Molecular physiology of plant nitrogen use efficiency and
- 格式:pdf
- 大小:129.80 KB
- 文档页数:10
植物激素在低磷响应中的作用磷是植物生长发育所必需的大量元素之一。
土壤缺磷是植物生长的限制因素之一。
植物在低磷环境下形成了一系列的生理生化适应机制。
研究发现植物激素在植物应对低磷胁迫中扮演重要的角色。
植物激素的刺激与磷胁迫之间存在着密切的联系。
笔者总结了近几年来植物激素如生长激素、乙烯、赤霉素等与低磷胁迫之间的关系的证据,作为进一步了解土壤中磷有限条件下植物激素的作用的工具。
标签:植物激素;生长激素;赤霉激素;乙烯;细胞分裂素;磷胁迫磷元素是植物生长发育所必需的大量元素之一,在植物的生命活动过程中有重要的生物学功能。
植物在长期进化过程中形成了一系列适应低磷胁迫的机制。
植物感受到低磷信号,就会经过一系列的信号转导过程调控其体内与磷相关的调节基因和结构基因的表达,从而影响植物体内的生理生化过程,并最终表现为一系列可见的特征,包括根系形态结构的变化、生理生化代谢的改变以及与菌类共生等,以最大限度吸收和利用有效磷。
以拟南芥为例,感受到低磷信号后会出现以下表现:(1)拟南芥主根的生长受抑制即主根变短;(2)侧根的数量和长度增加;(3)根毛的长度和密度也会增加;(4)植株矮小,根冠比增加,生物量降低;(5)叶片由暗绿变紫,花青素积累;(6)生长发育受阻,抗性减弱;(7)植物的营养周期变短,提前开花完成生活史等等[1-2]。
植物激素在植物的低磷响应中也起了比较重要的作用,笔者就植物激素在植物响应低磷胁迫过程中所起的作用做了综合分析。
1?生长激素在低磷响应机制中的作用生长激素的极性运输是侧根形成所必需的。
当植物生长在低磷环境中时,施加外源性生长激素能显著地抑制植物主根的生长并促进侧根的形成。
相反的,如果要在高磷环境中造成这样的根系构型则需要比低磷环境中高出10倍甚至100倍浓度的生长激素。
此外,抗生长激素的突变体axr2-1,axr3-1和axr4-1在低磷环境中表现出正常的低磷反应,而iaa28-1则能够抵抗由低磷引起的对根毛和侧根形成的刺激效应。
植物营养学的英文名词解释Introduction植物营养学是一门研究植物获取、转化和利用营养的学科。
在该领域,我们了解植物如何通过根系吸收营养、如何进行光合作用以及如何分配和利用这些营养物质。
在本文中,我们将介绍植物营养学的英文名词,并对其含义进行解释。
Mineral NutrientsMineral nutrients refer to the essential elements required by plants for their growth and development. These elements are classified into two categories - macronutrients and micronutrients. Macronutrients, such as nitrogen (N), phosphorus (P), and potassium (K), are required by plants in larger quantities, while micronutrients, such as iron (Fe), manganese (Mn), and zinc (Zn), are needed in smaller amounts. These nutrients play crucial roles in various plant functions, including photosynthesis, protein synthesis, and hormone production.PhotosynthesisPhotosynthesis is the process by which plants convert light energy into chemical energy in the form of glucose and oxygen. It is one of the most important processes in plants and is essential for their survival. During photosynthesis, plants utilize carbon dioxide (CO2) from the air, water (H2O) from the soil, and light energy from the sun to produce glucose, which serves as the primary source of energy for plant growth, cellular respiration, and the synthesis of other organic compounds.ChloroplastChloroplasts are specialized organelles found in plant cells that are responsible for photosynthesis. These structures contain chlorophyll, a pigment that captures light energy for photosynthesis. Within the chloroplasts, the light-dependent reactions occur in the thylakoid membrane, while the light-independent reactions (also known as the Calvincycle) take place in the stroma. Chloroplasts are crucial for plant growth and are particularly abundant in the leaves, where the majority of photosynthesis occurs.TranspirationTranspiration is the process through which plants lose water vapor to the atmosphere from their leaves. It occurs primarily through small openings called stomata, which are found on the surface of leaves and stems. Transpiration plays a vital role in plant physiology, as it helps in the absorption and movement of water and nutrients from the roots to the rest of the plant. Additionally, transpiration aids in maintaining appropriate leaf temperature and creating a water vapor gradient that enables nutrient uptake.Root SystemThe root system of a plant consists of the underground structures that anchor the plant in the soil and facilitate the absorption of water and nutrients. It is composed of primary and lateral roots, as well as root hairs. The main functions of the root system include anchoring the plant, absorbing water and minerals, storing nutrients, and producing hormones. The efficiency of the root system is crucial for nutrient uptake and overall plant growth.Conclusion植物营养学的英文名词解释:本文介绍了一些与植物营养学相关的英文名词,并对其含义进行了解释。
麦甜组合防控小麦赤霉病的效果韩萌萌1陈金宏1马秀凤1李洪志2昌群凤3(1宝应县植保植检站,江苏宝应225800;2宝应县柳堡镇农业农村局,江苏宝应225828;3宝应县安宜镇农业农村局,江苏宝应225801)摘要小麦赤霉病是世界性病害,不仅可造成严重减产,产生的毒素还会影响人畜健康,科学防控赤霉病意义重大。
本试验于小麦扬花初期和扬花盛期喷施2次麦甜组合(麦甜900mL/hm2+麦甜伴侣600mL/hm2),研究其对小麦赤霉病的防控效果。
结果表明:麦甜组合对小麦赤霉病防效较好,药后21d,病穗防效和病指防效均高于85%;实际产量达7125kg/hm2,较常规处理区增产5.09%,较空白对照区增产22.99%,具有一定的增产效果。
建议在赤霉病常发区,将麦甜组合与其他药剂轮换使用,以延缓抗药性的产生。
关键词小麦赤霉病;麦甜组合;防效;产量中图分类号S435.121文献标识码A文章编号1007-5739(2023)18-0101-03DOI:10.3969/j.issn.1007-5739.2023.18.026开放科学(资源服务)标识码(OSID):小麦赤霉病,别名烂穗病、烂麦头、麦穗枯、红麦头、红头瘴,致病菌是以禾谷镰刀菌(Fusarium grami-nearum Schw.)为主的多种镰刀菌,是小麦上的主要病害之一,从苗期至穗期均可发生,可引起苗腐、茎基腐、秆腐和穗腐,其中以穗腐危害最大,通常可导致小麦减产20%,大面积发生可造成小麦减产50%~60%,甚至绝收[1]。
宝应县常年小麦种植面积5.4万hm2左右,是该县两大口粮作物之一,若赤霉病防控不力,将造成严重减产和毒素超标,拉低售粮价格,甚至出现“卖粮难”的情况,不仅威胁粮食生产安全,还影响农民增收,甚至会加重公众对农产品质量安全的担忧。
因此,做好小麦赤霉病防控工作对夺取夏粮丰收、促进农业提质增效、保障经济平稳运行意义重大。
扬彩(18.7%丙环·嘧菌酯)是一种内吸性杀菌剂,具有保护和治疗双重功效,可有效防控小麦纹枯病;麦甜(20%氟唑菌酰羟胺)是一种作用于琥珀酸脱氢酶(succinate dehydrogenase,SDH)的新型吡唑羧酰胺类杀菌剂,具有安全、广谱、高效、提质增产的特性,常与麦甜伴侣(25%丙环唑)搭配销售使用,可有效防控小麦赤霉病;阿立卡(22%噻虫·高氯氟)是高效氯氟氰菊酯与噻虫嗪复配的杀虫剂,具有触杀和胃毒作用,可有效防控小麦蚜虫。
土 壤 (Soils), 2015, 47(2): 210–219①基金项目:中国科学院战略性先导科技专项(XDB15030200)资助。
作者简介:孙波(1968—),男,江苏南京人,博士,研究员,研究方向为土壤质量演变与农田养分循环,近期重点研究农田土壤碳氮转化微生物过程及其驱动因素。
E-mail: bsun@DOI: 10.13758/ki.tr.2015.02.004土壤–根系–微生物系统中影响氮磷利用的一些关键协同机制的研究进展①孙 波1,廖 红2,苏彦华1,许卫锋1瑀,蒋霁1(1 土壤与农业可持续发展国家重点实验室(中国科学院南京土壤研究所),南京 210008;2 华南农业大学资源环境学院,广州 510642)摘 要:根际是养分进入作物系统的门户,也是土壤-根系-微生物相互作用的微域。
根际界面过程决定了氮磷养分的供应强度和有效性,最终影响了氮磷养分的利用效率和作物生产力。
近年来,国内外在揭示农田土壤-根系-微生物系统中不同界面的养分转化、吸收和运输机制方面取得了一些新进展。
在不同时空尺度上分析了影响土壤氮磷转化微生物组成的影响因子;研究了丛枝菌根系统形成的信号机制及其对氮磷吸收的基因调控机制;从信号网络、根系质子分泌和根构型的角度系统揭示了作物根系应对根际环境氮磷养分供应的形态和生理响应机制。
未来针对根际氮磷高效利用问题,需要深入研究土壤-根系-微生物不同界面的协同机制和调控原理,在根际微域和土壤团聚体尺度开展微生物食物网及其关键功能微生物分布格局和演替规律的研究;揭示根构型对根系–微生物协同结构和功能的影响,研究养分缺乏条件下根内质子分泌和关键转运蛋白对根系生长和养分吸收的调控机制;针对粮食作物,研究根系-微生物对话中已知信号物质(如独脚金内酯和N-酰基高丝氨酸内酯)和新的信号物质(小RNA)的网络作用机制及其对多养分协同代谢的影响;最后,针对不同气候、土壤、作物类型区,提出提高氮磷利用效率的根际生物调控途径和措施。
植物NRT1.1的研究进展及其在苎麻研究中的展望侯美;喻春明【摘要】在自然条件下,硝酸盐是非固氮植物生长过程中从外界环境吸收的主要氮源.植物通过一系列硝酸盐转运蛋白实现对硝态氮的吸收与利用.NRT1.1(硝酸盐转运蛋白nitrate transporter1.1,NRT1.1)是植物根系吸收硝酸盐后第一个发挥作用的蛋白,其通过氨基酸序列中第101位苏氨酸是否发生磷酸化修饰而表现双亲和性转运功能;NRT1.1可作为一种信号分子,调控侧根的生长与发育;NRT1.1除了参与硝酸盐响应和转运过程,还参与植物对重金属的吸收.文章结合最新的研究报道,综述了植物硝酸盐转运蛋白NRT1.1的研究进展,并对其在苎麻研究中的作用进行展望,以期为提高苎麻氮同化效率与逆境抗性能力研究提供参考,并为苎麻育种提供理论依据与方向.%Under natural conditions,nitrate is the major nitrogen sources absorbed from the outside in non-nitrogen fixing plants.Plants uptake and utilize nitrate through a series of nitrate transporters,and nitrate transporter 1.1 (NRT1.1) is the first protein to play a role in roots after they absorb nitrate.It is shown that the phosphorylation of Thr101 in the amino acid sequence displays the dual-affinity nitrate transporter ofNRT1.1.NRT1.1 also can be used as a signal molecule regulating the growth and development of lateral root.NRT1.1 is not only involved in responding to nitrate and transporting it,but also involved in responding to abiotic stress.According to the latest research reports,the paper summarized the research progress of nitrate transporter NRT1.1 in plant and described its prospect in ramie research in order to provide reference for the study of nitrogen assimilation efficiency of ramie and improveramie stress resistance ability.In addition,it is aimed to provide a theoretical basis and direction for Ramie Breeding.【期刊名称】《中国麻业科学》【年(卷),期】2017(039)004【总页数】8页(P207-214)【关键词】硝酸盐;NRT1.1;转运蛋白;信号分子;苎麻【作者】侯美;喻春明【作者单位】中国农业科学院麻类研究所,长沙410205;中国农业科学院麻类研究所,长沙410205【正文语种】中文【中图分类】S563.1氮是植物生长必需的大量元素之一,在自然条件下,硝酸盐是非固氮植物从外界吸收的主要氮源。
植物功能性状对环境的响应及其应用作者:冯秋红, 史作民, 董莉莉, Feng Qiuhong, Shi Zuomin, Dong Lili作者单位:中国林业科学研究院森林生态环境与保护研究所,国家林业局森林生态环境重点实验室,北京,100091刊名:林业科学英文刊名:SCIENTIA SILVAE SINICAE年,卷(期):2008,44(4)被引用次数:8次1.Vendramini F;Diaz S;Gurvich D E Leaf traits as indicators of resource-use strategy in floras with succulent species[外文期刊] 2002(01)2.Arredondo J T;Schnyder H Components of leaf elongation rate andtheir relationship to specific leaf area in contrasting grasses[外文期刊] 2003(02)3.Aguiar M R;Paruelo J M;Sala O E Ecosystem responses to changes in plant functional type composition:An example from the Patagonian steppe 1996(03)4.Westoby M;Wright I J The leaf size-twig size spectrum and its relationship to other important spectra of variation among species[外文期刊] 2003(04)5.Westoby M;Falater D S;Moles A T Plant ecological strategies:some leading dimensions of variation between species[外文期刊] 2002(0)6.Rejmánek M;Richardson D M What attributes make some plant species mare invasive 1996(06)7.Reich P B;Oleksyn J Global patterns of plant leaf N and P in relation to temperature and latitude [外文期刊] 2004(30)8.曾希柏;侯光炯;青长乐土壤-植物系统中光照与氮素的相互关系研究[期刊论文]-生态学报 2000(01)9.Kilpelainen A;Peltola H;Ryyppo A Scots pine responses to elevated temperature and carbon dioxide concentration:growth and wood properties[外文期刊] 2005(01)10.Kaakinen S;Kostiainen K;Ek F Stem wood properties of Populus tremuloides,Betula papyrifera and Acer saccharum saplings after 3 years of treatments to elevated carbon dioxide and ozone[外文期刊] 2004(09)11.Isobrands J G;McDonald E P;Kruger E Growth responses of Populus tremuloides clones to interacting elevated carbon dioxide and tropospheric ozone[外文期刊] 2001(03)12.Dylan W S;Ackerly D D Flammability and serotiny as strategies:correlated evolution in pines[外文期刊] 2001(02)13.Dyer A R;Goldberg D E;Turkington R Effects of growing conditions and source habitat on planttraits and functional group definition[外文期刊] 2001(01)14.Yoshida T Ecological stoichiometry and shape of resource-based tradeoffs[外文期刊] 2006(02)15.Wright I J;Daniel S;Pickup M Cress-species patterns in the coordination between leaf and tem traits,and their implications for plant hydraulics[外文期刊] 2006(03)16.Wright I J;Reich P B;Comeliason J H C Modulation of leaf economic traits and trait relationships by climate 2005(05)17.Wright I J;Reich P B;Cornelisson J H C Assessing the generality of global leaf traitrelationships[外文期刊] 2005(02)18.Wright I J;Reich P B;Atkin O K Irradiance,tempernture and rainfall influence leaf darkrespiration in woody plants:evidence from comparisons across 20 sites[外文期刊] 2005(02)19.Wright I J;Groom P K;Lamnont B B Leaf traits relationships in Australian plant species[外文期刊] 200420.许振柱;周广胜;李晖羊草叶片气体交换参数对温度和土壤水分的响应[期刊论文]-植物生态学报 2004(03)21.Chabot B F;Hicks D J The ecology of leaf life spans[外文期刊] 198222.Burns K C Pattern in specific leaf area and the structure of a temperate heath community[外文期刊] 2004(02)23.Aerts R;Chapin Ⅲ F S Themineral nutrition of wild plants revisited:a re-evaluation of processes and patterns[外文期刊] 200024.Ackerly D D community assembly,niche conservatism and adaptive evolution in changing environment [外文期刊] 2003(03)25.Wright I J;Reich P B;Westoby M The worldwide leaf economies spectrum[外文期刊] 2004(22)26.Wright I J;Reich P B;Westoby M Strategy shifts in leaf physiology,structure and nutrient content between species of high-and low-rainfall and highand low-nutrient habitats[外文期刊] 2001(04)27.Wright I J;Westoby M Cross-species relationships between seedling relative growth rate,nitrogen productivity and root vs.leaf function in 28 Australian woody species[外文期刊] 2000(01)28.Woodward F I;Crnmer W Plant functional types and climatic changes:Introduction 199629.Wolfe J A Tertiary climatic changes at middle latitudes of western North America[外文期刊] 199430.Withington J M;Reich P B;Oleksyn J Comparisons of structure and life span in roots and leaves among temperate trees[外文期刊] 2006(03)31.Wilson P J;Thompson K;Hodgson J G Specific leaf area and leaf dry matter content as alternative predictors of plant strategies[外文期刊] 1999(01)32.Brouat BC;GihemnuM;AmseHem L Corner's rules revisited:ontogenetic and inter specific patterns in leaf stem allomotry[外文期刊] 1998(03)33.Thompson K;Hodgson J G;Grime J P Plant traits and temporal soale:evidence from a 5-year invasion experiment using native species[外文期刊] 2001(06)34.Sterck F J;Van Gelder H A;Pcorter L Mechanical branch constraints contribute to life-history variation across tree species in a Bolivian forest[外文期刊] 2006(06)35.Sterck F.J;Bongers F Crown development in tropical rain forest trees:pattern with tree height and light availability[外文期刊] 2001(01)36.Sitch S;Smith B;Prentice I C Evaluation of ecosystem dynamics,plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model[外文期刊] 2003(02)37.Sinclair C;Hoffmann A A Monitoring salt stress in grapevines:are measures of plant trait variability usofid[外文期刊] 2003(05)spectrum[外文期刊] 2006(03)39.Shaver G R Mineral nutrition and leaf longevity in Ledum palustre:the role of individualnutrients and the timing of leaf mortality[外文期刊] 1983(2-3)40.Scheettle A W The interaction between leaf longevity and shoot growth and foliar bioruass per shoot in Pinus contorta at two elevations 1990(11)41.Roderick M L;Berry S L;Noble I R A framework for understanding the relationship between environment and vegetation based on the surface area to volume ratio of leaves[外文期刊] 2000(04) 42.Richard F P;James M B;David B R Plant traits as predictors of performance in ecological rostoration[外文期刊] 2003(01)43.左闻韵;贺金生;韩梅植物气孔对大气CO2浓度贺温度升高的反应[期刊论文]-生态学报 2005(03)44.Reich P B;Ellsworth D S;Walters M B Generality of leaf traits relatienships:A test across six biomes[外文期刊] 1999(06)45.Reich P B Phenelagy of tropical forests:patterns,canses,and consequences[外文期刊] 1995(22)46.Rebbeck J;Scherzer A J;Lnats K V Foliar physiology of yellow-peplar (Liliodendron tulipifera L.)exposed to O3 and elevated CO2 over five seasons[外文期刊] 2004(03)47.Prior L D;Bowman D M J S;Emus D Seasonal differences in leaf attributes in Australian tropical tree species:family and habitat comparisons[外文期刊] 2004(05)48.Pérez-Harguindeguy N;Díaz S;Cernelisson JHC Chemistry and toughness predict leaf litter decomposition rates over a wide spectrum of functional types and tara in central Argentina[外文期刊] 2000(1-2)49.Moles A T;Falster D S;Leishman M R Smuall-soeded species produce more seeds per square metre of canopy per year,but not per individual per lifetime[外文期刊] 2004(03)50.Mediavilla S;Escudero A Leaf life span differ form retention time of biomess and nutrients in the crowns of evergreen species[外文期刊] 2003(04)51.Leishman M R How well do plant traits correlate with establishment ability? Evidence from a study of 16 calcareous grassland species[外文期刊] 1999(03)52.Henery M L;Westoby M Seed mass and seed nutrient content as predictors of seed output variation between species[外文期刊] 2001(03)53.He J S;Wang Z H;Wang X P A test of the generality of leaf trait relationship on the Tibetan Plateau[外文期刊] 2006(04)54.Haettenschwiler S;Schweingruber F H;Kcemer C Tree ring responses to elevated CO2 and increased N deposition in Picea abies[外文期刊] 1996(12)55.Garbey C;Murphy K J;Thiébaut G Variation in P-content in aquatic plant tissues offers anefficient tool for determining plant growth strategies along a resource gradient[外文期刊] 2004(03) 56.Gachet S;Brewer S;Cheddedi R A prohabilistic approach to the use of pollen indicator for plant attributes and biomes:an application to European vegetation at 0 and 6 ka[外文期刊] 2003(02)57.Fargione J;Tilman D Plant species traits and capacity for resource reduction predict yield and58.Escudero A;Mediavilla S Decline in photosynthetic nitrogen use efficiency with leaf age and nitrogen resorption as determinants of leaf life span[外文期刊] 2003(05)59.Edwards E J Correlated evolution of stem and leaf hydraulic traits in Pereskia(Cactaceae)[外文期刊] 2006(03)60.Eamus D;Prior L Ecaphysiolngy of trees of seasonally dry tropics:comparisons among phenologies[外文期刊] 200161.汪贵斌;曹福亮土壤盐分及水分含量对落羽杉幼苗生长的影响[期刊论文]-应用生态学报 2004(12)62.Díaz S;Lavorel S;Mcintyre S Glohal-scale plant trait responses to grazing-a global synthesis[外文期刊] 2007(02)63.Díaz S;Cabido M Vive la difference:plant functional diversity matters to ecosystem processes 2001(01)64.Daly C;Bachelot D;Lenihan J M Dynamic simulation of tree-grass interactions for global change studies[外文期刊] 2000(02)65.Cramer W;Bondenu A;Woodward F I Global response of terrestrial ecosystem structure and function to CO2 and climate change:results from six dynamic global vegetation models[外文期刊] 2001(04)66.Craine J M;Reich P B Elevated CO2 and nitrogen supply alter ledlongevity of grassland species[外文期刊] 2001(02)67.Corner E The durlnutheory,or the origin of the modern tree 1949(04)68.Cornelissen J H C A trangular relatonship between leaf size and seed size among woodyspecies:allomoty,ontogeny,ecology and taxonomy[外文期刊] 1999(02)69.Condit R;Hubbell S P;Forster R B Assessing the response of plant function types to climate change in tropical forest[外文期刊] 199670.Chen X;Li B L Spatial variability of plant functional types of trees along Northeast China Transect 2004(02)71.Bond W J;Midgley G F;Woodward F I The importance of low atmospheric spheric CO2 and fire promotingthe spread of grasslands and savannas[外文期刊] 2003(07)72.Blaschke L;Forstreuter M;Sheppard L J Lignification in beech(Fagus sylvatica)grown at elevated CO2 concentrations:interaction with nutrient availability and leaf maturation[外文期刊] 2002(07) 73.Bello F D J;Scbastia M T Predicting value of plant traits to grazing along a climatic gradient in the Mediterranean[外文期刊] 2005(05)74.Barbuni D;Harrison S P;Bartlein P J Relationships between plant traits and climate in the Mediterranean region:Apollen data analysis[外文期刊] 2004(05)75.唐海萍;蒋高明植物功能型及生态学意义[期刊论文]-应用生态学报 2000(03)1.徐冰.程雨曦.甘慧洁.周文嘉.贺金生内蒙古锡林河流域典型草原植物叶片与细根性状在种间及种内水平上的关联[期刊论文]-植物生态学报 2010(1)2.马红.关成宏.陶波不同叶龄鸭跖草对咪唑乙烟酸的耐药性差异及生理基础研究[期刊论文]-中国油料作物学报2010(1)3.阎恩荣.仲强.周武.郭明.王良衍.袁世杰浙江天童雨雪冰冻灾后林木机械受损与相关功能性状的关联[期刊论文] -浙江林学院学报 2010(3)4.柯娴氡.贺立静.苏志尧南方4种木本植物相对叶绿素指标及其分布[期刊论文]-中南林业科技大学学报 2010(8)5.冯秋红.史作民.董莉莉.刘世荣南北样带温带区栎属树种功能性状对气象因子的响应[期刊论文]-生态学报2010(21)6.冯秋红.史作民.董莉莉.刘世荣南北样带温带区栎属树种功能性状对气象因子的响应[期刊论文]-生态学报2010(21)7.白文娟.郑粉莉.董莉丽.丁晓斌黄土高原水蚀风蚀交错带不同生境植物的叶性状[期刊论文]-生态学报 2010(10)8.白文娟.郑粉莉.董莉丽.丁晓斌黄土高原水蚀风蚀交错带不同生境植物的叶性状[期刊论文]-生态学报 2010(10)本文链接:/Periodical_lykx200804023.aspx。
植物学通报 2004, 21 (1): 113 ̄120Chinese Bulletin of Botany大豆耐盐机理及相关基因分子标记①郭宝生 翁跃进②(中国农业科学院作物品种资源研究所北京 100081)摘要大豆耐盐涉及多种生理代谢途径。
耐盐大豆能够通过Cl-排除、控制Na+的吸收和转运、合成渗透调节物质、改变细胞膜膜脂组分及相关酶类的活性等多种形式来适应盐胁迫;野生大豆群体具有盐腺,从形态结构上适应盐逆境;大豆-根瘤菌共生体在盐胁迫下通过互作来提高整体的耐盐性。
分子生物学技术应用于大豆耐盐研究,已获得了一些与耐盐相关基因连锁的分子标记。
广泛搜集筛选大豆栽培种和野生种资源,利用分子生物学技术和基因工程提高大豆耐盐性,将成为未来大豆耐盐研究的主要内容。
关键词大豆,耐盐性,根瘤,分子标记Salt Tolerance Mechanism and Molecular Markers of Genes Associated with Salt Tolerance in SoybeanGUO Bao-Sheng WENG Yue-Jin②(Institute of Crop Germplasm Resource, The Chinese Academy of Agricultural sciences, Beijing 100081)Abstract The salt tolerance in soybean involves various physiological mechanisms or metabolic pathways. The salt-tolerant soybean cultivars can grow better under high salt stress by regulating the intake and transportation of Na+, chloride exclusion, osmotic adjustment, changes of membrane lipids and enhancing activities of some enzymes, such as glutathion reductase, SOD and so on. A population of wild soybean expressed higher level of salt tolerance for its salt glands. Under salt stress, soybean and Bradyrhizobium can affect each other, so soybean-Bradyrhizobium system can respond to salinity as a whole. With the technology of molecular biology applied to salt-tolerant soybean, a few molecular markers associated with salt tolerant genes have been identified.Key words Soybean, Salt tolerance, Nodules, Molecular markers我国1.2亿公顷耕地中有将近1/10是盐渍化土壤,主要分布在西北、华北等粮食主产区,严重影响着农作物的产量、品质和效益,直接影响着当地的农业生产和经济发展。
光化学反射光谱指数(pri)名词解释光化学反射光谱指数(PRI)是一种用于评估植物光合作用效率的指标。
它通过测量叶片在绿色和红色光波段的反射比例来计算。
PRI的英文解释为"Photochemical Reflectance Index",意思是光化学反射指数。
以下是26句双语例句:1. PRI is widely used in plant physiology research.光化学反射光谱指数在植物生理学研究中被广泛应用。
2. The PRI value can indicate the photosynthetic activity of plants. PRI值可以指示植物的光合活性。
3. Researchers measured the PRI of different plant species in their experiment.研究人员在实验中测量了不同植物物种的PRI值。
4. The PRI measurement requires specific instruments and techniques. PRI测量需要特定的仪器和技术。
5. The PRI index provides valuable information for monitoring plant health. PRI指数为监测植物健康提供了有价值的信息。
6. High PRI values indicate higher photosynthetic efficiency.高PRI值表示较高的光合效率。
7. The PRI index can be used to assess the stress levelof plants. PRI指数可用于评估植物的应激水平。
8. PRI is a non-destructive method for evaluating plant physiology. PRI是一种非破坏性的评估植物生理学的方法。
SPECIAL SECTION: REACTIVE NITROGEN IN CURRENT SCIENCE, VOL. 94, NO. 11, 10 JUNE 2008 1394
*For correspondence. (e-mail: raghuram98@hotmail.com)
Molecular physiology of plant nitrogen use efficiency and biotechnological options for its enhancement
Ravi Ramesh Pathak1, Altaf Ahmad2, Sunila Lochab1 and Nandula Raghuram1,* 1School of Biotechnology, Guru Gobind Singh Indraprastha University, Kashmiri Gate, Delhi 110 403, India
2Department of Botany, Jamia Hamdard, New Delhi 110 062, India
Nitrogen use efficiency (NUE) in plants is a complex phenomenon that depends on a number of internal and external factors, which include soil nitrogen availabi-lity, its uptake and assimilation, photosynthetic carbon and reductant supply, carbon–nitrogen flux, nitrate signalling and regulation by light and hormones, to name a few. The molecular basis for organism-wide regulation of nitrate assimilation is not yet fully un-derstood, and biotechnological interventions to im-prove crop NUE have met with limited success so far. This article summarizes the physiological, biochemical and molecular aspects of NUE, QTL mapping studies as well as transgenic efforts to improve it in crop plants and model plants. It encompasses primary and secondary N-assimilatory pathways and their inter-play with carbon metabolism, as well as signalling and regulatory components outside the metabolic cascade. The article highlights the need for an integrated ap-proach combining fertilizer management techniques with biotechnological interventions to improve N flux and NUE for Indian crop cultivars.
Keywords: Biotechnological interventions, molecular physiology, nitrogen flux, nitrogen use efficiency.
NITROGEN (N) is one of the most critical inputs that de-
fine crop productivity and yield under field conditions, and must be supplemented to meet the food production demands of an ever-increasing population. Efficient utili-zation of fertilizer N is essential to ensure better value for investment as well as to minimize the adverse impacts of the accumulation of reactive N species in the environ-ment. The current average nitrogen use efficiency (NUE) in the field1 is approximately 33% and a substantial pro-
portion of the remaining 67% is lost into the environ-ment, especially in the intensively cropped areas2. This
concern was reflected in the recent Nanjing Declaration of the International Nitrogen Initiative (http://www. initrogen.org/nanjing_declaration.0.html), which called for immediate development of a comprehensive approach to optimize N management in every sphere of life.
Though the form and amount of N available to the plant can be improved by managing fertilizer–soil–water–air interactions, the innate efficiency of the plant to util-ize this available N has to be tackled biologically. The biological processes involved include nitrogen uptake, translocation and assimilation, and their optimal contribu-tion towards a desirable agricultural outcome, such as biomass growth and/or increased grain/leaf/flower/fruit/ seed output, depending on the plant/crop involved. Identi-fication of appropriate phenotypes, genotypes, molecular markers and target candidates for improvement of NUE poses a formidable challenge. The purpose of this article is to summarize the current state of our understanding of the physiological and molecular aspects of plant N re-sponse and NUE, with a brief overview of the attempts made so far towards manipulating it and the possible op-tions and strategies for future interventions.
Concept and definition of NUE As a concept, NUE includes N uptake, utilization or ac-quisition efficiency, expressed as a ratio of output (total plant N, grain N, biomass yield, grain yield) and input (total N, soil N or N-fertilizer applied). NUE is quantified based on apparent nitrogen recovery using physiological and agronomic parameters3. Agronomic efficiency is an
integrative index of total economic outputs relative to the available soil N (native and applied). Apparent nitrogen recovery is related to the efficiency of N uptake; physio-logical NUE deals with N utilization to produce grain or total plant dry matter. The most suitable way to estimate NUE depends on the crop, its harvest product and the processes involved in it.
Molecular physiology of nitrogen uptake and assimilation
Among the various forms of N available to the plant, nitrate (NO–3) is the most preferred source for most plants. It is taken up by active transport through the roots, dis-tributed through the xylem and assimilated by the sequen-tial action of the enzymes nitrate reductase (NR) and