当前位置:文档之家› 大学物理-德布罗意波 微观粒子的波粒二象性

大学物理-德布罗意波 微观粒子的波粒二象性

大学物理期末试卷(带答案)

大学物理期末试卷(A) (2012年6月29日 9: 00-11: 30) 专业 ____组 学号 姓名 成绩 (闭卷) 一、 选择题(40%) 1.对室温下定体摩尔热容m V C ,=2.5R 的理想气体,在等压膨胀情况下,系统对外所做的功与系统从外界吸收的热量之比W/Q 等于: 【 D 】 (A ) 1/3; (B)1/4; (C)2/5; (D)2/7 。 2. 如图所示,一定量的理想气体从体积V 1膨胀到体积V 2分别经历的过程是:A B 等压过程; A C 等温过程; A D 绝热过程 . 其中吸热最多的 过程 【 A 】 (A) 是A B. (B) 是A C. (C) 是A D. (D) 既是A B,也是A C ,两者一样多. 3.用公式E =νC V T (式中C V 为定容摩尔热容量,ν为气体摩尔数)计算理想气体内能 增 量 时 , 此 式 : 【 B 】 (A) 只适用于准静态的等容过程. (B) 只适用于一切等容过程. (C) 只适用于一切准静态过程. (D) 适用于一切始末态为平衡态的过程. 4气缸中有一定量的氦气(视为理想气体),经过绝热压缩,体积变为原来的一半,问气体 分 子 的 平 均 速 率 变 为 原 来 的 几 倍 ? p V V 1 V 2 A B C D . 题2图

【 B 】 (A)2 2 / 5 (B)2 1 / 5 (C)2 1 / 3 (D) 2 2 / 3 5.根据热力学第二定律可知: 【 D 】 (A )功可以全部转化为热, 但热不能全部转化为功。 (B )热可以由高温物体传到低温物体,但不能由低温物体传到高温物体。 (C )不可逆过程就是不能向相反方向进行的过程。 (D )一切自发过程都是不可逆。 6. 如图所示,用波长600=λnm 的单色光做杨氏双缝实验,在光屏P 处产生第五级明纹极大,现将折射率n =1.5的薄透明玻璃片盖在其中一条缝上,此时P 处变成中央 明纹极大的位置,则此玻璃片厚度为: 【 B 】 (A) 5.0×10-4 cm (B) 6.0×10-4cm (C) 7.0×10-4cm (D) 8.0×10-4cm 7.下列论述错误..的是: 【 D 】 (A) 当波从波疏媒质( u 较小)向波密媒质(u 较大)传播,在界面上反射时,反射 波中产生半波损失,其实质是位相突变。 (B) 机械波相干加强与减弱的条件是:加强 π?2k =?;π?1)2k (+=?。 (C) 惠更斯原理:任何时刻波面上的每一点都可作为次波的波源,各自发出球面次波;在以后的任何时刻,所有这些次波面的包络面形成整个波在该时刻的新波面 (D) 真空中波长为500nm 绿光在折射率为1.5的介质中从A 点传播到B 点时,相位改变了5π,则光从A 点传到B 点经过的实际路程为1250nm 。 8. 在照相机镜头的玻璃片上均匀镀有一层折射率n 小于玻璃的介质薄膜,以增强某一波长 的透射光能量。假设光线垂直入射,则介质膜的最小厚度应为: 【 D 】 (A)/n λ (B)/2n λ (C)/3n λ (D)/4n λ P O 1 S 2 S 6. 题图

高三物理实物粒子的波粒二象性

第三节 实物粒子的波粒二象性 三维教学目标 1、知识与技能 (1)了解光既具有波动性,又具有粒子性; (2)知道实物粒子和光子一样具有波粒二象性; (3)知道德布罗意波的波长和粒子动量关系。 (4)了解不确定关系的概念和相关计算; 2、过程与方法 (1)了解物理真知形成的历史过程; (2)了解物理学研究的基础是实验事实以及实验对于物理研究的重要性; (3)知道某一物质在不同环境下所表现的不同规律特性。 3、情感、态度与价值观 (1)通过学生阅读和教师介绍讲解,使学生了解科学真知的得到并非一蹴而就,需要经过一个较长的历史发展过程,不断得到纠正与修正; (2)通过相关理论的实验验证,使学生逐步形成严谨求实的科学态度; (3)通过了解电子衍射实验,使学生了解创造条件来进行有关物理实验的方法。 教学重点:实物粒子和光子一样具有波粒二象性,德布罗意波长和粒子动量关系。 教学难点:实物粒子的波动性的理解。 教学方法:学生阅读-讨论交流-教师讲解-归纳总结。 教学用具:课件:PP 演示文稿(科学家介绍,本节知识结构)。多媒体教学设备 (一)引入新课 提问:前面我们学习了有关光的一些特性和相应的事实表现,那么我们究竟怎样来认识光的本质和把握其特性呢?(光是一种物质,它既具有粒子性,又具有波动性。在不同条件下表现出不同特性,分别举出有关光的干涉衍射和光电效应等实验事实)。 我们不能片面地认识事物,能举出本学科或其他学科或生活中类似的事或物吗? (二)进行新课 1、光的波粒二象性 讲述光的波粒二象性,进行归纳整理。 (1)我们所学的大量事实说明:光是一种波,同时也是一种粒子,光具有波粒二象性。光的分立性和连续性是相对的,是不同条件下的表现,光子的行为服从统计规律。 (2)光子在空间各点出现的概率遵从波动规律,物理学中把光波叫做概率波。 2、光子的能量与频率以及动量与波长的关系。 hv =ε λ/h p = λ/h p ==c v hv //ελ= 提问:作为物质的实物粒子(如电子、原子、分子等)是否也具有波动性呢? 3、粒子的波动性 提问:谁大胆地将光的波粒二象性推广到实物粒子?只是因为他大胆吗?(法国科学家德布罗意考虑到普朗克能量子和爱因斯坦光子理论的成功,大胆地把光的波粒二象性推广到实物粒子。) (1)德布罗意波:实物粒子也具有波动性,这种波称之为物质波,也叫德布罗意波。

高考物理最新近代物理知识点之波粒二象性真题汇编附答案解析(3)

高考物理最新近代物理知识点之波粒二象性真题汇编附答案解析(3) 一、选择题 1.氢原子能级关系如图,下列是有关氢原子跃迁的说法,正确的是 A.大量处于n=3能级的氢原子,跃迁时能辐射出2种频率的光子 B.用n=2能级跃迁到n=1能级辐射出的光子照射逸出功为4.54eV的金属钨能发生光电效应 C.用能量为10.3eV的光子照射,可使处于基态的氢原子跃迁到n=2能级 D.氢原子从n=3能级向基态跃迁时,辐射出的光子能量为1.51eV 2.如图所示为光电管的示意图,光照时两极间可产生的最大电压为0.5V。若光的波长约为6×10-7m,普朗克常量为h,光在真空中的传播速度为c,取hc=2×10-25J·m,电子的电荷量为1.6×10-19C,则下列判断正确的是 A.该光电管K极的逸出功大约为2.53×10-19J B.当光照强度增大时,极板间的电压会增大 C.当光照强度增大时,光电管的逸出功会减小 D.若改用频率更大、强度很弱的光照射时,两极板间的最大电压可能会减小 3.下表是按照密立根的方法进行光电效应实验时得到的某金属的遏止电压U c和入射光的频率ν的几组数据. U c/V0.5410.6370.7140.809 0.878 ν/1014Hz 5.644 5.888 6.098 6.303 6.501 由以上数据应用Execl描点连线,可得直线方程,如图所示.

则这种金属的截止频率约为 A .3.5× 1014Hz B .4.3× 1014Hz C .5.5× 1014Hz D .6.0× 1014Hz 4.如图为氢原子能级图,氢原子中的电子从n=5能级跃迁到n=2能级可产生a 光,从n=4能级跃迁到n=2能级可产生b 光,a 、b 光照射到逸出功为2. 29eV 的金属钠表面均可产生光电效应,则( ) A .a 光的频率小于b 光的频率 B .a 光的波长大于b 光的波长 C .a 光照射所产生的光电子最大初动能0.57k E eV = D .b 光照射所产生的光电子最大初动能0.34k E eV = 5.用一定频率的入射光照射锌板来研究光电效应,如图,则 A .任意光照射锌板都有光电子逸出

波粒二象性知识点教学教材

波粒二象性知识点总结 一:黑体与黑体辐射 1.热辐射 (1)定义:我们周围的一切物体都在辐射电磁波,这种辐射与物体的温度有关,所以叫热辐射。 (2)特点:热辐射强度按波长的分布情况随物体的温度而有所不同。 2.黑体 (1)定义:在热辐射的同时,物体表面还会吸收和反射外界射来的电磁波。如果一些物体能够完全吸收投射到其表面的各种波长的电磁波而不发生反射,这种物 体就是绝对黑体,简称黑体。 (2)黑体辐射特点:黑体辐射电磁波的强度按波长的分布只与黑 体的温度有关。 注意:一般物体的热辐射除与温度有关外,还与材料的种类及 表面状况有关。 二:黑体辐射的实验规律 如图所示,随着温度的升高,一方面,各种波长的辐射强度都 有增加;另—方面,辐射强度的极大值向波长较短的方向移动。 三:能量子 1.能量子:带电微粒辐射或吸收能量时,只能是辐射或吸收某 个最小能量值的整数倍,这个不可再分的最小能量值E叫做能量子。 2.大小:E=hν。 其中ν是电磁波的频率,h称为普朗克常量,h=6.626x10—34J·s(—般h=6.63x10—34J·s)。四:拓展: 1、对热辐射的理解 (1).在任何温度下,任何物体都会发射电磁波,并且其辐射强度按波长的分布情况随物体的温度而有所不同,这是热辐射的一种特性。 在室温下,大多数物体辐射不可见的红外光;但当物体被加热到5000C左右时,开始发出暗红色的可见光。随着温度的不断上升,辉光逐渐亮起来,而且波长较短的辐射越来越 多,大约在1 5000C时变成明亮的白炽光。这说明同一物体在一定温度下所辐射的能量在不同光谱区域的分布是不均匀的,而且温度越高光谱中与能量最大的辐射相对应的频率也越高。(2).在一定温度下,不同物体所辐射的光谱成分有显著的不同。例如,将钢加热到约800℃时,就可观察到明亮的红色光,但在同一温度下,熔化的水晶却不辐射可见光。 (3)热辐射不需要高温,任何温度下物体都会发出一定的热辐射,只是温度低时辐射弱,温度高时辐射强。2、2.什么样的物体可以看做黑体 (1).黑体是一个理想化的物理模型。 (2).如图所示,如果在一个空腔壁上开—个很小的孔,那么射人 小孔的电磁波在空腔内表面会发生多次反射和吸收,最终不能从空腔 射出。这个空腔近似看成一个绝对黑体。 注意:黑体看上去不一定是黑色的,有些可看做黑体的物体由于 自身有较强的辐射,看起来还会很明亮。如炼钢炉口上的小孔。 3、普朗克能量量子化假说 (1).如图所示,假设与实验结果“令人满意地相符”, 图中小圆点表示实验值,曲线是根据普朗克公式作出的。 (2).能量子假说的意义 普朗克的能量子假说,使人类对微观世界的本质有了全 新的认识,对现代物理学的发展产生了革命性的影响。普朗 克常量h是自然界最基本的常量之一,它体现了微观世界的

高中物理波粒二象性

科学的历史不仅仅是一连 串事实、规则和随之而来的数 学描述,它也是一部概念的历 史。当我们进入一个新的领域 时,常常需要新的概念。 ——普朗克第十七章波粒二象性 DESIGNER:范鸿飞 TEL:010-********-1 EMAIL:fanhongfei2002@https://www.doczj.com/doc/f814417505.html,

物理学大厦业已建成? 物理学发展到19世纪末期,可以说是达到相当完美、相当成熟的程度。以经典力学、经典电磁场理论和经典统计力学为三大支柱的经典物理大厦已经建成,而且基础牢固,宏伟壮观!一切物理现象似乎都能够从相应的理论中得到满意的回答。 在这种形势下,物理学家会感到陶醉,会感到物理学已大功告成,因而断言往后难有作为了。这种思想当 时在物理界不但普遍存在,而且由来已久。经典物理学大厦日臻完美

天边的两朵乌云…… 19世纪的最后一天,欧洲著 名的科学家欢聚一堂。会上,英 国著名物理学家W·汤姆生(即 开尔文男爵)发表了新年祝词。 他在回顾物理学所取得的伟大成 就时说,物理大厦已经落成,所 剩只是一些修饰工作。同时,他 在展望20世纪物理学前景时,却 若有所思地讲道:“动力理论肯 定了热和光是运动的两种方式, 现在,它的美丽而晴朗的天空却 晴朗天空中的两朵乌云被两朵乌云笼罩了……”

1.物理学的新纪元:能量量子化

物体的热辐射 一切物体都在不断地向外辐射电磁波。这种电磁辐射是由于物体内分子在不停地做热运动而产生的。 在室温条件下:辐射波长较长的电磁波(红外线); 在高温条件下:辐射波长较短的电磁波成分较多。 在温度升高过程中,物体颜色发生变化。 *固体在温度升高时颜色的变化 800K1000K1200K 1400K 注:“K”是开氏温标(T)的单位。与摄氏温标(t)的换算方法是:T=t+273

人教版高中物理选修3-5章总结复习素材:第17章 波粒二象性知识点

选修3-5知识点 第十七章波粒二象性 17.1能量量子化 一、黑体与黑体辐射 1、热辐射:一切物体都 在辐射电磁波,这种辐 射与物体的温度有关。 物体在室温时,热辐射的主要成分是波长较长的电磁波,不能引起人的視觉。当温度升高时,热辐射中较短波长的成分越来越强。 2、热辐射的特性:辐射强度按波长的分布情况随物体的温度而有所不同。 3、黑体:物体表面能够完全吸收入射的各种波长的电磁波而不发生反射。 除了热辐射之外,物体表面还会吸收和反射外界射来的电磁波。常温下我们看到的物体的颜色就是反射光所致。一些物体在光线照射下看起来比较黑,那是因为它吸收电磁波的能力较强,而反射电磁波的能力较弱。 4、黑体辐射:辐射电磁波的强度按波长的分布只与黑体的温度有关。 二、黑体辐射的实验规律

1、从中可以看出,随着温度的升高,一方面,各种波长的强度有所增加,另一方面,辐射强度的极大值向波长较短的方向移动。 2、维恩公式在短波区与实验非常接近,在长波区则与实验偏离很大。 3、瑞利公式在长波区与实実验基本一致,但 在短波区与实验严重不符,不但不符,而且 当趋于0时,辐射强度竟变成无穷大,这显 然是荒谬。 三、能量子 1、ε叫能量子,简称量子,能量是量子化的,只能一份一份地按不连续方式辐射或吸收能量。 2、普朗克常量:对于频率为ν的能量子最小能量: ε=hν h=6.62610-34J/s。——普朗克常量 17.2光的粒子性 光是电磁波:光的干涉、衍射现象说明光是波。 一、光电效应的实验规律 1、光电效应:即照射到金属表面的光,能使金属中的电子从表面逸出,发射出来的电子叫光电子。

2、研究光电效应的电路图:①K在受到光照时能够发射光电子汗,②光电子在UAK电场作用下形成光电流,③阳极A吸收阴极K发出的光电子。 3、存在着饱和电流:入射光越强,单位时间内发射的光电子数越多。 4、存在着遏止电压和截止频率 ①使光电流减少到0的反向电压称为遏止电压。遏止电压的存在意味着光电子具有一定的初速度。 ②入射光的频率低于截止频率时不发生光电效应。 ③入射光强度决定着:单位时间内发射出来的电子数(光电子)。 ④入射光的频率(颜色)决定着能否发生光电效应和发生光电效应时光电子的最大初动能。 ⑤光电子的能量只与入射光的频率有关,而与入射光的强弱无关。 5、光电效应具有瞬时性。 二、光电效应解释中的疑难 1、逸出功W0:使电子脱离某种金属所做功的最小值。 ①金属表面层内存在一种力,阻碍电子的逃逸。 2、光越强,逸出的电子数越多,光电流也就越大。 3、经典理论无法解释光电效应的实验结果 三、爱因斯坦的光电效应方程 1、爱因斯坦的光量子假设:在空间传播的光也不是连续的,光不仅在发射和吸收时能量是一份一份的,而且光本身就是由一个个不可分割的能量子

实物粒子的波粒二象性

实物粒子波粒二象性的介绍 今年十月份,在西安召开的物理创新大会上,有幸结识了熊承坤先生。熊老先生给我看了一张照片,照片上是气泡在水中上升的轨迹,是一个非常漂亮的波浪线。这充分说明了实物粒子具有波动性。 回来后我购置了实验器材,亲自做了这方面的实验,发现实验效果非常直观、明显。 下面我简要把气泡的运动特点介绍一下: 1)气泡从针孔中刚冒出时,要经历一小段直线加速过程,当速度达到一定值时开始做规则的波动。这时速度趋于恒定。 2)气泡越大,波长越短;气泡越小,波长越长。当气泡过于小时,它在水中上升的速度一直很小,形成不了波动,在水中直线上升。 3)气泡形成波动时,虽然波长不同,但对应的速度几乎相等。 4)一个气泡的波动轨迹并不在同一平面内,是螺旋上升的;俯视,其为椭圆。 这是实物粒子具有波粒二象性最直观、明显的例子。

为什么在空气中运动的子弹、小球等不会有明显的波动性呢? 为什么在水中运动的气泡会有的波动性呢? 这恰恰说明实物粒子之所以具有波动性,是当它们运动时,受其周围介 质作用的结果。 在空气中运动的子弹、小球等之所以不会有明显的波动性,是因为空气 的密度较小,而子弹、小球的质量较大,空气对子弹、小球的作用很难体现。 在水中运动的气泡之所以有明显的波动性,是因为水的密度较大,而气泡的质量较小,水对运动的气泡的作用使气泡产生了明显的波动。 为什么在真空中高速运动的电子、中子等会具有的波动性呢? 这恰恰说明真空不是空的,真空中有某种物质存在。这种物质对运动的电子、中子作用使它们产生波动。 在此,我们应把波动分类: 1)像我们常见的在绳子上传播的绳波,在水中传播的水波等,这些波传播的是振动,媒质并没随波动传播。例如,绳子也好、水也好它们本身并没有随波动传播出去。 2)另一类就完全不同,像水中运动的气泡,像高速运动的电子、中子等,它们是实实在在的粒子在运动,由于与介质的作用,使它们的运动呈现出波动性。 了解了波动的不同分类,我们就容易认清光的本质了。 从光电效应、康普顿效应等可以看出,光具有明显的粒子性,所以说光子是实实在在的粒子。 光子在影子物质空间中高速运动,使其具有了波动。 光子质量越大,所对应的波长越短,频率越大。 在此我强调一下,光子是有质量的,光子质量为: 2c h m γ=

高考物理近代物理知识点之波粒二象性难题汇编附解析(4)

高考物理近代物理知识点之波粒二象性难题汇编附解析(4) 一、选择题 1.关于近代物理,下列说法正确的是() A.射线是高速运动的氦原子 B.核聚变反应方程,表示质子 C.从金属表面逸出的光电子的最大初动能与照射光的频率成正比 D.玻尔将量子观念引入原子领域,其理论能够解释氦原子光谱的特征 2.已知钙和钾的截止频率分别为7.73×1014Hz和5.44×1014Hz,在某种单色光的照射下两种金属均发生光电效应,下列说法正确的是() A.钾的逸出功大于钙的逸出功 B.钙逸出的电子的最大初动能大于钾逸出的电子的最大初动能 C.比较它们表面逸出的具有最大初动能的光电子,钙逸出的光电子具有较大的波长D.比较它们表面逸出的具有最大初动能的光电子,钙逸出的光电子具有较大的动量 3.在光电效应实验中,用同一光电管在不同实验条件下得到了甲、乙、丙三条光电流与电压之间的关系曲线.下列判断正确的是() A.甲光的频率大于乙光的频率 B.乙光的波长小于丙光的波长 C.乙光的强度低于甲光的强度 D.甲光对应的光电子最大初动能大于丙光的光电子最大初动能 4.用大量处于n=4能级的氢原子向低能级跃迁释放的光子,照射某种金属,结果有两种频率的光子能使该金属发生光电效应。已知氢原子处在n=1、2、3、4能级时的能量分别为E1、E2、E3、E4,能级图如图所示。普朗克常量为h,则下列判断正确的是() A.这些氢原子共发出8种不同频率的光子 B.氢原子从n=4能级跃迁到n=1能级释放光子,氢原子核外电子的动能减小 C.能使金属发生光电效应的两种光子的能量分别为E4﹣E3、E4﹣E2 D.金属的逸出功W0一定满足关系:E2﹣E1<W0<E3﹣E1 5.下列说法正确的是()

大学物理2答案

一、选择题(在下列各题的四个选项中,只有一个选项是最符合题目要求的, 请你把正确的答案填写在括号内。每小题2分,共20分) 1、一平面简谐波在弹性媒质中传播时,某一时刻在传播方向上媒质中某质元在负的最大位移处,则它的能量是 【 B 】 A.动能为零,势能最大; B.动能为零,势能为零; C.动能最大,势能最大; D.动能最大,势能为零。 2、1mol 刚性双原子分子理想气体,当温度为T 时,其内能为: 【 C 】 (式中R 为摩尔气体常数,k 为玻耳兹曼常数)。 3、一束白光垂直照射在一光栅上,在形成的同一级光栅光谱中,偏离中央明纹最远的是:【 D 】 A. 紫光; B. 绿光; C. 黄光; D. 红光。 4、频率为100Hz ,传播速度为300m/s 的平面简谐波 ,波线上两点振动的相位差为2/3π,则此两点相距: 【 A 】 A. 1m ; B. 2.19m ; (C) 0.5m ; (D) 28.6m 。 5、自然光以600 的入射角照射到某两介质交界面时,反射光恰为线偏振光,则折射光为:【 B 】 A.线偏振光且折射角是300; B.部分偏振光且折射角是300; C.部分偏振光,但须知两种介质的折射率才能确定折射角; D.部分偏振光且只在该光由真空入射到折射率为3的介质时,折射角是300。 6、平衡状态下,可由麦克斯韦速率分布律导出气体的三种特征速率,这三种速率与温度及分子质量间的关系及它们之间的关系分别是 【 B 】 A.这三种速率随着温度的升高而线性增加; B. p v v <<; C. 这三种速率均与单个分子的质量成反比; D. p v v <<。 7、两个卡诺热机的循环曲线如图所示。一个工作在温度为T 1和T 3的两个热源之间,另一个工作在温度为T 2和T 3的两个热源之间,已知这两个循环曲线所围的面积相等,由此可知:【 D 】 A.两热机的效率一定相等; B.两热机从高温热源所吸收的热量一定相等; C.两热机向低温热源所放出的热量一定相等; D.两热机吸收的热量与放出的热量(绝对值) 的差值一定相等。 8、反映微观粒子运动的基本方程是 【 C 】

实物粒子的波粒二象性

3光的波粒二象性 4实物粒子的波粒二象性 (时间:60分钟) 知识点一康普顿效应 1.白天的天空各处都是亮的,是大气分子对太阳光散射的结果.美国物理学家康普顿由于在这方面的研究而荣获了1927年的诺贝尔物理学奖,假设一个运动的光子和一个静止的自由电子碰撞以后,电子向某一个方向运动,光子沿另一方向散射出去,则这个散射光子跟原来的光子相比 (). A. 频率变大B.速度变小 C.光子能量变大 D. 波长变长 解析光子与自由电子碰撞时,遵守动量守恒和能量守恒,自由电子碰撞前 静止,碰撞后动量、能量增加,所以光子的动量、能量减小,由λ=h p,ε=hν 可知光子频率变小,波长变长,故D正确,由于光子速度是不变的,故B错误. 答案 D 2.科学研究证明,光子有能量也有动量,当光子与电子碰撞时,光子的一些能量转移给了电子.假设光子与电子碰撞前的波长为λ,碰撞后的波长为λ′,

则碰撞过程中 ().A.能量守恒,动量守恒,且λ=λ′ B.能量不守恒,动量不守恒,且λ=λ′ C.能量守恒,动量守恒,且λ<λ′ D.能量守恒,动量守恒,且λ>λ′ 解析能量守恒和动量守恒是自然界的普遍规律,适用于宏观世界也适用于微观世界.光子与电子碰撞时遵循这两个守恒定律.光子与电子碰撞前光子 的能量E=hν=h c λ,当光子与电子碰撞时,光子的一些能量转移给了电子, 光子的能量E′=hν′=h c λ′,由E>E′,可知λ<λ′,选项C正确. 答案 C 3.频率为ν的光子,具有的动量为hν c,将这个光子打在处于静止状态的电子上, 光子将偏离原来的运动方向,这种现象称为光的散射.散射后的光子 ().A.虽改变原来的运动方向,但频率保持不变 B.光子将从电子处获得能量,因而频率将增大 C.散射后光子的能量减小,因而光子的速度减小 D.由于电子受到碰撞,散射后的光子频率低于入射光的频率 解析由动量公式p=h λ,在康普顿效应中,当入射光子与电子碰撞时,要把 一部分动量转移给电子,因而光子动量变小,波长变长,频率变小.而光的传播速度不变. 答案 D 知识点二光的波粒二象性 4.物理学家做了一个有趣的实验:如图4-3、4-2所示,在双缝干涉实验中,在光屏处放上照相底片,若减弱光的强度,使光子只能一个一个地通过狭缝,实验结果表明,如果曝光时间不太长,底片上只出现一些不规则的点;如果

高中物理-波粒二象性测试题

高中物理-波粒二象性测试题 一、选择题 1、入射光照射到金属表面上发生了光电效应,若入射光的强度减弱,但频率保持不变,那么以下说法正确的是() A.从光照射到金属表面到发射出光电子之间的时间间隔明显增加 B.逸出的光电子的最大初动能减小 C.单位时间内从金属表面逸出的光电子的数目减少 D.有可能不再产生光电效应 2、爱因斯坦由光电效应的实验规律,猜测光具有粒子性,从而提出光子说。从科学研究的方法来说这属于() A.等效代替B.控制变量 C.科学假说D.数学归纳 3、如图1所示,画出了四种温度下黑体辐射的强度与波长的关系图象,从图象可以看出,随着温度的升高,则() A.各种波长的辐射强度都有增加 B.只有波长短的辐射强度增加 C.辐射强度的极大值向波长较短的方向移动 D.辐射电磁波的波长先增大后减小 4、对光的认识,以下说法正确的是() 图1 A.个别光子的行为表现为粒子性,大量光子的行为表现为波动性 B.光的波动性是光子本身的一种属性,不是光子之间的相互作用引起的 C.光表现出波动性时,不具有粒子性;光表现出粒子性时,不具有波动性D.光的波粒二象性应理解为:在某些场合下光的波动性表现明显,在另外一些场合下,光的粒子性表现明显 5、光子打在处于静止状态的电子上,光子将偏离原来的方向而发生散射,康普顿对散射的解释为() A.虽然改变原来的运动方向,但频率保持不变 B.光子从电子处获得能量,因而频率增大 C.入射光引起物质内电子做受迫振动,而从入射光中吸收能量后再释放,释

放出的散射光频率不变 D .由于电子受碰撞后得到动量,散射后的光子频率低于入射光的频率 6、一束绿光照射某金属发生了光电效应,则下列说法正确的是( ) A .若增加绿光的照射强度,则逸出的光电子数增加 B .若增加绿光的照射强度,则逸出的光电子最大初动能增加 C .若改用紫光照射,则可能不会发生光电效应 D .若改用紫光照射,则逸出的光电子的最大初动能增加 7、用波长为λ1和λ2的单色光1和2分别照射金属1和2的表面。色光1照射 金属1和2的表面时都有光电子射出,色光2照射金属1时有光电子射出,照射金属2时没有光电子射出。设金属1和2的逸出功为W 1和W 2,则有( ) A .λ1>λ2,W 1>W 2 B .λ1>λ2,W 1W 2 D .λ1<λ2,W 1

大学物理2答案

如有你有帮助,请购买下载,谢谢! 一、选择题(在下列各题的四个选项中,只有一个选项是最符合题目要求的, 请你把正确的答案填写在括号内。每小题2分,共20分) 1、一平面简谐波在弹性媒质中传播时,某一时刻在传播方向上媒质中某质元在负的最大位移处,则它的能量是 【 B 】 A.动能为零,势能最大; B.动能为零,势能为零; C.动能最大,势能最大; D.动能最大,势能为零。 2、1mol 刚性双原子分子理想气体,当温度为T 时,其内能为: 【 C 】 (式中R 为摩尔气体常数,k 为玻耳兹曼常数)。 3、一束白光垂直照射在一光栅上,在形成的同一级光栅光谱中,偏离中央明纹最远的是:【 D 】 A. 紫光; B. 绿光; C. 黄光; D. 红光。 4、频率为100Hz ,传播速度为300m/s 的平面简谐波 ,波线上两点振动的相位差为2/3π,则此两点相距: 【 A 】 A. 1m ; B. 2.19m ; (C) 0.5m ; (D) 28.6m 。 5、自然光以600 的入射角照射到某两介质交界面时,反射光恰为线偏振光,则折射光为:【 B 】 A.线偏振光且折射角是300; B.部分偏振光且折射角是300; C.部分偏振光,但须知两种介质的折射率才能确定折射角; D.部分偏振光且只在该光由真空入射到折射率为3的介质时,折射角是300。 6、平衡状态下,可由麦克斯韦速率分布律导出气体的三种特征速率,这三种速率与温度及分子质量间的关系及它们之间的关系分别是 【 B 】 A.这三种速率随着温度的升高而线性增加; B. p v v <<; C. 这三种速率均与单个分子的质量成反比; D. p v v <<。 7、两个卡诺热机的循环曲线如图所示。一个工作在温度为T 1和T 3的两个热源之间,另一个工作在温度为T 2和T 3的两个热源之间,已知这两个循环曲线所围的面积相等,由此可知:【 D 】 A.两热机的效率一定相等; B.两热机从高温热源所吸收的热量一定相等; C.两热机向低温热源所放出的热量一定相等; D.两热机吸收的热量与放出的热量(绝对值) 的差值一定相等。 8、反映微观粒子运动的基本方程是 【 C 】

高考物理近代物理知识点之波粒二象性图文答案(4)

高考物理近代物理知识点之波粒二象性图文答案(4) 一、选择题 1.下图为氢原子的能级图.现有两束光,a 光由图中跃迁①发出的光子组成,b 光由图中跃迁②发出的光子组成,已知a 光照射x 金属时刚好能发生光电效应,则下列说法正确的是 A .x 金属的逸出功为2.86 eV B .a 光的频率大于b 光的频率 C .氢原子发生跃迁①后,原子的能量将减小3.4 eV D .用b 光照射x 金属,打出的光电子的最大初动能为10.2 eV 2.三束单色光1、2和3的频率分别为1v 、2v 和3123()v v v v >>。分别用这三束光照射同一种金属,已知用光束2照射时,恰能产生光电效应。下列说法正确的是( ) A .用光束1照射时,一定不能产生光电效应 B .用光束3照射时,一定能产生光电效应 C .用光束3照射时,只要光强足够强,照射时间足够长,照样能产生光电效应 D .用光束1照射时,无论光强怎样,产生的光电子的最大初动能都相同 3.下列说法中正确的是 A .阳光下肥皂泡上的彩色条纹和雨后彩虹的形成原理是相同的 B .只有大量光子才具有波动性,少量光子只具有粒子性 C .电子的衍射现象说明其具有波动性,这种波不同于机械波,它属于概率波 D .电子显微镜比光学显微镜的分辨率更高,是因为电子穿过样品时发生了更明显的衍射 4.如图是 a 、b 两光分别经过同一双缝干涉装置后在屏上形成的干涉图样,则 A .从同种介质射入真空发生全反射是 b 光临界角大

B.在同种均匀介质中,a 光的传播速度比 b 光的大 C.照射在同一金属板上发生光电效应时,a 光的饱和电流大 D.若两光均由氢原子能级跃迁发生,产生 a 光的能级能量差小 5.如图所示,当氢原子从n=4能级跃迁到n=2的能级和从n=3能级跃迁到n=1的能级时,分别辐射出光子a和光子b,则 A.由于辐射出光子,原子的能量增加 B.光子a的能量小于光子b的能量 C.光子a的波长小于光子b的波长 D.若光子a能使某金属发生光电效应,则光子b不一定能使该金属发生光电效应 6.用如图甲所示的装置研究光电效应现象.用频率为ν的光照射光电管时发生了光电效应.图乙是该光电管发生光电效应时光电子的最大初动能E k与入射光频率ν的关系图象,图线与横轴的交点坐标为(a,0),与纵轴的交点坐标为(0,-b),下列说法中正确的是() A.普朗克常量为h=b a B.仅增加照射光的强度,光电子的最大初动能将增大 C.保持照射光强度不变,仅提高照射光频率,电流表G的示数保持不变D.保持照射光强度不变,仅提高照射光频率,电流表G的示数增大7.关于光电效应,下列说法正确的是 A.光电子的最大初动能与入射光的频率成正比 B.光的频率一定时,入射光越强,饱和电流越大 C.光的频率一定时,入射光越强,遏止电压越大 D.光子能量与光的速度成正比 8.下列说法中正确的是 A.根据爱因斯坦的“光子说”可知,光的波长越大,光子的能量越小

大学物理振动与波动

振动与波动 选择题 0580.一长为l 的均匀细棒悬于通过其一端的光滑水平固定轴上,(如图所示), 作成一复摆.已知细棒绕通过其一端的轴的转动惯量23 1 ml J =,此摆作微小振 动的周期为 (A) g l π2. (B) g l 22π. (C) g l 322π . (D) g l 3π. [ C ] 3001. 把单摆摆球从平衡位置向位移正方向拉开,使摆线与竖直方向成一微小角度θ ,然后由静止放手任其振动,从放手时开始计时.若用余弦函数表示其运动方程,则该单摆振动的初相为 (A) π. (B) π/2. (C) 0 . (D) θ. [ C ] 3003.轻弹簧上端固定,下系一质量为m 1的物体,稳定后在m 1下边又系一质量为m 2 的物体,于是弹簧又伸长了?x .若将m 2移去,并令其振动,则振动周期为 (A) g m x m T 122?π= . (B) g m x m T 212?π=. (C) g m x m T 2121?π= . (D) g m m x m T )(2212+π=?. [ B ] 3004.劲度系数分别为k 1和k 2的两个轻弹簧串联在一起,下面挂着质量为m 的物体,构成一个竖挂的弹簧振子,则该系统的振动周期为 (A) 21212)(2k k k k m T +π =. (B) ) (221k k m T +π= . (C) 2121)(2k k k k m T +π=. (D) 2 122k k m T +π=. [ C ] 3255.如图所示,在一竖直悬挂的弹簧下系一质量为m 的物体,再用此弹簧改系一质量为4m 的物体,最后将此弹簧截断为两个等长的弹簧并联后悬挂质 量为m 的物体,则这三个系统的周期值之比为 (A) 1∶2∶2/1. (B) 1∶2 1 ∶2 .

高考物理新近代物理知识点之波粒二象性真题汇编附解析

高考物理新近代物理知识点之波粒二象性真题汇编附解析 一、选择题 1.现用电子显微镜观测线度为d的某生物大分子的结构。为满足测量要求,将显微镜工作 时电子的德布罗意波长设定为d n ,其中1 n>。已知普朗克常量h、电子质量m和电子电荷 量e,电子的初速度不计,则显微镜工作时电子的加速电压应为( ) A. 22 2 n h med B. 1 223 23 md h n e ?? ? ?? C. 22 2 2 d h men D. 22 2 2 n h med 2.在光电效应实验中,用同一光电管在不同实验条件下得到了甲、乙、丙三条光电流与电压之间的关系曲线.下列判断正确的是() A.甲光的频率大于乙光的频率 B.乙光的波长小于丙光的波长 C.乙光的强度低于甲光的强度 D.甲光对应的光电子最大初动能大于丙光的光电子最大初动能 3.下列实验中,深入地揭示了光的粒子性一面的有() ①X射线被石墨散射后部分波长增大 ②锌板被紫外线照射时有电子逸出但被可见光照射时没有电子逸出 ③轰击金箔的α粒子中有少数运动方向发生较大偏转 ④氢原子发射的光经三棱镜分光后,呈现线状光谱 A.①②B.①②③C.②③D.②③④ 4.下列说法中正确的是 A.阳光下肥皂泡上的彩色条纹和雨后彩虹的形成原理是相同的 B.只有大量光子才具有波动性,少量光子只具有粒子性 C.电子的衍射现象说明其具有波动性,这种波不同于机械波,它属于概率波 D.电子显微镜比光学显微镜的分辨率更高,是因为电子穿过样品时发生了更明显的衍射5.下列说法中正确的是 A.钍的半衰期为24天,1g针经过120天后还剩0.2g B.发生光电效应时,入射光越强,光电子的最大初动能就越大

对波粒二象性的理解和认识

对波粒二象性的理解与认识 摘要:光的波粒二象性被发现之后,德布罗意由此得到启发,大胆地把这二象性推广 到物质客体上去,提出了实物粒子也具有波粒二象性的理论。本文结合所学知识,通过对波粒二象性发展的简单梳理,阐述了目前自己对其的理解与认识。 引言 量子论和相对论是近代物理学的两大支柱, 两者都改变了人们对物质世界的根 本认识并对20世纪的科学技术、生产实践起到了决定性的推动作用。相对论以相对时空观取代源于常识的绝对空观, 量子力学则用以物质粒子的波粒二象性为基础的 概率来描述物质粒子的行为, 使物质粒子的行为具有了神秘的不确定性。经过课本 上的知识的学习,我进行了进一步的了解总结与思考。 1.光的波粒二象性 光究竟是粒子还是波?这个问题涉及对光的本性的不同认识。1672年,牛顿向英国皇家学会递交了一篇《关于光和色的新理论》的论文。他认为光是由许多机械微粒组成的,提出了光的微粒说。19世纪托马斯·扬和其他一些人决定性的证明了, 光的粒子理论是错误的。他们认为,光更应该是一种波。关于波,我们熟悉的一种特性是,干涉。托马斯·扬利用他的著名的双缝实验装置制造出两个光波源, 并观察到光也 有类似的干涉图案。这样,在19世纪下半叶,光的波动说占了统治地位。 但是,没有过多久,19世纪末进行的一些实验,发现了一些新的实验现象,不能用光 的波动理论解释。这些实验里面最著名的就是光电效应和康普顿效应,。而爱因斯坦在普朗克的量子假说基础上提出的光量子假说,对光电效应成功地解释,又复兴了以前的光的粒子论。但这一次并没有否定波动说, 而是由此得出了光的波粒二象性的 结论。 2.物质波 1923 年, 德布罗意在光有波粒二象性的启示下, 提出实物粒子也具有波动性的 假说。德布罗意认为, 任何运动着的物体都伴随着一种波动, 而且不可能将物体的运动和波的传播分开, 这种波称为相位波。存在相位波是物体的能量和动量同时满足 量子条件和相对论关系的必然结果。后来薛定愕解释波函数的物理意义时称为,物 质波,。 德布罗意的物质波理论是在没有得到任何已知事实支持的情况下提出来的, 所 以还只能是一种假说。1 927 年初, 戴维孙和革末通过电子束在镍单晶体表面上散射的实验,观察到了和X射线衍射类似的电子衍射图像,首先证实了德布罗意假说的正确性。同年G. P. 汤姆逊用多晶体薄膜做电子衍射实验,也观察到了和X射线衍射类似的电子衍射图像,实验观测和由德布罗意理论得到的结果非常一致, 这充分证明 了电子具有波动性, 再一次用无可辩驳的事实向人们展示了德布罗意理论是正确的。 以后, 人们通过实验又观察到原子、分子等微观粒子都具有波动性。实验证明了物质具有波粒二象性, 不仅使人们认识到德布罗意的物质波理论是正确的, 而且为

大学物理题库之振动与波.doc

一、选择题:(每题3分) 1、把单摆摆球从平衡位置向位移正方向拉开,使摆线与竖直方向成一微小角度θ ,然后由静止放手任其振动,从放手时开始计时.若用余弦函数表示其运动方程,则该单摆振动的初相为 (A) π. (B) π/2. (C) 0 . (D) θ. [ 2、两个质点各自作简谐振动,它们的振幅相同、周期相同.第一个质点的振动方程为x 1 = A cos(ωt + α).当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二个质点正在最大正位移处.则第二个质点的振动方程为 (A) )π2 1cos(2+ +=αωt A x . (B) )π2 1cos(2- +=αωt A x . (C) )π2 3cos(2- +=αωt A x . (D) )cos(2π++=αωt A x . [ ] 3、一个弹簧振子和一个单摆(只考虑小幅度摆动),在地面上的固有振动周期分别为T 1和T 2.将它们拿到月球上去,相应的周期分别为1T '和2T '.则有 (A) 11T T >'且22T T >'. (B) 11T T <'且22T T <'. (C) 11T T ='且22T T ='. (D) 11T T ='且22T T >'. [ ] 4、一弹簧振子,重物的质量为m ,弹簧的劲度系数为k ,该振子作振幅为A 的简谐振 动.当重物通过平衡位置且向规定的正方向运动时,开始计时.则其振动方程为: (A) )2 1/(cos π+=t m k A x (B) )2 1/cos( π-=t m k A x (C) )π2 1/(cos +=t k m A x (D) )2 1/cos( π-=t k m A x (E) t m /k A x cos = [ ] 5、一物体作简谐振动,振动方程为)4 1cos(π+=t A x ω.在 t = T /4(T 为周期)时刻, 物体的加速度为 (A) 2 221ωA - . (B) 2 221ωA . (C) 232 1ωA - . (D) 2 32 1ωA . [ ] 6、一质点作简谐振动,振动方程为)cos(φω+=t A x ,当时间t = T /2(T 为周期)时,质点的速度为 (A) φωsin A -. (B) φωsin A . (C) φωcos A -. (D) φωcos A . [ ] 7、一质点作简谐振动,周期为T .当它由平衡位置向x 轴正方向运动时,从二分之一最大位移处到最大位移处这段路程所需要的时间为 (A) T /12. (B) T /8. (C) T /6. (D) T /4. [ ]

高二物理波粒二象性知识点总结

高二物理波粒二象性知识点总结 高二物理课本中,粒二象性是量子力学中非常重要的概念之一,学生要掌握相关知识点,下面给大家带来高二物理波粒二象性知识点,希望对你有帮助。 高二物理波粒二象性知识点一、量子论 1.创立标志:1900年普朗克在德国的《物理年刊》上发表《论正常光谱能量分布定律》的论文,标志着量子论的诞生。 2.量子论的主要内容 ①普朗克认为物质的辐射能量并不是无限可分的,其最小的、不可分的能量单元即能量子或称量子,也就是说组成能量的单元是量子。 ②物质的辐射能量不是连续的,而是以量子的整数倍跳跃式变化的。 3.量子论的发展 ①1905年,爱因斯坦奖量子概念推广到光的传播中,提出了光量子论。 ②1913年,英国物理学家玻尔把量子概念推广到原子内部的能量状态,提出了一种量子化的原子结构模型,丰富了量子论。 ③到1925年左右,量子力学最终建立。 二、黑体和黑体辐射

1.热辐射现象 任何物体在任何温度下都要发射各种波长的电磁波,并且其辐射能量的大小及辐射能量按波长的分布都与温度有关。这种由于物质中的分子、原子受到热激发而发射电磁波的现象称为热辐射。 ①物体在任何温度下都会辐射能量。 ②物体既会辐射能量,也会吸收能量。物体在某个频率范围内发射电磁波能力越大,则它吸收该频率范围内电磁波能力也越大。 辐射和吸收的能量恰相等时称为热平衡。此时温度恒定不变。 实验表明:物体辐射能多少决定于物体的温度(T)、辐射的波长、时间的长短和发射的面积。 2.黑体 物体具有向四周辐射能量的本领,又有吸收外界辐射来的能量的本领。黑体是指在任何温度下,全部吸收任何波长的辐射的物体。 3.实验规律: ①随着温度的升高,黑体的辐射强度都有增加; ②随着温度的升高,辐射强度的极大值向波长较短方向移动。 三、光电效应

相关主题
文本预览
相关文档 最新文档