当前位置:文档之家› 合工大材料成型技术基础复习知识点

合工大材料成型技术基础复习知识点

材料成型技术基础

第二章铸造

一、铸造的定义、优点、缺点:

铸造指熔融金属、制造铸型并将熔融金属浇入铸型凝固后,获得具有一定形状、尺寸和性能的金属零件或毛坯的成型方法。

优点:铸造的工艺适应性强,铸件的结构形状和尺寸几乎不受限制;工业上常用的合金几乎都能铸造;铸造原材料来源广泛,价格低廉,设备投资少;铸造适于制造形状复杂、特别是内腔形状复杂的零件或毛坯,尤其是要求承压、抗振或耐磨的零件。

缺点:铸件的质量取决于成形工艺、铸型材料、合金的熔炼与浇注等诸多因素,易出现浇不到、缩孔、气孔、裂纹等缺陷,且往往组织疏松,晶粒粗大。

二、充型能力的定义、影响它的三个因素:

金属液的充型能力指金属液充满铸型型腔,获得轮廓清晰、形状准确的铸件的能力。

影响因素:①金属的流动性;②铸型条件;③浇注条件。

三、影响流动性的因素;纯金属和共晶成分合金呈逐层凝固流动性最好;影响充型能力的

铸型的三个条件;浇注温度和压力对充型能力是如何影响的:

影响流动性的因素:

①合金成分:纯金属和共晶成分的合金,结晶过程呈逐层凝固方式,流动性好;非共晶成分的合金,呈中间凝固方式,流动性较差;凝固温度范围过大,铸件断面呈糊状凝固方式,流动性最差。结晶温度范围越窄,合金流动性越好。

②合金的质量热容、密度和热导率:合金质量热容和密度越大、热导率越小,流动性越好。

影响充型能力的铸型的三个条件:

①铸型的蓄热系数:铸型从其中金属液吸收并储存热量的能力。蓄热系数越大,金属液保持液态时间短,充型能力越低。(在型腔喷涂涂料,减小蓄热系数)

②铸型温度:铸型温度越高,有利于提高充型能力。

③铸型中的气体:铸型的发气量过大且排气能力不足,就会使型腔中气压增大,阻碍充型。

浇注温度和压力对充型能力的影响:

①浇注温度:提高浇注温度,延长保持液态的时间,从而提高流动性。温度不能过高,否则金属液吸气增多,氧化严重,增大了缩孔、气孔、粘砂等缺陷倾向。

②充型压力(流动方向上的压力):充型压力越大,流动性越好。但充型压力不宜过大,以免金属飞溅,加剧氧化,气体来不及排出产生气孔、浇不到等缺陷。

四、铸造时液态和凝固收缩易产生缩孔和缩松;固态收缩易产生应力、变形和裂纹:

液态收缩(金属在液态时,由于温度降低而发生的体积收缩)和凝固收缩(熔

融金属在凝固阶段的体积收缩)易残生缩孔和缩松;固态收缩(金属在固态时由于温度降低而发生的体积收缩)是铸件产生铸造应力并进而引起变形、裂纹等缺陷的主要原因。

五、何种合金易缩孔,何种合金易缩松;多出现于铸件的哪些部位:

缩孔易出现于纯金属、共晶合金和凝固温度范围窄的合金(凝固时呈逐层凝固方式)。出现于铸件最后凝固的部位。

缩松易出现于凝固温度范围越宽的金属。出现于铸件的轴线附件和热节部位。

六、缩孔和缩松的防止措施。顺序凝固的定义和应用场合:

防止措施:①采用顺序凝固原则(设置冒口、冷铁);②加压补缩;

顺序凝固是使铸件按规定方向从一部分到另一部分依次凝固的原则,经常是向着冒口(设置于铸件厚部)或内浇道(设置于铸件厚部)方向凝固。对于热节部位,可设置冷铁以保证铸件顺序凝固。

应用场合:收缩较大、凝固温度范围较小的合金,如铸钢碳硅含量低的灰铸铁、铝青铜等合金、壁厚差别较大的铸件。

七、收缩应力的危害和减小措施:

危害:铸件上某部位的收缩应力和热应力之和超过其抗拉压强度时,就可能产生裂纹。

减小措施:采取提高型芯砂的退让性,合理设置浇注系统和及时开箱落砂等措施。

八、热应力产生的原因。能正确判断出铸件上何处产生拉应力、何处产生压应力:

原因:铸件在凝固和冷却过程

中,不同部位由于温差造成不均匀收

缩而引起的铸造应力。

细杆受压(一)、粗杆受拉(+)

细的部分拉长、粗的部分压短,细的

一半在外侧。

九、减小和消除热应力的方法。同时凝固的定义和应用场合:

减小和消除:

①合理设计铸型结构,壁厚均匀,减小热节,壁与壁间采用圆弧过度。

②采用同时凝固原则:使型腔内各部分金属液温差很小,同时进行凝固的原则。内浇道开于薄部、铸件厚部或热节处设置冷铁。

③去应力退火。

应用场合:同时凝固适用于收缩较小的合金(碳硅含量高的灰铸铁)和结晶温度范围宽倾向于糊状凝固的合金,同时也适用于气密性要求不高的铸件和壁厚均匀的薄壁铸件。

十、能正确判断出铸件上何处产生何种变形,防止铸件变形的两种措施: 防止变形措

施:①减小和消除铸造应力;②反变形法;

十一、冷裂纹和热裂纹的特征,何时产生、防止措施:

热裂:特征:断面严重氧化、无金属光泽、裂纹沿晶粒边界产生和发展,外形曲折而不规则。何时产生:铸件在凝固后期或凝固后在较高温度下形成的裂纹。

冷裂:特征:穿过晶粒延伸到整个断面,有金属光泽或微呈氧化色,多为直线或圆滑曲线,常出现在受拉伸的部位,特别是应力集中处。何时产生:铸件凝固后在较低温度下形成的裂纹。

防治措施:减小和消除铸造应力、严格限制铸铁和铸钢中硫、磷的含量,以降低其脆性。

十二、合金的铸造性能的定义,常用铸铁和钢的铸造性能及用其生产合格铸件需米取的措施:

金属的铸造性能是指金属在铸造过程中获得外形准确、内部健全的铸件的能力。

灰铸铁:灰铸铁铸造性能优良,凝固温度范围窄,铁液流动性好。凝固时有石墨析出,收缩小。灰铸铁产生铸造缺陷的倾向最小。生产时,采用同时凝固原则,无需设置冒口。

球墨铸铁:铸造性能位于灰铸铁与铸钢之间。铁液流动性较差。收缩量大,易产生缩孔、缩松缺陷。生产时,设置冒口和冷铁,采用顺序凝固原则。

铸钢:铸钢的铸造性能差。流动性差,易产生冷隔、浇不到、夹杂、气孔等缺陷。收缩远大于铸铁,易产生缩孔、裂纹等缺陷。生产时,设置冒口和冷铁,采用顺序凝固的原则。

十三、砂型铸造的造型方法可分为手工造型和机器造型两大类,各自的应用场合。

十四、铸造工艺图定义和作用、铸件图和铸型装配图的作用。

铸造工艺图:表达铸件分型面、浇冒口系统、浇注位置、工艺参数、型芯结构尺寸、控制凝固措施等的图样。

铸件图:又称为毛坯图,反映铸件实际形状、尺寸和技术要求的图样,是铸造生产、铸件检验和验收的主要依据。

铸型装配图:表示合型后铸件各组元间装配关系的工艺图。

十五、浇注位置和分型面的定义、选择原则,能正确选择:

浇注位置是浇注时铸件在铸型内所处的位置。

①重要加工面和主要工作面应处于底面或侧面;②大平面应尽可能朝下或采用倾斜浇注;③薄壁部分应放在铸型的下部或侧面;④收缩大的铸件,为便于设置冒口,厚实部应位于上方。

分型面是铸型组元间的结合面。

①铸件的机加工面和基准面;②应尽量减少分型面数量,采用平面作为分型面;③尽量减少型芯、活块的数量;④主要型芯应尽量放在下半铸型中。

十六、铸造工艺参数:铸件尺寸公差、要求的机械加工余量(RMA)、铸件线收缩率、起模斜度、最小铸出孔和槽尺寸、芯头和芯座。

十七、能正确绘制铸造工艺图。

十八、合金的铸造性能和铸造工艺对零件结构各有何要求,具有改错能力。

铸造性能:

1、铸件壁厚:①铸件壁厚应适当;②铸件壁厚应均匀;③内壁厚度应小于外壁;

2、铸件壁的连接:①转角处应采用圆弧过度;②避免壁交叉和锐角连接;

③应避免壁厚突变;

3、防止铸件变形:力求壁厚均匀、结构对称或设置加强肋;

4、避免较大的水平面;

5、减小轮形铸件的内应力;

铸造工艺:

1、铸件外形:①应利于减少和简化铸型的分型面;②侧凹和凸台不应该妨碍起模;③垂直于分型面和非加工面应具有起模斜度。

2、铸件的内腔:①内腔形状应利于制芯或者省去型芯;②利于型芯的固定、排气和清理;③大件和形状复杂的可采用组合结构。

第三章金属的塑性成形

一、塑性成形的定义、优点、缺点:

金属的塑性成形是利用外力使金属发生塑性变形,使其改变形状、尺寸和改善性能、获得型材或锻压件的加工方法。

优点:①塑性成形使金属组织致密、晶粒细小、力学性能提高;②材料利用率高切削工作较小;③生产效率高;④毛坯或零件的精度较高。

缺点:制件形状较简单,模具投资较高。

二、单晶体塑性变形:滑移;

多晶体塑性变形:晶内滑移;晶粒间的相对滑动和转动。

三、回复、再结晶定义、再结晶温度:

回复:将冷成形后的金属加热至一定温度后,使原子回复到平衡位置,晶内残余应力大大减小的现象。

再结晶:塑性变形后金属被拉长了的晶粒重新生核、结晶,变为等轴晶粒的现象。

回复温度约为(0.25-0.30)T熔(T单位K)

再结晶温度约为(0.4)T熔(T单位K)

四、冷成形、热成形、温成形的温度界限及应用

再结晶温度以上的为热成型,回复温度以下的为冷成型,位于回复温度到再结晶温度之间的为温成形。

冷成形应用:冷轧、冷锻、冷冲压、冷拔等,常用于制造半成品或成品。

热成形应用:热轧、热锻、热冲压、热拔等,常用于毛坯或半成品的制造。

温成形应用:温锻、温挤压、温拉拔等,用于尺寸较大、材料强度较高的零件或半成品制造。

五、镦粗与拔长的锻造比的计算式,锻造流线的形成原因,设计零件流线如何分布会较合理:

拔长:y = AJ A = L/L。> 1

镦粗:y = A/A0 = H0 H > 1

塑性杂质随着金属变形沿主要伸长方向呈带状分布,这样热锻后的金属组织就具有一定的方向性,通常称为锻造流线。

锻造流线分布:工作时最大正应力方向与流线方向一致,切应力方向与流线方向垂直,且流线沿零件轮廓分布而不被切断。

六、塑性成形性的衡量标准,影响因素:

材料的塑性成形性常用塑性和变形抗力综合衡量。

影响因素:

1、材料本质的影响:

①化学成分,纯金属塑性成形性优于合金、钢中合金元素越多,塑性成形性越差。

②金属组织:固溶体组织优于机械混合物、细晶组织优于粗晶组织、热成型组织优于冷成型组织和铸态组织。

2、变形条件的影响:

①变形温度(温度越高塑性越好);②应变速率(速率变大塑性从变差到变好呈抛物线);③应力状态(压应力多,塑性好,切应力多塑性差)

七、自由锻造的特点、应用范围:

自由锻即用简单的通用性工具,或在锻造设备的上、下钻间直接使坯料变形而获得所需的几何形状及内部质量锻件的加工方法。

自由锻设备的通用性好、工具简单;可锻大型件,锻件组织细密、力学性能好。但操作技术要求高,生产效率低;锻件形状较简单、加工余量大、精密度底。

应用范围:自由锻主要用于单件、小批生产,且是特大型锻件唯一的生产方式。

八、正确绘制自由锻造的锻件图。正确选择变形工步:

锻件图是在零件图基础上考虑余块、机械加工余量、锻件公差等因素绘制

的。

工步:

盘块类:锻粗一冲孔;局部锻粗一冲孔;

轴杆类:拔长;拔长一切肩一锻台阶;局部镦粗一拔长;

圆筒类:锻粗一冲孔一芯轴拔长;

圆环类:锻粗一冲孔一芯轴扩孔;

弯曲类:拔长一弯曲;

九、自由锻造零件结构设计:改正错误结构:

①应避免锥面或楔形,尽量采用圆柱面或平行平面,以利于锻造;

②各表面交接处应避免弧线或曲线,尽量采用直线或圆,以利于锻制;

③应避免肋板或凸台;

④大件和形状复杂的锻件,可采用锻一焊、锻一螺纹连接等组合结构,以利于锻造和机械加工。

十、模型锻造的特点和应用范围:

特点:模锻生产效率和锻件精度高、锻件形状可较复杂;但一般需专用设备和模具、投资较大、锻件重量较小。

应用范围:适用于小型锻件的成批、大量生产。

十一、锤模锻的锻模模膛分为制坯模膛和模锻模膛,模锻模膛可分为预锻和终锻模膛,各自作用。飞边槽的作用,模锻件图是在零件图的基础上,考虑哪些因素绘制出来的。

预锻模膛的作用是使坯料接近锻件形状和尺寸,以使金属易于充满终锻模膛。

终锻模膛的作用是最终获得锻件的形状额尺寸。

飞边槽的作用是促使金属充满模膛并容纳多余金属。

模锻件的锻件图是以零件图为基础,考虑分模面位置、余块、加工余量、锻造公差模锻斜度和圆角半径等因素绘制的。

十二、正确绘制模锻件图。正确选择变形工步:

盘类:镦粗、预锻、终锻

直轴类:拔长、滚压、预锻、终锻

弯轴类:拔长、滚压、弯曲、预锻、终锻

十三、锤模锻零件的结构设计:改正错误结构:

①应有合理的分模面;②与分模面垂直的非加工面应有结构斜度;③应避免肋的设置过于密或高度比过大,以利于金属充填模膛;④应避免腹板过薄,以减小变形抗力及利于金属填充模膛;⑤应尽量避免深孔或多孔结构,以利于制模和减少余块;⑥形状复杂件宜采用锻一焊、锻一螺纹连接等组合结构。

十四、板料冲压的特点和应用范围:

特点:冲压可制造各种尺寸和精度的制件,操作简便,生产效率和材料利用率高;冲压件轻、薄、刚度好,形状可较复杂,质量稳定,表面光洁、一般无需切削加工

应用范围:在汽车、机械、家用电器、航空航天等制造业中具有十分重要的地位,大部分板材、管材及型材通过冲压加工。

十五、冲裁分为冲孔和落料,冲孔和落料的落下部分分别为成品还是废料?冲孔落下的为废料、落料落下的为成品。

十六、模型冲裁间隙按大小可分为:大、中、小间隙的单边间隙值:小间隙:(3.0%〜7.0%)8

中间隙:(7.0%〜10.0%)8

大间隙:(10.0%〜12.5%)8

十七、弯曲的定义,影响最小弯曲半径的因素。回弹角的概念:

弯曲定义:将板料、型材或管材在弯矩作用下弯成具有一定曲率和角度的制件的成型方法。

用相对值〃.捋表示弯曲时的成形极限。相对值越小,板料允许弯曲程度越min

大,材料塑性越好。

回弹:外载荷去除后,塑性变形保留,弹性变形消失,使形状和尺寸发生与加载时变形方向相反的变化,从而消去一部分弯曲变形效果的现象。变化的角度为回弹角。

十八、拉深的定义,拉深系数、极限拉深系数的概念,弹壳、深筒多次拉深,中间插再结晶退火。

拉深,也称为拉延,是使板料成形为空心件而厚度基本不变的加工方法。

拉深系数:拉伸变形后制件直径d与其毛坯直径D。之比,用符号m表示,m = d§D0,m越小,板料变形程度越大,越易拉裂。

极限拉深系数:保证制件不被拉裂的拉深系数最小值称为极限拉深系数。

第四章连接成形

一、连接成形的定义、优点、缺点:

连接成形是将若十个构件链接为一体的成形方法。

优点:焊接省工省料、效率高,适于焊接的材料广泛。

缺点:焊接部位可能产生气孔、裂纹等焊接缺陷,焊件上常存在焊接应力和焊接变形。

二、接成形可分为:焊接、胶接和机械连接等三大类。

三、焊接可分为等三大类:熔焊、压焊、钎焊,各类的定义:

熔焊:将待焊处的母材金属熔化以形成焊缝的焊接方法;

压焊:焊接过程中,必须对焊件施加压力(加热或不加热),以完成焊接的方法。

钎焊:采用比母材熔点低的金属材料作为钎料,将焊件和钎料加热到高于钎料熔点,低于母材熔化温度,利用液态钎料润湿母材,填充接头间隙并与母材相互扩散实现连接的方法。

四、熔焊液相冶金的特点:反应温度高、比表面积大、反应时间短。

五、焊接接头各组成部分的名称,哪部分质量最好,哪部分质量最差?

质量最好:相变重结晶区,是焊接接头中性能最好的区域,但对于易淬火钢,也易形成淬硬组织。

质量最差:熔合区,该区化学成分和组织都很不均匀,力学性能差,是焊接

接头最薄弱的部位之一,常识焊接裂纹的发源地。

六、调节焊接残余应力的措施改正图,焊接残余应力的消除方法4种:

调节措施:

1、设计措施:

①尽量减少焊缝的数量和尺寸并避免焊缝密集和交叉;

②采用刚度较小的接头;

2、工艺措施:

①采用合理的焊接顺序,使焊缝收缩较为自由;

②降低焊接接头的刚度;

③加热减应区;

④锤击焊缝;

⑤预热和后热;

消除方法:

①去应力退火;②机械拉伸法;③温差拉伸法;④振动法;

七、焊接残余变形的类型5种,控制焊接残余变形的措施,改正图:

类型:①收缩变形;②角变形;③弯曲变形;④扭曲变形;⑤失稳变形;

措施:

1、设计措施:

①在可能的情况下尽量减少焊缝的数量和尺寸;

②合理安排焊缝位置;

2、工艺措施:

①反变形法;

②刚性固定法;

③合理选用焊接方法和焊接规范;

④选用合理的装配焊接顺序;

八、各种焊接方法的运用场合,能正确选择焊接方法:

九、影响材料焊接性的是哪五个因素?

①材料的化学成分:铁碳合金中,低碳钢焊接性良好,高碳钢的焊接性差,铸铁的焊接性更差。

②焊接方法;

③焊接材料;

④焊接结构类型:焊件结构越复杂或板厚越大,结构刚度就越大,焊接时

越易产生较大的内应力和裂纹,则材料焊接性就差。

⑤服役要求;十、碳当量与焊接性能的关系:

碳钢和低合金结构钢的CE<0.4%时,钢的淬硬倾向较小,焊接性良好,焊

接时一般不必采取预热等工艺措施。

CE=0.4%~0.6%时,钢材有一定的淬硬倾向,焊接性较差,需采取适当预热等一定的工艺措施。

CE>0.6%时,钢材的淬硬倾向大,焊接性更差,需采用较高的预热温度等严格的工艺措施。

十一、低碳钢、中碳钢、高碳钢、低合金结构钢的焊接性能比较:

低碳钢CE<0.4%,焊接性能良好,焊接接头一般不会产生淬硬组织或冷裂纹。

中碳钢一般CE=0.4%~0.6%,焊接性能较差,焊接接头易产生淬硬组织和裂纹。焊接时应进行预热和后热,焊后立即进行热处理。

高碳钢CE>0.6%,焊接性能更差,焊接接头更易产生淬硬组织和裂纹,焊接时采用更高的预热温度和更严格的工艺措施。

低合金结构钢(P164)

十二、铸铁的焊接特点,热焊、冷焊定义与运用场合:

铸铁的含碳量高,硫、磷等杂质元素含量多,强度低,塑性差,焊接时易产

生裂纹、白口及淬硬组织,故焊接性能差。

①异质焊缝冷焊:选用焊缝为非铸铁型组织的焊条,防止出现白口组织和

裂纹。常用焊条电弧焊,通常不加热。纯镍铸铁焊条:有良好的抗裂性及切削

加工性,成本高,一般用于机床导轨面等重要铸铁件的加工面修补。碳钢铸铁

焊条:成本低,易产生热裂纹,难于切削加工,用于焊补铸铁件的非加工面。

②同质焊缝热焊:选用焊缝为铸铁型的焊条或焊丝,焊前将铸件整体或局

部预热到550〜650° C,且焊接时温度不低于400° C。一般用于形状复杂、

刚性大且焊后需要切削加工的重要铸件,如车床车头箱、内燃机缸体等。

十三、焊接结构设计与工艺设计:

会正确选择结构材料;焊缝布置;错误的图改正;

会正确选择焊接方法;焊接接头的形式的特点及应用场合;

会正确选择坡口形式。

第五章粉末冶金成形

一、常用的粉末冶金材料的名称及用途(书P36):

硬质合金:用来制造刃具以及某些冷作模具、量具和不受冲击和振动的高耐磨零件。

烧结减摩材料:多孔轴承材料。

烧结摩擦材料:广泛用来制造机器上的制动带和离合器片。

烧结钢:可用于制造电钻齿轮和液压泵齿轮等。

二、粉末冶金工艺过程(书P193〜):

金属粉末的制取f预处理f (坯料的)成形f烧结f后处理等

(坯料的)成形、烧结是粉末冶金制品成形的重要工序

三、粉末冶金制品坯料成形方法(书P194~):

模压(单向、双向、浮动)、粉末轧制、挤压成形、等静压制等

四、粉末冶金制品的后处理方法(书P198):

复压、浸渍、热处理、表面处理

五、粉末冶金零件结构的工艺性:错误的图会改正(书P198〜)

第六章非金属材料成形

一、塑料按用途可分为:通用塑料和工程塑料;

按受热时的性能可分为:热塑性塑料和热固性塑料

二、塑料成形方法:

挤出、注塑、压塑、压延、注坯吹塑、反应注塑;

三、塑料零件结构的工艺性:错误的图会改正;

第七章复合材料成形

一、复合材料由基体材料和增强材料组成。

二、影响复合材料性能的因素:

基体材料性能、增强体特征、组成物比例、界面性质、成形方法和工艺参数。

三、复合材料成形的工艺特点:

材料制备与制品成形同时完成、材料性能的可设计性。

四、原材料到形成制品一般都要经过:

原材料制取、生产准备、制品成形、固化、脱模和修整、检验等阶段。

五、树脂基复合材料是以树脂为基体、纤维为增强体复合而成的。

树脂基复合材料成形方法:手糊法、喷射法、袋压法、缠绕法、模压法。

六、金属基复合材料以金属为基体,采用纤维、颗粒等作为增强体经复合而成的。

金属基复合材料成形方法:等离子喷涂法、液态渗透法、热压扩散结合法。

材料成型技术基础知识点总结

第一章铸造 1、铸造:将液态金属在重力或外力作用下充填到型腔中,待其凝固冷却后,获得所需形状与尺寸的毛坯或零件的方法。 2、充型:溶化合金填充铸型的过程。 3、充型能力:液态合金充满型腔,形成轮廓清晰、形状与尺寸符合要求的优质铸件的能力。 4、充型能力的影响因素: 金属液本身的流动能力(合金流动性) 浇注条件:浇注温度、充型压力 铸型条件:铸型蓄热能力、铸型温度、铸型中的气体、铸件结构 流动性就是熔融金属的流动能力,就是液态金属固有的属性。 5、影响合金流动性的因素: (1)合金种类:与合金的熔点、导热率、合金液的粘度等物理性能有关。 (2)化学成份:纯金属与共晶成分的合金流动性最好; (3)杂质与含气量:杂质增加粘度,流动性下降;含气量少,流动性好。 6、金属的凝固方式: ①逐层凝固方式 ②体积凝固方式或称“糊状凝固方式”。 ③中间凝固方式 7、收缩:液态合金在凝固与冷却过程中,体积与尺寸减小的现象称为合金的收缩。 收缩能使铸件产生缩孔、缩松、裂纹、变形与内应力等缺陷。 8、合金的收缩可分为三个阶段:液态收缩、凝固收缩与固态收缩。 液态收缩与凝固收缩,通常以体积收缩率表示。液态收缩与凝固收缩就是铸件产生缩孔、缩松缺陷的基本原因。 合金的固态收缩,通常用线收缩率来表示。固态收缩就是铸件产生内应力、裂纹与变形等缺陷的主要原因。 9、影响收缩的因素 (1)化学成分:碳素钢随含碳量增加,凝固收缩增加,而固态收缩略减。 (2)浇注温度:浇注温度愈高,过热度愈大,合金的液态收缩增加。 (3)铸件结构:铸型中的铸件冷却时,因形状与尺寸不同,各部分的冷却速度不同,结果对铸件收缩产生阻碍。 (4)铸型与型芯对铸件的收缩也产生机械阻力 10、缩孔及缩松:铸件凝固结束后常常在某些部位出现孔洞,按照孔洞的大小与分布可分为缩孔与缩松。大而集中的孔洞称为缩孔,细小而分散的孔洞称为缩松。 缩孔的形成:主要出现在金属在恒温或很窄温度范围内结晶,铸件壁呈逐层凝固方式的条件下。 缩松的形成:主要出现在呈糊状凝固方式的合金中或断面较大的铸件壁中,就是被树枝状晶体分隔开的液体区难以得到补缩所致。 合金的液态收缩与凝固收缩越大,浇注温度越高,铸件的壁越厚,缩孔的容积就越大。 缩松大多分布在铸件中心轴线处、热节处、冒口根部、内浇口附近或缩孔下方。 11、缩孔、缩松的防止方法: 课件版本: 冒口、冷铁与补贴的综合运用就是消除缩孔、缩松的有效措施。 (1) 使缩松转化为缩孔的方法: ①尽量选择凝固区域较窄的合金,使合金倾向于逐层凝固;

材料成型基础复习考试题

复习题 一、填空题 1.材料力学性能的主要指标有、、、、疲劳强度等 2.在静载荷作用下,设计在工作中不允许产生明显塑性变形的零件时,应使其承受的最大应力小于,若使零件在工作中不产生断裂,应使其承受的最大应力小于。 3.ReL(σs)表示,Rr0.2(σr0.2)表示,其数值越大,材料抵抗能力越强。 4.材料常用的塑性指标有和两种。其中用表示塑性更接近材料的真实变形。 5.当材料中存在裂纹时,在外力的作用下,裂纹尖端附近会形成一个应力场,用来表述该应力场的强度。构件脆断时所对应的应力强度因子称为,当K I >K I c 时,材料发生。 6.金属晶格的基本类型有、、三种。 7.亚共析钢的室温组织是铁素体+珠光体(F+P),随着碳的质量分数的增加,珠光体的比例越来越,强度和硬度越来越,塑性和韧性越来越。 8.金属要完成自发结晶的必要条件是,冷却速度越大,越大,晶粒越,综合力学性能越。 9.合金相图表示的是合金的____ 、、和之间的关系。 11.影响再结晶后晶粒大小的因素有、、、。12.热加工的特点是;冷加工的特点是。 13.马氏体是的固溶体,其转变温度范围(共析刚)为。 14.退火的冷却方式是,常用的退火方法有、、、、和。 15.正火的冷却方式是,正火的主要目的是、、。 16.调质处理是指加的热处理工艺,钢件经调质处理后,可以获得良好的性能。 17.W18Cr4V钢是钢,其平均碳含量(Wc)为:%。最终热处理工艺是,三次高温回火的目的是。

18.ZL102是合金,其基本元素为、主加元素为。19.滑动轴承合金的组织特征是或者。 20.对于热处理可强化的铝合金,其热处理方法为。 21.铸造可分为和两大类;铸造具有和成本低廉等优点,但铸件的组织,力学性能;因此,铸造常用于制造形状或在应力下工作的零件或毛坯。 22.金属液的流动性,收缩率,则铸造性能好;若金属的流动性差,铸件易出现等的铸造缺陷;若收缩率大,则易出现的铸造缺陷。 23.常用铸造合金中,灰铸铁的铸造性能,而铸钢的铸造性能。 24.铸型的型腔用于形成铸件的外形,而主要形成铸件的内腔和孔。25.一般铸件浇注时,其上部质量较,而下部的质量较,因此在确定浇注位置时,应尽量将铸件的朝下、朝上。 26.冒口的主要作用是,一般冒口厘设置在铸件的部位。 27.设计铸件时,铸件的壁厚应尽量,并且壁厚不宜太厚或太薄;若壁厚太小,则铸件易出现的缺陷;若壁厚太大,则铸件的。 28.衡量金属可锻性的两个主要指标是塑性与变形抗力、 塑性愈高,变形抗力愈小,金属的可锻性就愈好。 29.随着金属冷变形程度的增加,材料的强度和硬度,塑性和韧性 ,使金属的可锻性。 30.自由锻零件应尽量避免、、等结构。 31.弯曲件的弯曲半径应大于,以免弯裂。 32.冲压材料应具有良好的。 33.细晶粒组织的可锻性粗晶粒组织。 34.非合金钢中碳的质量分数愈低,可锻性就愈。 35.焊接方法按焊接过程的特点分、、三大类。 36.影响焊接电流的主要因素是焊条直径和焊缝位置。焊接时,应在保证焊接质量的前提下,尽量选用大的电流,以提高生产率。 37.电焊机分为和两大类。 38.焊缝的空间位置有、、、。39.焊接接头的基本形式有、、、。40.气体保护焊根据保护气体的不同,分为焊和焊等。41.点焊的主要焊接参数是、和。压力过大、电流过小,焊点强度;压力过小、电流过大,易、。 二、判断题 ( - )1.机器中的零件在工作时,材料强度高的不会变形,材料强度低的一定会产生变形。( - )2.硬度值相同的在同一环境中工作的同一种材料制作的轴,工作寿命是相同的。( - )3.所有的金属材料均有明显的屈服现象。 ( - )4.选择冲击吸收功高的材料制作零构件可保证工作中不发生脆断。

材料成型技术基础--名词解释

名词解释 一、二章(绪论+铸造成型): 1缩孔、缩松:液态金属在凝固的过程中,由于液态收缩和凝固收缩,因而在铸件最后凝固部位出现大而集中的孔洞,这种孔洞称为缩孔,细小而分散的孔洞称为缩松。 2顺序凝固:指采用各种措施保证铸件结构各部分,从远离冒口部分到冒口之间建立一个逐渐递增的温度梯度,实现由远离冒口的部分最先凝固再向冒口方向顺序凝固的凝固方式。 3同时凝固:由顺序凝固的定义可得。 4偏析:铸件凝固后截面上不同部位晶粒内部化学成分不均匀的现象称为偏析。 5:宏观偏析:其成分不均匀现象表现在较大尺寸范围,也称为区域偏析。 6微观偏析:指微小范围内的化学成分不均匀现象。 7流动性:液态金属自身的流动能力称为“流动性”。 8充型能力:液态金属充满铸型型腔,获得形状完整、轮廓清晰的铸件的能力叫充型能力。 9正偏析:当溶质的分配系数K>1的合金进行凝固时,越是后来结晶的固相,溶质的浓度越低,这种成分偏析称之为正偏析。 10逆偏析:当溶质的分配系数K<1的合金进行凝固时,越是后来结晶的固相,溶质的浓度越高,这种成分偏析称之为逆偏析。 11:自由收缩:铸件在铸型中收缩仅受到金属表面与铸型表面的摩擦阻力时,为自由收缩。 12:受阻收缩:如果铸件在铸型中的收缩除了受到金属表面与铸型表面的摩擦阻力,还受到其他阻碍,则为受阻收缩。 13:析出性气孔:溶解于熔融金属中的气体在冷却和凝固的过程中,由于溶解度的下降而从合金中析出,当铸件表面已凝固,气泡来不及排除而保留在铸件中形成的气孔。 14:反应性气孔:浇入铸型的熔融金属与铸型材料、芯撑、冷铁或熔渣之间发生化学反应所产生的气体在、铸件中形成的孔洞,称为反应气孔。 15:侵入性气孔:浇注过程中熔融金属和铸型之间的热作用,使型砂和型芯中的挥发物挥发生成,以及型腔中原有的空气,在界面上超过临界值时,气体就会侵入金属液而不上浮逸出而形成的气孔。 三章(固态材料塑性成型) 1金属塑性变形:是指在外力作用下,使金属材料产生预期的变形,以获得所需形状、尺寸和力学性能的毛坯或零件的加工方法。 2加工硬化:金属材料在再结晶温度以下塑性变形时强度和硬度升高,而塑性和韧性降低的现象。又称冷作硬化。 3自由锻:将加热后的金属坯料置于上下砧鉄间受冲击力或压力而变形的加工方法。 4模型锻造(模锻):将加热后的金属坯料置于具有一定形状的锻模模膛内受冲击力或压力而变形的加工方法。 5胎膜锻造:是在自由锻造设备上使用不固定在设备上的各种称为胎膜的单膛磨具,用胎膜终锻成型的锻造方法。 6落料:把板材冲压出所需外轮廓坯料的过程。其剪切下来的材料为工序所

合工大材料成型复习题

第二章 1、什么是金属液的充型能力影响金属充型能力的因素有哪三个 金属液充满铸型型腔,获得轮廓清晰、形状准确的铸件的能力 金属的流动性、铸型条件、浇注条件 2、影响金属流动性的因素有哪些金属的凝固方式有哪三种 合金成分、合金的质量热容、密度和热导率 逐层凝固、糊状凝固、中间凝固 3、何种金属的流动性最好该金属呈何种凝固方式 灰铸铁逐层凝固 4、影响充型能力的铸型条件有哪三个 铸型的蓄热系数、铸型温度、铸型中的气体 5、铸造时,金属的收缩可分为哪三个阶段什么收缩阶段易产生缩孔和缩松什么收缩阶 段易产生应力、变形和裂纹 液态收缩、凝固收缩、固态收缩 液态收缩和凝固收缩阶段易产生缩孔和缩松,固态收缩阶段易产生应力、变形和裂纹。 6、何种合金易缩孔,何种合金易缩松;多出现于铸件的哪些部位 缩孔:纯金属、共晶合金和凝固范围窄的合金凝固呈逐层凝固,易产生缩孔。位置:铸件最后凝固部位 缩松:凝固温度范围较宽的金属。位置:铸件的轴线附近和热节部位。 7、什么是铸造应力什么是热应力铸件上何处产生拉应力何处产生压应力 铸造应力:铸件在凝固和冷却过程中由受阻收缩、热作用和相变等因素引起的内应力 热应力:铸件在凝固和冷却过程中,不同部位由于温差造成不均匀收缩而引起的铸造应力。

先冷处受压,后冷处受拉 8、P88 思考作业题 2-5,2-6 9、缩孔和缩松的防止措施主要有哪两种 1)采用顺序凝固原则顺序凝固是使铸件按规定方向从一部分到另一部分依次凝固的原则,通常用于收缩较大、凝固温度范围较小的合金 2)加压补缩将铸型置于压力罐中,浇注后使铸件在压力下凝固可显著减少显微缩松 10、减小和消除热应力的方法有哪几种 1)合理设计铸件结构铸件壁厚应均匀且减少热节。壁与壁间的连接应尽量采用圆角过渡,以免因产生应力集中而开裂。 2)采用同时凝固原则使型腔内各部分金属液温差很小,同时进行凝固。将内浇道开于薄部,必要时在厚部或热节处设置冷铁。适用于收缩较小的合金、倾向于糊状凝固的合金、气密性要求不高的铸件、壁厚均匀的薄壁铸件 3)去应力退火一般为Ac1-(100~200) ℃,经保温后随炉冷却至200~300℃后出炉空冷 11、何时产生热裂纹何时产生冷裂纹试分别简述热裂纹和冷裂纹的特征。 热裂纹:铸件在凝固后期或凝固后在较高温度下形成的裂纹。特征:断面严重氧化,无金属光泽,裂纹沿晶粒边界产生和发展,外形曲折而不规则。 冷裂纹:铸件在凝固后温度较低形成的裂纹。特征:裂纹常穿过晶粒延伸到整个断面,有金属光泽或微呈氧化色,多为直线或圆滑曲线。多出现在受拉部位,特别是应力集中处 12、比较灰铸铁、球墨铸铁和铸钢的铸造性能。各应采取哪些工艺措施来保证铸件质量。 灰铸铁:铸造性能优良,流动性好、收缩小;产生铸造缺陷的倾向最小。一般采用同时凝固原则,无需设置冒口 球墨铸铁:球墨铸铁的共晶凝固温度范围较宽,且球化处理时易产生氧化物和硫化物夹杂,故铁液流动性较差;其石墨化膨胀量大于灰铸铁,但缩前膨胀,使收缩量加大而产生缩孔、缩松缺陷。生产球墨铸铁件多采用顺序凝固原则,需设置冒口和冷铁;应提高砂型的紧实度和透气性以防止铸

材料成形技术基础知识点总结

铸造:将熔融的液体浇注到与零件的形状相适应的铸型型腔中,冷却后获得逐渐的工艺方法。 1、铸造的实质 利用了液体的流动形成。 2、铸造的特点 A 适应性大(铸件分量、合金种类、零件形状都不受限制); B 成本低 C 工序多,质量不稳定,废品率高 D 力学性能较同样材料的锻件差。力学性能差的原因是:铸造毛胚的晶粒粗大,组织疏松, 成份不均匀 3、铸造的应用 铸造毛胚主要用于受力较小,形状复杂(特别是腔内复杂)或者简单、分量较大的零件毛胚。 1、铸件的凝固 (1)铸造合金的结晶结晶过程是由液态到固态晶体的转变过程.它由晶核的形成和长大两部份组成。通常情况下,铸件的结晶有如下特点: A 以非均质形核为主 B 以枝状晶方式生长为主. 结晶过程中,晶核数目的多少是影响晶粒度大小的重要因素,因此可通过增加晶核数目来细化晶粒. 晶体生长方式决定了最终的晶体形貌,不同晶体生长方式可得到枝状晶、柱状晶、等轴晶或者混合组织等. (2)铸件的凝固方式 逐渐的凝固方式有三种类型:A 逐层凝固B 糊状凝固C 中间凝固 2、合金的铸造性能 (1)流动性合金的流动性即为液态合金的充型能力,是合金本身的性能。它反映了液态金属的充型能力,但液态金属的充型能力除与流动性有关,还与外界条件如铸型性质、浇注条件和铸件结构等因素有关,是各种因素的综合反映。 生产上改善合金的充型能力可以从一下各方面着手: A 选择挨近共晶成份的趋于逐层凝固的合金,它们的流动性好; B 提高浇注温度,延长金属流动时间; C 提高充填能力 D 设置出气冒口,减少型内气体,降低金属液流动时阻力。 (2)收缩性 A 缩孔、缩松形成与铸件的液态收缩和凝固收缩的过程中.对于逐层凝固的合金由于固液两相共存区很小甚至没有,液固界面泾渭分明,已凝固区域的收缩就能顺利得到相邻液相的补充,如果最后凝固出的金属得不到液态金属的补充,就会在该处形成一个集中的缩孔。适当控制凝固顺序,让铸件按远离冒口部份最先凝固,然后朝冒口方向凝固, 最后才是冒口本身的凝固(即顺序凝固方式) ,就把缩孔转移到最后凝固的部位—- 冒口

工程材料与成型技术基础复习总结重点

工程材料与成型技术基础 1.材料强度是指材料在达到允许的变形程度或断裂前所能承受的最大 应力。 2.工程上常用的强度指标有屈服强度和抗拉强度。 3.弹性模量即引起单位弹性变形所需的应力。 4.载荷超过弹性极限后,若卸载,试样的变形不能全部消失,将保留 一部分残余成形,这种不恢复的参与变形,成为塑性变形。 5.产生塑性变形而不断裂的性能称为塑性。 6.抗拉强度是试样保持最大均匀塑性变形的极限应力,即材料被拉断 前的最大承载能力。 7.发生塑性变形而力不增加时的应力称为屈服强度。 8.硬度是指金属材料表面抵抗其他硬物体压入的能力,是衡量金属材 料软硬程度的指标。 9.硬度是检验材料性能是否合格的基本依据之一。 10. 11.布氏硬度最硬,洛氏硬度小于布氏硬度,维氏硬度小于前面两 种硬度。 12.冲击韧性:在冲击试验中,试样上单位面积所吸收的能量。 13.当交变载荷的值远远低于其屈服强度是发生断裂,这种现象称 为疲劳断裂。 14.疲劳度是指材料在无限多次的交变载荷作用而不会产生破坏的 最大应力。

熔点。 16.晶格:表示金属内部原子排列规律的抽象的空间格子。 晶面:晶格中各种方位的原子面。 晶胞:构成晶格的最基本几何单元。 17.体心立方晶格:α-Fe 、鉻(Cr)、钼(Mo)、钨(W)。 面心立方晶格:铝(Al)、铜(Cu)、银(Ag)、镍(Ni)、金(Au)。 密排六方晶格:镁(Mg)、锌(Zn)、铍(Be)、镉(Cd)。18.点缺陷是指长、宽、高三个方向上尺寸都很小的缺陷,如:间 隙原子、置换原子、空位。 19.线缺陷是指在一个方向上尺寸较大,而在另外两个方向上尺寸 很小的缺陷,呈线状分布,其具体形式是各种类型的位错。 20.面缺陷是指在两个方向上尺寸较大,而在另一个方向上尺寸很 小的缺陷,如晶界和亚晶界。 21.原子从一种聚集状态转变成另一种规则排列的过程,称为结晶。 结晶过程由形成晶核和晶核长大两个阶段组成。 22.纯结晶是在恒温下进行的。 23.实际结晶温度Tn低于理论结晶温度Tm的现象,称为过冷,其 差值称为过冷度ΔT,即ΔT=Tm﹣Tn。 24.同一液态金属,冷却速度愈大,过冷度也愈大。 25.浇注时,向液态金属中加入一些高熔点、溶解度的金属或合金, 当其结构与液态金属的晶体结构相似时使形核率大大提高,获得均匀细小的晶粒。这种方法称为变质处理。 26.液态金属结晶后获得具有一定晶格结构的晶体,高温状态下的 晶体,在冷却过程中晶格结构法发生改变的现象,称为同素异构转变,又称重结晶。 27.一种金属具有两种或两种以上的晶体结构,称为同素异构性。 28.当溶质原子溶入溶剂晶格,使溶剂晶格发生畸变,导致固溶体 强度、硬度提高,塑性和韧性略有下降的下降,称为固溶强化。

材料成型工艺基础考试复习要点

材料成型工艺根底 复习资料 13上午九到十一点 一号公教楼407 1铸件的凝固方式及其影响因素 凝固方式:〔l〕逐层凝固方式 〔2〕糊状凝固方式 〔3〕中间凝固方式 影响因素:〔l)合金的结晶温度围:结晶温度围越小,凝固区域越窄,越倾向于逐层凝固。 低碳钢近共晶成分铸铁倾向于逐层凝固,高碳钢、远共晶成分铸铁倾向于 糊状凝固。 〔2〕逐渐的温度梯度:在合金的结晶温度围已定时,假设铸件的温度梯度↑由小到大,则凝固区由宽变窄,倾向于逐层凝固。 2铸造性能含义及其包括容,充型能力含义,影响合金流动性因素〔合金种类、成分、浇注条件、铸型条件〕 铸造性能:合金铸造成形获得优质铸件的能力,、 合金的铸造性能:主要指合金的流动性、收缩性和吸收性等 充型能力:液态合金充满铸型型腔,获得形状完整轮廓清晰的铸件的能力。 影响合金流动性因素:〔l)合金的种类。灰铸铁、硅黄铜流动性最好,铝合金次之,铸钢最 差。 〔2〕合金的成分。同种合金,成分不同,其结晶特点不同,流动性 也不同。 〔3〕浇注温度越高,保持液态的时间越长,流动性越好; 温度越高,合金粘度越低,阻力越小,充型能力越强。 在保证充型能力的前提下温度应尽量低。 生产中薄壁件常采用较高温度,厚壁件采用较低浇注温度, 〔4〕 l.铸型的蓄热能力越强,充型能力越差 2.铸型温度越高,充型能力越好 3.铸型中的气体阻碍充型 3合金的收缩三阶段,缩孔、缩松、应力、变形、裂纹产生阶段 l.收缩。合金从液态冷却至常温的过程中,体积或尺寸缩小的现象。 合金的收缩过程可分为三阶段〔l〕液态收缩 〔2〕凝固收缩 〔3〕固态收缩 缩孔〔1〕形成条件:金属在恒温或很窄的温度围结晶,铸件壁以逐层凝固方式凝固。〔2〕产生原因:是合金的液态收缩和凝固收缩值大于固态收缩值,且得不到补偿。 〔3〕形成部位:在铸件最后凝固区域,次区域也称热节。 缩松〔1〕形成条件:形成铸件最后凝固的收缩未能得到补足,或者结晶温度围宽的合金呈糊状凝固,凝固区域较宽,液、固两相共存,树枝晶兴旺,枝晶骨架将 合金液分割开的小区难以得到补缩所致。

材料成型技术基础复习题

《材料成形技术基础》复习题 一、填空题(总计20分) 1、凝固成形的方法包括砂型铸造、金属型铸造、压力铸造、熔模铸造等。 2、宏观偏析通常指整个铸锭或铸件在大于晶粒尺度大范围内产生的成分不均匀现象。宏观偏析可分为正常偏析,逆偏析和密度偏析等。 3、进行铸件设计时,不仅要保证其工作性能和力学性能要求,还必须认真考虑铸造工艺和合金铸造性能对铸件结构的要求。 4、铸件的缺陷类型包括缩孔、缩松、裂纹、变形等。 5、冲压模具工作零件是指对坯料直接进行加工的零件;定位零件是指用来确定加工中坯料正确位置的零件。 6、挤压成形按成形温度可分为热挤压、温挤压、冷挤压;按金属的流动方向和凸模的运动方向可分为正挤压、反挤压、复合挤压、径向挤压。 7、焊接的熔池特征可描述为体积小、冷却速度大、过热温度高、动态下凝固、对流强烈。 8、手工电弧焊焊条药皮的主要作用有保护作用、冶金作用、提高焊接工艺性能。 9、焊接残余变形一般可分为总体变形和局部变形,总体变形分纵向收缩变形、横向收缩变形、弯曲变形和扭曲变形;局部变形分角变形和波浪变形。 10、写出5种常用热塑性塑料的英文代号ABS、PC、PVC、PP、PE、POM等。 11、形核时,仅依靠液相内部自发形核的过程,一般需要较大的过冷度才能得以完成;而实际凝固过程中,往往依靠外来质点或容器壁面形核,这就是所谓的非自发形核过程。12、晶体生长方式决定于固一液界面结构。一般粗糙界面对应于连续长大;光滑界面对应于侧面长大。当过冷度较小时,光滑界面以螺型位错方式生长;过冷度较大时,则转为连续生长方式生长。二维形核生长的方式,对于光滑界面的晶体几乎是不可能的。 13、一般凝固温度间隔大的合金,其铸件往往倾向于糊状凝固,否则倾向于逐层凝固。 14、塑料按成形性能分为热塑性塑料和热固性塑料。 二、概念题(总计30分) 1、形核率 2、成分过冷 3、凝固偏析 4、凝固形核 5、应力 6、应力状态

工程材料与成型技术基础期末考试复习(百度的答案)

期末考试复习 题型:1.单项选择题15小题占15% (基本理论知识的应用) 2.名词解释6个占18% (重要名词) 3.问答题3题占26%(重要知识点) 4.分析题2大题占20-30%(铁碳相图,热处理) 5.作图计算题或计算题占11-21% (铁碳二元相图及杠杆定律)) 复习范围 重要名词: 单晶体,单晶体是指样品中所含分子(原子或离子)在三维空间中呈规则、周期排列的一种固体状态。 多晶体,整个物体是由许多杂乱无章的排列着的小晶体组成的,这样的物体叫多晶体[1]。例如:常用的金属。原子在整个晶体中不是按统一的规则排列的,无一定的外形,其物理性质在各个方向都相同. 过冷度,熔融金属平衡状态下的相变温度与实际相变温度的差值。纯金属的过冷度等于其熔点与实际结晶温度的差值,合金的过冷度等于其相图中液相线温度与实际结晶温度的差值。合金,合金,是由两种或两种以上的金属与非金属经一定方法所合成的具有金属特性的物质。组元,组成合金的独立的、最基本的单元称为组元,组元可以是组成合金的元素或稳定的化合物。 相,一合金系统中的这样一种物质部分,它具有相同的物理和化学性能并与该系统的其余部分以界面分开。 合金相图,合金相即合金中结构相同、成分和性能均一并以界面分开的组成部分。它是由单相合金和多相合金组成的。 固溶体,固溶体指的是矿物一定结晶构造位置上离子的互相置换,而不改变整个晶体的结构及对称性等。 铁素体(F), 铁或其内固溶有一种或数种其他元素所形成的晶体点阵为体心立方的固溶体。奥氏体(A),γ铁内固溶有碳和(或)其他元素的、晶体结构为面心立方的固溶体。 渗碳体(Fe3C),晶体点阵为正交点阵,化学式近似于碳化三铁的一种间隙式化合物。] 珠光体(P), 奥氏体从高温缓慢冷却时发生共析转变所形成的,其立体形态为铁素体薄层和碳化物(包括渗碳体)薄层交替重叠的层状复相物。广义则包括过冷奥氏体发生珠光体转变所形成的层状复相物。 莱氏体(Ld),高碳的铁基合金在凝固过程中发生共晶转变所形成的奥氏体和碳化物(或渗碳体)所组成的共晶体。 马氏体,对固态的铁基合金(钢铁及其他铁基合金)以及非铁金属及合金而言,是无扩散的共格切变型相转变,即马氏体转变的产物。就铁基合金而言,是过冷奥氏体发生无扩散的共格切变型相转变即马氏体转变所形成的产物。铁基合金中常见的马氏体,就其本质而言,是碳和(或)合金元素在α铁中的过饱和固溶体。就铁-碳二元合金而言,是碳在α铁中的过饱和固溶体。 淬透性, 在规定条件下,决定钢材淬硬深度和硬度分布的特性。 淬硬性,以钢在理想条件下淬火所能达到的最高硬度来表征的材料特性。 调质处理、淬火+高温回火=调质,调质是淬火加高温回火的双重热处理,其目的是使工件具有良好的综合机械性能。

合工大材料成型技术基础复习知识点

材料成型技术基础 第二章铸造 一、铸造的定义、优点、缺点: 铸造指熔融金属、制造铸型并将熔融金属浇入铸型凝固后,获得具有一定形状、尺寸和性能的金属零件或毛坯的成型方法。 优点:铸造的工艺适应性强,铸件的结构形状和尺寸几乎不受限制;工业上常用的合金几乎都能铸造;铸造原材料来源广泛,价格低廉,设备投资少;铸造适于制造形状复杂、特别是内腔形状复杂的零件或毛坯,尤其是要求承压、抗振或耐磨的零件。 缺点:铸件的质量取决于成形工艺、铸型材料、合金的熔炼与浇注等诸多因素,易出现浇不到、缩孔、气孔、裂纹等缺陷,且往往组织疏松,晶粒粗大。 二、充型能力的定义、影响它的三个因素: 金属液的充型能力指金属液充满铸型型腔,获得轮廓清晰、形状准确的铸件的能力。 影响因素:①金属的流动性;②铸型条件;③浇注条件。 三、影响流动性的因素;纯金属和共晶成分合金呈逐层凝固流动性最好;影响充型能力的 铸型的三个条件;浇注温度和压力对充型能力是如何影响的: 影响流动性的因素: ①合金成分:纯金属和共晶成分的合金,结晶过程呈逐层凝固方式,流动性好;非共晶成分的合金,呈中间凝固方式,流动性较差;凝固温度范围过大,铸件断面呈糊状凝固方式,流动性最差。结晶温度范围越窄,合金流动性越好。 ②合金的质量热容、密度和热导率:合金质量热容和密度越大、热导率越小,流动性越好。 影响充型能力的铸型的三个条件: ①铸型的蓄热系数:铸型从其中金属液吸收并储存热量的能力。蓄热系数越大,金属液保持液态时间短,充型能力越低。(在型腔喷涂涂料,减小蓄热系数) ②铸型温度:铸型温度越高,有利于提高充型能力。 ③铸型中的气体:铸型的发气量过大且排气能力不足,就会使型腔中气压增大,阻碍充型。 浇注温度和压力对充型能力的影响: ①浇注温度:提高浇注温度,延长保持液态的时间,从而提高流动性。温度不能过高,否则金属液吸气增多,氧化严重,增大了缩孔、气孔、粘砂等缺陷倾向。 ②充型压力(流动方向上的压力):充型压力越大,流动性越好。但充型压力不宜过大,以免金属飞溅,加剧氧化,气体来不及排出产生气孔、浇不到等缺陷。 四、铸造时液态和凝固收缩易产生缩孔和缩松;固态收缩易产生应力、变形和裂纹: 液态收缩(金属在液态时,由于温度降低而发生的体积收缩)和凝固收缩(熔

材料成型技术基础复习题

材料成形技术基础复习题 一、选择题 1.铸造中,设置冒口的目的是()。 a. 改善冷却条件 b. 排出型腔中的空气 c. 减少砂型用量 d. 有效地补充收缩 2.铸造时不需要使用型芯而能获得圆筒形铸件的铸造方法是( )。 a. 砂型铸造 b. 离心铸造 c. 熔模铸造 d. 压力铸造 3.车间使用的划线平板,工作表面要求组织致密均匀,不允许有铸造缺陷。其铸件的浇注位置应使工作面()。 a. 朝上 b. 朝下 c. 位于侧面 d. 倾斜 4.铸件产生缩松、缩孔的根本原因()。 a. 固态收缩 b. 液体收缩 c. 凝固收缩 d. 液体收缩和凝固收缩 5.为提高铸件的流动性,在下列铁碳合金中应选用()。 a. C=3.5% b. C=3.8% c. C=4.0% d. C=4.7% 6.下列合金中,锻造性能最好的是(),最差的是()。 a.高合金钢 b.铝合金 c.中碳钢 d.低碳钢 7.大型锻件的锻造方法应该选用()。 a.自由锻 b.锤上模锻 c.胎膜锻 8.锻造时,坯料的始锻温度以不出现()为上限;终锻温度也不宜过低,否则会出现()。 a.晶粒长大 b.过热 c.过烧 d.加工硬化 9.材料经过锻压后,能提高力学性能是因为()。 a.金属中杂质减少 b.出现加工硬化 c.晶粒细小,组织致密 10.某厂铸钢车间15吨吊车的吊30钢铸造成型钩被损坏,需重新加工一个,其毛坯材料和制造方法应选()。 a.30钢铸造成形 b.30钢锻造成形 c.30钢板气割除 d.QT60-2铸造成形 11.设计板料弯曲模时,模具的角度等于成品角()回弹角。 a.加上 b.减少 c.乘以 d.除以 12.酸性焊条用得比较广泛的原因之一()。 a. 焊缝美观 b. 焊缝抗裂性好 c. 焊接工艺性好

工程材料及成型基础知识点整理教材

PPT填空题和简答题 1一、填空题 1、金属结晶包括形核与长大两个过程。 3、晶粒和晶粒之间的界面称为晶界。 4、在结晶过程中,细化晶粒的措施有提高冷却速度、变质处理、振动。 5、由于溶质原子的溶入,固溶体发生晶格畸变,变形抗力增大,使金属的强度、硬度升高的现象称为固溶强化。 6、常见的金属晶格类型体心立方、面心立方和密排立方。 7、在晶体缺陷中,点缺陷主要有空位、间隙原子、置换原子,线缺陷主要有刃型位错、螺型位错,面缺陷主要有晶界、亚晶界 8、金属结晶时,实际结晶温度必须低于理论结晶温度,结晶过冷度主要受冷却速度影响。 9、当金属化合物呈细小颗粒均匀分布在固溶体基体上时,将使合金的强度、硬度及耐磨性明显提高,这一现象称为固溶强化。 10.再结晶退火的前提是冷变形+足够高的温度,它与重结晶的区别在于无晶体结构转变。 1.奥氏体的晶格类型是面心立方。 2.铁素体的晶格类型是体心立方。 11.亚共析钢的室温组织是F+P 。 1.钢的淬透性是指钢淬火时所能达到的最高硬度值。 23.渗碳钢渗碳后的热处理包括淬火和低温回火,以保证足够的硬度。 24.在光学显微镜下观察,上贝氏体显微组织特征是羽毛状,下贝氏体显微组织特征呈针状。 5.零件失效的基本类型为_表面损伤、过量变形、断裂。 2.线型无定型高聚物的三种力学状态为玻璃态、高弹态、粘流态。 1、一个钢制零件,带有复杂形状的内腔,该零件毛坯常用铸造方法生产。 2、金属的流动性主要决定于合金的成分 3、流动性不好的铸件可能产生冷隔和浇不足缺陷。 4、铸造合金充型能力不良易造成冷隔和浇不足等缺陷, 12.过共析钢的室温组织是P+Fe3C 。 13.共晶反应的产物是Ld 1. 20钢齿轮、45钢小轴、T12钢锉的正火的目的分别是:提高硬度,满足切削加工的要求、作为最终热处理,满足小轴的使用要求、消除网状渗碳体。 2、在正火态的20钢、45钢、T8钢;、T13钢中,T8 钢的σb值最高。 3、在正火态的20钢、45钢、T8钢;、T13钢中,T13钢的HBS值最高。 4、为使钢得到理想的耐磨性,应进行淬火加低温回火。 5、为使钢获得理想的弹性,应进行淬火加中温回火。 6、为保证钢的综合性能,淬火后应进行高温回火。 7.为改善低碳钢的切削性能,常采用的热处理为正火或退火。 8.为改善高碳钢的切削性能,常采用的热处理为退火。 9.轴类等重要零件的最终热处理常为调质。 10.冷冲模等常用的最终热处理为淬火加低温回火。 11.汽车变速齿轮等常用的最终热处理为渗碳、淬火加低温回火。 12.机床变速齿轮等常用的最终热处理为调质加表面淬火。 13.钢的常规热处理(四把火)是指退火、正火、淬火、回火。

材料成形工艺知识点

一.铸造成型 收缩:铸造合金在液态、凝固态和固态的冷却进程中,由于温度降低而引发的体积减小的现象,称为收缩。 缩松缩孔:铸件在冷却和凝固进程中,由于合金的液态和凝固收缩,往往在铸件最后凝固的部份显现空洞。容积大而集中孔洞称为缩孔,细小而分散的孔洞称为缩松。 阻碍缩孔和缩松的因素及避免方法: 因素:浇筑温度,合金的结晶范围,铸型的冷却能力越大 避免方法:用顺序凝固方式 铸造应力怎么产生的: 铸件凝固后在冷却进程中,由于温度下降将继续收缩。有些合金还会发生固态相变而引发收缩或膨胀,这致使铸件的体积和长度发生转变,假设这种转变受到阻碍,就会在铸件内产生应力,称为铸造应力。 砂型铸造 剖面示用意:上型下型,明冒口,出气冒口,浇口杯,型砂,砂箱,直浇道,横浇道,暗冒口,内浇口,型腔,型芯,分型面。 工艺流程! 金属型铸造 金属型铸造又称硬模铸造,它是将金属液浇入金属型中,以取得金属铸件的一种工艺方式。(永久型铸造) 熔模铸造:熔模铸造又称失蜡铸造,一般是在蜡模表面涂上数层耐火材料,待其硬化干燥后,将其中的蜡模熔去而制成型壳,再通过焙烧,然后进行浇注,而取得铸件的一种方式。 熔模铸造工艺(重点)

压力铸造:在高压作用下,使得液态或半液态金属以较高的速度充填压铸模型腔,并在压力下成形和凝固。 铸造工艺设计 铸件结构的工艺性。 1.铸造结构形式:结构外形应方便起模,尽可能减少和简化分型面,铸件的内腔应尽可能不用或少用型芯。 2.合理的铸件壁厚:铸件壁厚过小,易产生浇不到、冷隔等缺点;壁厚过大,易产生缩孔、缩松、气孔等缺点。壁厚应均匀。 3.铸件壁的链接:连接处或转角处应有结构圆角。,厚壁与薄壁间的链接要慢慢过渡。 4.铸件应尽可能幸免有过大的平面 型芯设计的作用是形成铸件的内腔、孔洞、形状复杂阻碍取模部份的外形和铸型中有特殊要求的部份。 浇注系统设计:浇口杯,直浇道,横浇道,内浇道。 金属型的浇筑位置一样分为三种:顶注式、底注式和侧注式。 大体要求: 1.避免浇不足缺点 2.液态金属平稳地流入型腔 3.能把混入合金液中的熔渣挡在浇筑系统中 4能够合理地操纵和调剂铸件各部份的温度散布,减少或排除缩松缩孔 5.结构简单,体积小 冒口的作用:以为液态金属浇入铸型后的冷却进程中,大部份金属要产生体积收缩,其液态收缩和凝固收缩将致使铸件最后凝固的区域产生缩孔与缩松。如此冒口中的液态金属将补偿

材料成形技术基础 知识点总结

材料成形技术基础知识点总结 滑移系:晶体中一个滑移面及该面上的一个华滑移方向的组合。 纤维组织:金属经冷加工变形后,晶粒形状发生改变,其变化趋势大致与金属的宏观变形一致,若变形程度很大,则晶粒呈现一片纤维状的条纹。 拉深:当凸模下降与坯料接触,坯料首先弯曲,于凸模圆角接触的材料发生胀形形变,凸模继续下降,法兰部分坯料在切向压应力,径向拉应力的作用下沿凹模圆角向直壁流动,形成筒部,进行拉深变形。 自发形核:在单一的液相中,通过自身的结构起伏形成新相核心的过程。非自发形核:在不均匀的液体中,依靠外来杂质和容器壁面提供衬底而进行形核的过程。 焊接热循环:在焊接热源的作用下,焊件上的某一点温度随时间变化的过程。 焊接残余应力:由于焊接过程中的不均匀加热等因素而导致的焊接结构中存在残余应力。 温度场:加热和冷却过程中某一瞬间温度分布。 材料成型过程中的三种流:材料流,能量流,信息流。 液态金属在凝固和冷却到室温时发生:液态,凝固,固态三种收缩。 减小及消除焊接残余应力的措施有:热处理,温差拉伸,拉力载荷,爆炸冲击,振动法等。 液态金属结构:液态金属有许多近程有序的原子集团组成,原子集团内部原子规则排列,其结构与原固体相似;有大的能量起伏,激烈的热运动和大量的空穴;所有原子集团和空穴时聚时散,时小时大,始终处于瞬息万变的状态。 形核剂应具备哪些条件:失配度小,粗糙度大,分散性好,高温稳定性好。 加工硬化:金属经冷塑性变形后,随着变形程度的增加,金属的强度硬度增加,而塑性韧性降低,这种现象叫。其成因与位错的交互作用有关,随着塑性变形的进行,位错密度不断增加,位错反应和相互交割加剧,结果产生固定割阶,位错缠结等障碍,以致形成胞装亚结构,使位错难以越过这些障碍而被限制在一定范围内运动,这样,要使金属继续变形就需要不断增加外力才能克服位错间强大的交互作用力。 滑移变形时通常把滑移因子u为0.5或接近0.5的取向称为软取向,把u为0或接近0 的取向称为硬取向。 焊丝熔滴过度类型:自由过度,短路过度,混合过渡。其中自由过度分为滴状过渡和喷射过渡。 奥氏体不锈钢焊接主要问题是:热裂纹,脆化,晶间腐蚀和应力腐蚀。 成分过冷的形成原因k<1为例:固液界面前沿液相溶质将形成一个溶质富集的过界层(k小于1的合金),这种溶质富集将导致液相凝固温度T发生改变,与界面前沿实际温度Ta相比,产生差异,此差异将可能引起过冷。 手工电弧焊原理:利用焊条与焊件之间产生的电弧将焊条和焊件局部加热融化,焊芯端部溶化后的熔滴和融化的母材融合在一起形成熔池。焊条药皮溶化后形成熔渣并放出气体,在气渣的的联合保护下,有效地排除了周围空气的有害影响,得到优质焊缝。特点:简便灵活,适应性强,设备简单,易于移动,费用低。 高径比H0/D0:≥3,坯料容易发生失稳弯曲;2<X<3时容易形成双鼓形;0.5<X<2时坯料变形较均匀;≤0.5时两难变形区相遇,变形抗力急增,墩粗过程那个难以进行。 热轧钢正火钢焊接性要点:①抗热裂性比较好②有一定的冷冽倾向,且随强度级别的升高而增大③沉淀强化的钢种有产生再热裂纹的倾向,在消除应力热处理时,应注意避免在600度左右保温④热轧钢在制造厚大件时,有层状撕裂的危险⑤这类钢不存在热影响区软化的问题,但有过热区脆化的问题。热轧钢含碳量越高脆化程度越严重。正火钢随焊接热输入的增大或钢中含钛量的增加,催化程度严重。 等轴晶:具有晶界面积大,杂质和缺陷分布分散,晶粒分布没有位向的特点,故其性能均匀稳定,没有方向性。能克服等轴树枝晶分枝发达、显微缩松多的特点,可进一步提高综合力学性能。

材料成型知识点归纳总结

材料成型知识点归纳总结 一、焊接部分 1.焊接是通过局部加热或同时加压,并且利用或不用填充材料,使两个分离的焊件达到牢固结合的一种连接方法。实质――金属原子间的结合。 2.应用:制造金属结构件;2、生产机械零件;3、焊补和堆焊。 3.特点:与铆接相比1 . 节省金属;2 . 密封性好;3 . 施工简便,生产率高。与铸造相比 1 . 工序简单,生产周期短;2 . 节省金属; 3 . 较易保证质量 4.焊条电弧焊:焊条电弧焊(手工电弧焊)是用电弧作为热源,利用手工操作焊条进行焊接的熔焊方法,简称手弧焊,是应用最为广泛的焊接方法。 5.焊接电弧:焊接电弧是在电极与工件之间的气体介质中长时间稳定放电现象,即局部气体有大量电子流通过的导电现象。电极可以是焊条、钨极和碳棒。用直流电焊机时有正接法和反接法. 6.引弧方式接触短路引弧高频高压引弧 7.常见接头形式:对接 搭接角接 T型接头 8.保护焊缝质量的措施:1、对熔池进行有效的保护,限制空气进入焊接区(药皮、焊剂和气体等)。2、渗加有用合金元素,调整焊缝的化学成分(锰铁、硅铁等)。3、进行脱氧和脱磷。 9.牌号J×××J-结构钢焊条××-熔敷金属抗拉强度最低值×-药皮类型及焊接电源种类 10.焊缝由熔池金属结晶而成。冷却凝固后形成由铁素体和少量珠光体组成的柱状晶铸态组织。 11.热影响区的组织过热区正火区部分相变区熔合区 12.影响焊缝质量的因素影响焊缝金属组织和性能的因素有焊接材料、焊接方法、焊接工艺参数、焊接操作方法、焊接接头形式、坡口和焊后热处理等。 13.改善焊接热影响区性能方法:1.用手工电弧焊或埋弧焊焊一般低碳钢结构时,热影响区较窄,焊后不处理即可保证使用。2.重要的钢结构或用电渣焊焊接构件,要用焊后热处理方法消除热影响区。3.碳素钢、低合金结构钢构件,用焊后正火消除。4.焊后不能接受热处理的金属材料或构件,要正确选择焊接方法与焊接工艺。 14.常见的焊接缺陷裂纹夹渣未焊透未熔合焊瘤气孔咬边 15.焊接应力的产生及变形的基本形式收缩变形弯曲变形波浪变形扭曲变形角变形 16.焊接应力与变形产生的原因焊接过程中,对焊件进行了局部不均匀的加热是产生焊接应力与变形。 17.防止和减少焊接变形的措施:可以从设计和工艺两方面综合考虑来降低焊接应力。在设计焊接结构时,应采用刚性较小的接头形式,尽量减少焊缝数量和截面尺寸,避免焊缝集中等。 18.矫正焊接变形的方法机械矫正法火焰加热矫正法

材料成型基础期末复习习题集教材

材料成型基础习题集 一.解释名词 1.开放式浇注系统:内浇口的总截面积大于直浇口的截面积的浇注系统。合金在直浇口中不 停留而直接进入铸型的浇注系统。该浇注系统流动性好,但缺乏挡渣作用。 2.封闭式浇注系统:内浇口的总截面积小于直浇口的截面积的浇注系统。直浇口被合金灌满 而使渣漂浮在上部,具有较好的挡渣作用,但影响合金的流动性。 3.顺序凝固原则:通过合理设置冒口和冷铁,使铸件实现远离冒口的部位先凝固,冒口最后 凝固的凝固方式。 4.同时凝固原则:通过设置冷铁和补贴使铸件各部分能够在同一时间凝固的凝固方式。 5.孕育处理:在浇注前往铁水中投加少量硅铁、硅钙合金等作孕育剂,使铁水内产生大量均 匀分布的晶核,使石墨片及基体组织得到细化。 6.可锻铸铁:是白口铸铁通过石墨化退火,使渗碳体分解而获得团絮状石墨的铸铁。 7.冒口:是在铸型内储存供补缩铸件用熔融金属的空腔。 8.熔模铸造:用易熔材料如蜡料制成模样,在模样上包覆若干层耐火涂料,制成型壳,熔出 模样后经高温焙烧,然后进行浇注的铸造方法。 9.离心铸造:使熔融金属浇入绕水平轴、倾斜轴或立轴旋转的铸型,在惯性力的作用下,凝 固成形的铸件轴线与旋转铸型轴线重合的铸造方法。 10.锻造比:即锻造时变形程度的一种表示方法,通常用变形前后的截面比、长度比或高度比 来表示。 11.胎模锻造:是在自由锻设备上使用可移动模具生产模锻件的一种锻造方法。 12.拉深系数:指板料拉深时的变形程度,用m=d/D表示,其中d为拉深后的工件直径,D 为坯料直径。 13.熔合比:熔化焊时,母材加上填充金属一起形成焊缝,母材占焊缝的比例叫熔合比。 14.焊缝成形系数:熔焊时,在单道焊缝横截面上焊缝宽度(B)与焊缝计算厚度(H)的比值 (φ=B/H)。 15.氩弧焊:是以氩气作为保护气体的气体保护电弧焊。 16.电渣焊:是利用电流通过液体熔渣产生的电阻热做为热源,将工件和填充金属熔合成焊缝 的垂直位置的焊接方法。 17.点焊:是利用柱状电极在两块搭接工件接触面之间形成焊点而将工件焊在一起的焊接方 法。 18.冷裂纹敏感系数:依据钢材板厚、焊缝含氢量等重要因素对焊接热影响区淬硬性的影响程 度。 二.判断正误 1、垂直安放的型芯都要有上下型芯头. (√) 2、熔模铸造不需要分型面. (√) 3、型芯烘干的目的主要是为了提高其强度. (√) 4、确定铸件的浇注位置的重要原则是使其重要受力面朝上. (╳) 改正:确定铸件的浇注位置的重要原则是使其重要受力面朝下. 5、钢的碳含量越高,其焊接性能越好. (╳) 改正:钢的碳含量越高,其焊接性能越差. 6、增加焊接结构的刚性,可减少焊接应力. (√)

材料成形技术基础复习思考题-塑性成形部分-题

《材料成形技术基础》总复习思考题 一、基本概念 加工硬化、轧制成形、热塑性成形、冷塑性成形、变形速度、塑性变形能力(可锻性)、自由锻造、模型锻造、敷料(余块)、锻造比、镦粗、拔长、冲孔、落料、拉深、拉深系数、反挤压成形、正挤压。 二、是非判断 1、塑性是金属固有的一种属性,它不随变形方式或变形条件的变化而变化。() 2、对于塑性较低的合金材料进行塑性加工时拟采用挤压变形方式效果最好。() 3、自由锻是生产单件小批量锻件最经济的方法,也是生产重型、大型锻件的惟一方法。() 4、锻件图上的敷料或余块和加工余量都是在零件图上增加的部分,但两者作用不同。() 5、模膛深度越深,其拔模斜度就越大。() 6、对正方体毛坯进行完全镦粗变形时,可得到近似于圆形截面的毛坯。() 7、对长方体毛坯进行整体镦粗时,金属沿长度方向流动的速度大于横向流动的速度。() 8、塑性变形过程中一定伴随着弹性变形。() 9、金属在塑性变形时,压应力数目越多,则表现出的塑性就越好。() 10、金属变形程度越大,纤维组织越明显,导致其各向异性也就越明显。() 11、金属变形后的纤维组织稳定性极强,其分布状况一般不能通过热处理消除,只能通过在不同方向上的塑性成形后才能改变。() 12、材料的变形程度在塑性加工中常用锻造比来表示。() 13、材料的锻造温度范围是指始锻温度与终锻温度之间的温度。() 14、加热是提高金属塑性的常用措施。() 15、将碳钢加热到250℃后进行的塑性变形称为热塑性变性。() 16、自由锻造成形时,金属在两砧块间受力变形,在其它方向自由流动。() 17、镦粗、拔长、冲孔工序属于自由锻的基本工序。() 18、模锻件的通孔可以直接锻造出来。() 19、可锻铸铁可以进行锻造加工。() 20、始锻温度过高会导致锻件出现过热和过烧缺陷。() 21、热模锻成形时,终锻模膛的形状与尺寸与冷锻件相同。()

相关主题
文本预览
相关文档 最新文档