Molecular physiology of plant nitrogen use efficiency and
- 格式:pdf
- 大小:129.80 KB
- 文档页数:10
植物激素在低磷响应中的作用磷是植物生长发育所必需的大量元素之一。
土壤缺磷是植物生长的限制因素之一。
植物在低磷环境下形成了一系列的生理生化适应机制。
研究发现植物激素在植物应对低磷胁迫中扮演重要的角色。
植物激素的刺激与磷胁迫之间存在着密切的联系。
笔者总结了近几年来植物激素如生长激素、乙烯、赤霉素等与低磷胁迫之间的关系的证据,作为进一步了解土壤中磷有限条件下植物激素的作用的工具。
标签:植物激素;生长激素;赤霉激素;乙烯;细胞分裂素;磷胁迫磷元素是植物生长发育所必需的大量元素之一,在植物的生命活动过程中有重要的生物学功能。
植物在长期进化过程中形成了一系列适应低磷胁迫的机制。
植物感受到低磷信号,就会经过一系列的信号转导过程调控其体内与磷相关的调节基因和结构基因的表达,从而影响植物体内的生理生化过程,并最终表现为一系列可见的特征,包括根系形态结构的变化、生理生化代谢的改变以及与菌类共生等,以最大限度吸收和利用有效磷。
以拟南芥为例,感受到低磷信号后会出现以下表现:(1)拟南芥主根的生长受抑制即主根变短;(2)侧根的数量和长度增加;(3)根毛的长度和密度也会增加;(4)植株矮小,根冠比增加,生物量降低;(5)叶片由暗绿变紫,花青素积累;(6)生长发育受阻,抗性减弱;(7)植物的营养周期变短,提前开花完成生活史等等[1-2]。
植物激素在植物的低磷响应中也起了比较重要的作用,笔者就植物激素在植物响应低磷胁迫过程中所起的作用做了综合分析。
1?生长激素在低磷响应机制中的作用生长激素的极性运输是侧根形成所必需的。
当植物生长在低磷环境中时,施加外源性生长激素能显著地抑制植物主根的生长并促进侧根的形成。
相反的,如果要在高磷环境中造成这样的根系构型则需要比低磷环境中高出10倍甚至100倍浓度的生长激素。
此外,抗生长激素的突变体axr2-1,axr3-1和axr4-1在低磷环境中表现出正常的低磷反应,而iaa28-1则能够抵抗由低磷引起的对根毛和侧根形成的刺激效应。
植物营养学的英文名词解释Introduction植物营养学是一门研究植物获取、转化和利用营养的学科。
在该领域,我们了解植物如何通过根系吸收营养、如何进行光合作用以及如何分配和利用这些营养物质。
在本文中,我们将介绍植物营养学的英文名词,并对其含义进行解释。
Mineral NutrientsMineral nutrients refer to the essential elements required by plants for their growth and development. These elements are classified into two categories - macronutrients and micronutrients. Macronutrients, such as nitrogen (N), phosphorus (P), and potassium (K), are required by plants in larger quantities, while micronutrients, such as iron (Fe), manganese (Mn), and zinc (Zn), are needed in smaller amounts. These nutrients play crucial roles in various plant functions, including photosynthesis, protein synthesis, and hormone production.PhotosynthesisPhotosynthesis is the process by which plants convert light energy into chemical energy in the form of glucose and oxygen. It is one of the most important processes in plants and is essential for their survival. During photosynthesis, plants utilize carbon dioxide (CO2) from the air, water (H2O) from the soil, and light energy from the sun to produce glucose, which serves as the primary source of energy for plant growth, cellular respiration, and the synthesis of other organic compounds.ChloroplastChloroplasts are specialized organelles found in plant cells that are responsible for photosynthesis. These structures contain chlorophyll, a pigment that captures light energy for photosynthesis. Within the chloroplasts, the light-dependent reactions occur in the thylakoid membrane, while the light-independent reactions (also known as the Calvincycle) take place in the stroma. Chloroplasts are crucial for plant growth and are particularly abundant in the leaves, where the majority of photosynthesis occurs.TranspirationTranspiration is the process through which plants lose water vapor to the atmosphere from their leaves. It occurs primarily through small openings called stomata, which are found on the surface of leaves and stems. Transpiration plays a vital role in plant physiology, as it helps in the absorption and movement of water and nutrients from the roots to the rest of the plant. Additionally, transpiration aids in maintaining appropriate leaf temperature and creating a water vapor gradient that enables nutrient uptake.Root SystemThe root system of a plant consists of the underground structures that anchor the plant in the soil and facilitate the absorption of water and nutrients. It is composed of primary and lateral roots, as well as root hairs. The main functions of the root system include anchoring the plant, absorbing water and minerals, storing nutrients, and producing hormones. The efficiency of the root system is crucial for nutrient uptake and overall plant growth.Conclusion植物营养学的英文名词解释:本文介绍了一些与植物营养学相关的英文名词,并对其含义进行了解释。
麦甜组合防控小麦赤霉病的效果韩萌萌1陈金宏1马秀凤1李洪志2昌群凤3(1宝应县植保植检站,江苏宝应225800;2宝应县柳堡镇农业农村局,江苏宝应225828;3宝应县安宜镇农业农村局,江苏宝应225801)摘要小麦赤霉病是世界性病害,不仅可造成严重减产,产生的毒素还会影响人畜健康,科学防控赤霉病意义重大。
本试验于小麦扬花初期和扬花盛期喷施2次麦甜组合(麦甜900mL/hm2+麦甜伴侣600mL/hm2),研究其对小麦赤霉病的防控效果。
结果表明:麦甜组合对小麦赤霉病防效较好,药后21d,病穗防效和病指防效均高于85%;实际产量达7125kg/hm2,较常规处理区增产5.09%,较空白对照区增产22.99%,具有一定的增产效果。
建议在赤霉病常发区,将麦甜组合与其他药剂轮换使用,以延缓抗药性的产生。
关键词小麦赤霉病;麦甜组合;防效;产量中图分类号S435.121文献标识码A文章编号1007-5739(2023)18-0101-03DOI:10.3969/j.issn.1007-5739.2023.18.026开放科学(资源服务)标识码(OSID):小麦赤霉病,别名烂穗病、烂麦头、麦穗枯、红麦头、红头瘴,致病菌是以禾谷镰刀菌(Fusarium grami-nearum Schw.)为主的多种镰刀菌,是小麦上的主要病害之一,从苗期至穗期均可发生,可引起苗腐、茎基腐、秆腐和穗腐,其中以穗腐危害最大,通常可导致小麦减产20%,大面积发生可造成小麦减产50%~60%,甚至绝收[1]。
宝应县常年小麦种植面积5.4万hm2左右,是该县两大口粮作物之一,若赤霉病防控不力,将造成严重减产和毒素超标,拉低售粮价格,甚至出现“卖粮难”的情况,不仅威胁粮食生产安全,还影响农民增收,甚至会加重公众对农产品质量安全的担忧。
因此,做好小麦赤霉病防控工作对夺取夏粮丰收、促进农业提质增效、保障经济平稳运行意义重大。
扬彩(18.7%丙环·嘧菌酯)是一种内吸性杀菌剂,具有保护和治疗双重功效,可有效防控小麦纹枯病;麦甜(20%氟唑菌酰羟胺)是一种作用于琥珀酸脱氢酶(succinate dehydrogenase,SDH)的新型吡唑羧酰胺类杀菌剂,具有安全、广谱、高效、提质增产的特性,常与麦甜伴侣(25%丙环唑)搭配销售使用,可有效防控小麦赤霉病;阿立卡(22%噻虫·高氯氟)是高效氯氟氰菊酯与噻虫嗪复配的杀虫剂,具有触杀和胃毒作用,可有效防控小麦蚜虫。
土 壤 (Soils), 2015, 47(2): 210–219①基金项目:中国科学院战略性先导科技专项(XDB15030200)资助。
作者简介:孙波(1968—),男,江苏南京人,博士,研究员,研究方向为土壤质量演变与农田养分循环,近期重点研究农田土壤碳氮转化微生物过程及其驱动因素。
E-mail: bsun@DOI: 10.13758/ki.tr.2015.02.004土壤–根系–微生物系统中影响氮磷利用的一些关键协同机制的研究进展①孙 波1,廖 红2,苏彦华1,许卫锋1瑀,蒋霁1(1 土壤与农业可持续发展国家重点实验室(中国科学院南京土壤研究所),南京 210008;2 华南农业大学资源环境学院,广州 510642)摘 要:根际是养分进入作物系统的门户,也是土壤-根系-微生物相互作用的微域。
根际界面过程决定了氮磷养分的供应强度和有效性,最终影响了氮磷养分的利用效率和作物生产力。
近年来,国内外在揭示农田土壤-根系-微生物系统中不同界面的养分转化、吸收和运输机制方面取得了一些新进展。
在不同时空尺度上分析了影响土壤氮磷转化微生物组成的影响因子;研究了丛枝菌根系统形成的信号机制及其对氮磷吸收的基因调控机制;从信号网络、根系质子分泌和根构型的角度系统揭示了作物根系应对根际环境氮磷养分供应的形态和生理响应机制。
未来针对根际氮磷高效利用问题,需要深入研究土壤-根系-微生物不同界面的协同机制和调控原理,在根际微域和土壤团聚体尺度开展微生物食物网及其关键功能微生物分布格局和演替规律的研究;揭示根构型对根系–微生物协同结构和功能的影响,研究养分缺乏条件下根内质子分泌和关键转运蛋白对根系生长和养分吸收的调控机制;针对粮食作物,研究根系-微生物对话中已知信号物质(如独脚金内酯和N-酰基高丝氨酸内酯)和新的信号物质(小RNA)的网络作用机制及其对多养分协同代谢的影响;最后,针对不同气候、土壤、作物类型区,提出提高氮磷利用效率的根际生物调控途径和措施。
植物NRT1.1的研究进展及其在苎麻研究中的展望侯美;喻春明【摘要】在自然条件下,硝酸盐是非固氮植物生长过程中从外界环境吸收的主要氮源.植物通过一系列硝酸盐转运蛋白实现对硝态氮的吸收与利用.NRT1.1(硝酸盐转运蛋白nitrate transporter1.1,NRT1.1)是植物根系吸收硝酸盐后第一个发挥作用的蛋白,其通过氨基酸序列中第101位苏氨酸是否发生磷酸化修饰而表现双亲和性转运功能;NRT1.1可作为一种信号分子,调控侧根的生长与发育;NRT1.1除了参与硝酸盐响应和转运过程,还参与植物对重金属的吸收.文章结合最新的研究报道,综述了植物硝酸盐转运蛋白NRT1.1的研究进展,并对其在苎麻研究中的作用进行展望,以期为提高苎麻氮同化效率与逆境抗性能力研究提供参考,并为苎麻育种提供理论依据与方向.%Under natural conditions,nitrate is the major nitrogen sources absorbed from the outside in non-nitrogen fixing plants.Plants uptake and utilize nitrate through a series of nitrate transporters,and nitrate transporter 1.1 (NRT1.1) is the first protein to play a role in roots after they absorb nitrate.It is shown that the phosphorylation of Thr101 in the amino acid sequence displays the dual-affinity nitrate transporter ofNRT1.1.NRT1.1 also can be used as a signal molecule regulating the growth and development of lateral root.NRT1.1 is not only involved in responding to nitrate and transporting it,but also involved in responding to abiotic stress.According to the latest research reports,the paper summarized the research progress of nitrate transporter NRT1.1 in plant and described its prospect in ramie research in order to provide reference for the study of nitrogen assimilation efficiency of ramie and improveramie stress resistance ability.In addition,it is aimed to provide a theoretical basis and direction for Ramie Breeding.【期刊名称】《中国麻业科学》【年(卷),期】2017(039)004【总页数】8页(P207-214)【关键词】硝酸盐;NRT1.1;转运蛋白;信号分子;苎麻【作者】侯美;喻春明【作者单位】中国农业科学院麻类研究所,长沙410205;中国农业科学院麻类研究所,长沙410205【正文语种】中文【中图分类】S563.1氮是植物生长必需的大量元素之一,在自然条件下,硝酸盐是非固氮植物从外界吸收的主要氮源。
SPECIAL SECTION: REACTIVE NITROGEN IN CURRENT SCIENCE, VOL. 94, NO. 11, 10 JUNE 2008 1394
*For correspondence. (e-mail: raghuram98@hotmail.com)
Molecular physiology of plant nitrogen use efficiency and biotechnological options for its enhancement
Ravi Ramesh Pathak1, Altaf Ahmad2, Sunila Lochab1 and Nandula Raghuram1,* 1School of Biotechnology, Guru Gobind Singh Indraprastha University, Kashmiri Gate, Delhi 110 403, India
2Department of Botany, Jamia Hamdard, New Delhi 110 062, India
Nitrogen use efficiency (NUE) in plants is a complex phenomenon that depends on a number of internal and external factors, which include soil nitrogen availabi-lity, its uptake and assimilation, photosynthetic carbon and reductant supply, carbon–nitrogen flux, nitrate signalling and regulation by light and hormones, to name a few. The molecular basis for organism-wide regulation of nitrate assimilation is not yet fully un-derstood, and biotechnological interventions to im-prove crop NUE have met with limited success so far. This article summarizes the physiological, biochemical and molecular aspects of NUE, QTL mapping studies as well as transgenic efforts to improve it in crop plants and model plants. It encompasses primary and secondary N-assimilatory pathways and their inter-play with carbon metabolism, as well as signalling and regulatory components outside the metabolic cascade. The article highlights the need for an integrated ap-proach combining fertilizer management techniques with biotechnological interventions to improve N flux and NUE for Indian crop cultivars.
Keywords: Biotechnological interventions, molecular physiology, nitrogen flux, nitrogen use efficiency.
NITROGEN (N) is one of the most critical inputs that de-
fine crop productivity and yield under field conditions, and must be supplemented to meet the food production demands of an ever-increasing population. Efficient utili-zation of fertilizer N is essential to ensure better value for investment as well as to minimize the adverse impacts of the accumulation of reactive N species in the environ-ment. The current average nitrogen use efficiency (NUE) in the field1 is approximately 33% and a substantial pro-
portion of the remaining 67% is lost into the environ-ment, especially in the intensively cropped areas2. This
concern was reflected in the recent Nanjing Declaration of the International Nitrogen Initiative (http://www. initrogen.org/nanjing_declaration.0.html), which called for immediate development of a comprehensive approach to optimize N management in every sphere of life.
Though the form and amount of N available to the plant can be improved by managing fertilizer–soil–water–air interactions, the innate efficiency of the plant to util-ize this available N has to be tackled biologically. The biological processes involved include nitrogen uptake, translocation and assimilation, and their optimal contribu-tion towards a desirable agricultural outcome, such as biomass growth and/or increased grain/leaf/flower/fruit/ seed output, depending on the plant/crop involved. Identi-fication of appropriate phenotypes, genotypes, molecular markers and target candidates for improvement of NUE poses a formidable challenge. The purpose of this article is to summarize the current state of our understanding of the physiological and molecular aspects of plant N re-sponse and NUE, with a brief overview of the attempts made so far towards manipulating it and the possible op-tions and strategies for future interventions.
Concept and definition of NUE As a concept, NUE includes N uptake, utilization or ac-quisition efficiency, expressed as a ratio of output (total plant N, grain N, biomass yield, grain yield) and input (total N, soil N or N-fertilizer applied). NUE is quantified based on apparent nitrogen recovery using physiological and agronomic parameters3. Agronomic efficiency is an
integrative index of total economic outputs relative to the available soil N (native and applied). Apparent nitrogen recovery is related to the efficiency of N uptake; physio-logical NUE deals with N utilization to produce grain or total plant dry matter. The most suitable way to estimate NUE depends on the crop, its harvest product and the processes involved in it.
Molecular physiology of nitrogen uptake and assimilation
Among the various forms of N available to the plant, nitrate (NO–3) is the most preferred source for most plants. It is taken up by active transport through the roots, dis-tributed through the xylem and assimilated by the sequen-tial action of the enzymes nitrate reductase (NR) and