当前位置:文档之家› 【机械专业中文翻译】电容式硅微机械加速度计系统的特性研究

【机械专业中文翻译】电容式硅微机械加速度计系统的特性研究

【机械专业中文翻译】电容式硅微机械加速度计系统的特性研究
【机械专业中文翻译】电容式硅微机械加速度计系统的特性研究

电容式硅微机械加速度计系统的特性研究

摘要:微硅电容式加速度计是目前微硅加速度传感器发展的主流,影响其性能有多方面的因素。现详细分析了电容式微加速度计敏感模态的工作原理,阐述了不同情况下提高加速度计静态灵敏度所应采取的措施,给出了加速度计三种振动模态的谐振频率与结构参数之间的关系,通过对加速度计集总模型分析,得到了反映和影响加速度计性能的阻尼、灵敏度、分辨率和吸附电压等关键物理量的具体表达形式。从而可知,加速度计的性能和梁的尺寸,检测质量块质量、极板面积、开孔数目等因素有关。

关键词:微加速度计,模态,灵敏度

0引言

微机电系统(Micro Electron Mechanical Systems,MEMS)技术是近20年来发展起来的一个新兴技术领域,是人们用以在微观领域认识和改造客观世界的一种高新技术。微加速度计是MEMS的重要内容。硅微加速度计以其优良的机械和电气性能越来越受到人们的重视。全硅加速度计已成为加速度传感器技术的重要研究方向。微硅加速度计,按检测原理可分为压阻式、谐振式、电容式等形式。其中,电容式加速度计具有精度高、噪声特性好、漂移低、温度敏感性小、功耗低、结构简单等优点。逐渐成为微硅加速度传感器的发展主流。本文在分析电容式加速度计敏感模态工作原理的基础上,较全面地分析了影响电容式加速度计性能的各种因素,为研制高量程、高精度、高灵敏度的电容式加速度计提供了理论依据。

1工作原理和模态分析

1.1工作原理

图1是一种微硅电容式加速度计的结构简图。加速度计的敏感部分由一个检测质量块和挠性梁组成。检测质量块通过挠性梁与单晶硅基底(固定端)相连,并被支悬在

基底上方。充当检测电极用的多晶硅平板通过加固肋与基底相连,并被等间距的固定在检测质量块的上下两面,与检测质量块形成差动电容。当在z方向有加速度加入时,检测质量块在惯性力作用下,沿z方向产生一个微小偏置Δd,导致质量块与上下两极板之间电容发生变化,通过检测电路测出电容差值,就可换算出加速度值[1]。

图1电容式微硅加速度计结构图

图2是一个具有集总参数的电容式加速度计系统模型。加速度计系统一般由检测质量、悬臂梁、阻尼器和差动电容敏感电路等部分组成。

图2具有集总参数的加速度计系统模型

1.2模态分析

在进行加速度计设计过程中,首先要进行模态分析。根据模态分析的结果,采用合理的尺寸搭配,拉开敏感方向谐振频率与非敏感方向谐振频率的差距,以提高器件的灵敏度和分辨率。电容式加速度计有三种振动模态。第一模态为质量块沿z轴方向

型高灵敏度横向电容式硅微加速度计

第3卷第4期2005年12月 纳米技术与精密工程 NanotechnologyandPrecisionEngineering V01.3No4 Dec2005一种新型高灵敏度横向电容式硅微加速度计 宋飞,王欣,王奕松,陈兢 (北京大学微电子学研究院,北京100871) 摘要:提出了一种新型高灵敏度横向电容式硅微加速度计.根据差分电容极板间正对面积的改变来检测加速度走小,保证输出电压与加速度之间的线性度系统刚度可由静电力调节为了提高电学灵敏度,在检测电容极板上设计高K介质层,增大了检测电容量,减小了杂散电容的影响使用CoventorWare对本设计进行机械分析、力电耦合分析和模态分析,仿真结果与理论计算相吻合加速度计使用简单的表面牺牲层工艺即可完成,具有很好的发展前案. 关键词:微机电系统;横向敏感;刚度调节;高K介质;电容式加速度计 中图分类号:TN8244文献标识码:A文章编号:1672—6030(2005)04—0283—07 ANovelTunableLateralSensingCapacitiveSiliconMicromachined AccelerometerwithHi曲Sensitivity SONGFei,WANGXin,WANGYi?song,CHENJing (Institute0fMicroelectronics,PekingUniversity,Beijing100871,China) Abstract:Anovellateralsensingcapacitivesiliconaccelerometer,havingtunablestiffnessbytheelectrostaticforce.isproposed.Theaccelerationismeasuredbymodifyingtheeffectiveoverlaparea0fadifferentialcapaci-to。pairandthelinearitybetweenoutputvoltage andaccelerationisensured.Tofurtherimprovethesensitivity.highKdielectriclayerisintroducedtoincreasethesensingcapacitance.Mechanicalanalysis.mechanical-elec—tricalcoupledallalvsi8andmodalanalysisarecarriedoutwith CoventorWare.Thesimulationresultsalematchedverywellwiththetheoreticalprediction.Itisasimplesurfacemicromachingfabricationflowtoset“ptheaccelero—meterwithagoodfuture. Keywords:MEMS;lateralsensing;stiffnesstuning;highKdielectric;capacitiveaccelerometer 加速度计是重要的惯性仪表之一,广泛应用于惯性导航与制导系统、高技术武器和安全气囊等领域.从20世纪9D年代开始,微加速度计得到了迅速发展,出现了基于多种物理效应的加速度计,如电容式、隧道电流型、压阻式、压电式和热对流式等.目前各国的微机械加速度计的研究方向主要集中于高分辨率、多轴集成和数字化输出三个方面“1.多轴集成的加速度计虽然只是发展的一个方向,但需要三个谐振频率相近且相互正交的工作模态来检测三个轴向的加速度计,由于三个模态间的相互干扰及较高的偏轴灵敏度问题,加之工艺复杂,故限制了其实现.最简单的三轴加速度计可以将三个单轴加速度计相互正交地制作于同一硅衬底上…,故本文主要研究单轴微加速度计.电容式硅微加速度计由于物理机制明确、敏感器件制作简单且不受温度影响,其研究最为透彻,是目前设计的主流. 本文提出了一种新型横向电容式微加速度传感器,利用电容差值与极板正对面积的线性关系来检测加速度,以确保系统在大范围内的线性度.传感器采用梳齿差分形式的检测电容,可以较好地抑制外界干扰,降低偏轴灵敏度.此外,还利用MEMS静电驱动中的弹簧软化(springsoftening)”o现象,调整系统刚度到期望值.为了减小寄生电容对灵敏度的影响,采用溅射高K介质的方法来增大检测电容值,以提高加速度计的 收稿日期:2005.09-09. 作者简介:宋飞(1982),男E—mail:son出l@imepkueducn 联系人:陈兢(1974一),男,副教授E-mail:jchen@ime.pkuedu.C13.

微加速度传感器的研究现状及发展趋势

微加速度传感器的研究现状及发展趋势 摘要:介绍了为加速度传感器的研究现状、基本原理及其分类和发展趋势。重点论述了为加速度传感器的特点和它在民用领域和军用领域的不同应用,并对微加速度传感器领域内一些新的进展进行了讨论,指出了微加速度传感器的发展趋势。 关键词:MEMS 微加速度传感器 应用 发展趋势 Research and Development of Microaccelerometer Abstract:The research situation, the basic principle,classification and its development trend of acceleration sensor are introduced.The characteristics and application in civil areas and military field are discussesed, and some new progress to the micro acceleration sensor field are discussed.The development trend of micro acceleration sensor is proposed. Keywords:MEMS Micro acceleration sensor Applications Development trend 0前言 20世纪40年代初,德国人研制了世界上第一只摆式陀螺加速度计。此后的半个多世纪以来,由于航空、航海和航天领域对惯性测量元件的需求,各种新型加速度计应运而生,其性能和精度也有了很大的完善和提高。 加速度计面世后一直作为最重要的惯性仪表之一,用在惯性导航和惯性制导系统中,与海陆空天运载体的自动驾驶及高技术武器的高精度制导联系在一起受到重视。这时候的加速度计整个都很昂贵,使其他领域对它很少问津。 这种状况直到微机械加速度计(Micro Mechanical Accelerometer,MMA)的问世才发生了改变。随着微机电系统技术的发展,微加速度计制作技术越来越成熟,国内外都将微加速度计开发作为微机电系统产品化的优先项目。微加速度计与通常的加速度计相比,具有很多优点:体积小、重量轻、成本低、功耗低、可靠性好等。它可以广泛地运用于航空航天、汽车工业、工业自动化及机器人等领域,具有广阔的应用前景。 当前国内在加速度技术上仍沿用传统的压电技术,精度停留在5×10-5g水平上,而且尺寸偏大,重量偏重,影响我国惯导技术的先进性。近年来国内虽然有多个单位MEMS微加速度计进行了研究,但在精度上仍未取得突破,大体上只能达到10-1g的水平。 1微加速度传感器概述及发展现状 1.1微加速度传感器的工作原理 MEMS加速度传感器是以集成电路工艺和微机械加工工艺为基础,在单晶硅片上制造出来的微机电系统,包括微机械加速度计、微机械陀螺仪和微惯性测量组合(MIMU)。微加速度传感器的工作原理是经典力学中的牛顿定律,其功能是测量运动物体(如车辆、飞机、导弹、舰艇、人造卫星等)的质心运动和姿态运动,进而可以对运动物体实现控制和导航。MEMS微加速度传感器与非MEMS为加速度传感器相比,其体积和价格可减少几个数量级,对国防具有重大战略意义。基于MEMS加速度传感器建低成本、高性能的微型惯性导航系统正在成为当前惯性技术领域的一个研究热点。

电容式加速度传感器

加速度测量系统 机自111班孙文龙 201100314128

摘要 现代科学技术日新月异,特别是电子测量技术的发展使加速度测量得到迅速发展。目前各种领域中的加速度测量几乎都是电气式的。其特点是动态范围宽、科员距离测量、易于微机相结合进行参数分析、数据处理、趋势分析及实现故障监测与控制。尤其在瞬态、冲击和随机振动等复杂参数的测量中电子加速度计几乎是为唯一的测量手段。 随着科学技术的不断发展,自动化智能化一步一步走入人们生活中的每一个角落。然而自动化与智能化的实现无疑离不开传感器。在传感器这个大家族之中,电容式传感器又占有举足轻重的位置。电容器传感器的优点是结构简单,价格便宜,灵敏度高,零磁滞,真空兼容,过载能力强,动态响应特性好和对高温、辐射、强振等恶劣条件的适应性强等。缺点是输出有非线性,寄生电容和分布电容对灵敏度和测量精度的影响较大,以及联接电路较复杂等。 本次实验设计了一电容式测量加速度的传感器。利用滑块的惯性和弹簧的弹力带动介子的移动。介子的移动是电容的电容量发生变化,这个电容的变化转变为电流的变化。通过运算放大器的作用,把信号放大。再通过A/D转换把信号转变为数字量,最后显示在屏幕上。 关键词:电容式加速度传感器;信号放大;变介电常数。

电容式加速度传感器的特点及其背景传感器是一种应用非常广泛的设备,在各种自动控制过程中,它能迅速客观地反映 出实际情况。电容式传感器有很多,但原理相同。平行板电容器的电容C跟介电常数ε成正比跟正对面积成反比根极板间的距离d成反比有:C=εS/4πkd 式中k为静电力常量。通过改变介质,极板距离,极板正对面积,这三个参数之一使传感器的电容发生变化,再通过电荷放大器,将电容变化或电量变化转换成容易用电路处理电压或电流量。这就是电容式传感器的特点,通过上面的原理可以做成很多传感器,比如测长度的,测角度,测空气粉尘,空气湿度,还有声音,振动等,精度很高,比如测振动的精度可以达到零点零几个微米。但是测长度的线性度不好,需要通过电路矫正,还有容易受到电路中的寄生电容的影响,所以电路设计的时候要很注意。 把被测的机械量,如位移、压力等转换为电容量变化的传感器。它的敏感部分就是具有可变参数的电容器。其最常用的形式是由两个平行电极组成、极间以空气为介质的电容器(见图)。若忽略边缘效应,平板电容器的电容为εA/δ,式中ε为极间介质的介电常数,A为两电极互相覆盖的有效面积,δ为两电极之间的距离。δ、A、ε三个参数中任一个的变化都将引起电容量变化,并可用于测量。因此电容式传感器可分为极距变化型、面积变化型、介质变化型三类。极距变化型一般用来测量微小的线位移或由于力、压力、振动等引起的极距变化(见电容式压力传感器)。面积变化型一般用于测量角位移或较大的线位移。介质变化型常用于物位测量和各种介质的温度、密度、湿度的测定。 70年代末以来,随着集成电路技术的发展,出现了与微型测量仪表封装在一起的电容式传感器。这种新型的传感器能使分布电容的影响大为减小,使其固有的缺点得到克服。电容式传感器是一种用途极广,很有发展潜力的传感器。 测量物体相对于大地或惯性空间的运动,通常采用惯性式传感器。惯性式传感器种类很多,用途广泛。加速度传感器的类型有压阻式、压电式和电容式等多种,其中电容式加速度传感器具有测量精度高,输出稳定,温度漂移小等优点。而电容式加速度传感器实际上是变介电常数电容式位移传感器配接“聍忌一c”系统构成的。其测量原理是利用惯性质量块在外加速度的作用下与被检测电极间的空隙发生改变从而引起等效电容的变化来测定加速度的。 本次实验利用惯性原理,加速的变化使滑块动作,从而带动介子移动。使电容的介电常数发生改变,通过测量这个介电常数的变化进一步反映加速的大小以及方向。 实验的目的和意义 通过这次实验,掌握传感器的工作原理,了解简单多功能传感器组成原理,初步掌握多功能传感器的调整及测试方法,提高动手能力和排除故障的能力。同时通过本课题设计与装配、调试,提高自己的动手能力,巩固已学的理论知识,建立传感器的理论和实践的结合,了解多功能传感器各单元电路之间的关系及相互影响,从而能正确设计、计算各个单元电路

硅微加速度计调研报告

I. 近十年硅微电容式加速度计发展综述 I.1. 概述 MEMS加速度计具有非常广泛的应用,由于其批量制造低成本的特性,在过去的若干年广泛应用于消费电子市场,取得了巨大的成功。然而MEMS加速度计的发展并不止步于此,新的研究成果不断出现,使人们相信MEMS加速度计不仅能在其擅长的小型化低成本低功耗方向更进一步,而且还具有冲击中高性能应用的潜力。 MEMS电容式加速度计主要有两种实现形式,一种是面内检测(In-plane),另外一种是面外检测(Out-of-plane),也就是z轴敏感的加速度计。而两者对比见下表所示:

同时在04年以前的工作中,硅微加速度计的精度在不断提高,同时面内和面外敏感的加速度计由于其各有特点,应用目标也不尽相同,因此都取得了很大的进步。下图为04年前电容式加速度计的发展趋势,可以看出面外传感的加速度计在性能上相对面内传感的结构有优势。同时加速度计的性能也在按照类似摩尔定律的规律提升。

从05年到15年,硅微电容式加速度计又经历了一段发展时期,展现出了两条相对独立的发展路线,逐渐诞生了一些产品可以适用于高端应用领域。同时也在低成本方面有了进一步的突破。 I.2. 主要团队成果介绍 A. Colibrys 结构简介:其目标定位实现一系列高性能MEMS加速度计,可能用于飞行器航姿稳定系统以及更严格的空间应用。因此采用了面外敏感(z轴敏感)的原理来实现高精度加速度计。该公司代表性产品RS9000系列采用了一种三层硅的结构,如下图所示: 每层硅片采用DRIE(深反应离子刻蚀)技术实现了非常厚的检测质量,从而降低了结构的布朗噪声。提高了分辨率。 该三层结构中,顶层和底层为固定电极。中间层为检测质量和支撑系统,同时三层硅通过一种Silicon Fusion Bonding(SFB)的键合技术连接在一起,保证了不同硅片之间的平衡性,同时也可以实现一个密封的腔体,从而能够控制结构所处环境的气体阻尼。 最新动态:在这个基础上,colibrys 2012年发表的文章介绍了一款导航级Sigma-Delta MEMS加速度计。该加速度计接口部分使用前放和ADC,其余电路全部在数字中完成。同时,采用闭环结构,降低了结构等效噪声和量化噪声,同时提高了结构的线性度,保证了振动环境下的性能。

中文翻译-电容式硅微机械加速度计系统的特性研究

电容式硅微机械加速度计系统的特性研究 摘要: 微硅电容式加速度计是目前微硅加速度传感器发展的主流,影响其性能有多方面的因素。现详细分析了电容式微加速度计敏感模态的工作原理,阐述了不同情况下提高加速度计静态灵敏度所应采取的措施,给出了加速度计三种振动模态的谐振频率与结构参数之间的关系,通过对加速度计集总模型分析,得到了反映和影响加速度计性能的阻尼、灵敏度、分辨率和吸附电压等关键物理量的具体表达形式。从而可知,加速度计的性能和梁的尺寸,检测质量块质量、极板面积、开孔数目等因素有关。 关键词: 微加速度计,模态,灵敏度 0 引言 微机电系统(Micro Electron Mechanical Systems ,MEMS) 技术是近20 年来发展起来的一个新兴技术领域,是人们用以在微观领域认识和改造客观世界的一种高新技术。微加速度计是MEMS 的重要内容。硅微加速度计以其优良的机械和电气性能越来越受到人们的重视。全硅加速度计已成为加速度传感器技术的重要研究方向。微硅加速度计,按检测原理可分为压阻式、谐振式、电容式等形式。其中,电容式加速度计具有精度高、噪声特性好、漂移低、温度敏感性小、功耗低、结构简单等优点。逐渐成为微硅加速度传感器的发展主流。本文在分析电容式加速度计敏感模态工作原理的基础上,较全面地分析了影响电容式加速度计性能的各种因素,为研制高量程、高精度、高灵敏度的电容式加速度计提供了理论依据。 1 工作原理和模态分析 1. 1 工作原理 图1 是一种微硅电容式加速度计的结构简图。加速度计的敏感部分由一个检测质量块和挠性梁组成。检测质量块通过挠性梁与单晶硅基底(固定端)相连,并被支悬在

点的合成运动习题解答

2- 1凸轮以匀角速度绕°轴转动,杆AB的A端搁在凸轮上。图示瞬时AB杆 处于水平位置,°A为铅直。试求该瞬时AB杆的角速度的大小及转向解:V a V e V r 其中,v e. r2e2 V a V e tg e v e 所以AB a(逆时针) 求当0时,顶杆的速度 2-2.平底顶杆凸轮机构如图所示 转动,轴0位于顶杆轴线上为 R,偏心距OC e, 顶杆AB可沿导轨上下移动, 工作时顶杆的平底始终接触凸轮表面 凸轮绕轴0转动的角速度为 偏心圆盘绕轴0 该凸轮半径 ,0C与水平线成夹角 A

(1)运动分析 轮心C 为动点,动系固结于AB ;牵连运动为上下直线平移,相对运动为与平底 平行直线,绝对运动为绕0圆周运动。 (2)速度分析,如图b 所示 V - V - V a e r 方向 丄OC 1 - 大小 ? ? y 肋二人二 v a cos

力平衡加速度传感器原理设计t

力平衡加速度传感器原理设计 摘要:本文介绍了一种力平衡加速度传感器的原理设计方法。差容式力平衡加速度传感器在传统的机械传感器的基础上,采用差动电容结构,利用反馈原理把被测的加速度转换为电容器的电容量变化,将加速度的变化转变为电压值。使传感器的灵敏度、非线性、测量范围等性能得到很大的提高,使其在地震、建筑、交通、航空等各领域得到广泛应用。 关键词:加速度差容式力平衡传感器 加速度传感器是用来将加速度这一物理信号转变成便于测量的电信号的测试仪器。它是工业、国防等许多领域中进行冲击、振动测量常用的测试仪器。 1、加速度传感器原理概述 加速度传感器是用来将加速度这一物理信号转变成便于测量的电信号的测试仪器。差容式力平衡加速度传感器则把被测的加速度转换为电容器的电容量变化。实现这种功能的方法有变间隙,变面积,变介电常量三种,差容式力平衡加速度传感器利用变间隙,且用差动式的结构,它优点是结构简单,动态响应好,能实现无接触式测量,灵敏度好,分辨率强,能测量0.01um甚至更微小的位移,但是由于本身的电容量一般很小,仅几pF至几百pF,其容抗可高达几MΩ至几百 MΩ,所以对绝缘电阻的要求较高,并且寄生电容(引线电容及仪器中各元器件与极板间电容等)不可忽视。近年来由于广泛应用集成电路,使电子线路紧靠传感器的极板,使寄生电容,非线性等缺点不断得到克服。 差容式力平衡加速度传感器的机械部分紧靠电路板,把加速度的变化转变为电容中间极的位移变化,后续电路通过对位移的检测,输出

一个对应的电压值,由此即可以求得加速度值。为保证传感器的正常工作.,加在电容两个极板的偏置电压必须由过零比较器的输出方波电压来提供。 2、变间隙电容的基本工作原理 如式2-1所示是以空气为介质,两个平行金属板组成的平行板电容器,当不考虑边缘电场影响时,它的电容量可用下式表示: 由式(2-1)可知,平板电容器的电容量是、A、的函数,如果将上极板固定,下极板与被测运动物体相连,当被测运动物体作上、下位移(即变化)或左右位移(即A变化)时,将引起电容量的变化,通过测量电路将这种电容变化转换为电压、电流、频率等电信号输出根据输出信号的大小,即可测定物体位移的大小,若把这种变化应用到电容式差容式力平衡传感器中,当有加速度信号时,就会引起电容变化 C,然后转换成电压信号输出,根据此电压信号即可计算出加速度的大小。 由式(2-2)可知,极板间电容C与极板间距离是成反比的双曲线关系。由于这种传感器特性的非线性,所以工作时,一般动极片不能在

Si微电容式加速度计动态参数的提取

Si 微电容式加速度计动态参数的提取 郑 锋,卞玉民 (中国电子科技集团公司第十三研究所,石家庄 050051) 摘要:介绍了一种电容式微Si 加速度计的基本结构以及静电激振法用于电容加速度计动态参数测试的基本原理。提出了在开环条件下,采用静电激振法对该类型电容加速度计动态参数测试的电路方案。通过分析获得了扫频特性曲线和阶跃响应曲线,得到了传感器的固有频率、阻尼比。试验结果表明,采用静电激振法得到的结果与传感器设计值比较接近。可以认为,开发的动态参数测试系统是快速且有效的。 关键词:静电激励;微机电系统;加速度计;电容;动态参数 中图分类号:T H 703;T H 824.4 文献标识码:A 文章编号:1671-4776(2008)08-0462-04 Extraction of Dynamic Parameters on C apacitance Silicon Micro 2Accelerometer Zheng Feng ,Bian Yumin (T he 13th Research I nstitute ,C E TC,shi j iaz huang 050051,China ) Abstract :The basic st ruct ure of t he capacitive accelerometer and t he basic principle of elect ro 2static excitation were int roduced ,t hat used to determine t he dynamic parameters of t he micro 2elect romechanical system (M EMS )capacitance accelerometer A brief system wit h t he elect rostat 2ic excitatio n under t he open 2loop condition was presented.The resonant f requency and damp rati 2o were o btained by analyzing t he sweep f requency curve and step response curve of t he sensor.The exp rement result s show t hat t he dynamic parameters obtained by t he elect rostatic act uating vibration met hod are clo se to t he design values of t he sensor ,and t he system is fast and effective. K ey w ords :electrostatic excitation ;M EMS (microelectromechanical system );accelerometer ;capacitance ;dynamic parameter EEACC :2575D 0 引 言 Si 电容式加速度计是加速度计向微型化发展 的研究方向之一。90年代以后,随着微电子技术和M EMS 加工技术的发展,出现了一系列基于Si 材料的电容式加速度计。典型产品如AD 公司 ADXL 系列和恩德福克公司7290系列微Si 加速度 计等。这种加速度计具有体积小、重量轻、可靠性高、功耗小等显著优点,可广泛应用于航天、汽车、测振等领域。 提取加速度计的固有频率、阻尼比等动态参数,对传感器结构参数推算、闭环设计、动静态性 收稿日期:2008-05-29 E 2m ail :bym 107@https://www.doczj.com/doc/f812317735.html, M EMS 器件与技术 M EMS Device &Technology

微加速度计原理与应用

微加速度计原理与应用 a 在20 世纪40 年代初,由德国人研制了世界上第一只摆式陀螺加速度计。此后的半个多世纪以来,由于航天、航空和航海领域对惯性测量元件的需求,各种新型加速度计应运而生,性能和精度也有了很大的完善和提高。加速度计面世后作为最重要的惯性仪表之一,用在惯性导航和惯性制导系统中,与海陆空天运载体的自动驾驶及高技术武器的高精度制导联系在一起。这时候的加速度计整个都很昂贵,使其他领域对它很少问津。 直到微机械加速度计的问世,这种状况才发生了改变。随着MEMS技术的发展,惯性传感器件在过去的几年中成为最成功,应用最广泛的微机电系统器件之一,而微加速度计就是惯性传感器件的杰出代表。 微加速度计的理论基础就是牛顿第二定律,根据基本的物理原理,在一个系统内部,速度是无法测量的,但却可以测量其加速度。如果初速度已知,就可以通过积分计算出线速度,进而可以计算出直线位移。结合陀螺仪(用来测角速度),就可以对物体进行精确定位。根据这一原理,人们很早就利用加速度计和陀螺进行轮船,飞机和航天器的导航,近年来,人们又把这项技术用于汽车的自动驾驶和导弹的制导。汽车

工业的迅速发展又给加速度计找到了新的应用领域,汽车的防撞气囊就是利用加速度计来控制的。微加速度计的工作原理 微加速度计的结构模型如图所示:它采用质量块-弹簧-阻尼器系统来感应加速度。图中只画出了一个基本单元。它是利用比较成熟的硅加工工艺在硅片内形成的立体结构。图中的质量块是微加速度计的执行器,与质量块相连的是可动臂;与可动臂相对的是固定臂。可动臂和固定臂形成了电容结构,作为微加速度计的感应器。其中的弹簧并非真正的弹簧,而是由硅材料经过立体加工形成的一种力学结构,它在加速度计中的作用相当于弹簧。当加速度计连同外界物体(该物体的加速度就是待测的加速度)一起加速运动时,质量块就受到惯性力的作用向相反的方向运动。质量块发生的位移受到弹簧和阻尼器的限制。显然该位移与外界加速度具有一一对应的关系:外界加速度固定时,质量块具有确定的位移;外界加速度变化时(只要变化不是很快),质量块的位移也发生相应的变化。另一方面,当质量块的发生位移时,可动臂和固定臂(即感应器)之间的电容就会发生相应的变化;如果测得感应器输出电压的变化,就等同于测得了执行器(质量块)的位移。既然执行器的位移与待测加速度具有确定的一一对应关系,那么输出电压与外界加速度也就有了确

电容式微加速度计

电容式微加速度计 电容式微加速度计的三种常见结构: 1、扭摆式微加速度计(跷跷板式) 2、梳齿式微加速度计(叉指式) 3、悬臂梁式加速度计(三明治式) 1、扭摆式微加速度计(跷跷板式) 结构:,扭摆式微硅型加速度计由一对挠性轴; 一个板块; 一个质量块和四个电极 (二个敏感电极,二个激励电极)组成。加速度计的挠性抽在扭转方向上是很软的,而在其它方向上很硬。 工作原理:质量块在加速度作用下,产生扭矩使加速度计的挠性轴扭转,引起输出敏感电容的变化。(工作简图、计算公式) 公式中的参数:A 为敏感电极宽度; L 为加速度计板块长度; L - x 0 为敏感电极的长度。X为介电常数。 如图2 所示, 当无加速度输人时, 摆元件处于平衡位置, 每个传感器电极的极板之间间隙相等, 电容量也相等, 无电压输出。当有加速度a 输人时, 检测质量的’惯性力将对挠性轴产生惯性力矩( 即图2 中的Ma),使摆元件绕挠性轴偏转O, 导致敏感电容器的一个极板的间隙增大, 电容减小。另一个极板的间隙减小, 电容增大。将其电容值△ C 作为一个控制信号, 经后续电子线路形成加在力矩器电极( 即施力电极)上的控制电压△U。同时在力矩器的控制极板上施加偏置电压Uo。在控制电压作用下, 间隙大的电极上的电压增大而使静电吸力增大; 间隙小的电极上的电压减小而使静电吸力减小。其吸力差对挠性轴产生的静电力矩( 即图2 中的Me)作用, 以平衡由加速度产生的惯性力矩Ma。同样控制电压△u 正比于输人加速度。, 根据控制电压的大小即可测得加速度值。 式中: k。为比例系数( 由极板的结构尺寸所决定) ; kd为检测控制电路的增益( 完全由后续电路所决定) ;ku为加速度计的标度因数。 制作工艺: 步骤: 图6(a )在N 型< 100>硅片上进行氧化和挠性轴支承扩散,要求硼扩散浓度大于1×1020 图6( b )进行第一次EPW腐蚀(各向异性腐蚀)形成加速度计板块与玻璃之间的间隙D 图6( c)进行第二次浓硼扩散,为制作加速度计的质量块。 图6( d)进行第三次浓硼扩散,制作加速度计的板块 图6( e)进行第四次浓硼扩散,制作加速度计的挠性轴。 图6( f )选择7741玻璃,溅射Cr- Ti- Au,光刻形成电极及引出。 图6( g ) ,玻璃和硅片静电键合(注意对准)。

加速度计和陀螺仪传感器原理、检测及应用

加速度计和陀螺仪传感器原理、检测及应用 摘要:微机电系统(MEMS)在消费电子领域的应用越来越普及,移动市场的增长也带动了MEMS需求的日益旺盛。实际上,MEMS传感器正在成为消费类和移动产品差异化的关键要素,例如游戏控制器、智能手机和平板电脑。MEMS为用户提供了与其智能设备交互的全新方式。本文简要介绍MEMS的工作原理、检测架构以及各种潜在应用。本文网络版地址:http://https://www.doczj.com/doc/f812317735.html,/article/247467.htm 关键词:MEMS;加速度计;陀螺仪;传感器 DOI:10.3969/j.issn.1005-5517.2014.5.013 引言 微机电系统(MEMS)将机械和电子元件集成在微米级的小型结构中。利用微机械加工将所有电气器件、传感器和机械元件集成至一片共用的硅基片,从而由半导体和微加工技术组合而成。MEMS系统的主要元件是机械单元、检测电路以及ASIC或微控制器。本文简要介绍MEMS加速度计传感器和陀螺仪,讨论其工作原理、检测结构以及目前市场的热点应用,对我们日常生活具有深远的影响。 1 MEMS惯性传感器 MEMS传感器在许多应用中测量沿一个或多个轴向的

线性加速度,或者环绕一个或多个轴的角速度,以作为输入控制系统(图1)。 MEMS加速度计传感器通常利用位置测量接口电路测 量物体的位移,然后利用模/数转换器(ADC)将测量值转换为数字电信号,以便进行数字处理。陀螺仪则测量物体由于科里奥利加速度而发生的位移。 2 加速度计工作原理 根据牛顿第二定律,物理加速度(m/s2)与受到的合力(N)成正比,与其质量(kg)成反比,加速度方向与合力相同。 上述过程可简单归纳为:作用力导致物体发生位移,进而发生电容变化。将多个电极并联,可获得更大的电容变化,更容易检测到位移(图4)。V1和V2连接至电容的每侧,电容分压器的中心连接到物体。 物体重心的模拟电压通过电荷放大、信号调理、解调及低通滤波,然后利用Σ-ΔADC将其转换为数字信号。将ADC输出的数字比特流送至FIFO缓存器,后者将串行信号转换为并行数据流。随后,可通过诸如I2C或SPI等串行协议读取数据流,再将其送至主机做进一步处理(图5)。 Σ-ΔADC具有信号带宽较窄,分辨率非常高,适合加速度计应用。Σ-ΔADC输出由其位数决定,很容易转换成“g”(单位),用于加速度计算。“g”为重力加速度。

硅微电容式加速度传感器结构设计

11998-11-26收稿;1999-01-25定稿 o本刊通讯编委 第20卷第4期 半 导 体 光 电 Vol.20No.4 1999年8月 Semiconductor Optoelectronics Aug.1999 文章编号: 1001-5868(1999)04-0237-04 硅微电容式加速度传感器结构设计 1 吴 英,江永清,温志渝o,胡 松 (重庆大学光电工程学院,重庆400044) 摘 要: 通过建立传感器的力学模型,对硅微电容式加速度传感器的特性作了详细的分析与讨论,为系统结构的优化设计提供了理论基础。 关键词: 硅微机械 电容式加速度传感器 PWM 调制中图分类号: TP212 文献标识码:A Structure optimization design of silicon micro capacitive accelerometer WU Y ing,JIAN G Y ong-qing,WEN Zhi-yu,HU Song (Optoelectronic Engineering C ollege,C hongqing University ,Chongqing 400044,China) Abstract: In this paper,the property of silicon micro capacitive accelerometer is analyzed and discussed by establishing the model of sensor,laying the foundation for optimization design of sensor system structure. Keywords: silicon m icromachine,capacitance-ty pe accelerometer,PWM modulating 1 引言 硅微力平衡电容式加速度传感器是在电容式加速度传感器的基础上发展起来的,以牛顿第二定律为理论基础,通过检测电容变化从而测得系统所承受的加速度的大小。在这种检测模式下,传感器的性能主要由梁和质量块的结构决定,在质量块一定的情况下,梁越长,传感器的灵敏度越高;在梁长一定的情况下质量块越大,传感器越灵敏。由此,在传感器几何尺寸一定的情况下,通过对传感器的静态特性、动态特性以及测量范围的分析,可实现传感器结构的优化设计。 脉宽调制(PWM )的硅微力平衡电容式加速度传感器的工作原理如图1所示,该传感器是由动极板和上下定极板构成的硅敏感元件。上下定极板是淀积有薄膜电极的玻璃,动极板是带质量块的硅微悬臂梁结构(利用硅的表面加工和体加工技术形成)。 图1 加速度传感器工作原理图 F ig.1Schematic diagram of w orking principle of accelerometer 硅微力平衡电容式加速度传感器受到加速度作用时,动极板将偏离其中心平衡位置,使上下极板与中间动极板所构成的电容值发生变化,通过电容差值检测电路,输出与动极板位移成正比的电压,利用脉宽调制电路产生控制动极板平衡的脉冲反馈信号,改变该反馈信号的脉冲宽度可以改变作用在动极板的静电力(静电力与脉冲宽度成正比),使动极板保持在中间平衡位置。 传感器系统的传递函数框图如图2所示。当增益较大频率较低时,传递函数为[1] W (s)=D (s)a(s)= 2m d 2 E A V 2h (1) 式中,m 为动极板的质量,d 为动极板与定极板之

加速度计and陀螺仪原理

MEMS加速度计原理 技术成熟的MEMS加速度计分为三种:压电式、容感式、热感式。压电式MEMS加速度计运用的是压电效应,在其内部有一个刚体支撑的质量块,有运动的情况下质量块会产生压力,刚体产生应变,把加速度转变成电信号输出。 容感式MEMS加速度计内部也存在一个质量块,从单个单元来看,它是标准的平板电容器。加速度的变化带动活动质量块的移动从而改变平板电容两极的间距和正对面积,通过测量电容变化量来计算加速度。Freescale的MMA7660FC这一款加速度计(3-Axis Orientation/MotionDetection Sensor),这一款芯片也是利用这一原理设计的。datasheet的第9页介绍了其工作原理:当芯片有向右的加速度时,中间的活动质量快相对于另外两块电容板向左移动,这两平行板电容器的电容就发生了变化,从而测量出芯片运动的加速度。 热感式MEMS加速度计内部没有任何质量块,它的中央有一个加热体,周边是温度传感器,里面是密闭的气腔,工作时在加热体的作用下,气体在内部形成一个热气团,热气团的比重和周围的冷气是有差异的,通过惯性热气团的移动形成的热场变化让感应器感应到加速度值。 由于压电式MEMS加速度计内部有刚体支撑的存在,通常情况下,压电式MEMS加速度计只能感应到“动态”加速度,而不能感应到“静态”加速度,也就是我们所说的重力加速度。而容感式和热感式既能感应“动态”加速度,又能感应“静态”加速度。 从上面的分析中,我们可以看到利用容感式和热感式加速度计进行定向时,加速度计测得的加速度里面包括重力加速度在各个轴上的重力分量和动态运动引起的加速度分量。因而,我觉得我们在利用这一类加速度计进行定向时,必须将动态加速度去掉(较为困难);在进行检测芯片的运动时,必须将重力加速度的去掉。 师兄,我觉得如果我们选择用加速度计来进行定向的话,我们可以考虑ST的LSM303DLH (5*5*1mm,0.83mA)这一款芯片。这一款芯片集成了测加速度和磁场的功能,完全可以满足我们定向的需求

微加速度传感器的测试技术

微加速度传感器的测试技术 学号:07060441X29 姓名: 摘要:微型加速度传感器是一种重要的惯性传感器,是惯性组合测量系统的基础元件之一。由于航空航天,各种机器人、工业自动控制、汽车以及玩具、武器装备等领域的迅速发展,对微型加速度传感器提出了多维、集成化等需求。而硅微加速度传感器是MEMS器件中的一个重要分支,具有十分广阔的应用前景。由于硅微加速度传感器具有响应快、灵敏度高、精度高、易于小型化等优点,而且该种传感器在强辐射作用下能正常工作,使其近年来发展迅速。本文围绕硅微加速度传感器的结构与工作原理进行了比较系统的研究,重点讨论了硅微加速度传感器的测试。 正文:21 世纪是人类全面进入信息化的时代,随着人类探知领域和空间的拓展,使得人们需要获得的电子信息种类日益增加,需要信息传递的速度加快,信息处理能力增强,因此要求与此相对应的信息采集技术——传感技术必须跟上信息化发展的需要。它是人类探知自然界信息的触觉,为人们认识和控制相应的对象提供条件和依据。作为现代信息技术的三大核心技术之一的传感技术,将是二十一世纪世界各国在高新技术发展方面争夺的一个重要领域。 微机电系统(MEMS)是一个新兴的、多学科交叉的高科技领域,它涉及电子、微机械、材料、制造、信息与控制、物理和生物等多种学科领域,其研究成果在国民经济和国防安全中有广泛的应用前景。目前MEMS 产品中研制最多、应用最广的是硅微机械传感器。其中硅微加速度传感器在汽车、工艺控制、航空航天、武器装备上是用得最多的MEMS 传感器之一。且来自集成电路工艺的技术发展使得低成本、大批量地生产MEMS 传感器成为可能。传感器向微型化发展的趋势,微传感器接口电路的微型化和与传感器集成,是微型加速度传感器研究的热点之一。微型加速度传感器是一种十分重要的力学敏感传感器,是微型惯性测量组合系统(MIMU)的重要基础元件。人们很早就开始了对加速度传感器结构和制造技术的研究。近年来MEMS 技术的发展,使得基于MEMS 技术的微加速度传感器在结构和工艺上具有传统的加速度传感器无法比拟的诸多优点,正逐步取代传统的加速度传感器。硅微加速度传感器的一种典型结构如图1.1 所示,梁的一端固定在边框架上,另一端悬挂一个质量块。无加速度时质量块不运动,输出为零;而当有垂直方向加速度时,质量块运动,经C/V 转换,放大解调输出与加速度信号有关的电压信号。应用于微加速度传感器的敏感机理很多,目前有文献报道的主要有压阻式、电容式、温敏式(热对流式)、真空微电子式、隧道式、热电耦式、光波导式、谐振式等形式,其中最主要的是压阻式和电容式两种形式。

理论力学点的合成运动

第六章点的合成运动 一、是非题 1、不论牵连运动的何种运动,点的速度合成定理v a=v e+v r皆成立。() 2、在点的合成运动中,动点的绝对加速度总是等于牵连加速度与相对加速度的矢量和。() 3、当牵连运动为平动时,相对加速度等于相对速度对时间的一阶导数。() 4、用合成运动的方法分析点的运动时,若牵连角速度ωe≠0,相对速度υr≠0,则一定有不为零的科氏加速度。() 5、若将动坐标取在作定轴转动的刚体上,则刚体内沿平行于转动轴的直线运动的动点,其加速度一定等于牵连加速度和相对加速度的矢量和。() 6、刚体作定轴转动,动点M在刚体内沿平行于转动轴的直线运动,若取刚体为动坐标系,则任一瞬时动点的牵连加速度都是相等的。() 7、当牵连运动定轴转动时一定有科氏加速度。() 8、如果考虑地球自转,则在地球上的任何地方运动的物体(视为质点),都有科氏加速度。() 二、选择题 1、长L的直杆OA,以角速度ω绕O轴转动,杆的A端铰 接一个半径为r的圆盘,圆盘相对于直杆以角速度ωr,绕A轴 转动。今以圆盘边缘上的一点M为动点,OA为动坐标,当AM 垂直OA时,点M的相对速度为。 ①υr=Lωr,方向沿AM; ②υr=r(ωr-ω),方向垂直AM,指向左下方; ③υr=r(L2+r2)1/2ωr,方向垂直OM,指向右下方; ④υr=rωr,方向垂直AM,指向在左下方。 2、直角三角形板ABC,一边长L,以匀角速度ω绕B轴转动,点M以S=Lt的规律自A向C运动,当t=1秒时,点M的相对加速度的大小α r= ;牵连加速度的大小αe = ;科氏 加速度的大小αk = 。方向均需在图中画出。 ①Lω2; ②0; ③3Lω2;

加速度传感器原理与应用简介

加速度传感器原理与应用简介 1、什么是加速度传感器 加速度传感器是一种能够测量加速力的电子设备。加速力就是当物体在加速过程中作用在物体上的力,就好比地球引力,也就是重力。加速力可以是个常量,比如g,也可以是变量。 加速度计有两种:一种是角加速度计,是由陀螺仪(角速度传感器)的改进的。另一种就是线加速度计。 2、加速度传感器一般用在哪里 通过测量由于重力引起的加速度,你可以计算出设备相对于水平面的倾斜角度。通过分析动态加速度,你可以分析出设备移动的方式。但是刚开始的时候,你会发现光测量倾角和加速度好像不是很有用。但是,现在工程师们已经想出了很多方法获得更多的有用的信息。 加速度传感器可以帮助你的机器人了解它现在身处的环境。是在爬山?还是在走下坡,摔倒了没有?或者对于飞行类的机器人来说,对于控制姿态也是至关重要的。更要确保的是,你的机器人没有带着炸弹自己前往人群密集处。一个好的程序员能够使用加速度传感器来回答所有上述问题。加速度传感器甚至可以用来分析发动机的振动。 目前最新IBM Thinkpad手提电脑里就内置了加速度传感器,能够动态的监测出笔记本在使用中的振动,并根据这些振动数据,系统会智能的选择关闭硬盘还是让其继续运行,这样可以最大程度的保护由于振动,比如颠簸的工作环境,或者不小心摔了电脑做造成的硬盘损害,最大程度的保护里面的数据。另外一个用处就是目前用的数码相机和摄像机里,也有加速度传感器,用来检测拍摄时候的手部的振动,并根据这些振动,自动调节相机的聚焦。 概括起来,加速度传感器可应用在控制,手柄振动和摇晃,仪器仪表,汽车制动启动检测,地震检测,报警系统,玩具,结构物、环境监视,工程测振、地质勘探、铁路、桥梁、大坝的振动测试与分析;鼠标,高层建筑结构动态特性和安全保卫振动侦察上。 3、加速度传感器是如何工作的 线加速度计的原理是惯性原理,也就是力的平衡,A(加速度)=F(惯性力)/M(质量)我们只需要测量F就可以了。怎么测量F?用电磁力去平衡这个力就可以了。就可以得到F 对应于电流的关系。只需要用实验去标定这个比例系数就行了。当然中间的信号传输、放大、滤波就是电路的事了。 现代科技要求加速度传感器廉价、性能优越、易于大批量生产。在诸如军工、空间系统、科学测量等领域,需要使用体积小、重量轻、性能稳定的加速度传感器。以传统加工方法制造的加速度传感器难以全面满足这些要求。于是应用新兴的微机械加工技术制作的微加速度传感器应运而生。这种传感器体积小、重量轻、功耗小、启动快、成本低、可靠性高、易于实现数字化和智能化。而且,由于微机械结构制作精确、重复性好、易于集成化、适于大批量生产,它的性能价格比很高。可以预见在不久的将来,它将在加速度传感器市场中占主导地位。 微加速度传感器有压阻式、压电式、电容式等形式。 ·压电式 压电式传感器是利用弹簧质量系统原理。敏感芯体质量受振动加速度作用后产生一个与加速度成正比的力,压电材料受此力作用后沿其表面形成与这一力成正比的电荷信号。压电式加速度传感器具有动态范围大、频率范围宽、坚固耐用、受外界干扰小以及压电材料受力自产生电荷信号不需要任何外界电源等特点,是被最为广泛使用的振动测量传感器。虽然压

相关主题
文本预览
相关文档 最新文档