当前位置:文档之家› 电力牵引供电系统课设

电力牵引供电系统课设

电力牵引供电系统课设
电力牵引供电系统课设

电力牵引供电系统课程设计

专业:电气工程及其自动化

班级:电气1103

姓名:

学号:

指导教师:

兰州交通大学自动化与电气工程学院

2014 年7月14日

1

1 设计原始题目

1.1 具体题目

分析比较牵引变电所固定电容补偿的方法及补偿容量计算。(变电所容量为50MV A ,功率因数为0.6。)

1.2 要完成的内容

对牵引变电所固定电容补偿的方法进行分析比较并得出容量的计算方法,根据题目中的假设条件进行补偿容量的具体计算。

2 设计课题的计算与分析

2.1 电容补偿

电容补偿就是无功补偿或者功率因数补偿。电力系统的用电设备在使用时会产生无功功率,而且通常是电感性的,它会使电源的容量使用效率降低,而通过在系统中适当地增加电容的方式就可以得以改善。

根据线路运行的情况作相应投入或切除电容量的调整的补偿方式称为自动补偿。

不根据线路运行的情况直接决定投入固定的电容量的补偿方式称为固定补偿。

2.2 固定电容补偿的方法

2.2.1 并联补偿

(1)并联补偿的原理

①无功补偿方面

图2.1为补偿前后的向量图。图中U 为电网电压, I 和I '为电网输入电流,Z

I 为牵引负荷电流。在无电容补偿的情况下电网输入电流为Z

I I =。不考虑损耗时,I 可分为有功电流R I 和无功电流L I 两个分量, R I 与电压U 同相位, L

I 比电压向量U 滞后°90,所以总电流向量I 滞后于电压向量一个角度?(?又叫功率因数角 )。当系统感性阻值较大时,功率因数角很大,影响电网性能 。

2

改善这一性能的方法是将电容器(组)并联接于感性负荷回路中(如图2.2

所示),此时电网电流I '为C Z I I +。电容器回路将产生按正弦交变的容性电流C

I ,超前于电压向量U 为 90°, 在向量方向上与L

I 恰好相反,从而可以抵消(补偿)一部分感性电流。在图2.1中L I 变为L

I ',电网输入电流I 变为I ',功率因数角?变小为'?, 则功率因数?cos 提高 。

当C

I 等于L I 时,称为全补偿。此时无功电流L I 为零,?角为零,则功率因数?cos 提高为1。此时,电网输入电流I 等于R I 。

并非功率因数越高越好。?cos 过高即无功过低会减少系统的无功裕量,影响发电机的稳态稳定性。而且如果将功率因数补偿的过高,在超过0.95以后,每增加一点功率因数,补偿容量将大幅增加,但是带来的线损的降低不明显,所以一般目标功率因数在0.95左右即可满足。

图2.1 并联补偿向量图 图2.2 并联补偿接线图

②电压损失方面

通过补偿无功功率减小电压损失。如公式2.1。

N

-U X Q Q PR U C )(+=? (2.1) 具体说明见下公式2.2。

(2)并联补偿的分类

根据电容补偿装置在牵引变电所内的安装部位,并联电容补偿装置有以下三种安装方案:

①牵引侧滞后相集中补偿

②牵引侧两相等容量补偿

③牵引侧两相不等容量补偿

这三种方案要根据电气化铁道的具体情况,进过经济技术比较后选用。

3

一般考虑以下几点:

①改善负序的影响及滤波的好坏。

②提高三相功率因数的平衡程度。

③降低牵引变压器的电能损失。

综合考虑补偿和滤波的效果,优先采用两项补偿(可使两供电臂牵引负荷中的谐波电流都能略去一部分)。再考虑供电臂的不同相位,实行两臂不等量补偿。

因一般情况下滞后相功率因数比引前相低,故采用滞后相多补,引前相少补的原则。

(3)并联补偿的主接线

适用于直供、带回流线的直供、BT 供电方式的牵引变电所并联电容补偿主接线图如图2.3所示。

适于AT 供电方式的牵引变电所并联电容补偿主接线图如图2.4所示。

图2.3 主接线图a 图2.4 主接线图b

图中主要设备有:

①并联电容器组C :用于无功补偿

②串联电抗器L :限制合闸时的涌流和分闸时的重燃电流。与电容器组匹配,滤掉一部分谐波电流。发生短路时,保护电容补偿装置。

4

③断路器QF :切投电容补偿装置。

④隔离开关QS :便于维护检查。

⑤电压互感器TV 、TV2:实现装置的继电保护,并在电容器组退出运行时放电。

⑥电流互感器TA1、TA2:实现装置的继电保护。

⑦避雷器F :实现装置的过电压保护。

⑧熔断器FU :实现单台电容器的保护。

(4)并联补偿的总结

并联电容补偿的主要目的:提高功率因数,减小电能损失,改善电压质量。 并联电容补偿的优点有:结构简单,经济方便。

并联电容补偿的缺点有:补偿容量固定,易造成过补或欠补。

2.2.2 串联补偿

(1)串联补偿的原理

①无功补偿方面

在长距离输电线路中,由于串联电容器与线路电感串联在一起,故流过他们的电流相同。电容器的电压滞后电流°90,电感的电压超前电流°90,因此电容电压就与电感电压正好相反相互抵消。降低了线路的无功电压。

一般不用串联补偿补偿无功,原因如下:

<1>运行维护成本高,复杂。

<2>串联电容对系统电流有限制。

<3>串联电容容易引起串联谐振(L C X X ),导致系统崩溃。

②电压损失方面

串联补偿电路结构示意如图2.5所示。

图2.5 串联补偿接线图

图中R 、L 为线路阻抗,C 为补偿电容。由于电力线路存在着阻抗,当负载电流通过线路时就要产生电压损失,电压损失按公式2.2计算。

5

N

U QX PR U +=? (2.2) 式中:

P ——输送的有功功率,kW ;

R ——线路阻阻,Ω;

Q ——输送的无功功率,kW ;

X ——线路电抗,Ω;

N U ——线路额定电压,kV 。

可以看出,影响电压损失的有P 、R 、Q 、X 四个因素,串联电容器主要从补偿电抗的角度来改善系统电压。由于系统电抗呈电感性,故串联电容器的容抗可以补偿一部分系统电抗,补偿后的电压损失可按公式2.3计算。

N

U -+=Δ)(C L X X Q PR U (2.3) 由此式可知,串联补偿电容器电抗C X 越大 , 电压损耗就越小。采用串联补偿对于发展特高压、大功率、长距离输电的系统而言,在改善系统参数,减小线路电抗,提高系统稳定性等方面都有一定作用 。

串联补偿的效果估算如公式2.4。

?sin max C

X I U '='? (2.4) 式中:

max I ——通过电容器组的最大电流,A ;

C X ′——电容器组的容抗,Ω;

?——功率因数角,°

。 (2)串联补偿的分类

处于对故障时检修方便性的考虑,串联补偿一般有单H 接线和多H 接线两种形式。(多H 便于检修,但对电容器的配平要求较高)

(3)串联补偿的主接线

串联电容补偿的主接线如图2.6所示。

图中主要设备有:

①串联电容器组C :用于电压补偿

②隔离开关QS :与QF 配合切投电容补偿装置。

③保护间隙F :发生短路时击穿该间隙保护电容器组。F 的整定值大于等于电

容器额定电压的2.5倍。

QS1

图2.6串联补偿主接线图

④旁路断路器QF:为短路电流提供旁路。

⑤电路互感器TA:检测F的电流并控制QF。

⑥电抗器L:为工频短路电流提供通道,使其不大量从R上流过。(一般L

的感抗<

⑦电阻R:为C的放电电流提供通道。

(4)串联补偿的总结

串联电容补偿的主要目的:改善供电臂电压水平。

串联电容补偿的优点有:可实现无惯性补偿。

并联电容补偿的缺点有:增加变电所的复杂性,加大实验、检修的工作量和工程投资,仅适用于高压系统。

2.2.3 两种补偿的比较

①在连接方式方面:并联补偿把电容器与负荷并联,串联补偿是把电容器与线路感抗串联。

②在补偿无功方面:并联补偿补偿无功电流,串联补偿补偿无功电压。

③在降低电压损耗方面:并联补偿补偿线路无功功率,串联补偿补偿线路电抗。

④在补偿效果方面:并联只能实现固定补偿,串联可实现无惯性补偿。

⑤在应用方面:并联电容器占多数,在个别高压线路需要提高输送能力和提高稳定性时,才考虑串联补偿。

3 补偿容量的计算

3.1 串联补偿

6

7

串联补偿电容器组补偿容量计算如公式3.1.1。

Ce mnQ Q C = (3.1.1)

式中:

m ——电容器组的并联支路数,计算见公式3.1.2;

n ——每条支路串联的电容器数,计算见公式3.1.3;

Ce Q ——每台电容器的额定容量,kVA 。

Ce

max I I m = (3.1.2) 式中:

max I ——通过电容器组的最大电流,A ;

Ce I ——每台电容器的额定电流,A 。

?

sin Ce C C U U U n ?== (3.1.3) 式中:

C U ——电容器组的电压,V ;

Ce U ——每台电容器的额定电压,V ;

C U Δ——需要补偿的电压损失,V ;

?——牵引负荷的功率因数角,°

。 3.2 并联补偿

无防倒(倒送无功)要求时,并联补偿电容器组补偿容量计算如公式3.2.1。

)tg -tg (21??L X P Q = (3.2.1)

式中:

L P ——牵引变电所负荷平均有功功率,计算见公式3.2.2,kW ;

21??、——补偿前、后功率因数角,°

。 1N P cos φU I P L = (3.2.2)

式中:

P I ——供电臂平均电流,A ;

N U ——牵引变电所母线额定电压,kV 。

有防倒要求时,并联补偿电容器组补偿容量计算如公式3.2.3。

8

21-11)tg -tg (q P Q L X ??= (3.2.3) 式中:

0q ——牵引变电所的无电概率。

3.3 并联补偿的具体计算

串联补偿需知道部分线路参数,故无法具体计算。未给出并补装置参数则只能计算无防倒要求的并联补偿,假设补偿后功率因数为0.9。具体计算如下:

①kW 1030.61050cos cos 4311N P ?=??===φQ φU I P L

②?==13.536.0cos 1-1)(? ?==84.259.0cos 1-1)(?

③kvar 2547084.25tg -13.53tg 103)tg -tg (421=????==)(??L X P Q

4 小结

电网中的电力负荷如电动机、变压器等,大部分属于感性负荷,在运行过程中需向这些设备提供相应的无功功率。在电网中安装并联电容器等无功补偿设备以后,可以提供感性负载所消耗的无功功率,减少了电网电源向感性负荷提供、由线路输送的无功功率,由于减少了无功功率在电网中的流动,因此可以降低线路和变压器因输送无功功率造成的电能损耗,这就是无功补偿。

串联补偿技术是随着高电压、长距离输电技术的发展而发展的一种新兴技术。交流输电线路串联补偿是现代电力电子技术在高电压、大功率领域应用的典范,其中可控串补技术使整个输电线路的参数变成可以动态调节。串补和可控串补技术可以补偿线路的分布电感,提高系统的静、动态稳定性,改善线路的电压质量、加长送电距离和增大输送能力。目前,串联补偿的主要应用领域是农网配电、高电压长距离输电和电气化铁路供电。

参考文献

[1] 孙春霞.电路分析基础[M].北京:中国铁道出版社,2011:214-217.

[2] 李彦哲,胡彦奎,王果等.电气化铁道供电系统与设计[M].兰州:兰州大学出版社,2006:99-115.

[3] 于永源,杨绮雯.电力系统分析[M].北京:中国电力出版社,2007:105-108.

9

电力牵引传动..

电力牵引传动与控制第一章电力牵引传动与控制系统概述 一、系统组成与功用 1.①内燃机车电力传动与控制系统组成 ②电力机车电力传动与控制系统组成 2.机车理想牵引特性曲线 图1.2 牛马特性 理想特性要求:机车在运行时能经常利用其动力装置的额定功率.即:F·V=3.6η·N=const.

3.电传动装置的功用? 图1.3 柴油机功率特性和扭矩特性 ①充分利用和发挥机车动力装置的功率; ②扩大机车牵引力F与速度V的调节范围; ③提高机车过载能力,解决列车起动问题; ④改善机车牵引控制性能。 Why要电传动:柴油机通过机械直接传动不能适应机车起动、过载、恒功等要求 二、系统分类 1.直-直电力传动系统 内燃或电力机车采用直流牵引发电机或直流电网直接向数台直流牵引电动机供电的传动方式。 特点: ①调速性能优良,系统简洁。 ②直流牵引电机造价较高,但可靠性、维护性相对较差。 ③受直流电机换向条件和机车限界、轴重等限制,主发电机单机功率受到限制。一般在2200KW以下。 ④车型:早期DF,DF2,DF3,ND1,ND2等

2.交-直电力传动系统 内燃或电力机车采用交流牵引发电机或单相交流网及变压器,通过整流器向数台直流牵引电动机供电的传动方式。 特点: ①采用三相交流同步发电机,结构简单,可靠性高,重量轻,造价较低。 ②适用于大功率机车。 ③车型:DF4,DF5,DF7,DF11,ND4,ND5,SS3-SS9等。 3.交-直-交电力传动系统 内燃或电力机车采用交流牵引发电机或单相交流电网及变压器,经整流器将交流电变换成直流,再通过逆变器将直流电变换成频率和幅值按列车运行控制要求变化的交流电,向数台交流牵引电动机供电的传动方式。 特点: ①采用交流牵引电机,彻底克服了直-直系统的不足,重量轻,造价低,可靠性及维修性好 ②良好的粘着性能 ③适用于大功率 ④控制系统复杂 ⑤车型:DF4DAC,NJ1; DJ,DJ2,DJJ1,DJ4; HX、CRH系列等 三、发展历史与现状 1.大功率(内然)机车电力传动与液力传动两种主要传动方式的演变与发展 主要趋势:电力传动 2.电力传动形式的发展:直-直→交-直→交-直-交 发展趋势:大功率、电力牵引、交流传动

铁路电力牵引供电设计规范

铁路电力牵引供电设计规范 TB10009—20XX (452 — 20XX 20XX年4月25日发布20XX 年4月25日实施 1总则 1为贯彻执行国家的技术经济政策,统一铁路电力牵引供电设计的技术要求,使设计做到安全适用、技术先进、节约能源、经济合理和维修方便,制定本规范。 2本规范适用于铁路网中客货列车共线运行、旅客列车设计行车速度等于或小于 160km/h、货物列车设计行车速度等于或小于120km/h的I、\级标准轨距铁路,采用单相工频绕组接入电力系统三相电网中的两相,二次侧绕组的一端接钢轨,另一端接入牵引侧母线。 单相V,结线方式,在牵引变电所设置两台双绕组单相变压器,联结成开口三角形,一次侧绕组的两个开口端和一个公共端接入电力系统三相电网,二次侧绕组将公共端与钢轨大地相连,两个开口端分别接入牵引侧母线。 三相V,结线方式,一台三相双绕组牵引变压器连接 成开口三角的结线方式。 2. 0. 4 三相一二相平衡牵引变压器 three phase—two phase bal—anced traction transformer 当一次侧就产生相位差90°的二相平衡电压,当二次侧两个供电臂负载平衡时,一次侧三相为对称系的牵引变压器。 5 三相牵引

变压器 three phase traction transformer 包括三相YN,dl1结线和YN,dl1,dl十字交叉结线牵引变压器。 YN,dl1结线为双绕组变压器,一次侧三相结线为Y型,分别接入电力系统三相电网'二次侧结线为\型,其一角和大地相连,另两角分别接入牵引侧母线。 YN,dl1,dl组成的十字交叉变压器,一次侧三相结线为Y型,二次侧dl1,dl结线的两个三角形线圈结成对顶三角形,对顶角接大地,其他各角分别接入牵引侧不同母线。 6 自稱变压器 auto—transformer 两个或多个绕组有一公共部分的变压器。 2. 0. 7 吸流变压器 booster transformer 变换比为1的变压器,其中一个绕组与接触悬挂串联,另一个绕组与绝缘回流导线串联。 2. 0. 8 并联电容补偿装置 xxpensator of paraller capacitance 并联在母线上用于提高功率因数的电容器组、放电线圈及串联电抗器等的总称。 9 分束供电 branch feeding 在枢纽的各分场中,为方便供电和检修的需要,按电化股道群不同供电分区进行供电。 2. 0. 10 电分段 sectioning

高速铁路牵引供电方式

高速铁路牵引供电方式 1.直接供电方式 电方式是指牵引变电所通过接触网直接向动车组供电,回流经钢轨及大地直接返回牵引变电所。这种供电方式的电路构成简单、设备少,施工及运营维修都较方便,造价也低。但由于接触网在空中产生的强大磁场得不到平衡,对邻近的广播、通信干扰较大,因此一般不采用。 2.BT供电方式 BT供电方式就是在牵引供电系统中加装吸流变压器(3~4 km安装一台)和回流线。这种供电方式由于在接触网同高度的外侧增设了一条回流线,回流线上的电流与接触网上的电流方向相反,因此大大减轻了接触网对邻近通信线路的干扰。采用BT供电方式的电路是由牵引变电所、接触悬挂、回流线、轨道及吸上线等组成。牵引变电所作为电源向接触网供电;动车组列车运行于接触网与轨道之间;吸流变压器的原边串接在接触网中,副边串接在回流线中。吸流变压器是变比为1∶1的特殊变压器。它使流过原、副边线圈的电流相等,即接触网上的电流和回流线上的电流相等。因此,可以说是吸流变压器把经钢轨、大地回路返回变电所的电流吸引到回流线上,经回流线返回牵引变电所。这样,回流线上的电流与接触网上的电流大小基本相等、方向相反,故能抵消接触网产生的电磁场,从而起到防干扰作用。 理论上的理想情况是这样的,但实际上由于吸流变压器线圈中总需要励磁电流,经回流线的电流总小于接触网上的电流,因此不能完全抵消接触网对通信线路电磁感应的影响。另外,当机车位于吸流变压器附近时,回流还是从轨道中流过一段距离,至吸上线处才流向回流线,该段回流线上的电流会小于接触网上的电流,这种情况称为半段效应。此外,吸流变压器的原边线圈串接在接触网中,所以在每个吸流变压器安装处,接触网必须安装电分段,这样就增加了接触网的维修工作量和事故率。当高速大功率机车通过该电分段时会产生很大的电弧,极易烧损机车受电弓和接触线。BT供电方式的牵引网阻抗较大,造成较大的电压

高速铁路牵引供电系统

第二章高速铁路牵引供电系统 第一节电气化铁路的组成 由于电力机车本身不带原动机,需要靠外部电力系统经过牵引供电装置供给其电能,故电气化铁路是由电力机车和牵引供电系统组成的。 牵引供电系统主要由牵引变电所和接触网两部分组成,所以人们又称电力机车、牵引变电所和接触网为电气化铁道的三大元件。 一、电力机车 (一)工作原理 电力机车靠其顶部升起的受电弓和接触网接触获取电能。电力机车顶部都有受电弓,由司机控制其升降。受电弓升起时,紧贴接触网线摩擦滑行,将电能引入机车,经机车主断路器到机车主变压器,主变压器降压后,经供电装置供给牵引电动机,牵引电动机通过传动机构使电力机车运行。 (二)组成部分 电力机车由机械部分(包括车体和转向架)、电气部分和空气管路系统构成。 车体是电力机车的骨架,是由钢板和压型梁组焊成的复杂的空间结构,电力机车大部分机械及电气设备都安装在车体内,它也是机车乘务员的工作场所。 转向架是由牵引电机把电能转变成机械能,便电力机车沿轨道走行的机械装置。它的上部支持着车体,它的下部轮对与铁路轨道接触。 电气部分包括机车主电路、辅助电路和控制电路形成的全部电气设备,在机车上占的比重最大,除安装在转向架中的牵引电机之外,其余均安装在车顶、车内、车下和司机室内。 空气管路系统主要执行机车空气制动功能,由空气压缩机、气阀柜、制动机和管路等组成 (三)分类 干线电力牵引中,按照供电电流制分为:直流制电力机车和交流制电力机车和多流制电力机车。交流机车又分为单相低频电力机车(25Hz或16 2/3Hz)和单相工频(50Hz)电力机车。单相工频电力机车,又可分为交--直传动电力机车和交—直—交传动电力机车。 二、牵引变电所 牵引变电所的主要任务是将电力系统输送来的110kV三相交流电变换为(或55)kV单相电,然后以单相供电方式经馈电线送至接触网上,电压变化由牵引变压器完成。电力系统的三相交流电改变为单相,是通过牵引变压器的电气接线

铁路牵引网的供电方式与接触网结构

铁路牵引网的供电方式与接触网结构 1 牵引网的供电方式 铁路牵引供电系统的主要功能是将地方电力系统的电能引入牵引变电所,通过牵引变电所和接触网等,向电力机车提供持续电能。牵引网主要由馈电线、接触网、钢轨、回流线组成。馈电线(Feeder)是指从牵引变电所母线连接出来连接到接触网之间的传输导线。接触网(Catenary)悬挂在铁道钢轨线正上方,对地标称电压27.5kV,是沿电气化铁路架空敷设的供电网,通过受电弓向电力机车或动车组提供电能。接触网主要由承力索、吊弦、接触线组成,接触线与路轨轨面的高度通常为 6.5m。牵引网供电方式主要有:直接供电方式、BT供电方式、AT供电方式、CC供电方式。目前我国高速铁路和客运专线普遍采用带回流线的AT 供电方式。 1.1 AT供电方式 AT(Auto-Transformer)供电方式的即自耦变压器供电方式,AT 供电方式具有更好的防干扰效果和更大的牵引能力,目前我国高速铁路和载重铁路基本使用AT 供电模式,牵引变电所的进线电源为交流110kv或220 kV,出线电压为交流2×27.5 kV。牵引变电所主变压器输出二次侧分别接于牵引馈线(T)相和(F)相,每隔10~15km 设立一个自耦变压器所,并联接入牵引网中,变压器的首端和尾端与接触网的(T)相和(F)相相连,绕组的中点与钢轨相连接。接触网和正馈线中的电流大小相等,方向相反,且电流大小仅为电力机车电力的一半,减少了电弧对接触网烧伤和受电弓滑板等问题,对邻近通信线路的干扰大大降低。与其它供电方式相比,线路上的电压降可以减少一半,因此供电臂可延长一倍,达到50km—60km。采用AT 供电方式无需加强绝缘就能使供电回路的电压提高一倍,在AT 区段电力机车是由前后两个AT 所同时并联供电,因此适宜与高速铁路和重载铁路等大负载电流运行。 图1 A T供电方式 2 接触网结构 高速铁路接触网功能是从牵引变电所引入电能,并将电能输送到沿铁路钢轨运行的电力机车的受电弓上。接触网主要包括支柱和导线,导线包括传输线(T 线)、承力索、正馈线(F

最新电气化铁路牵引供电系统试卷1

电气化铁路供电系统 试卷1一、单项选择题(在 每小题的四个备选答案中,选出一个正确的答案,并将其代码填入题干后的括号内。每小题1分,共20分) 1.我国电气化铁道牵引变电所由国家( )电网供电。 ( ) A 超高压电网 B 区域电网 C 地方电网 D 高压电网 2.牵引网包括 ( ) A 馈电线、轨道和大地、回流线 B 馈电线、接触网、轨道和大地、回流线 C 馈电线、接触网、回流线 D 馈电线、接触网、电力机车、大地 3.通常把( )装置的完整工作系统称为电力系统。 ( ) A 发电、输电、变电、配电、用电 B 发电、输电、配电、用电 C 发电、输电、配电、 用电 D 发电、输电、用电 4.低频交流制牵引网供电电流频率有:( ) ( ) A 50Hz 或25Hz B 30Hz 或50Hz C 2 163 Hz 或25Hz D 20Hz 或25Hz 5.单相结线牵引变电所牵引变压器的容量利用率(额定输出容量与额定容量之比值)可达( )。 ( ) A 100% B 75.6% C 50% D 25% 6.牵引变压器采用阻抗匹配平衡变压器时,阻抗匹配系数等于1时, 且副边两负荷臂电流I I αβ=&&,原边三相电流( ) ( ) A 平衡 B 无负序电流 C 对称 D 有零序电流 7.交流牵引网对沿线通信线的静电影响由( )所引起。 ( ) A 牵引网电流的交变磁场的电磁感应 B 牵引网电场的静电感应 C 牵引网电场的高频感应 D 牵引电流的高次谐波 8.牵引网导线的有效电阻0r r ξ=(0r 是直流电阻;ξ是有效系数)。对于

工频和牵引网中应用的截面不太大的铝、铜等非磁性导线,有效系数ξ( )。 ( ) A ξ≈1 B ξ≈2 C ξ≈3 D ξ≈4 9.以下不属于减少电分相的方法有( )。 ( ) A 采用单相变压器 B 区段内几个变电所采用同相供电 C 复线区段内采用变电所范围内同行同相,上、下行异相 D 采用直供+回流线供电方式 10.对于简单悬挂的单线牵引网,1z 、2z 和12z 分别表示接触网—地回路, 轨道—地回路的自阻抗及两回路的互阻抗,牵引网的等值单位阻抗z ( )。 ( ) A 2 12 21 z z z - B 12212z z z z - C 12221 z z z z - D 212 12 z z z - 11.单链形悬挂的单线牵引网比简单悬挂相比多了一条( )。 ( ) A 承力索 B 接触网 C 回流线 D 加强导线 12.根据国家标准《铁道干线电力牵引交流电压标准》的规定,铁道干线 电力牵引变电所牵引侧母线上的额定电压为( )kV 。 ( ) A 27.5 B 25 C 20 D 19 13.牵引网的电压损失等于牵引变电所牵引侧母线电压与电力机车受电弓 上电压的 ( ) A 平方差 B 算数差 C 向量差 D 平均值 14.牵引网当量阻抗Z 为 ( ) A sin cos R X ??+ B cos sin R X ??+ C sin R X ?+ D cos R X ?+ 15.对于三相结线变压器,应以( )向轻负荷臂供电为宜。 ( ) A 任一相 B 引前相 C 滞后相 D 以上答案都不对 16.牵引供电系统的电能损失包括( )。 ( ) A 电力系统电能损失,牵引网电能损失 B 电力系统电能损失,牵引变电所电能损失 C 牵引网电能损失,牵引变电所电能损失 D 牵引变电所电能损失,馈线电能损失 17.按经济截面选择接触悬挂,如果增大导线截面引起的一次投资增量,

铁路电力牵引供电设计规范

第二篇接触网施工 第十二章接触网平面图 接触网平面布置图是接触网主要设计文件之一,是施工中应用最广的重要设计依据,认真弄懂 和记清这些图例,学会看平面布置图对于我们掌握和了解线路情况,指导施工是非常重要的。 第一节接触网图例 接触网的各种设计图是以机械制图或工程制图学为基础,加上接触网的各种特殊制图标记所组成,接触网图例: 第二节接触网平面布置图 识别接触网的平面布置图是掌握接触网施工的最基本技巧之一,除了要懂得接触网的图例及工程制图处,还要对接触网专业表示方式有一定的了解,下面分别介绍站场、区间及隧道内接触网平面布置图。 一、站场接触网平面布置图 站场接触网平面布置图实际路状态相符,其比例一般大站为1:1000,小站为1:2000。 站场接触网平面布置图上应包括: 1、全部电化股道(近期及远期)、与接触网架设有关的非电化股道。 2、股道编号及线间距、(股道编号应与运营部门编号一致)。 3、道岔编号、型号及出站道岔的中心里程(道岔编号与型号应与实际状况相符,不符的需做出说明); 4、曲线起讫点,半径和缓和曲线长度及总长; 5、桥梁名称、中心里程、总长、孔跨式样及结构型式; 6、隧道名称、起讫里程及总长; 7、涵管、虹吸管、平交道、地道、天桥、跨线桥、架线渡槽等中心里程及高度、宽度; 8、站场的名称、中心里程、站台范围及与架设接触见解关的建筑物(如站舍、雨棚、仓库、搬道房、水鹤、起、煤台及上下挡墙等); 9、进站信号机的位置及里程。 站场平面布置图图面上应主要内容有: 1、支柱(钢柱、钢筋混凝土柱)跨距、位置、号码及数量。 2、支柱类型及侧面限界。 3、锚段号、锚段长度及起讫杆号、下锚方式; 4、地质备件、基础及横卧板。 5、拉出值(拉出方向、拉出值大小)及导线高度; 6、支持装置及安装图号、软横跨节点; 7、设备安装及其位置(结、限界门、避雷器、隔离开关分段分相绝缘器等); 8、附加导线的走向、位置;设备及安装图号; 9、起测点位置及校核点; 站场接触网平面布置图中的说明应包括:

铁路牵引供电系统实习总结

天津铁道职业技术学院 毕业环节总结 电气化铁道技术专业毕业总结 系部铁道动力系 班级电气化铁道技术1207班 姓名魏子涵 完成日期 2015年5月31日

电气化铁道技术毕业实习总结 魏子涵 时间就像白驹过隙一样,很快的三年的大学生活就要落幕,这三年的学习生活充满的各种滋味,有欢笑有汗水,生活就是这样,每一段时间都有不一样的事情发生,这三年是十分充实的,也是这三年的时间,促使我从一个学生不断的转变,让我不断的在探索中融入这个社会。大学生活即将结束时,感谢学校和单位给我们提供一个实习机会,让我在实践中更好地掌握从书本中学习的专业知识感受企业和社会文化,帮助我在将来的工作中更好地适应和发挥。 一、实习概况 (一)实习时间 2014年12月1日—15年5月31日 (二)实习地点兰州铁路局兰州供电段 (三)实习基本内容:在兰州供电段实习期间,主要学习供电段日常安全及工作是注意事项和铁路牵引变电所一、二次设备的绝缘测试以及接触网的维护与检修。 二、实习具体过程 (一)接触网部分 1.接触网工作基本知识的学习 通过对铁路安全文件的学习,我了解到接触网工必须实行安全等级制度, 经过考试评定安全等级, 取得安全合格证之后, 方准参加接触网的运行和检修工作。 接触网工分工较细, 同为接触网工岗位, 根据工作性质、安全等级的不同, 分为工作票填发人、工作领导人、监护( 工作监护、验电接地监护) 人、操作人、要令人、车梯负责人、防护人等。 工作职责也相应分为接触网工作票签发人工作职责、接触网工作领导人工作职责和作业组成员(包括监护、操作、要令、防护、车梯负责人等; 工作票签发人可以是作业组成员参加作业, 但必须履行作业组成员的工作职责) 工作职责。 2 .接触网日常工作 在师傅的指导下,我们学习了:

铁路电力牵引供电工程预算_实训(范本)

示范表:北京至上海铁路电气化改造铁路工程中上海枢纽站接触网工程个别概(预)算表(08级电化一班向丽敏02号)

出师表 两汉:诸葛亮 先帝创业未半而中道崩殂,今天下三分,益州疲弊,此诚危急存亡之秋也。然侍卫之臣不懈于内,忠志之士忘身于外者,盖追先帝之殊遇,欲报之于陛下也。诚宜开张圣听,以光先帝遗德,恢弘志士之气,不宜妄自菲薄,引喻失义,以塞忠谏之路也。 宫中府中,俱为一体;陟罚臧否,不宜异同。若有作奸犯科及为忠善者,宜付有司论其刑赏,以昭陛下平明之理;不宜偏私,使内外异法也。 侍中、侍郎郭攸之、费祎、董允等,此皆良实,志虑忠纯,是以先帝简拔以遗陛下:愚以为宫中之事,事无大小,悉以咨之,然后施行,必能裨补阙漏,有所广益。 将军向宠,性行淑均,晓畅军事,试用于昔日,先帝称之曰能”是以众议举宠为督:愚以为营中之事,悉以咨之,必能使行阵和睦,优劣得所。 亲贤臣,远小人,此先汉所以兴隆也;亲小人,远贤臣,此后汉所以倾颓也。先帝在时,每与臣论此事,未尝不叹息痛恨于桓、灵也。侍中、尚书、长史、参军,此悉贞良死节之臣,愿陛下亲之、信之,则汉室之隆,可计日而待也壬。 臣本布衣,躬耕于南阳,苟全性命于乱世,不求闻达于诸侯。先帝不以臣卑鄙,猥自枉屈,三顾臣于草庐之中,咨臣以当世之事,由是感激,遂许先帝以驱驰。后值倾覆,受任于败军之际,奉命于危难之间,尔来二十有一年矣。 先帝知臣谨慎,故临崩寄臣以大事也。受命以来,夙夜忧叹,恐托付不效,以伤先帝之明;故五月渡泸,深入不毛。今南方已定,兵甲已足,当奖率三军, 北定中原,庶竭驽钝,攘除奸

凶,兴复汉室,还于旧都。此臣所以报先帝而忠陛下之职分也。至于斟酌损益,进尽忠言,则攸之、祎、允之任也。 愿陛下托臣以讨贼兴复之效,不效,则治臣之罪,以告先帝之灵。若无兴德之言,则责攸之、祎、允等之慢,以彰其咎;陛下亦宜自谋,以咨诹善道,察纳雅言,深追先帝遗诏。臣不胜受恩感激。 今当远离,临表涕零,不知所言。

牵引供电系统简介.

牵引供电系统简介 (丁为民) 一、系统功能 牵引供电系统的主要功能是:将地方电力系统的电源(交流电气化铁路: AC110 kV或AC220kV ,城市轨道交通:中心变电所AC220kV 或AC110kV →AC35 kV 环网)引入牵引供电系统的牵引变电所,通过牵引变压器变压为适合电力机车运行的电压制式(交流电气化铁路:AC25kV 或AC2×25kV ,城市轨道交通:DC750V 、DC1500V 或DC3000V ),向电力机车提供连续电能。 电力牵引负荷为一级负荷,引入牵引变电所的外部电源应为两回独力可靠的电源,并互为热备用,能够实现自动切换。 交流电气化铁路及城市轨道交通牵引供电系统简图分别如图1.1和图1.2所示。 图1.1 交流电气化铁路牵引供电系统

图1.2 城市轨道交通牵引供电系统 二、牵引网供电方式 1. 交流电气化铁路 交流电气化铁路牵引网供电方式大体上可分为三种:直接供电方式(包括带回流线的直接供电方式)、BT 供电方式和AT 供电方式。 (1)直接供电方式 直接供电方式又可分为不带回流线直接供电方式(图2.1 和带回流线的直接供电方式(图2.2 两种。 图2.1 不带回流线的直接供电方式

图2.2 带回流线的直接供电方式 不带回流线的直接供电方式在我国早期的电气化铁路中采用,机车电流完全通过钢轨和大地流回牵引变电所,牵引网本身不具备防干扰功能。在接地方面,每根支柱需单独接地(设接地极或通过火花间隙),或者通过架空地线实现集中接地(架空地线不与信号扼流圈中性点连接)。 带回流线的直接供电方式,机车电流一部分通过钢轨和大地流回牵引变电所(约70%),其余通过回流线流回牵引变电所(约30%)。由于流经接触网的电流和流经回流线的电流虽然大小不等,单方向相反,且安装高度比较接近,两者对铁路沿线通讯设施的电磁干扰影响趋于抵消,因此牵引网本身具备防干扰功能。在接地方面,接触网支柱通过回流线实现集中接地,回流线每隔一个闭塞分区通过吸上线(铝芯或铜芯电缆,常用VLV-70和2xVLV-150)与信号扼流圈中性点连接(吸上线间距3~4km )。 (2) BT 供电方式 BT (Boost Transformer)供电方式又称吸流变压器供电方式,也是在我国早期电气化铁路中有采用,其主要目的是为了提高牵引网防干扰能力,但随着通讯线路电缆化和光缆化,防干扰矛盾越来越不突出,其生命力也已大大降低,该种供电

某版高速铁路电力牵引供电工程施工技术指南1

1总则 1.0.1为指导高速铁路电力牵引供电工程施工,统一主要技术要求, 加强施工管理,保证工程质量,制定本技术指南。 1.0.2本指南适用于新建时速250~300km高速铁路电力牵引供电工程 施工。时速250km以下客运专线、城际铁路电力牵引供电工程施工应参照执行。 1.0.3高速铁路电力牵引供电工程施工应执行国家法律法规及相关技 术标准,严格按照批准的设计文件施工,使其符合系统功能及性能要求,保证设计使用年限正常运行。 1.0.4高速铁路电力牵引供电工程施工应从管理制度、人员配备、现 场管理和过程控制等标准化管理,实现质量、安全、工期、投资效益、环境保护、技术创新等建设目标。 1.0.5高速铁路电力牵引供电工程施工应积极推行机械化、工厂化、 专业化、信息化。 1.0.6高速铁路电力牵引供电工程施工应提高文明施工水平。 1.0.7高速铁路电力牵引供电工程邻近运营接触网线路施工、牵引变 压器运输和安装等,应结合现场实际情况,通过风险监测等程序,做好风险管理工作,并制定专项施工方案和应急预案。1.0.8高速铁路电力牵引供电工程设计文物保护时,应根据相关管理 法规和设计保护措施进行施工。 1.0.9高速铁路电力牵引供电工程施工应根据国家节约资源、节约能 源、减少排放等有关法规和技术标准,结合工程特点、施工环

境编制并实施工程施工节能减排技术方案。 1.0.10高速铁路电力牵引供电工程施工的各类人员应经过专门 培训,合格后方可上岗。 1.0.11高速铁路电力牵引供电工程中采用的设备、器材。应符合 与高速铁路设计行车速度相适应的国家标准、行业标准或有关技术规定,并有合格证件。 1.0.12高速铁路电力牵引供电工程施工时,应同步做好资料的收 集和整理,做到系统、完整、真实、准确,并应按有关规定做好归档管理工作。 1.0.13高速铁路电力牵引供电工程施工在营业线施工及有可能 影响营业线运行安全的施工时,应严格执行有关安全管理办法的规定。 1.0.14高速铁路电力牵引供电工程施工除应符合本指南外,尚应 符合国家现行有关标准的规定。 2术语 2.0.1 接触悬挂 接触网中的悬挂部分,主要由承力索、接触线、吊弦、补偿装置、悬挂零件及中心锚结等组成。 2.0.2 无交叉线岔 在道岔处两支接触悬挂不相互交叉,以锚段关节方式来满足弓网关系的线岔。 2.0.3 带辅助悬挂的无交叉线岔

地铁和电气化铁路的牵引供电系统对比分析

地铁和电气化铁路的牵引供电系统有很大区别下面就通过对电气化铁道与城轨交通供电方式比较分析来进一步说明两者供电方式的异同。以帮助人们进一步了解。 1铁路牵引供电系统的供电方式 1.1 直接供电方式 电气化铁路采用工频单相交流电力牵引制,单相交流负荷在接触网周围空间产生交变电磁场,从而对附近通信设施和无线电装置产生一定的电磁干扰。我国早期电气化铁路(如宝成线、阳安线)建设时,处于山区,地方通信技术不发达,铁路通信采用高屏蔽性能的同轴电缆,接触网产生的电磁干扰影响极小,不用采取特殊防护措施,因此上述单边供电方式亦称为直接供电方式(简称TR供电方式)。随着电气化铁路向平原和大城市发展,电磁干扰矛盾日显突出,于是在接触网供电方式上采取不同的防护措施,便产生不同的供电方式。目前有所谓的BT、AT和DN供电方式。从以下的介绍中可以看出这些供电方式有一个共同特点,即在接触网支柱田野侧,与接触悬挂同等高度处都挂有一条附加导线。电力牵引时,附加导线中通过的电流与接触网中通过的牵引电流,理论上讲(或理想中)大小相等、方向相反,从而两者产生的电磁干扰相互抵消。但实际上是做不到的,所以不同的供电方式有不同的防护效果。如图所示; 直接供电方式 1.2 吸流变压器(BT)供电方式 这种供电方式,在接触网上每隔一段距离装一台吸流变压器(变比为1:1),其原边串入接触网,次边串入回流线(简称NF线,架在接触网支柱田野侧,与接触悬挂等高),每两台吸流变压器之间有一根吸上线,将回流线与钢轨连接,其作用是将钢轨中的回流“吸上”去,经回流线返回牵引变电所,起到防干扰效果。由于大地回流及所谓的“半段效应”,BT供电方式的防护效果并不理想,加之“吸——回”装置造成接触网结构复杂,机车受流条件恶化,近年来已很少采用。如图所示 吸流变压器(BT)供电方式

哈大电气化铁路牵引供电系统情况介绍

哈大电气化铁路牵引供电系统情况介绍

————————————————————————————————作者:————————————————————————————————日期:

哈大电气化铁路牵引供电系统情况介绍哈大铁路为中国铁路网中一条重要干线,贯穿哈尔滨、长春、沈阳、大连四大枢纽,始建于1898年,为双线铁路,线路全长946.5公里。在东北乃至全国铁路运输中具有十分重要的地位。国家计委于1990年12月31日批准对哈大铁路进行电气化技术改造。2001年8月18日开通沈阳至哈尔滨段,11月30日开通沈阳至大连段,既全线开通运行。 哈大电气化铁路是我国首次系统引进具有国际先进水平的德国技术、设备和管理模式,其牵引供电系统适应200km/h高速铁路。牵引供电系统新建牵引变电所17座,架设接触网3314条公里,RTU135个,隔离开关900余台,远动控制系统设置1个主控中心和4个分控中心,设置抢修基地4个,引进接触网动态检测车1辆。开通之初成立了哈尔滨、长春、沈阳、大连4个供电中心,随着铁路改革的深入,维修体制也几经变化,现全线由沈哈两局的沈阳、长春、哈尔滨供电段担负运营管理工作。 哈大电气化工程系统引进规模大,设备技术水平新,建设速度快,自全线开通至今,系统设备性能稳定,总体质量优良,达到了项目引进的预期目的。现全面介绍如下: 一、哈大牵引供电系统特点 (一)供电方式 1、全线采用220/27.5kv单相变压器供电,牵引变压器利用率高,变电所接线简洁,接触网电分相数目少,适应高速、繁忙区段。两路进线电源,设有跨桥连接,两台主变压器互为备用。 2、采用带回流线上下行全并联直接供电方式。上下行正线的接触网在车站通过一个带短路报警互感器的柱上开关进行并联。为了改善接触网的电传输特性,沿正线贯通架设加强线和回流线,每隔1500米加强线和回流线进行一次电连接,可每隔300米上下行的回流线并联一次,以明显降低接触网阻抗值和电压降,从而加大变电所的间距,减少牵引变电所的数量,节省了工程投资,降低了运营成本。

高速铁路牵引供电系统组成

高速铁路牵引供电系统 电气化铁路的组成 由于电力机车本身不带原动机,需要靠外部电力系统经过牵引供电装置供给其电能,故电气化铁路是由电力机车和牵引供电系统组成的。 牵引供电系统主要由牵引变电所和接触网两部分组成,所以人们又称电力机车、牵引变电所和接触网为电气化铁道的三大元件。 一、电力机车 (一)工作原理 电力机车靠其顶部升起的受电弓和接触网接触获取电能。电力机车顶部都有受电弓,由司机控制其升降。受电弓升起时,紧贴接触网线摩擦滑行,将电能引入机车,经机车主断路器到机车主变压器,主变压器降压后,经供电装置供给牵引电动机,牵引电动机通过传动机构使电力机车运行。 (二)组成部分 电力机车由机械部分(包括车体和转向架)、电气部分和空气管路系统构成。 车体是电力机车的骨架,是由钢板和压型梁组焊成的复杂的空间结构,电力机车大部分机械及电气设备都安装在车体内,它也是机车乘务员的工作场所。 转向架是由牵引电机把电能转变成机械能,便电力机车沿轨道走行的机械装置。它的上部支持着车体,它的下部轮对与铁路轨道接触。 电气部分包括机车主电路、辅助电路和控制电路形成的全部电气设备,在机车上占的比重最大,除安装在转向架中的牵引电机之外,其余均安装在车顶、车内、车下和司机室内。 空气管路系统主要执行机车空气制动功能,由空气压缩机、气阀柜、制动机和管路等组成 (三)分类 干线电力牵引中,按照供电电流制分为:直流制电力机车和交流制电力机车和多流制电力机车。交流机车又分为单相低频电力机车(25Hz或16 2/3Hz)和单相工频(50Hz)电力机车。单相工频电力机车,又可分为交--直传动电力机车和交—直—交传动电力 机车。 二、牵引变电所 牵引变电所的主要任务是将电力系统输送来的110kV三相交流电变换为(或55)kV单相电,然后以单相供电方式经馈电线送至接触网上,电压变化由牵引变压器完

2010版-高速铁路电力牵引供电工程施工技术指南1

总则 1.0.1 为指导高速铁路电力牵引供电工程施工,统一主要技术要求,加强 施工管理,保证工程质量,制定本技术指南。 1.0.2本指南适用于新建时速250~300km高速铁路电力牵引供电工程 施工。时速250km 以下客运专线、城际铁路电力牵引供电工程施工应参照执行。 1.0.3 高速铁路电力牵引供电工程施工应执行国家法律法规及相关技术标 准,严格按照批准的设计文件施工,使其符合系统功能及性能要求,保证设计使用年限内正常运行。 1.0.4 高速铁路电力牵引供电工程施工应从管理制度、人员配备、现场管 理和过程控制等标准化管理,实现质量、安全、工期、投资效益、环境保护、技术创新等建设目标。 1.0.5 高速铁路电力牵引供电工程施工应积极推行机械化、工厂化、专业 化、信息化。 1.0.6 高速铁路电力牵引供电工程施工应提高文明施工水平。 1.0.7 高速铁路电力牵引供电工程邻近运营接触网线路施工、牵引变压器 运输和安装等,应结合现场实际情况,通过风险监测等程序,做好风险管理工作,并制定专项施工方案和应急预案。 1.0.8 高速铁路电力牵引供电工程设计文物保护时,应根据相关管理法规 和设计保护措施进行施工。 1.0.9 高速铁路电力牵引供电工程施工应根据国家节约资源、节约能源、 减少排放等有关法规和技术标准,结合工程特点、施工环境编制并实

施工程施工节能减排技术方案。 1.0.10 高速铁路电力牵引供电工程施工的各类人员应经过专门培训,合 格后方可上岗。 1.0.11 高速铁路电力牵引供电工程中采用的设备、器材。应符合与高速 铁路设计行车速度相适应的国家标准、行业标准或有关技术规定,并有合格证件。 1.0.12 高速铁路电力牵引供电工程施工时,应同步做好资料的收集和整 理,做到系统、完整、真实、准确,并应按有关规定做好归档管理工作。 1.0.13 高速铁路电力牵引供电工程施工在营业线施工及有可能影响营业 线运行安全的施工时,应严格执行有关安全管理办法的规定。 1.0.14 高速铁路电力牵引供电工程施工除应符合本指南外,尚应符合国 家现行有关标准的规定。 5 术语 2.0.1 接触悬挂接触网中的悬挂部分,主要由承力索、接触线、吊弦、补偿装置、悬挂零件及中心锚结等组成。 2.0.2 无交叉线岔 在道岔处两支接触悬挂不相互交叉,以锚段关节方式来满足弓网关系的线岔。 2.0.3 带辅助悬挂的无交叉线岔 在道岔处增设第三支接触悬挂,并与两支接触悬挂分别形成锚段关节,来满足弓网关系的线岔。

高速铁路牵引供电系统

高速铁路牵引供电系统 1.牵引变电所 牵引变电所是电气化铁路的心脏,其作用是将110 kV(220 kV)三相交流电变换成27.5 kV(或55 kV)单相工频交流电,并供给电力牵引网和电力机车。此外,有少数牵引变电所还需担负10 kV动力负荷。所以,牵引变电所具有3个主要功能:接受三相电能,降压分配电能,减相以单相馈出供给牵引网。 2.分区亭 在电气化铁路上,为了提高运行的可靠性,增加供电工作的灵活性,在相邻变电所供电的相邻两供电分区的分界处常用分相绝缘器断开,若在断开处设置开关设备和相应的配电装置,则组成分区亭。 在复线电气化区段,分区亭的主要功能如下: (1)使同一供电臂上的上、下行接触网并联工作或单独工作。当并联工作时,分区亭内的断路器闭合以提高接触网的末端电压;当单独工作时,断路器打开。(2)当同一供电臂上的上、下行接触网(并联工作)发生短路事故时,由牵引变电所相应的馈线断路器和分区亭中的断路器配合动作,切除事故区段,缩小事故范围;非事故区段仍可正常供电。 (3)当某牵引变电所全所停电时,可闭合分区亭中的越区隔离开关,由相邻牵引变电所向停电牵引变电所进行越区供电。 总之,分区亭的作用是:对单线牵引网,使两相邻供电臂单独工作或实现越区供电;对双线牵引网,使上、下行接触网并联,提高末端电压,缩小事故范围和实行必要时的越区供电。 3.开闭所 当远离牵引变电所的枢纽站、电力机务段等大宗负荷需要多条馈电线向这些接触网分组供电时,一般采用建立开闭所的办法来解决。开闭所是指不进行电压变换而用开关设备实现电路开闭的配电所。开闭所一般有两条进线,然后多路馈

出向枢纽站场接触网各分段供电,进线和出线均经过断路器,以实现接触网各分段停、供电的灵活运行,又由于断路器对接触网短路故障进行保护,从而可以缩小事故停电范围。开闭所的作用是增加馈线数目,将主线接触网与分支接触网分开,缩小事故范围,提高供电可靠性,保证枢纽站、站场装卸作业和接触网分组检修的灵活性和安全性;降低牵引变电所的复杂程度,还可实现上、下行扭接,保证在事故情况下供电,正常情况下扭接有利于改善牵引网电压水平,降低电能损失。

牵引供电系统教学内容

牵引供电系统 说起电气化铁路,大家可能首先想到的就是线路两旁一根根的线杆和列车头顶密如蛛网的电线吧。没错电气化铁路与普通铁路最明显的不同在于,它除了地上一条线(轨道)、还有天上一张网(接触网),是一种立体化的线路。 电力机车所需的电能来自发电厂由输电线路、变电装置、牵引用电网络、回流电路等组成的供用电系统供应。世界各国采用的供电制式各不相同,我国的电气化铁路选择了25千伏单相工频(50赫兹)交流供电制式。这种供电制式与工业生产所使用电流频率简称工频相同能使牵引动力获得最佳效果。从天上到下,一套复杂完整的大系统为电气化列车的运行提供了保证。 1电气化铁路的心脏——牵引变电所 牵引变电所是牵引供电系统的心脏,它的主要任务是将国家电力系统送来的三相高压电变换成适合电力机车使用的单相交流电。牵引变电所从国家电网引入220千伏或110千伏三相交流电将三相电转换为适合电气列车使用的单相交流27.5千伏电源并送上接触网。除此而外,它还起着供电保护、测量、控制电气设备提高供电质量,降低电力牵引负荷对公共电网影响的作用。为确保牵引供电万无一失,牵引供电系统都采用“双备份”模式,两套设备通过切换装置可以互为备用并随时处于“战备”状态,以备不时之需。 通常将变电所设备分为一次设备和二次设备,一次设备是指接触高电压的电气设备,如牵引变压器、高压断路器、高压隔离开关、高压(电压和电流)互感器、输电线路、母线、避雷器等,它们主要完成电能变换、输送、分配等功能。二次设备则主要是控制、监视、保护设备。随着科技的发展,二次设备更加的集成化和智能化,形成了牵引变电所自动化系统为牵引变电所的远动控制提供了可能。 2电气化铁路的动脉——接触网 当我们乘坐在电气化铁路的旅客列车上出行时,会看到路基两旁有一根根电杆竖立着顶端安装有单臂结构装置伸向线路侧上方且悬挂有电线,并将其固定在距轨道面一定高度的地方,在股道多的车站或编组站,悬挂结构及各种线网多如蛛网。这就是电气化铁路牵引供电系统的主要供电设备——接触网。 接触网是在露天设置,不但受到各种气象条件的影响,而且还受到电力机车行走时带来的动作用力,加上接触网又无法设置备用的条件,所以接触网的工作环境条件非常恶劣。为了保证电气化铁路可靠安全运营,接触网的结构必须经久

某铁路电力牵引供电工程质量验收记录表

电力牵引供电工程 电力牵引供电工程施工质量验收划分为单位工程、分部工程、分项工程和检验批。 单位工程按一个完整工程或一个相当规模的施工范围划分。并按下列原则确定:(1)一处变电所、分区所、开闭所、自耦变压器所为一个单位工程。(2)一个站、场或一个区间的接触网工程为一个单位工程。(3)一个供电段为一个单位工程。(4)一个调度所控制范围内的独立远动系统为一个单位工程。分部工程应按一个完整部位或主要结构及施工阶段划分。分项工程应按工种、工序、设备等划分。检验批可根据施工及质量控制和验收需要划分。 电力牵引供电工程的单位工程、分部工程、分项工程和检验批的划分及编号应符合下列各表的规定。 牵引变电所、分区所、开闭所、自耦变压器所分部工程、分项工程和检验批的划分及编号 (牵引变电所、分区所、开闭所、自耦变压器所单位工程编号1001) 接触网分部工程、分部工程、分项工程和检验批的划分及编号 (接触网单位工程编号1002)

供电段分部工程、分项工程和检验批的划分及编号 (供电段单位工程编号1003) 牵引供电远动系统分部工程、分项工程和检验批划分及编号(牵引供电远动系统单位工程编号1004)

基础检验批质量验收记录表

说明 主控项目 1.运达现场的钢筋、水泥、砂、石料,应按批次进行检验,质量应符合国家标准并应与所配制混凝土的等级相适应。 检验数量和检验方法应符合现行铁道行业标准《铁路混凝土与砌体工程施工质量验收标准》(TB10424)的规定。2.混凝土施工前,应根据设计规定强度等级进行混凝土配合比试验。 检验数量:施工单位、监理单位全部检查。检验方法:施工单位试验;检查混凝土配合比试验报告。 3.基础工程的测设位置及其顶面高程应符合设计要求,并满足下表的规定。安装组合电器(GIS)的基础的质量尚应达到下列规定: 基础施工允许偏差(mm) (1)断路器各单元本体的水平误差小于2 mm;相间水平误差小于5 mm;(2)断路器单元各组与各相关单元在纵横轴线上的误差小于5 mm或符合产品的技术规定;(3)基础预埋件及预留沟槽管道的位置应符合设计要求,并与产品技术规定保持一致;(4)GIS基础的整体水平误差小于5 mm。 检验数量:施工单位全部检查,监理单位每种抽取一处。检验方法:施工、监理单位测量检查确认,并与设计规定复核。 大型基础工程监理单位旁站监理。 4.每个主要电气设备(变压器、断路器等)基础取一组混凝土试块,其他设备及构支架基础每个工作日取不少于一组混凝土试块。主要设备及构支架表示基础的混凝土试块的抗压极限强度应符合铁道部现行《铁路混凝土与砌体工程施工质量验收标准》(TB10424)的有关规定,且不得低于设计值。 检验数量:施工单位、监理单位全部检查。检验方法:施工单位将混凝土试块与基础在同等条件下养护28天以上后,进行检测、监理单位检查混凝土配合比试验报告。 5.预埋螺栓的直径及外露长度应符合设计要求,埋设应垂直,丝扣应完好,无锈蚀现象,并符合下表的规定。基础中的其他金属预埋件结构焊接或绑扎牢固,在浇注混凝土前应进行彻底除锈,其与模板之间的最小间距应符合设计要求。 预埋螺栓和预留螺栓孔施工允许偏差范围 检验数量:施工、监理单位全部检查。检验方法:观察及测量检查。监理单位旁站监理。 一般项目 1.基础表面平整光洁、棱角完整,无跑浆、露筋等缺陷,地面以上裸露的基础不应进行外装修。 检验数量:施工单位检查全部电气设备基础、60%地面外露构架基础(但不得少于2组)。检验方法:观察检查。2.基础的外形尺寸应符合设计要求,允许偏差的范围不得超过0~+20 mm。 检验数量:施工单位全部检查。检验方法:测量检查。

电气化铁路供电系统

电气化铁路供电系统 一、电气化铁路的供电及牵引供电的定义 电气化铁路的供电系统是由发电厂集中提供电能,经变电站,通过高压输电线(110kV)传输给牵引变电所,转变成电压27.5kV或55kV送到接触网上,供给沿线运行的电力机车。 所谓牵引供电是指电力系统从铁路牵引变电所开始,向牵引接触网的供电。 二、牵引供电设备应满足的要求 随着电气化铁路的快速发展,《技规》对牵引供电设备提出了更高的要求: 1.应保证不间断行车可靠供电,牵引供电设备能力应与线路运输能力匹配,并留有余地; 2.为了满足规定的列车重量、密度和速度的要求,接触网最高工作电压为27.5kV,瞬时最大值为29kV;最低工作电压为20kV,非正常情况下不得低于19kV; 3.牵引变电所需具备双电源、双回路受电; 4.双线电气化区段应具备反方向行车条件; 5.接触网的分段应检修方便和缩小故障停电范围,枢纽及较大区段站应设开闭所,枢纽及较大区段站的负荷开关和电动隔离开关应纳入远动控制。 三、接触网导线在最大弛度时距钢轨顶面应保持的高度 接触网导线在最大弛度,至钢轨顶面的高度不超过6500mm,在区间和中间站不少于5700mm(旧线改造不少于5330mm)。在编组站、区段站和个别较大的中间站站场不少于6200mm,客运专线为5300~5500mm,站场与区间宜取一致。 四、电力线路与铁路交叉时应保持的高度 电力线路跨越非电力牵引区段铁路时,其导线最大弛度至钢轨顶面的距离: 1.500kV线路,不少于14000mm; 2.330kV线路,不少于9500mm; 3.220kV线路,不少于8500mm; 4.110kV及其以下线路,不少于7500mm。 五、电杆至线路中心的距离的规定 电力线路与铁路交叉或平行时,电杆内缘至线路中心的水平距离: 1.380V及其以下低压线路,新线不少于3000mm,既有线路不少于

相关主题
文本预览
相关文档 最新文档