3.设A,B 为两个事件,若概率P(A)= 41,P(B)=3 2,P(AB)=61 ,则概率P(A+B)=__. 4.设A,B 为两个事件,且已知概率P(A)=0.4,P(B)=0.3,若事件A,B 互斥,则概率P(A+B)= __. 5.设A,B 为两个事件,且已知概率P(A)=0.8,P(B)=0.4,若事件A ?B ,则条件概率P(B A )=__. 6.设A,B 为两个事件,若概率P(B)= 103,P(B A )=61 ,P(A+B)=5 4,则概率P(A)=__. 7.设A,B 为两个事件,且已知概率P(A )=0.7,P(B)=0.6,若事件A,B 相互独立,则概率P(AB)=__. 8.设A,B 为两个事件,且已知概率P(A)=0.4,P(B)=0.3,若事件A,B 相互独立,则概率P(A+B)=__. 9.设A,B,C 为三个事件,且已知概率P(A)=0.9,P(B)=0.8,P(C)=0.7,若事件A,B,C 相互独立,则概率P(A+B+C)=__. 10.设A,B 为两个事件,若概率P(B)=0.84,P(A B)=0.21,则概率P(AB)=__. 11.设离散型随机变量X 的概率分布如下表 c c c c P X 4322101- 则常数c =__. 12.已知离散型随机变量X 的概率分布如下表 4 14121P 3 21X 则概率P {3

第六章概率分布

智力的分布呈正态分 布,已知某人的IQ分 已知某人的IQ分 IQ 数为130分,那么分 数为130分 130
心理统计学测验中有 10道正误判断题, 10道正误判断题,如 道正误判断题 何才能了解学生对所 测内容真正掌握了还
数比他低的人有多 是仅仅是猜测。 是仅仅是猜测。 少?
第一节
概率的基本概念 随机事件
第一节
概率的基本概念
每次试验可能出现也 可能不出现的事件
后验概率 先验概率
第二节
正态分布
对随机事件进行 n次观察,其中 次观察, 次观察 某一事件A出现 某一事件 出现 次数 m与n的比值 与 的比值
概率
随机事件出现 可能性大小的 客观指标 在特殊情况下 直接计算的比 是真实的, 值,是真实的, 而不是估计值
第三 节
抽样分布
实验的每种可能结果是有限的 每一基本事件出现的可能性相等
第一节
概率的基本概念
互不相容事件
必然事件的 指在一次观测中不 概率为1 概率为 能同时发生的事件
?
A B 加法
任何一个随机 不可能事件
定理
事件A的概率 事件 的概率
概率的公理性质
都是非负的
的概率为0 的概率为
? 两个互不相容的事件 之和的概率为两个事 件概率之和。 件概率之和。
1

?
三、概率的分布类型
独立事件
指一个事件的出现对 另一个事件的出现不 发生影响
A
B
乘法 定理
? 两个独立事件同时发生的概 率等于这两个事件各自出现 概率的乘积。 概率的乘积。
概率分布 随机变量
一次试验的结果 的数值性描述 指用数学方法( 指用数学方法(函数 )对随机变量取值的 分布情况加以描述
三、概率的分布类型
概率分布的理解 例如,投掷一枚硬币, 例如,投掷一枚硬币,出现正面和反面的频 的增大, 率,随着投掷次数 n 的增大,出现正面和反 面的频率稳定在1/2 1/2左右 面的频率稳定在1/2左右
正面 /试验次数 1.00 0.75 0.50 0.25 0.00 0 25 50 75 试验的次数 100 125
概率的分布类型
离散型随机变量: 离散型随机变量:
离散分布
离散随机变量
随机变量 X 取有限个值或 所有取值都可以逐个列举出来 X1 ,X2,… ,
的概率分布
以确定的概率取这些不同的值
连 续 性
连续型随机变量
连续分布
连续随机变量 的概率分布
取无限个值, 随机变量 X 取无限个值,所有可 能取值不可以逐个列举来, 能取值不可以逐个列举来,而是 取数轴上某一区间内的任意点
概率的分布类型
根据观察或 实验所获得 的数据而编 制的次数分 布或相对频 率分布
经 验 分 布
分布 函数 的 来源
理 论 分 布
1.随机变量概 随机变量概 率分布的函 数—数学模型 数学模型 2.按某种数学 按某种数学 模型计算出的 总体次数分布
理论分布中 描述构成总 体的基本变 量的分布
基本 随机 变量 分布
数据 特征
抽 样 分 布
样本统计量 的理论分布
2

相关主题
文本预览
相关文档 最新文档