当前位置:文档之家› 小学数学常见几何模型典型例题及解题思路教学内容

小学数学常见几何模型典型例题及解题思路教学内容

小学数学常见几何模型典型例题及解题思路教学内容
小学数学常见几何模型典型例题及解题思路教学内容

小学数学常见几何模型典型例题及解题思路(1)

巧求面积

常用方法:直接求;整体减空白;不规则转规则(平移、旋转等);模型(鸟头、蝴蝶、漏斗等模型);差不变

1、ABCG 是边长为12厘米的正方形,右上角是一个边长为6厘米的正方形FGDE ,求阴影部分的面积。答案:72

A H F

E C B I D G

思路:1)直接求,但是阴影部分的三角形和四边形面积都无法直接求;2)整体减空白。关键在于如何找到整体,发现梯形BCEF 可求,且空白分别两个矩形面积的一半。

2、在长方形ABCD 中,BE=5,EC=4,CF=4,FD=1。△AEF 的面积是多少?答案:20

A D

B F

C E

思路:1)直接求,无法直接求;2)由于知道了各个边的数据,因此空白部分的面积都可求

3、如图所示的长方形中,E 、F 分别是AD 和DC 的中点。

(1)如果已知AB=10厘米,BC=6厘米,那么阴影部分面积是多少平方厘米?答案:22.5

(2)如果已知长方形ABCD 的面积是64平方厘米,那么阴影部分的面积是多少平方厘米?答案:24

B C

D

F E

思路(1)直接求,无法直接求;2)已经知道了各个边的数据,因此可以求出空白的位置;3)也可以利用鸟头模型

4、正方形ABCD 边长是6厘米,△AFD (甲)是正方形的一部分,△CEF (乙)的面积比△AFD (甲)大6平方厘米。请问CE 的长是多少厘米。答案:8

A B D

C F

思路:差不变

5、把长为15厘米,宽为12厘米的长方形,分割成4个三角形,其面积分别为S 1、S 2、S 3、S 4,且S 1=S 2=S 3+S 4。求S 4。答案:10

D

C E F S 1S 2

S 3S 4

思路:求S4需要知道FC 和EC 的长度;FC 不能直接求,但是DF 可求,DF 可以由三分之一矩形面积S1÷AD ×2得到,同理EC 也求。最后一句三角形面积公式得到结果。

6、长方形ABCD 内的阴影部分面积之和为70,AB=8,AD=15。求四边形EFGO 的面积。答案10。

A B C D

F O

E G

思路:看到长方形和平行四边形,只要有对角线,就知道里面四个三

角形面积相等。然后依据常规思路可以得到答案。

思路2:从整体看,四边形EFGO的面积=△AFC的面积+△BFD的面积-空白部分的面积。而△ACF的面积+△BFD的面积=长方形面积的一半,即60。空白部分的面积等于长方形面积减去阴影部分的面积,即120-70=50 。所以四边形的面积EFGO的面积为60-50=10。

比例模型

1、如图,AD=DB,AE=EF=FC。已知阴影部分面积为5平方厘米,△ABC的面积是多少平方厘米?答案30平方厘米。

A D

B

E F

C

思路:由阴影面积求整个三角形的面积,因此需要构造已知三角的面积和其它三角形的面积比例关系,而题目中已经给了边的比,因此依据等高模型或者鸟头模型即可得到答案。

2、△ABC的面积是180平方厘米,D是BC的中点,AD的长是AE的3倍,EF的长是BF的3倍,那么△AEF的面积是多少平方厘米?答案22.5平方厘米

A

B C

D F

E

思路:仅仅告诉三角形面积和边的关系,需要依据比例关系进行构造各个三角形之间的关系,从而得出答案

3、 在四边形ABCD 中,E ,F 为AB 的三等分点,G ,H 为CD 的

三等分点。四边形EFHG 的面积占总面积的几分之几?答案是1/3

A B C D E F

G H A

B

C D E F G H 思路:仅仅告诉边的关系,求四边形之间的关系,需要首先考虑如何分解为三角形,然后再依次求解。

4、 在四边形ABCD 中,ED :EF :FC=3:2:1,BG :GH :AH=3:2:1,

已知四边形ABCD 的面积等于4,则四边形EHGF 的面积是多少?答案4/3

高中数学平面解析几何知识点总结

平面解析几何 一、直线与圆 1.斜率公式 2121 y y k x x -=-(111(,)P x y 、222(,)P x y ). 2.直线的五种方程 (1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ). (2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距). (3)两点式 112121 y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)). < (4)截距式 1x y a b +=(a b 、分别为直线的横、纵截距,0a b ≠、). (5)一般式 0Ax By C ++=(其中A 、B 不同时为0). 3.两条直线的平行和垂直 (1)若111:l y k x b =+,222:l y k x b =+ ①121212||,l l k k b b ?=≠; ②12121l l k k ⊥?=-. (2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零, ①11112222 ||A B C l l A B C ? =≠; < ②1212120l l A A B B ⊥?+=; 4.点到直线的距离 d =(点00(,)P x y ,直线l :0Ax By C ++=). 5.圆的四种方程 (1)圆的标准方程 222()()x a y b r -+-=. (2)圆的一般方程 220x y Dx Ey F ++++=(224D E F +->0).圆心??? ??--2,2E D ,半径r=2 422F E D -+. 6.点与圆的位置关系 点00(,)P x y 与圆2 22)()(r b y a x =-+-的位置关系有三种: . 若d =d r >?点P 在圆外;d r =?点P 在圆上;d r 相离r d ; 0=???=相切r d ; 0>???<相交r d . 其中22B A C Bb Aa d +++=. 8.两圆位置关系的判定方法 # 设两圆圆心分别为O 1,O 2,半径分别为r 1,r 2,d O O =21 条公切线外离421??+>r r d ; 条公切线外切321??+=r r d ;

初中数学9大几何模型

初中数学九大几何模型 一、手拉手模型----旋转型全等 (1)等边三角形 【条件】:△OAB 和△OCD 均为等边三角形; 【结论】:①△OAC ≌△OBD ;②∠AEB=60°;③OE 平分∠AED (2)等腰直角三角形 【条件】:△OAB 和△OCD 均为等腰直角三角形; 【结论】:①△OAC ≌△OBD ;②∠AEB=90°;③OE 平分∠AED (3)顶角相等的两任意等腰三角形 【条件】:△OAB 和△OCD 均为等腰三角形; 且∠COD=∠AOB 【结论】:①△OAC ≌△OBD ; ②∠AEB=∠AOB ; ③OE 平分∠AED O D E 图 1 O A B C D E 图 2 O A B C D E 图 1 O A C D E 图 2 O A B C D E O C D E 图 1 图 2

二、模型二:手拉手模型----旋转型相似 (1)一般情况 【条件】:CD ∥AB , 将△OCD 旋转至右图的位置 【结论】:①右图中△OCD ∽△OAB →→→△OAC ∽△OBD ; ②延长AC 交BD 于点E ,必有∠BEA=∠BOA (2)特殊情况 【条件】:CD ∥AB ,∠AOB=90° 将△OCD 旋转至右图的位置 【结论】:①右图中△OCD ∽△OAB →→→△OAC ∽△OBD ; ②延长AC 交BD 于点E ,必有∠BE=∠BOA ; ③ ===OA OB OC OD AC BD tan ∠OCD ;④BD ⊥AC ; ⑤连接AD 、BC ,必有22 22CD AB B C AD +=+;⑥BD AC 2 1 S △BCD ?= 三、模型三、对角互补模型 (1)全等型-90° 【条件】:①∠AOB=∠DCE=90°;②OC 平分∠AOB 【结论】:①CD=CE ;②OD+OE=2OC ;③2△OCE △OCD △DCE OC 2 1 S S S =+= 证明提示: ①作垂直,如图2,证明△CDM ≌△CEN ②过点C 作CF ⊥OC ,如图3,证明△ODC ≌△FEC ※当∠DCE 的一边交AO 的延长线于D 时(如图4): 以上三个结论:①CD=CE ;②OE-OD=2OC ; ③2△OCD △OCE OC 21 S S =- O C O C D E O B C D E O C D A O B C D E 图 1 A O B C D E M N 图 2 A O B C D E F 图 3 A O B C D E M N 图 4

2015年高二数学学业水平考试复习学案(1318)立体几何

俯视图侧视图 正视图高二学考必修二学案 第1课 空间几何体的结构、三视图和直观图 一、要点知识:1、棱(圆)柱、棱(圆)锥、棱(圆)台的结构特征: (1)___________________________________,_______________________________________, _______________________________________,由这些面所围成的多面体叫做棱柱。 (2)___________________________________,____________________________由这些面所围成的多面体叫做棱锥。 (3)______________________________________________________这样的多面体叫做棱台。 (4)______________________________________________________叫做圆柱,旋转轴叫做_______,垂直与轴的边旋转而成的圆面叫做_______,平行与轴的边旋转而成的曲面叫做______,无论旋转到什么位置,不垂直于轴的边都叫做___________ (5) _____________________________________________________所围成的旋转体叫做圆锥。 (6) _____________________________________________________叫做圆台。 (7) _____________________________________________________叫做球体,简称球。 2、中心投影、平行投影及空间几何体的三视图、直观图 (1)光由一点向外散射形成的投影,叫做______________ (2)在一束平行光线照射下形成的投影,叫做__________,投影线正对着投影面时,叫做正投影,否则叫斜投影。 3、正视图:光线从物体的_______投影所得的投影图,它能反映物体的_______和长度。 侧视图:光线从物体的________投影所得的投影图,它能反映物体的高度和宽度。 俯视图:光线从物体的________投影所得的投影图,它能反映物体的长度和宽度。 学业水平考试怎么考 1. 下列几何体中,正视图、侧视图和俯视图都相同的是( ). A .圆柱 B.圆锥 C.球 D.三菱柱 2、如图是一个几何体的三视图,则该几何体为( ) A 、球 B 、圆柱 C 、圆台 D 、圆锥 3.如图是一个几何体的三视图,则该几何体为( ) A.球 B.圆锥 C.圆柱 D.圆台 二、课前小练: 1、有一个几何体的三视图如下图所示,这个几何体应是一个( ) A 、棱台 B 、棱锥 C 、棱柱 D 、都不对 2、下列结论中 (1).有两个面互相平行,其余各面都是平面四边形的几何体叫棱柱 ; (2).有两个面互相平行,其余各面都是平行四边形的几何体叫棱柱; (3).用一个平面去截棱锥,棱锥的底面和截面之间的部分叫棱台; (4).以直角三角形的一条直角边所在直线为旋转轴将直角三角形旋转一周而形成的曲面所围成的几何体叫 圆锥。其中正确的结论是( ) A.3 B.2 C.1 D.0 3、将图1所示的三角形绕直线l 旋转一周,可以得到如图2所示的几何体的是哪一个三角 形( ) 4、下面多面体是五面体的是( ) C ′ A ′ Y ′ D ′

高中数学平面解析几何的知识点梳理

平面解析几何 1.直线的倾斜角与斜率: (1)直线的倾斜角:在平面直角坐标系中,对于一条与x 轴相交的直线,如果把x 轴绕着交点按逆时针 方向旋转到和直线重合时所转的最小正角记为α叫做直线的倾斜角. 倾斜角)180,0[?∈α,?=90α斜率不存在. (2)直线的斜率:αtan ),(211 212=≠--=k x x x x y y k .(111(,)P x y 、222(,)P x y ). 2.直线方程的五种形式: (1)点斜式:)(11x x k y y -=- (直线l 过点),(111y x P ,且斜率为k ). 注:当直线斜率不存在时,不能用点斜式表示,此时方程为0x x =. (2)斜截式:b kx y += (b 为直线l 在y 轴上的截距). (3)两点式:1 21121x x x x y y y y --=-- (12y y ≠,12x x ≠). 注:① 不能表示与x 轴和y 轴垂直的直线; ② 方程形式为:0))(())((112112=-----x x y y y y x x 时,方程可以表示任意直线. (4)截距式:1=+b y a x (b a ,分别为x 轴y 轴上的截距,且0,0≠≠b a ). 注:不能表示与x 轴垂直的直线,也不能表示与y 轴垂直的直线,特别是不能表示过原点的直线. (5)一般式:0=++C By Ax (其中A 、B 不同时为0). 一般式化为斜截式:B C x B A y -- =,即,直线的斜率:B A k -=. 注:(1)已知直线纵截距b ,常设其方程为y kx b =+或0x =. 已知直线横截距0x ,常设其方程为0x my x =+(直线斜率k 存在时,m 为k 的倒数)或0y =. 已知直线过点00(,)x y ,常设其方程为00()y k x x y =-+或0x x =. (2)解析几何中研究两条直线位置关系时,两条直线有可能重合;立体几何中两条直线一般不重合. 3.直线在坐标轴上的截矩可正,可负,也可为0. (1)直线在两坐标轴上的截距相等....?直线的斜率为1-或直线过原点. (2)直线两截距互为相反数.......?直线的斜率为1或直线过原点. (3)直线两截距绝对值相等.......?直线的斜率为1±或直线过原点. 4.两条直线的平行和垂直: (1)若111:l y k x b =+,222:l y k x b =+ ① 212121,//b b k k l l ≠=?; ② 12121l l k k ⊥?=-. (2)若0:1111=++C y B x A l ,0:2222=++C y B x A l ,有 ① 1221122121//C A C A B A B A l l ≠=?且.② 0212121=+?⊥B B A A l l . 5.平面两点距离公式: (111(,)P x y 、222(,)P x y ),22122121)()(y y x x P P -+-=.x 轴上两点间距离:A B x x AB -=. 线段21P P 的中点是),(00y x M ,则??? ????+=+=2221 0210y y y x x x .

高二立体几何大全

立体几何习题 1. 如图,四棱锥P-ABCD 的底面是正方形, ,,//,PA ABCD AE PD EF CD AM EF ⊥⊥=底面 (1) 证明MF 是异面直线AB 与PC 的公垂线; (2) 若3PA AB =,求直线AC 与平面EAM 所成角的正弦值 2. 已知三棱柱ABC -A 1B 1C 1中,底面边长和侧棱长均为a ,侧面A 1ACC 1⊥底面ABC ,A 1B =2 6a , (Ⅰ)求异面直线AC 与BC 1所成角的余弦值; (Ⅱ)求证:A 1B ⊥面AB 1C . 3. 如图,四棱锥S ABCD -的底面是边长为1的正方形,SD 垂直于底面 ABCD ,SB = 3 1.求证BC SC ⊥; 2.求面ASD 与面BSC 所成二面角的大小; 3.设棱SA 的中点为M ,求异面直线DM 与SB 所成角的大小 B C D A P M F E

4. 在三棱锥S —ABC 中,△ABC 是边长为4的正三角形,平面SAC ⊥平面ABC ,SA=SC=23,M 、N 分别为AB 、SB 的中点. (Ⅰ)证明:AC ⊥SB ; (Ⅱ)求二面角N —CM —B 的大小; (Ⅲ)求点B 到平面CMN 的距离. 5. 如右下图,在长方体ABCD —A 1B 1C 1D 1中,已知AB= 4, AD =3, AA 1= 2. E 、F 分别是线段AB 、BC 上的点,且EB= FB=1. (1) 求二面角C —DE —C 1的正切值; (2) 求直线EC 1与FD 1所成的余弦值. 6. 如图,在底面是菱形的四棱锥P —ABC D中,∠ABC=600,PA=AC=a ,PB=PD=a 2,点E 在PD 上,且PE:ED=2:1. (I )证明PA ⊥平面ABCD ; (II )求以AC 为棱,EAC 与DAC 为面的二面角 的大小; (Ⅲ)在棱PC 上是否存在一点F ,使BF//平面AEC ?证明你的结论. 1 B 1D B A 1E F B C D A P E

中考数学常见几何模型简介精编版

几何问题 初中几何常见模型解析 (1)等边三角形 ?条件:均为等边三角形 ?结论:①;②;③平分。(2)等腰 ?条件:均为等腰直角三角形 ?结论:①;②;③平分。(3)任意等腰三角形 ?条件:均为等腰三角形 ?结论:①;②;③平分。?

(1)一般情况 ?条件:,将旋转至右图位置 ?结论:右图中①;②延长AC交BD于点E,必有 (2)特殊情况 ?条件:,,将旋转至右图位置 ?结论:右图中①;②延长AC交BD于点E,必有; ③;④;⑤连接AD、BC,必有 ; ⑥(对角线互相垂直的四边形) ?

(1)全等型-90° ?条件:①;②OC平分 ?结论:①CD=CE; ②;③ ?证明提示: ①作垂直,如图,证明; ②过点C作,如上图(右),证明;?当的一边交AO的延长线于点D时: 以上三个结论:①CD=CE(不变);②;③此结论证明方法与前一种情况一致,可自行尝试。

(2)全等型-120° ?条件:①;②平分; ?结论:①;②;③ ?证明提示:①可参考“全等型-90°”证法一; ②如图:在OB上取一点F,使OF=OC,证明为等边三角形。 ?当的一边交AO的延长线于点D时(如上图右): 原结论变成:①; ②; ③; 可参考上述第②种方法进行证明。 (3)全等型-任意角 ?条件:①;②; ?结论:①平分;②;③ . ?当的一边交AO的延长线于点D时(如右上图): 原结论变成:①; ②; ③; 可参考上述第②种方法进行证明。 ◇请思考初始条件的变化对模型的影响。

? 如图所示,若将条件“平分”去掉,条件①不变,平分,结论变化如下: 结论:①;②;③.

向量法求空间角(高二数学,立体几何)

A B C D P Q 向量法求空间角 1.(本小题满分10分)在如图所示的多面体中,四边形ABCD 为正方形,四边形ADPQ 是直角梯形,DP AD ⊥,⊥CD 平面ADPQ , DP AQ AB 2 1 ==. (1)求证:⊥PQ 平面DCQ ; (2)求平面BCQ 与平面ADPQ 所成的锐二面角的大小. 2.(满分13分)如图所示,正四棱锥P -ABCD 中,O 为底面正方形的中心,侧棱PA 与底面ABCD 所成的角的正切值为 2 6 . (1)求侧面PAD 与底面ABCD 所成的二面角的大小; (2)若E 是PB 的中点,求异面直线PD 与AE 所成角的正切值; (3)问在棱AD 上是否存在一点F ,使EF ⊥侧面PBC ,若存在,试确定点F 的位置;若不存在,说明理由. B

3.(本小题只理科做,满分14分)如图,已知AB⊥平面ACD,DE//AB,△ACD是正三角形,AD=DE=2AB,且F是CD的中点. (1)求证:AF//平面BCE; (2)求证:平面BCE⊥平面CDE; (3)求平面BCE与平面ACD所成锐二面角的大小. P-中,PD⊥底面ABCD,且底面4.(本小题满分12分)如图,在四棱锥ABCD ABCD为正方形,G PD =分别为CB PC, ,的中点. = PD F ,2 E AD, , AP平面EFG; (1)求证:// (2)求平面GEF和平面DEF的夹角.

H P G F E D C B 5.如图,在直三棱柱111ABC A B C -中,平面1A BC ⊥ 侧面11A ABB 且12AA AB ==. (Ⅰ)求证:AB BC ⊥; (Ⅱ)若直线AC 与平面1A BC 所成的角为 6 π ,求锐二面角1A A C B --的大小. 6.如图,四边形ABCD 是正方形,EA ⊥平面ABCD ,EA PD ,2AD PD EA ==, F , G , H 分别为PB ,EB ,PC 的中点. (1)求证:FG 平面PED ; (2)求平面FGH 与平面PBC 所成锐二面角的大小.

(完整版)中考数学常见几何模型简介

初中几何常见模型解析 模型一:手拉手模型-旋转型全等 (1)等边三角形 ?条件:均为等边三角形 ?结论:①;②;③平分。 (2)等腰 ?条件:均为等腰直角三角形 ?结论:①;②; ?③平分。 (3)任意等腰三角形 ?条件:均为等腰三角形 ?结论:①;②; ?③平分 模型二:手拉手模型-旋转型相似 (1)一般情况 ?条件:,将旋转至右图位置 ?结论: ?右图中①; ?②延长AC交BD于点E,必有 (2)特殊情况 ?条件:,,将旋转至右图位置 ?结论:右图中①;②延长AC交BD于点E,必有; ③; ④; ⑤连接AD、BC,必有; ⑥(对角线互相垂直的四边形)

模型三:对角互补模型 (1)全等型-90° ?条件:①;②OC平分 ?结论:①CD=CE; ②;③ ?证明提示: ①作垂直,如图,证明; ②过点C作,如上图(右),证明; ?当的一边交AO的延长线于点D时: 以上三个结论:①CD=CE(不变); ②;③ 此结论证明方法与前一种情况一致,可自行尝试。 (2)全等型-120° ?条件:①; ?②平分; ?结论:①;②; ?③ ?证明提示:①可参考“全等型-90°”证法一; ②如图:在OB上取一点F,使OF=OC,证明 为等边三角形。 (3)全等型-任意角 ?条件:①;②; ?结论:①平分;②; ?③. ?当的一边交AO的延长线于点D时(如右上图): 原结论变成:①; ②; ③; 可参考上述第②种方法进行证明。请思考初始条件的变化对模型的影响。 ?对角互补模型总结: ①常见初始条件:四边形对角互补;注意两点:四点共圆及直角三角形斜边中线; ②初始条件“角平分线”与“两边相等”的区别; ③两种常见的辅助线作法; ④注意平分时,相等如何推导?

小学数学常见几何模型典型例题及解题思路

小学数学常见几何模型典型例题及解题思路(1) 巧求面积 常用方法:直接求;整体减空白;不规则转规则(平移、旋转等);模型(鸟头、蝴蝶、漏斗等模型);差不变 1、ABC G是边长为12厘米的正方形,右上角是一个边长为6厘米的正方形FGDE,求阴影部分的面积。答案:72 A H F E C B I D G 思路:1)直接求,但是阴影部分的三角形和四边形面积都无法直接求;2)整体减空白。关键在于如何找到整体,发现梯形BCEF 可求,且空白分别两个矩形面积的一半. 2、在长方形ABCD 中,B E=5,EC =4,CF=4,FD =1。△AEF 的面积是多少?答案:20

A D B F C E 思路:1)直接求,无法直接求;2)由于知道了各个边的数据,因此空白部分的面积都可求 3、如图所示的长方形中,E、F 分别是AD 和DC 的中点。 (1)如果已知AB=10厘米,BC=6厘米,那么阴影部分面积是多少平方厘米?答案:22。5 (2)如果已知长方形ABC D的面积是64平方厘米,那么阴影部分的面积是多少平方厘米?答案:24 B C D F E 思路(1)直接求,无法直接求;2)已经知道了各个边的数据,因此可以求出空白的位置;3)也可以利用鸟头模型 4、正方形A BCD 边长是6厘米,△AF D(甲)是正方形的一部分,△CEF(乙)的面积比△AFD (甲)大6平方厘米。请问C E的长是多少厘米.答案:8

A B D C F 思路:差不变 5、把长为15厘米,宽为12厘米的长方形,分割成4个三角形,其面积分别为S 1、S2、S 3、S4,且S1=S 2=S 3+S 4。求S4.答案:10 D C E F S 1S 2 S 3S 4 思路:求S4需要知道FC 和EC 的长度;FC不能直接求,但是DF 可求,DF 可以由三分之一矩形面积S 1÷AD ×2得到,同理EC 也求.最后一句三角形面积公式得到结果。 6、长方形ABCD 内的阴影部分面积之和为70,AB=8,A D=15。求四边形E FGO 的面积.答案10。 A B C D F O E G 思路:看到长方形和平行四边形,只要有对角线,就知道里面四个三

高二文科数学立体几何平行与垂直部分练习题

高二文科数学立体几何平行与垂直部分练习题 1.如图,在正方体1111ABCD A B C D -中,E 是1AA 的中点. (1)求证:1//A C 平面BDE ; (2)求证:平面1A AC ⊥平面BDE ; (3)求直线BE 与平面1A AC 所成角的正弦值. 2.如图,正方体ABCD -A 1B 1C 1D 1中,侧面对角线AB 1,BC 1上分别有两点E ,F ,且B 1E =C 1F.求证:EF ∥平面ABCD. 3.如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 是PD 的中点. (1)证明:PB //平面AEC ; (2)设1,3AP AD ==三棱锥P ABD -的体积34 V =求A 到平面PBC 的距离.

A D B C P E 4.如图,已知四边形ABCD 是矩形,PA⊥平面ABCD,M, N分别是AB, PC的中点. (1)求证:MN∥平面PAD; (2)求证:MN⊥DC; 5.已知四棱锥P ABCD -的底面为直角梯形,// AB DC,⊥ = ∠PA DAB, 90ο底面ABCD,且1 PA AD DC ===,2 AB=,M是PB的中点. (1)求证:CM PAD P面; (2)证明:面PAD⊥面PCD; (3)求AC与PB所成的角的余弦值; (4)求棱锥M PAC -的体积。 6.已知四棱锥P-ABCD,底面ABCD为矩形,侧棱PA⊥平面ABCD,其中BC=2AB=2PA=6,M、N为侧棱PC上的两个三等分点 A B C D P N

(1)求证:AN∥平面MBD; (2)求异面直线AN与PD所成角的余弦值; (3)求二面角M-BD-C的余弦值. 7.如图,ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,E是PC的中点。 求证:(1)PA∥平面BDE (2)平面PAC⊥平面BDE 8.在四棱锥ABCD P-中,底面ABCD为矩形,ABCD PD底面 ⊥,1 = AB,2 = BC,3 = PD,F G、分别为CD AP、的中点. (1) 求证:// FG平面BCP; (2) 求证:PC AD⊥; F G P D C B A 9.如图,已知在侧棱垂直于底面的三棱柱111 ABC A B C -中,3 AC=,5 AB=,4 BC=,P M D C B A N

初中数学几何经典模型范文

初中数学几何经典模型 范文 集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]

如图,正方形ABCD DE=2CE,过点C作CF 如图,ABC中,∠如图,在边长为6 ,连接EG,

中,AB=AD,

H G F C B D A E H G F B C A D E 点E 旋转,旋转过程中,线段DE 与线段A B 相交于点P ,射线EF 与线段AB 相交于点G ,与射线CA 相交于点Q .若AQ =12,BP =3,则PG =. 【例12】如图,在菱形ABCD 中,AB =BD ,点E 、F 分别在AB 、AD 上,且AE =DF .连接 BF 与DE 交于点G ,连接CG 与BD 交于点H ,若CG =1,则BCDG S =四边形. 一线三等角模型【条件】EDF B C DE DF ∠=∠=∠=,且【结论】BDE CFD ? 【例13】如图,正方形ABCD 中,点E 、F 、G 分别为AB 、BC 、CD 边上的点,EB =3,GC =4,连接EF 、FG 、GE 恰好构成一个等边三角形,则正方形的边长为 . 最短路径模型【两点之间线段最短】 1、将军饮马 2、费马点【垂线段最短】 【两边之差小于第三边】 【例16】如图,矩形ABCD 是一个长为1000米,宽为600米的货场,A 、D 是入 口.现拟在货场内建一个收费站P ,在铁路线BC 段上建一个发货站台H ,设铺设公路l .求l 的最小值. AP 、DP 以及PH 之长度和为【例17】如图,E 、F 是正方形ABCD 的边AD 上两个动点,满足AE =DF ,连接CF 交BD 于G ,连接 BE 交AG 于点H ,若正方形的边 长为2,则线段DH 长度的最小值是. 中,4,42AB AD ==,E 是线【例18】如图所示,在矩形ABCD 段AB 的中点,F 是线段BC 上的动点,BEF ?沿直线EF 翻折到'B EF ?,连接'DB ,'DB 最短为 . 《三垂直模型》 课后练习题 【练习1】 问题1:如图1,在等腰梯形ABCD 中,AD ∥BC ,AB =BC =CD ,点M ,N 分别在AD ,CD 上,∠MBN =12 ∠ABC ,试探究线段MN ,AM ,CN 有怎样的数量关系请直接写出你的猜想; 问题2:如图2,在四边形ABCD 中,AB =BC ,∠ABC +∠ADC =180°,点M ,N 分别在 DA ,CD 的延长线上,若∠MBN =12 ∠ABC 仍然成立,请你进一步探究线段MN ,AM ,CN 又有怎样的数量关系写出你的猜想,并给予证明. 【练习2】已知:如图1,正方形ABCD 中,E 为对角线BD 上一点,过E 点作EF ⊥BD 交BC 于F ,连接DF ,G 为DF 中点,连接EG ,CG .

高二数学立体几何试题及答案(完整资料).doc

【最新整理,下载后即可编辑】 【模拟试题】 一. 选择题(每小题5分,共60分) 1. 给出四个命题: ①各侧面都是正方形的棱柱一定是正棱柱; ②各对角面是全等矩形的平行六面体一定是长方体; ③有两个侧面垂直于底面的棱柱一定是直棱柱; ④长方体一定是正四棱柱。 其中正确命题的个数是() A. 0 B. 1 C. 2 D. 3 2. 下列四个命题: ①各侧面是全等的等腰三角形的四棱锥是正四棱锥; ②底面是正多边形的棱锥是正棱锥; ③棱锥的所有面可能都是直角三角形; ④四棱锥中侧面最多有四个直角三角形。 正确的命题有________个 A. 1 B. 2 C. 3 D. 4 3. 长方体的一个顶点处的三条棱长之比为1:2:3,它的表面积为88,则它的对角线长为() A. 12 B. 24 C. 214 D. 414 4. 湖面上漂着一个球,湖结冰后将球取出,冰面上留下一个面直径为24cm,深为8cm的空穴,则该球的半径是() A. 8cm B. 12cm C. 13cm D. 82cm 5. 一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积为侧面积的比是() A. 12 2 +π π B. 14 4 +π π C. 12 +π π D. 14 2 +π π 6. 已知直线l m ⊥? 平面,直线平面 αβ,有下面四个命题: ①αβ//?⊥l m;②αβ⊥?l m //;③l m //?⊥ αβ;④l m⊥?αβ//。 其中正确的两个命题是() A. ①② B. ③④ C. ②④ D. ①③

7. 若干毫升水倒入底面半径为2cm 的圆柱形器皿中,量得水面的高度为6cm ,若将这些水倒入轴截面是正三角形的倒圆锥形器皿中,则水面的高度是( ) A. 63cm B. 6cm C. 2182 D. 3123 8. 设正方体的全面积为242cm ,一个球内切于该正方体,那么这个球的体积是( ) A. 63πcm B. 32 3 3 πcm C. 8 3 3 πcm D. 4 3 3 πcm 9. 对于直线m 、n 和平面αβ、能得出αβ⊥的一个条件是( ) A. m n m n ⊥,,////αβ B. m n m n ⊥=?,,αβα C. m n n m //,,⊥?βα D. m n m n //,,⊥⊥αβ 10. 如果直线l 、m 与平面αβγ、、满足: l l m m =?⊥βγααγ ,,,//,那么必有( ) A. αγ⊥⊥和l m B. αγβ////,和m C. m l m //β,且⊥ D. αγαβ⊥⊥且 11. 已知正方体的八个顶点中,有四个点恰好为正四面体的顶点,则该正四面体的体积与正方体的体积之比为( ) A. 13: B. 12: C. 2:3 D. 1:3 12. 向高为H 的水瓶中注水,注满为止,如果注水量V 与水深h 的函数关系的图象如图所示,那么水瓶的形状是( ) 二. 填空题(每小题4分,共16分) 13. 正方体的全面积是a 2,它的顶点都在球面上,这个球的表面积是__________。 14. 正四棱台的斜高与上、下底面边长之比为5:2:8,体积为143cm ,则棱台的高为____________。 15. 正三棱柱的底面边长为a ,过它的一条侧棱上相距为b 的

全等三角形常见的几何模型

1绕点型(手拉手模型) 遇600旋60°,造等边三角形 遇90°旋90°,造等腰直角遇等腰旋 顶角,造旋转全等遇中点旋1800,造中 心对称 (2)共旋转(典型的手拉手模型) 例1、在直线ABC的同一侧作两个等边三角形△ (1)△ ABE ◎△ DBC (2)AE=DC (3)AE与DC的夹角为60。 (4)△ AGB ◎△ DFB (5)△ EGB ◎△ CFB (6)BH 平分/ AHC (7)GF // AC 变式练习2、如果两个等边三角形△ ABD和厶BCE,连接AE与CD,证明: ("△ ABE ◎△ DBC (2)AE=DC (3)AE与DC的夹角为60。 (4) AE与DC的交点设为H,BH平分/ AHC [D山3 Vi壮-U (I) ? 变式练习1、如果两个等边三角形△ABD和厶BCE,连接AE与CD,证明 (1) △ ABE ◎△ DBC (2) AE=DC (3) AE与DC的夹角为60。 (4) AE与DC的交点设为H,BH 平分/ AHC (1自旋转:自旋转构造方法 ABD和厶BCE,连接AE与CD,证明:

3、(1)如图1,点C是线段AB上一点,分别以AC, BC为边在AB的同侧作等边△ ACM和厶CBN ,连接AN , BM .分别取BM, AN的中点E, F,连接CE, CF, EF.观察并猜想△ CEF的形状,并说明理由. (2)若将(1)中的“以AC , BC为边作等边△ ACM和厶CBN”改为“以AC, BC为腰在AB的同侧作等腰△ ACM和△ CBN,”如图2,其他条件不变,那么(1)中的结论还成立吗?若成立,加以证明;若不成立,请说明理由. B 例4、例题讲解: 1.已知△ ABC为等边三角形,点D为直线BC上的一动点(点D不与B,C重合),以AD为边作菱形ADEF(按A,D,E,F 逆时针排列),使/ DAF=60 ° ,连接CF. (1)如图1,当点D在边BC上时,求证:① BD=CF 宓AC=CF+CD. (2)如图2,当点D在边BC的延长线上且其他条件不变时,结论AC=CF+CD是否成立?若不成立,请写出AC、CF、 CD之间存在的数量关系,并说明理由; ⑶如图3,当点D在边BC的延长线上且其他条件不变时,补全图形,并直接写出AC、CF、CD之间存在的数量关系。 2、半角模型 说明:旋转半角的特征是相邻等线段所成角含一个二分之一角,通过旋转将另外两个和为二分之一的角拼接在一起, 成对称全等。 D A D A M x N rt B D 例1、如图,正方形ABCD的边长为1, AB,AD上各存在一点P、0,若厶APQ的周长为2, A P

立体几何中的常见模型化方法

立体几何中的常见模型化方法 建构几何模型的两个角度:一是待研究的几何体可与特殊几何体建立关联,二是数量关系有明显特征的几何背景 例题一个多面体的三视图如图1 所示,则该多面体的体积是 A. 23/3 B. 47/6 C.6 D.7 分析该几何体的三视图为 3 个正方形,所以可建构正方体模型辅助解答. 解图 2 为一个棱长为2 的正方体. 由三视图可知,该几何体是正方体截去两个小三棱锥后余下的部分,其体积V=8-2 X 1/3X 1/2X 1 X 1 X仁23/3选A. 解后反思大部分几何体可通过对正方体或长方体分割得到,所以将三视图问题放在正方体或长方体模型中研究,能够快速得到直观图,并且线面的位置关系、线段的数量关系明显,计算简便. 变式1已知正三棱锥P-A BC,点P, A , B , C都在半径为的球面上,若PA,PB,PC 两两互相垂直,则球心到截面ABC 的距离为_______ 分析由于在正三凌锥P-ABC 中,PA,PB,PC 两两互 相垂直,所以可以将该正三棱锥看作正方体的一部分,构造正方体模型.

解构造如图 3 所示的正方体. 此正方体外接于球,正方体的体对角线为球的直径EP,球心为正方体对角线的中点0,且EP丄平面ABC , EP与平 面ABC相交于点F.由于FP为正方体体对角线长度的1/3, 所以又0P为球的半径,所以0P=.故球心0到截面ABC的距离解后反思从正方体的8 个顶点之中选取不共面的点,可构造出多种几何体,这些几何体可以分享正方体的结构特征. 变式2-个四面体的所有棱长都为,四个顶点在同一球面上,则此球的表面积为 A.3 n B.4 n C.3 n D.6 n 分析将一个正方体切掉四个大的“角” ,就可得到一个正四面体. 解如图4 所示,构造一个棱长为1 的正方体 ABCD-A1B1C1D1 ,连接AB1,AD1 ,AC,CD1,CB1, B1D1,?t 四面体B1-ACD1 为符合题意的四面体,它的外接球的直径 AC1=,所以此正方体外接球的表面积S=4 n R2=3 n .选A. 解后反思正四面体的体积也可通过这种切割的方法求 得.由图形分析可知,正四面体的体积是它的外接正方体体积的}.若正四面体的棱长为a,则其体积为 变式 3 四面体A-BCD 中,共顶点A 的三条棱两两互相垂直,且其长分别为1,2, 3.若四面体A-BCD 的四个顶点同在一个球面上,则这个球的表面积为_____________ .

高二立体几何试题(详细答案)

一、选择题: (本大题共12小题,每小题3分,共36分.) 1、已知),1,2,1(),1,1,0(-=-=则与的夹角等于 A .90° B .30° C .60° D .150° 2、设M 、O 、A 、B 、C 是空间的点,则使M 、A 、B 、C 一定共面的等式是 A .0=+++OC OB OA OM B .O C OB OA OM --=2 C .4 13 12 1++= D .0=++ 3、下列命题不正确的是 A .过平面外一点有且只有一条直线与该平面垂直; B .如果平面的一条斜线在平面内的射影与某直线垂直,则这条斜线必与这条直线垂直; C .两异面直线的公垂线有且只有一条; D .如果两个平行平面同时与第三个平面相交,则它们的交线平行。 4、若m 、n 表示直线,α表示平面,则下列命题中,正确的个数为 ①//m n n m αα??⊥?⊥?②//m m n n αα⊥???⊥?③//m m n n αα⊥??⊥??④//m n m n αα??⊥?⊥? A .1个 B .2个 C .3个 D .4个 5、四棱锥成为正棱锥的一个充分但不必要条件是 A .各侧面是正三角形 B .底面是正方形 C .各侧面三角形的顶角为45度 D .顶点到底面的射影在底面对角线的交点上 6、若点A (42 +λ,4-μ,1+2γ)关于y 轴的对称点是B (-4λ,9,7-γ),则λ,μ,γ的值依次为 A .1,-4,9 B .2,-5,-8 C .-3,-5,8 D .2,5,8 7、已知一个简单多面体的各个顶点处都有三条棱,则顶点数V 与面数F 满足的关系式是 A .2F+V=4 B .2F -V=4 C .2F+V=2 (D )2F -V=2 8、侧棱长为2的正三棱锥,若其底面周长为9,则该正三棱锥的体积是 A . 239 B .433 C .233 D .4 3 9 9、正方体ABCD -A 1B 1C 1D 1中,E 、F 分别是棱AB ,BB 1的中点,A 1E 与C 1F 所成的角是θ,则 A .θ=600 B .θ=450 C .52cos = θ D .5 2 sin =θ

高中数学平面解析几何初步经典例题(供参考)

直线和圆的方程 一、知识导学 1.两点间的距离公式:不论A(x 1,y 1),B(x 2,y 2)在坐标平面上什么位置,都有d=|AB|=221221)()(y y x x -+-,特别地,与坐标轴平行的线段的长|AB|=|x 2-x 1|或|AB|=|y 2-y 1|. 2.定比分点公式:定比分点公式是解决共线三点A(x 1,y 1),B(x 2,y 2),P(x ,y )之间数量关系的一个公式,其中λ的值是起点到分点与分点到终点的有向线段的数量之比.这里起点、分点、终点的位置是可以任意选择的,一旦选定后λ的值也就随之确定了.若以 A 为起点, B 为终点,P 为分点,则定比分点公式是???? ?? ?++=++=λ λλλ11212 1y y y x x x .当P 点为AB 的中点时,λ=1,此时中点坐标公式是??? ???? +=+=222121y y y x x x . 3.直线的倾斜角和斜率的关系 (1)每一条直线都有倾斜角,但不一定有斜率. (2)斜率存在的直线,其斜率k 与倾斜角α之间的关系是k =tan α. 4.确定直线方程需要有两个互相独立的条件。直线方程的形式很多,但必须注意各种 5.两条直线的夹角。当两直线的斜率1k ,2k 都存在且1k ·2k ≠ -1时,tan θ= 2 11 21k k k k +-, 当直线的斜率不存在时,可结合图形判断.另外还应注意到:“到角”公式与“夹角”公式的

区别. 6.怎么判断两直线是否平行或垂直?判断两直线是否平行或垂直时,若两直线的斜率都存在,可以用斜率的关系来判断;若直线的斜率不存在,则必须用一般式的平行垂直条件来判断. (1)斜率存在且不重合的两条直线l 1∶11b x k y +=, l 2∶22b x k y +=,有以下结论: ①l 1∥l 2?1k =2k ,且b1=b2 ②l 1⊥l 2?1k ·2k = -1 (2)对于直线l 1∶0111=++C y B x A ,l 2 ∶0222=++C y B x A ,当A 1,A 2,B 1, B 2都不为零时,有以下结论: ①l 1∥l 2? 21A A =21B B ≠2 1C C ②l 1⊥l 2?A 1A 2+B 1B 2 = 0 ③l 1与l 2相交? 21A A ≠21B B ④l 1与l 2重合? 21A A =21B B =2 1 C C 7.点到直线的距离公式. (1)已知一点P (00,y x )及一条直线l :0=++C By Ax ,则点P 到直线l 的距离 d = 2 2 00| |B A C By Ax +++; (2)两平行直线l 1: 01=++C By Ax , l 2: 02=++C By Ax 之间的距离 d= 2 2 21||B A C C +-. 8.确定圆方程需要有三个互相独立的条件。圆的方程有两种形式,要知道两种形式之间的相互转化及相互联系 (1)圆的标准方程:222)()(r b y a x =-+-,其中(a ,b )是圆心坐标,r 是圆的半径; (2)圆的一般方程:022=++++F Ey Dx y x (F E D 42 2-+>0),圆心坐标 为(-2D ,-2 E ),半径为r =2422 F E D -+.

反比例函数常见几何模型

反比例函数常见模型 一、知识点回顾 1..反比例函数的图像是双曲线,故也称双曲线y=k x (k≠0).其解析式有三种表示方法:①x k y = (0≠k );②1-=kx y (0≠k );③k xy = 2.反比例函数y=k x (k≠0)的性质 (1)当k>0时?函数图像的两个分支分别在第一,三象限内?在每一象限内,y 随x 的增大而减小. (2)当k<0时?函数图像的两个分支分别在第二,四象限内?在每一象限内,y 随x 的增大而增大. (3)在反比例函数y=k x 中,其解析式变形为xy=k ,故要求k 的值(也就是求其图像上一点横坐标与纵坐标之积). (4)若双曲线y=k x 图像上一点(a ,b )满足a ,b 是方程Z 2-4Z -2=0的两根,求双曲线的解析式.由根与系数关系得ab=-2,又ab=k ,∴k=-2,故双曲线的解析式是y= 2 x -. (5)由于反比例函数中自变量x 和函数y 的值都不能为零,所以图像和x 轴,y 轴都没有交点,但画图时要体现出图像和坐标轴无限贴近的趋势. 二、新知讲解与例题训练

模型一: 如图,点A 为反比例函数x k y =图象上的任意一点,且AB 垂直于x 轴,则有2| |k S OAB = ? 例1:如图ABC Rt ?的锐角顶点是直线y=x+m 与双曲线y= x m 在第一象限的交点,且3=?AOB S ,(1)求m 的值 (2)求ABC ?的面积 变式题 1、如图所示,点1A ,2A ,3A 在x 轴上,且O 1A =21A A =32A A ,分别过1A ,2A ,3A 作y 轴平行线,与反比例函数y=x 8(x>0)的图像交于点1B ,2B ,3B ,分别过点1B ,2B ,3B 作x 轴的平行线,分别与y 轴交于点1C ,2C ,3C ,连结321,,OB OB OB ,那么图中阴影部分的面积之和为__________ 2、 如图,点A 在双曲线1y x =上,点B 在双曲线3 y x = 上,且AB ∥x 轴,C 、D 在x 轴上,若四边形ABCD 为矩形,则它的面积为 . 模型二: 如图:点A 、B 是双曲线)0(≠=k x k y 任意不重合的两点,直线AB 交x 轴于M 点,交 y 轴于N 点,再过A 、B 两点分别作y AD ⊥轴于D 点,x BF ⊥轴于F 点,再连结DF 两点,则有:AB DF ||且BM =AN 例2:如图,一次函数y a x b =+的图象与x 轴,y 轴交于A ,B 两 F

相关主题
文本预览
相关文档 最新文档