当前位置:文档之家› 7 第七章合金与相图

7 第七章合金与相图

7 第七章合金与相图
7 第七章合金与相图

第七章二元合金的相结构与结晶

(一)填空题

1 合金的定义是

2.合金中的组元是指。

3.固溶体的定义是

4.Cr、V在γ-Fe中将形成固溶体。C、N则形成固溶体。

5.和间隙原子相比,置换原子的固溶强化效果要些。

6.当固溶体合金结晶后出现枝晶偏析时,先结晶出的树枝主轴含有较多的组元。7.共晶反应的特征是,其反应式为

8.匀晶反应的特征是,其反应式为

9.共析反应的特征是,其反应式为

10.合金固溶体按溶质原子溶入方式可以分为,按原子溶入量可以分为和

11.合金的相结构有和两种,前者具有较高的性能,适合于

做相;后者有较高的性能,适合于做相

12.看图4—1,请写出反应式和相区:

ABC ;DEF ;GHI ;

①;②;③;④;⑤;⑥;

13.相的定义是,组织的定义是

14.间隙固溶体的晶体结构与相同,而间隙相的晶体结构与不同。15.根据图4—2填出:

水平线反应式;有限固溶体、无限固溶体。

液相线,固相线,固溶线、

16.接近共晶成分的合金,其性能较好;但要进行压力加工的合金常选

用的合金。

17.共晶组织的一般形态是。

18.固溶体合金,在铸造条件下,容易产生_______ 偏析,用__________ 方法处理可以消除。

19.AL-CuAL

2

共晶属于_ _ 型共晶,AL-Si共晶属于 __型共晶, Pb-Sn共晶属于_ _型共晶。

20.固溶体合金凝固时有效分配系数k

e

的定义

是_ _。当凝固速率无限缓慢时,k

e

趋于_ _;当凝固速率很大时,则

k

e

趋于 __ 。

21.K

0<1的固溶体合金非平衡凝固的过程中,K

越小,成分偏析越____ , 提纯效

果越_____;而K

0>1的固溶体合金非平衡凝固的过程中,K

越大,成分偏析越____ ,

提纯效果越_____。

22.固溶体合金_____ 凝固时成分最均匀,液相完全混合时固溶体成分偏析(宏观偏析)最___ ,液相完全无混合时固溶体成分偏析最____ ,液相部分混合时固溶体成分偏析_________。

(二)判断题

1.共晶反应和共析反应的反应相和产物都是相同的。 ( )

2.铸造合金常选用共晶或接近共晶成分的合金,要进行塑性变形的合金常选用具有单相 ( )

固溶体成分的合金。 ( )

3.合金的强度与硬度不仅取决于相图类型,还与组织的细密程度有较密切的关。( )

4.置换固溶体可能形成无限固溶体,间隙固溶体只可能是有限固溶体。 ( ) 5.合金中的固溶体一般说塑性较好,而金属化合物的硬度较高。 ( )

6.共晶反应和共析反应都是在一定浓度和温度下进行的。 ( )

7.共晶点成分的合金冷却到室温下为单相组织。 ( )

8.初生晶和次生晶的晶体结构是相同的。 ( )

9.根据相图,我们不仅能够了解各种合金成分的合金在不同温度下所处的状态及相的相对量,而且还能知道相的大小及其相互配置的情况。 ( )

10.亚共晶合金的共晶转变温度与共晶合金的共晶转变温度相同。 ( ) 11.过共晶合金发生共晶转变的液相成分与共晶合金成分是一致的。 ( ) (三)选择题

1.固溶体的晶体结构是( )

A.溶剂的晶型 B.溶质的晶型 C 复杂晶型 D.其他晶型

2 金属化合物的特点是( )

A.高塑性 B.高韧性 C 高硬度 D.高强度

3.当匀晶合金在较快的冷却条件下结晶时将产生( )

A.匀晶偏析 B 比重偏 C.枝晶偏析 D.区域偏析

4.当二元合金进行共晶反应时,其相组成是( )

A.由单相组成 B 两相共存 C 三相共存 D.四相组成

5.当共晶成分的合金在刚完成共晶反应后的组织组成物为( )

A. α+β B.(α+L) C.(α+β) D.L+α+β

6.具有匀晶型相图的单相固溶体合金( )

A.铸造性能好 B.锻压性能好 C 热处理性能好 D.切削性能好

7.二元合金中,共晶成分的合金( )

A.铸造性能好 B 锻造性能好 C 焊接性能好 D.热处理性能好

8.共析反应是指( )

A.液相→固相Ⅰ+固相Ⅱ B 固相→固相Ⅰ+固相Ⅱ

C.从一个固相内析出另一个固相 D 从一个液相中析出另一个固相

9.共晶反应是指( )

A.液相→固相Ⅰ+固相Ⅱ B 固相→固相Ⅰ+固相Ⅱ

C.从一个固相内析出另一个固相 D 从一个液相中析出另一个固相

10.固溶体和它的纯金属组元相比( )

A.强度高,塑性也高些 B 强度低,但塑性高些

C 强度低,塑性也低些

D 强度高,但塑性低些

(四)改错题

1.合金是指两种以上金属元素组成的具有金属特性的物质。

2.在均匀固溶体中,由于存在着晶界,所以此固溶体是由不同位向晶粒所构成的多相系。

3.合金元素Cr、Mn、Si在a-Fe和γ—Fe中只能形成间隙式固溶体;而C、N在α—Fe和γ—Fe中则能形成代位式固溶体。

4.置换原子的固溶强化效果比间隙原子的固溶强化效果大,因为置换原子的半径一般比间隙原子大。

5..杠杆定律只能在三相区内使用。

6.合金在结晶过程中析出的初生相和次生相具有不同的晶型和组织形态。7.任何类型的固溶体的晶体结构为溶质的晶型。

8.金属化合物的硬度较低。

9.当共晶点成分的合金完成共晶反应后的组织组成物是α+β。

(五)问答题

1.对比纯金属与固溶体结晶过程的异同,分析固溶体结晶过程的特点。

2.试述固溶强化,加工强化和弥散强化的强化原理,并说明它们的区别。3.什么是固溶体和化合物?它们的特性如何?

4.何谓相图?相图能说明哪些问题?实际生产中有何应用价值?

5.何谓杠杆定律?它在二元合金系中可以解决什么问题?

6.为什么固溶体合金结晶时成分间隔和温度间隔越大则流动性不好,分散缩孔大、偏析严重以及热裂倾向大?

7.试比较共晶反应与共析反应的异同点。

8.有两个形状和尺寸都完全相同的Cu—Ni合金铸件,其中一个铸件的W(Ni)=90%、另一铸件的w(Ni)=50%,铸造后哪一个偏析严重?为什么?

9 请解释下列现象: (1)电阻丝大多用固溶体合金制造;(2)大多数铸造合金都选用共晶成分或接近共晶成分;(3)若室温下存在固溶体+化合物两相,不易进行冷变形,往往把它加热至单相固溶体态进行热变形;(4)若要提高具有共晶成分的铸件的性能,往往增加浇注时的过冷度; (5) 钢中若含硫量高会产生热脆性。10.固溶体合金液相完全无混合凝固时,产生成分过冷的临界条件为:RG=DmC0 .001KK?( m为液相线斜率,G为液相实际温度梯度, R为液-固界面移

动速度且K

O

<1 )

1)说明能否产生成分过冷的条件。

2)如果外界条件不变,图中C

0和C

1

两合金相比哪个合金产生成分过冷的倾向

大?为什么?

3)成分过冷对固溶体生成形态有何影响?对于一定成分的合金C

O

,如何控制外界条件来避免出现粗大的树枝状组织?

11.试说明晶体生长形态与固相界面形貌、前沿液相温度梯度的关系。

12.试说明在正温度梯度下为什么固溶体合金凝固时一定呈树枝状方式

长大,而纯金属却得不到树枝状晶体?

(七)计算题

1.一个二元共晶反应如下: L(W(B)=75%)→α(W(B)=15%)+β(W(B)=95%) (1)求w(B)=50%的合金完全凝固时初晶α与共晶(α十β)的重量百分数,以及共晶体中α相与β相的重量百分数;

(2)若已知显微组织中β初晶与(α+β)共晶各占一半,求该合金成分。

2.在固态下互不溶解的某二元合金,从显微镜下观察得到初生组织W(A)=85%,

已知共晶成分中W(A)=24%,求该合金的成分。

3.有一种制造发动机汽缸的典型合金,其成分W(Si)=16%—W(A1)=84%。已知Al—Si相图如图4—4。试分析: (1)熔融的液体合金缓慢冷却时,在什么温度首先析出固相?冷却到什么温度该合金完全凝固? (2)试计算该合金在578℃与在570℃时Al在β相中的溶解度?

4.在Fe—Fe3C相图中,试比较E点与P点,S点与C点;ES线与PQ线、GS线与BC线之间含义上的异同。

5.若要配制四个不同成分的Pb—Sn合金30g,其组织要求为(参阅Pb—Sn合金相图);

(1)α相92%和β相8%;

(2)亚共晶合金中,要求共晶体占30%;

(3)过共晶合金中,要求共晶体占70%;

(4)共晶合金。问分别计算出需要Pb和Sn各多少克?

(八)思考题

1.试判断图4—5中所列相图的正确性,若有错误,请说明原因,并加以改正。2.按照下面给出的条件,示意画出二元合金的相图,并填出各区域的相组成物和组织组成物。再根据相图画出合金的硬度与成分的关系曲线。已知A、B组元在液态时无限互溶,在固态时能形成共晶,共晶成分为W(B)=35%。A组元在B 组元中有限固溶,溶解度在共晶温度时为15%,在室温时为10%;B组元在A 组元中不能溶解。B组元比A组元的硬度高。

第四章铁碳合金

(一)填空题

1.Cr、V在γ-Fe中将形成固溶体。C、N则形成固溶体。

2.渗碳体的晶体结构是,按其化学式铁与碳原子的个数比为

3.当一块质量一定的纯铁加热到温度时,将发生a-Fe向γ-Fe的转变,此时体积将发生。

4.共析成分的铁碳合金平衡结晶至室温时其相组成物为,组织成物为。5.在生产中,若要将钢进行轧制或锻压时,必须加热至相区。

6.当铁碳合金冷却时发生共晶反应的反应式为,其反应产物在室温下被称为。

7.在退火状态的碳素工具钢中,T8钢比T12 钢的硬度,强度。8.当W(C)=0.77%一2.11%间的铁碳合金从高温缓冷至ES线以下时,将从奥氏体中析出,其分布特征是。

9.在铁碳合金中,含三次渗碳体最多的合金成分点为,含二次渗碳体最多的合金成分点为。

10.对某亚共析碳钢进行显微组织观察时,若估计其中铁素体约占10%,其W(C) = ,大致硬度为

11.奥氏体是在的固溶体,它的晶体结构是。

12.铁素体是在的固溶体,它的晶体结构是。

13.渗碳体是和的金属间化合物。

14.珠光体是和的机械混合物。

15.莱氏体是和的机械混合物,而变态莱氏体是和的机械混合物。

16.在Fe—Fe3C相图中,有、、、、五种渗碳体,

它们各自的形态特征是、、、、。

17.钢中常存杂质元素有、、、等,其中、是有害元素,它们使钢产生、。

18.纯铁在不同温度区间的同素异晶体有(写出温度区间) 、、。19.碳钢按相图分为、、;按W(C)分为(标出W(C)范

围) 、、。

10.在铁—渗碳体相图中,存在着四条重要的线,请说明冷却通过这些线时所发生的转变并指出生成物。ECF水平线、;PSK水平线、;ES 线、;GS线、。

11.标出Fe—Fe3C相图(图4—3)中指定相区的相组成物:

①,②,③,④,⑤。

12.铁碳合金的室温显微组织由和两种基本相组成。

13.若退火碳钢试样中先共析铁素体面积为41.6%,珠光体的面积为58.4%,则其W(C)=。

14.若退火碳钢试样中二次渗碳体面积为7.3%,珠光体的面积为92.7%,则其W(C)=。

15.平衡条件下,W(C)=0.5%的铁碳合金,100%A相的最低温度为;730℃

A相的百分含量为,A相的W(C)= ;这时先共析铁素体的百分含量

为。

(二)判断题

1.在铁碳合金中,含二次渗碳体最多的成分点为W(C):4.3%的合金。 ( ) 2.在铁碳合金中,只有共析成分点的合金在结晶时才能发生共析反应,形成共析组织。 ( )

3.退火碳钢的塑性与韧性均随W(C)的增高而减小。而硬度与强度则随W(C)的增高而不断增高。 ( )

4.在铁碳合金中,渗碳体是一个亚稳相,而石墨才是一个稳定相。 ( )

5.白口铸铁在高温时可以进行锻造加工。 ( )

6.因为磷使钢发生热脆,而硫使钢发生冷脆,故硫磷都是钢中的有害元素。 ( ) 7.在室温下,共析钢的平衡组织为奥氏体。 ( )

8.纯铁加热到912℃时,将发生a-Fe一γ—Fe的转变,体积发生膨胀。 ( ) 9.铁碳合金中,一次渗碳体,二次渗碳体和三次渗碳体具有相同的晶体结构。 ( ) 10.在Fe—Fe3C相图中,共晶反应和共析反应都是在一定浓度和恒温下进行的。( )

11.在Fe—Fe3C相图中,凡发生共晶反应的铁碳合金叫做白口铁;凡发生共析反应的铁碳合金叫做钢。 ( )

12 珠光体是单相组织。 ( )

13.白口铁是碳以渗碳体形式存在的铁,所以其硬度很高,脆性很大。 ( ) 14.W(C)=1.3%的铁碳合金加热到780℃时得到的组织为奥氏体加二次渗碳体。( )

15.a-Fe是体心立方结构,致密度为68%,所以其最大溶碳量为32%。 ( ) 16.γ-Fe是面心立方晶格,致密为0.74,所以其最大溶碳量为26%。 ( ) 17.钢材的切削加工性随w/(C)增加而变差。 ( )

18.碳钢进行热压力加工时都要加热到奥氏体区。 ( )

19.W(C)=1.0%的碳钢比W(C)=0.5%的碳钢硬度高。 ( )

20.在室温下,w(C)=0.8%的退火碳钢的强度比W(C)=1.2%的退火碳钢高。( )

21.钢铆钉一般用低碳钢制成。 ( )

22.钳工锯T10、T12钢料时比锯10、20钢费力,且锯条容易磨钝。 ( ) 23.钢适宜于通过压力加工成形,而铸铁适宜于通过铸造成形。 ( )

24.工业纯铁的W(C)<0.2%。 ( )

25.工业纯铁的室温平衡组织为铁素体。 ( )

26.汽车外壳用低碳钢板制造,而理发工具用碳素工具钢制造。 ( )

27.退火碳钢W(C)=0.9%左右时强度极限最高。 ( )

28.过共析钢由液态缓冷至室温中所析出的二次渗碳体在组织形态与晶体结构方面均与—次渗碳体不相同。 ( )

(三)选择题

1.渗碳体属于( )

A.间隙固溶体 B 间隙化合物 C 间隙相 D.正常化合物

2.δ-Fe的晶型是( )

A.体心立方 B.面心立方C密排六方 D 简单立方

3.铁素体的机械性能特点是( )

A.具有良好的硬度与强度 B 具有良好的综合机械性能

C具有良好的塑性和韧性 D.具有良好的切削性和铸造性

4.W(C)=4.3%碳的铁碳合金具有( )。

A.良好的可锻性 B 良好的铸造性 C 良好的焊接性 D.良好的热处理性

5.建筑用钢筋宜选用( )

A.低碳钢 B 中碳钢 C 高碳钢 D.工具钢

6.装配工使用的锉刀宜选用( )

A.低碳钢 B.中碳钢 C高碳钢 D.过共晶白口铁

7.纯铁在912℃以下的晶格类型是( )

A.密排六方晶格 B 面心立方晶格 C 体心立方晶格 D.简单立方晶格

8.三次渗碳体是从( )

A.钢液中析出的 B.铁素体中析出的 C 奥氏体中析出的 D.珠光体中析出的9.二次渗碳体是从( )

A.钢液中析出的 B 铁素体中析出的 C 奥氏体中析出的 D.莱氏体中析出的10.在下述钢铁中,切削性能较好的是( )

A.工业纯铁 B 45 C.白口铁 D.T12A

(四)改错题

1.合金元素Cr、Mn、Si在a-Fe和γ—Fe中只能形成间隙式固溶体;而C、N在α—Fe和γ—Fe中则能形成代位式固溶体。

2.渗碳体具有复杂的晶格类型,但其Fe与C的原子个数比为6.69。

3.当一块纯铁加热到1538'C温度时,将发生α—Fe向γ-Fe转变,此时体积将收缩。

4.在实际生产中,若要钢的变形抗力小,容易变形,必须加热至δ单相区。5.在普通退火状态下的工具钢中,T8钢比T12钢的强度和硬度都更高。

6.纯铁在(1394~1538)℃之间为面心立方的a-Fe。

7.按铁碳相图,钢与铁的成分分界点一般是W(C)=4.3%。

8.铁素体和奥氏体都具有良好的综合机械性能。

9.W(C)=4.3%的铁碳合金应具有良好的压力加工性能。

10.制作一把手用锉刀,可选用W(C)=0.1%的铁碳合金。

11.在铁碳合金系中,δ-Fe的晶格类型是复杂斜方结构。

12.工业纯铁平衡结晶过程中,可能获得奥氏体;冷到常温时可能获得珠光体。

(五)问答题

1.根据铁碳相图,说明产生下列现象的原因:

(1) 在1100℃,W(C)=0.4%的钢能进行锻造,而W(C)=4.0%的生铁则不能锻造;

(2) 含碳量高的白口铸铁可做耐磨零部件;

(3)绑扎物件一般采用低碳钢丝,而起重机吊重物时则采用W(C)=o.60%~0.75%的钢

5

丝绳;

(4)用做汽车挡板的材料与用做锉刀的材料为什么不同。

2.试述铁碳相图在理论和实践中的重要意义,并举例说明之;

3.指出Q235、45、T12A钢的类别、主要特点及用途。

4.一块低碳钢和一块白口铸铁,大小和形状都一样,如何迅速把它们区分开来? 5.纯铁的三个同素异构体各叫什么名称?晶体结构如何?试绘出温度-时间曲线,并标明转变临界点温度。

6.试述F、A和Fe

3

C的晶体结构和性能特点。

7.何谓Fe

3C

、Fe

3

C

、Fe

3

C

、Fe

3

C

共析

和Fe

3

C

共晶

?

在显微镜下它们的形态有何特点?请指出Fe

3C

、Fe

3

C

的最大百分含量的成分点。

8.根据铁碳相图,解释下列现象:

(1)T8钢比40钢的强度、硬度高、塑性、韧性差。(2)T12钢比T8钢的硬度高,但强度反而低;(3)所有碳钢均可加热至(1000~1100)℃区间热锻成型,而任何白口铸铁在该温度区间,仍然塑性、韧性差,不能热锻成型;(4)制造汽车外壳多用低碳钢, W(C)<0.2%;制造机床主轴、齿轮等多用中碳钢W(C)=0.25~0.6%;而制造车刀、丝锥、锯条等则多采用高碳钢W(C)>0 .6%,而W(C)=1.3~2.1%之间的碳钢则基本不用。

(七)计算题

1.分析w(C)=0.2%、w(C)=0.6%、w(C)=o.77%的铁碳合金从液态缓冷至室温时的结晶过程和室温组织,分别计算w(C)=0.2%的铁碳合金在室温下相的相对量和组织相对量。

2.分析w(C)=3.2%、w(C)=4.3%、w(C)=4.7%的铁碳合金从液态缓冷至室温时的结晶过程和室温组织,分别计算W(C)=4.3%的铁碳合金在室温下相的相对量和组织相对量。

3.计算在共析反应温度时,珠光体中铁素体与渗碳体的相对量。

4.分别计算共晶莱氏体在共晶反应温度、共析反应温度和室温时,其组成相的相对量。

5.若已知珠光体的HB≈200,δ≈20%;铁素体的HB≈80,δ≈50%,试计算W(C)=0.45%钢的硬度与延伸率。

6.某工厂仓库里积压了一批退火碳钢钢材,如果取出其中的一根经制样后在金相显微镜下观察,其组织为珠光体十铁素体,若其中铁素体约占视场面积的80%时,问此钢材的W(C)大约是多少?

7.在铁碳相图中,若将ES线近似地当成直线,试求W(C)=1.2%的钢在780℃经充分保温并快冷后的二次渗碳体含量。

8.已知某铁碳合金728℃时有奥氏体75%,渗碳体25%。求此合金的w(C)和室温时的组织组成物和相组成物的百分比。

9.根据Fe—Fe3C相图。用杠杆定律求w(C)=0.45%的碳钢在略低于727℃时相组成物

和组织组成物的相对量。

10.利用杠杆定律进行下列各题的计算:

(1)w(C)=0.25%的碳钢退火组织中先共析铁素体和珠光体的相对含量各是多少?

(2)w(C)=0.5%的碳钢退火组织中先共析铁素体和珠光体的相对含量各是多少?

(3)w(C)=1.4%的碳钢退火组织中Fe3C:和P的相对含量各是多少?

(八)思考题

1.分析w(C)二2.11%(正点)的铁碳合金的平衡结晶过程,并计算其室温组织组成物的相对含量。根据上述结果判断该铁碳合金是碳钢或是白口铁?

2.有一块厚度为10mm的T8钢试样,置于强烈的脱碳性气氛中于930℃长时间(如4~6h)加热,然后缓冷至室温。请绘出该试样从表面至心部的显微组织示意图,并解释之。

3.有一块厚度为10mm的10钢试样,置于渗碳气氛中于930℃长时间(如4—6h)保温,然后缓冷至室温。请绘出该试样从表面至心部的显微组织示意图,并解释之。

三、复习自测题

(一)区别概念

1.铁素体和奥氏体;

2.珠光体和莱氏体;

3.热脆和冷脆。

(二)填空题

1.白口铸铁中碳主要以的形式存在,这种铸铁可以制造

2.在铁碳相图中有几条重要线,请说明这些线上所发生的转变并指出生成物。ECF线 PSK线 ES线 GS线

3.当一块纯铁加热到温度时,将发生α-Fe向γ-Fe转变,此时体积

将。

4.在实际生产中,若要钢的变形抗力小,容易变形,必须加热至相区。(三)判断题

1.室温下共析钢平衡组织是奥氏体。( )

2.a-Fe比γ-Fe的致密度小,因而可以溶解更多的间隙碳原子。 ( )

3.铁碳合金中,一次渗碳体、二次渗碳体和三次渗碳体具有相同的晶体结构。 ( ) 4.白口铸铁在高温时可以进行锻造加工。( )

5.纯铁在(1 394~1 538)℃之间,为体心立方的a-Fe。 ( )

(四)计算题

1.现有A、B两种铁碳合金。A的显微组织为珠光体量占75%,铁素体量占25%;B 的显微组织为珠光体量占92%,二次渗碳体量占8%。请计算和说明:

①这两种铁碳合金按显微组织的不同而分属于哪一类钢?

②这两种铁碳合金的含碳量各为多少?

③画出这两种材料在室温下平衡状态时的显微组织示意图,并标出各组织组成物的名称。

2.说明W(C)=2.11%的铁碳合金自液态缓慢冷却至室温的结晶过程,并计算室温时各组织组成物所占的百分含量。

(五)画图说明题

1.画出铁碳相图:

①写出主要点(P、Q、S、E、C)、线(PK、EF、PQ、ES)的意义;

②亚共析钢、共析钢、过共析钢、共晶白口铸铁、亚共晶白口铸铁、过共晶白口铸铁的成分范围、室温下的平衡组织;

③说明C%对退火钢机械性能的影响,解释原因;

④运用杠杆定律计算0.4%C、1.0%C的钢中组织构成与相构成的相对重量;

⑤有一碳素钢退火后在室温下测得先共析相占10%,求该钢的成分。

(六)综合题

1.何为成份过冷?影响成份过冷的因素有那些?试述区域提纯的原理。

2.简述枝晶偏析形成过程和消除方法。

3.分析0.45%C,1.2%C和2.3%C 的铁碳合金的平衡结晶过程,计算室温下组织组成物的相对量及两相相对量。

4.根据显微组织分析,一灰口铁内石墨的体积占12%,铁素体的体积占88%,试求该合金的碳含量。

5.解释下列基本概念及术语

匀晶转变,共晶转变,包晶转变,共析转变,包析转变,有序-元序转变,熔晶转变,偏晶转变,合晶转;

平衡凝固,不平衡凝固,正常凝固;

平衡价格政策纱数,有效分配系数;

枝晶偏析,经重偏析,晶界偏析;

共晶体,稳定化合物,不稳定化合物;

共晶合金,亚共晶合金,过共晶合金,伪共晶,不平衡共晶,离异共晶;

铁素本,奥氏体,珠光体,渗碳体。

6. 已知A(熔点600℃)与B(熔点500℃)在液态无限互深,固态时A在B中的最大固溶度(质量分数)为w A=30%,室温时为w A=10%;但B在固态和室温时均不溶于A。在300℃时,含w B=40%的液态合多发生共晶反应。试绘出A-B合多相图;试计算

w A=20%,w A=45%;w A=80%的合金在室温下组织组成物和相组成物的相对量。(Sb)的硬度为30HB)

7. 假定有100g的96%Al-4%Cu合金在620℃中达到平衡而形成α相和液相L。然后,该合金双急速冷却至550℃,以致原来的固体没有机会参与反应,并且液相依然存在。请问:该液体的成分为多少?此时液体的质量为多少?

8.如果有某Cu-Ag合多1000g(其中含有75g Cu 及925g Ag),请提出一种方案,可从该合金内提炼出100g的Ag,且其中的含Cu量w Cu<2%(假设液相线和固相线均为直线)。

9 图11-59 给出Pb-Bi 二元相图。若w(Bi)=20%合金定向凝固,设固相无扩散,

液相完全混合,求共晶体的量。

10 指出下列概念中之处,并更正。

(1)固溶体晶粒内存在枝晶偏析,主轴与枝间成分不同,所以整修晶粒不是一个相。

(2)尽管固溶体合金的结晶速度很快,但是在凝固的某一个瞬间,A、B组元在液相与固相内的化学位都是相等。

(3)固溶体合金无论在平衡或非平衡结晶过程中,液/固界面上液相成分沿着液相平均成分线变化;固相成分沿着固相平均成分线变化。

(4)在共晶线上利用杠杆定律可以计算出共晶体的相对量,而共晶线属于三相区,所以杠杆定律不仅适用于两相区,也适用于三相区。

(5)固溶体合多棒顺序结晶过程中,液/固界面推进速度越快,则棒中宏观偏析越严重(6)将固深体合金棒反复多次“熔化-凝固”,并采用定向快速凝固的方法,可以有效地提纯金属。

(7)厚薄不均匀的Ni-Cu合金铸件,结晶后薄处易形成树枝状组织,而厚处易形成胞状组织。

(8)不平衡结晶条件下,靠近共晶线端点内侧的合金比处侧的合金易于形成离异共晶组织(9)具有包晶转变的合金,室温时的相组成物为α+β,其中β相均是包晶转变产物。(10)用循环水冷却金属模,有篮球状晶区,以提高铸件的致密性。

(11)铁素体与奥氏体的根本区别在于固溶度不同,前者小而后者大。

(12)727℃是铁素体与奥氏体的同素异构转变温度。

(13)在Fe-Fe3-C系合金中,只有过共析钢的平衡结晶组织中才有二次渗碳体存在。(14)凡是碳钢的平衡结晶过程都具有共析转变,而没有共晶转变;相反,对于铸铁则只有共晶转变而没有共析转变。

(15)无论何种成分的碳钢,随着碳含量的增加,组织中铁素体相对量减少,而珠光体相对量增加。

(16)w-C=4.3%的共晶白口铁的显微组织中,白色基体为Fe3CI, Fe3CII,Fe3CIII,Fe3C共析,Fe3C共晶等。

(17)观察共析钢的显微组织,发现图中显示渗碳体片层密集程度不同。凡是片层密集处则碳含量偏多,而疏稀处则碳含量偏少。

(18)厚薄不均匀的铸件,往往厚处易白口化。因为,对于这种铸件必须多加碳,少加硅。

(19)用Ni-Cu合金焊条焊接某合金板料时,发现焊条慢事移动时,焊缝易出现胞状组织,而快速移动时,则易于出现树枝状组织。

11 什么是成分过冷?用示意图进行说明。推导发生成分过冷的临界条件,指出影响成分过冷的因素。说明成分过冷对金属凝固时的生长形态的影响。

12 简述铸锭的三晶区的形成原因,用什么方法可使柱晶区更发达?用什么方法可使中心等轴区扩大?

13 说明碳含量对碳钢的组织和性能的影响。

铁碳合金相图分析及应用

第五章铁碳合金相图及应用 [重点掌握] 1、铁碳合金的基本组织;铁素体、奥氏体、渗碳体、珠光体、菜氏体的结构和性能特点及显微组织形貌; 2、根据相图,分析各种典型成份的铁碳合金的结晶过程; 3、铁碳合金的成份、组织与性能之间的关系。 铁碳相图是研究钢和铸铁的基础,对于钢铁材料的应用以及热加工和热处理工艺的制订也具有重要的指导意义。 铁和碳可以形成一系列化合物,如Fe3C、Fe2C、FeC等, 有实用意义并被深入研究的只是Fe-Fe3C部分,通常称其为 Fe-Fe3C相图,相图中的组元只有Fe和Fe3C。 第一节铁碳合金基本相 一、铁素体 1.δ相高温铁素体:C固溶到δ-Fe中,形成δ相。 2.α相铁素体(用F表示):C固溶到α-Fe中,形成α相。 F强度、硬度低、塑性好(室温:C%=0.0008%,727度:C%=0.0218%)二、奥氏体 γ相奥氏体(用A表示):C固溶到γ-Fe中形成γ相)强度低,易塑性变形 三、渗碳体

Fe3C相(用Cem表示),是Fe与C的一种具有复杂结构的间隙化合物, 渗碳体的熔点高,机械性能特点是硬而脆,塑性、韧性几乎为零。 渗碳体根据生成条件不同有条状、网状、片状、粒状等形态, 对铁碳合金的机械性能有很大影响。 第二节 Fe-Fe3C相图分析 一、相图中的点、线、面 1.三条水平线和三个重要点 (1)包晶转变线HJB,J为包晶点。1495摄氏度,C%=0.09-0.53% L+δ→A (2)共晶转变线ECF, C点为共晶点。冷却到1148℃时, C点成分的L发生共晶反应:L→A(2.11%C)+Fe3C(6.69%C,共晶渗碳体)共晶反应在恒温下进行, 反应过程中L、A、Fe3C三相共存。 共晶反应的产物是奥氏体与渗碳体的共晶混和物, 称莱氏体, 以符号 Le表示。 (3)共析转变线PSK,S点为共析点。合金(在平衡结晶过程中冷)却到727℃时, S点成分的A发生共析反应:

A铝合金显微组织及断口分析

目录 1 绪论 (1) 1.1断口分析的意义 (1) 1.2 对显微组织及断口缺陷的理论分析 (1) 1.3研究方法和实验设计 (3) 1.4预期结果和意义 (3) 2 实验过程 (4) 2.1 生产工艺 (4) 2.1.1 加料 (4) 2.1.2 精炼 (4) 2.1.3 保温、扒渣和放料 (5) 2.1. 4 单线除气和单线过滤 (5) 2.1. 5连铸 (6) 2.2 实验过程 (6) 2.2. 1 试样的选取 (6) 2.2.2 金相试样的制取 (8) 2.2.3 用显微镜观察 (9) 2.3 观察方法 (10) 2.3.1显微组织的观察 (10) 2.3.2 对断口形貌的观察 (11) 3 实验结果及分析 (11) 3.1对所取K模试样的观察 (11) 3.2 金相试样的观察及分析 (12) 3.2.1 对显微组织的观察 (12) 3.2.2 断口缺陷 (15)

结论 (23) 致谢 (24) 参考文献 (25) 附录 (27)

1 绪论 1.1断口分析的意义 随着现代科技的发展以及现代工业的需求,作为21世纪三大支柱产业的材料科学正朝着高比强度,高强高韧等综合性能等方向发展。长久以来,铸造铝合金以其价廉、质轻、性能可靠等因素在工业应用中获得了较大的发展。尤其随着近年来对轨道交通材料轻量化的要求日益迫切[1],作为铸造铝合金中应用最广的A356铝合金具有铸造流动性好、气密性好、收缩率小和热裂倾向小,经过变质和热处理后,具有良好的力学性能、物理性能、耐腐蚀性能和较好的机械加工性能[2-3],与钢轮毂相比,铝合金轮毂具有质量轻、安全、舒适、节能等,在汽车和航空工业上得到了日益广泛的应用[4]。 然而,由于其凝固收缩,同时在熔融状态下很容易溶入氢,因此铸造铝合金不可避免地包含一定数量的缺陷,比如空隙、氧化物、孔洞和非金属夹杂物等[5-7]。这些缺陷对构件的力学性能影响较大,如含1%体积分数的空隙将导致其疲劳50%,疲劳极限降20%[8-9]。所以研究构件中缺陷的性质、数量、尺寸和分布位置对力学性能的影响具有重要意义[10]。而这些缺陷往往是通过显微组织和断口分析来研究的。 另外,通过显微组织和断口分析所得到的结果可以分析这些缺陷产生的原因,研究断裂机理,比结合工艺过程分析缺陷产生的原因,从而对改进工艺提出一定的有效措施,确定较好的生产工艺,以提高铝合金铸锭的性能。 但关于该合金的微观组织及其断口分析研究较少,研究内容深但不够综合,每篇论文多研究其部分缺陷,断口的获得多为拉伸端口。因此,希望对A356铝合金的断口缺陷有一个较为全面的研究。 1.2 对显微组织及断口缺陷的理论分析 铸件的力学性能与其微观组织有密切联系[11]。A356合金是一个典型的Al-Si-Mg系三元合金,它是Al-Si二元合金中添加镁、形成强化相Mg2Si,通过热处理来显著提高合金的时效强化能力,改善合金的力学性能。A356合金处于α-Al+Mg2Si+Si三元共晶系内,其平衡组织为初生α-Al+(α-Al+Si)共晶+

二元合金实验报告

实验五二元合金相图 一、目的要求 1.用热分析法测绘Pb-Sn二元金属相图。 2.了解热分析法的测量技术。 二、基本原理 相图是多相(二相或二相相以上)体系处于相平衡状态时体系的某物理性质(如温度)对体系的某一自变量(如组成)作图所得的图形,图中能反映出相平衡情况(相的数目及性质等),故称为相图。二元或多元体系的相图常以组成为自变量,其物理性质则大多取温度。由于相图能反映出多相平衡体系在不同自变量条什下的相平衡情况,因此,研究多相体系的性质,以及多相体系相平衡情况的演变(例如冶金工业冶炼钢铁或其他合金的过程,石油工业分离产品的过程等),都要用到相图。 图4.1是一种类型的二元简单低共熔物相图。图中A、B表示二个组分的名称,纵轴是物理量温度T,横轴是组分B的百分含量B%。在acb线的上方,体系只有一个相(液相)存在;在ecf线以下,体系有两个相(两个固相——晶体A、晶体B)存在;在ace所包为的面积中,一个固相(晶体A)和一个液相(A在B中的饱和熔化物)共存;在bcf所包围的面积中,也是一个固相(晶体B)和一个液相(B在A中的饱和熔化物)共存;图中c点是ace与bef 两个相区的交点,有三相(晶体A、晶体B、饱和熔化物)共存。测绘相图就是要将相图中这些分隔相区的线画出来。常用的实验方法是热分析法。 热分析法所观察的物理性质是被研究体系的温度。将体系加热熔融成一均匀液相,然后让体系缓慢冷却,并每隔一定时间(例如半分钟或一分钟)读体系温度一次,以所得历次温度值对时间作图,得一曲线,通常称为步冷曲线或冷却曲线,图4.2是二元金属体系的一种常见类型的步冷曲线。冷却过

程中,若体系发生相变,就伴随着一定热效应,团此步冷曲线的斜率将发生变化而出现转折点,所以这些转折点温度就相当于被测体系在相图中分隔线上的点。若图4.2是图4.1中组成为P 的体系的步冷曲线,则点2、3就分别相当于相图中的点G 、H 。因此,取一系列组成不同的体系,作出它们的步冷曲线,找出各转折点,即能画出二元体系的最简单的相图(对复杂的相图,还必须有其他方法配合,才能画出)。 图4.1 A-B 体系相图 图4.2 步冷曲线 从相图定义可知,用热分析法测绘相图的要点如下: ⑴ 被测体系必须时时处于或非常接近于相平衡状态。因此,体系冷却时,冷却速度必须足够慢,以保证上述条件近于实现。若体系中的几个相都是固相,这条件通常很难实现(因固相与固相间转化时的相变热较小),此时测绘相图,常用其它方法(如差热分析法)。 ⑵ 测定时被测体系的组成值必须与原来配制样品时的组成值一致。如果测定过程中样品各处不均匀,或样品发生氧化变质,这一要求就不能实现。 ⑶ 测得的温度值必须能真正反映体系在所测时间时的温度值。因此,测温仪器的热容必须足够小,它与被测体系的热传导必须足够良好,测温探头必须深入到被测体系的足够深度处。 本实验测定铅、锡二元金属体系的相图,用SWKY 数字控温仪,通过 KWL-08可控升降温电炉来控制体系的加热和冷却速度。 温度A B

二元合金相图的测定实验

实验报告 实验名称:金属的塑性变形 组别第6组 学号、姓名:2012034036 谈鑫学号、姓名:2012034035 何韦唯学号、姓名:2012034034 周卫东学号、姓名:2012034037 安望学号、姓名:2012034038 罗伟学号、姓名:2012034039 陈科宇 2014年 5月 28日

一、实验目的 1.用热分析法测熔融体步冷曲线,再绘制Pb-Sn二元金属相图。 2.了解热分析法的实验技术热电偶测量温度的方法。 二、实验仪器 SWKY型数字控温仪一台;KWL-08型可控升降温电炉一台; 三、实验原理 相图是多相(二相或二相相以上)体系处于相平衡状态时体系的某物理性质(如温度)对体系的某一自变量(如组成)作图所得的图形,图中能反映出相平衡情况(相的数目及性质等),故称为相图。二元或多元体系的相图常以组成为自变量,其物理性质则大多取温度。由于相图能反映出多相平衡体系在不同自变量条什下的相平衡情况,因此,研究多相体系的性质,以及多相体系相平衡情况的演变(例如冶金工业冶炼钢铁或其他合金的过程,石油工业分离产品的过程等),都要用到相图。 图4.1是一种类型的二元简单低共熔物相图。图中A、B表示二个组分的名称,纵轴是物理量温度T,横轴是组分B的百分含量B%。在acb线的上方,体系只有一个相(液相)存在;在ecf线以下,体系有两个相(两个固相——晶体A、晶体B)存在; 在ace所包为的面积中,一个固相(晶体A)和一个液相(A在B中的饱和熔化物)共存; 在bcf所包围的面积中,也是一个固相(晶体B)和一个液相(B在A中的饱和熔化物)共存;图中c点是ace与bef两个相区的交点,有三相(晶体A、晶体B、饱和熔化物)共存。测绘相图就是要将相图中这些分隔相区的线画出来。常用的实验方法是热分析法。 热分析法所观察的物理性质是被研究体系的温度。将体系加热熔融成一均匀液相,然后让体系缓慢冷却,并每隔一定时间(例如半分钟或一分钟)读体系温度一次,以所得历次温度值对时间作图,得一曲线,通常称为步冷曲线或冷却曲线,图4.2是二元金属体系的一种常见类型的步冷曲线。冷却过程中,若体系发生相变,就伴随着一定热效应,团此步冷曲线的斜率将发生变化而出现转折点,所以这些转折点温度就相当于被测体系在相图中分隔线上的点。若图4.2是图4.1中组成为P的体系的步冷曲线,则点2、3就分别相当于相图中的点G、H。因此,取一系列组成不同的体系,作出它们的步冷曲线,找出各转折点,即能画出二元体系的最简单的相图(对复杂的相图,

第四章 二元合金相图与合金凝固答案

第四章二元合金相图与合金凝固 一、本章主要内容: 相图基本原理:相,相平衡,相律,相图的表示与测定方法,杠杆定律; 二元匀晶相图:相图分析,固溶体平衡凝固过程及组织,固溶体的非平衡凝固与微观偏析固溶体的正常凝固过程与宏观偏析:成分过冷,溶质原子再分配,成分过冷的形成及对组织的影响,区域熔炼; 二元共晶相图:相图分析,共晶系合金的平衡凝固和组织,共晶组织及形成机理:粗糙—粗糙界面,粗糙—光滑界面,光滑—光滑界面; 共晶系非平衡凝固与组织:伪共晶,离异共晶,非平衡共晶; 二元包晶相图:相图分析,包晶合金的平衡凝固与组织,包晶反应的应用 铸锭:铸锭的三层典型组织,铸锭组织控制,铸锭中的偏析 其它二元相图:形成化合物的二元相图,有三相平衡恒温转变的其它二元相图:共析,偏晶,熔晶,包析,合晶,有序、无序转变,磁性转变,同素异晶转变 二元相图总结及分析方法 二元相图实例:Fe-Fe3C亚稳平衡相图, 相图与合金性能的关系 相图热力学基础:自由能—成分曲线,异相平衡条件,公切线法则,由成分—自由能曲线绘制二元相图 二、 1.填空 1 相律表达式为___f=C-P+ 2 ___。 2. 固溶体合金凝固时,除了需要结构起伏和能量起伏外,还要有___成分_______起伏。 3. 按液固界面微观结构,界面可分为____光滑界面_____和_______粗糙界面___。 4. 液态金属凝固时,粗糙界面晶体的长大机制是______垂直长大机制_____,光滑界面晶体的长大机制是____二维平面长大____和_____依靠晶体缺陷长大___。 5 在一般铸造条件下固溶体合金容易产生__枝晶____偏析,用____均匀化退火___热处理方法可以消除。 6 液态金属凝固时,若温度梯度dT/dX>0(正温度梯度下),其固、液界面呈___平直状___状,dT/dX<0时(负温度梯度下),则固、液界面为______树枝___状。 7. 靠近共晶点的亚共晶或过共晶合金,快冷时可能得到全部共晶组织,这称为____伪共晶。 8 共晶,包晶,偏晶,熔晶反应式分别为_______L1→α+β______, __ L+α→β____, ______ L1—L2+α________, ___________γ→α+ L _______。 10 共析,偏析,包析反应式分别为______γ→α+β________,______ α1—α2+β ________,

合金相图实验报告

一.实验目的 1.用热分析法测绘Sn-Bi二元低共熔体系的相图 2.学习步冷曲线绘制相图的方法 二.实验原理 相图是多相体(二相或二相以上)处于相平衡状态时体系的某种物理性质对体系的某一自变量作图所得的图形(体系的其它自变量维持不变),二元和多元体系的相图常以组成为自变量,其物理性质则大多取温度。由于相图能反映出多相平衡体系在不同条件下的相平衡情况,因此研究相体系的性质,以及多相平衡情况的变化要用相图的知识。 AB表示两个组分的名称,纵坐标是温度T,横坐标 是B的百分含量abc线上,体系只有液相存在,ace 所围的面积中有固相A及液相存在,bcf所围的中 有B晶体和个液相共存,c点有三相(AB晶体和饱 和熔化物)。 测绘相图就是要将图中这些分离相区的线画出来, 常用的实验方法是热分析法。所观察的物理性质是 被研究体系的温度。将体系加热熔融成均匀液体,然后冷却,每隔一定时间记录温度一次,一温度对时间作图,得到步冷曲线。 当一定组成的熔化物冷却时,最初温度随时间逐渐下降达到相变温度时,一种组分开始析出,随着固体的析出而放出凝固潜热,使体系冷却速度变慢,步冷曲线的斜率发生变化而出现转折点,转折点的温度即是相变温度。继续冷却的过程中,某组分析出的量逐渐增多而残留溶液中的量则逐渐减少,直到低共熔温度时,液相达到低共熔组成,两种组分同时互相饱和,两种组分的晶体同时析出,这时继续冷却温度将保持不变,步冷曲线出现一水平部分,直到全部溶液变为固体后温度才开始降低,水平停顿温度为最低共熔点温度。 如果体系是纯组分,冷却过程中仅在其熔点出现温度停顿,步冷曲线的水平部分是纯物质的熔点,图中b是图1中组成为P体系的步冷曲线,点2,3分别相当于图1中的G,H。因此取一系列不同组成的体系,做出它们的步冷曲线求出其转折点,就能画出相图。但是在实验过程中有时会出现过冷现象,这时必须外推求得真正的转折点。

铁碳合金相图全面分析

铁碳平衡图 (The Iron-Carbon Diagrams) 连聪贤 本章阐述了铁碳合金的基本组织,铁碳合金状态图,碳钢的分类、编号和用途。要求牢固掌握铁碳合金的基本组织(铁素体、奥氏体、渗碳体、珠光体、莱氏体)的定义、结构、形成条件和性能特点。牢固掌握简化的铁碳合金状态图;熟练分析不同成分的铁碳合金的结晶过程;掌握铁碳合金状态图各相区的组织及性能,以及铁碳合金状态图的实际应用。掌握碳钢中常存元素对碳钢性能的影响;基本掌握碳钢的分类、编号、性能和用途。 铁碳合金基本组织铁素体、奥氏体、渗碳体、珠光体和莱氏体的定义、表示符号、晶体结构、显微组织特征、形成条件及性能特点。铁碳合金状态图的构成、状态图中特性点、线的含义。典型合金的结晶过程分析及其组织,室温下不同区域的组织组成相。碳含量对铁碳合金组织和性能的影响。铁碳合金状态图的实际应用。锰、硅、硫、磷等常存杂质元素对钢性能的影响。碳铁的分类、编号、性能和用途。 铁碳合金状态图是金属热处理的基础。必须配合铁碳合金平衡组织的金相观察实验,结合课堂授课,作重点分析铁碳合金的基本组织及其室温下不同成分铁碳合金的组织特征。练习绘制铁碳合金状态 四、课程纲要 (一)铁碳合金的构成元素及基本相

1. 合金的构成元素与名词解释 (1)金属特性:具有不透明、金属光泽良好的导热和导电性并且其导电能力随温度的增高而减小,富有延性和展性等特 性的物质。金属内部原子具有规律性排列的固体(即晶 体)。 (2)合金:由两种或两种以上金属或金属与非金属组成,具有金属特性的物质。 (3)相:合金中成份、结构、性能相同的组成部分,物理上均质且可区分的部分。 (4)固溶体:是一个(或几个)组元的原子(化合物)溶入另一个组元的晶格中,而仍保持另一组元的晶格类型的固态 金属晶体,固溶体分间隙固溶体和置换固溶体两种。(5)固溶强化:由于溶质原子进入溶剂晶格的间隙或结点,使晶格发生畸变,使固溶体硬度和强度升高,这种现象叫固溶强化现象。 (6)化合物:合金组元间发生化合作用,生成一种具有金属性能的新的晶体固态结构。 (7)机械混合物:由两种晶体结构而组成的合金组成物,虽然是两面种晶体,却是一种组成成分,具有独立的机械性能。

第四章 二元合金相图与合金凝固

第四章二元合金相图与合金凝固 本章主要内容: 相图基本原理:相,相平衡,相律,相图的表示与测定方法,杠杆定律; 二元匀晶相图:相图分析,固溶体平衡凝固过程及组织,固溶体的非平衡凝固与微观偏析 固溶体的正常凝固过程与宏观偏析:成分过冷,溶质原子再分配,成分过冷的 形成及对组织的影响,区域熔炼; 二元共晶相图:相图分析,共晶系合金的平衡凝固和组织,共晶组织及形成机理:粗糙—粗糙界面,粗糙—光滑界面,光滑—光滑界面; 共晶系非平衡凝固与组织:伪共晶,离异共晶,非平衡共晶; 二元包晶相图:相图分析,包晶合金的平衡凝固与组织,包晶合金的非平衡凝固与组织 包晶反应的应用 铸锭:铸锭的三层典型组织,铸锭组织控制,铸锭的缺陷 其它二元相图:形成化合物的二元相图,有三相平衡恒温转变的其它二元相图:共析,偏晶,熔晶,包析,合晶,有序、无序转变,磁性转变,同素异晶转变二元相图总结及分析方法 二元相图实例:Fe-Fe 3C亚稳平衡相图,Al-Mn相图,Al 2 O 3 -SiO 2 二元系相图 相图与合金性能的关系 相图热力学基础:自由能—成分曲线,异相平衡条件,公切线法则,由成分—自由能曲线绘制二元相图 1.填空 1 相律表达式为_____________________________。 2. 固溶体合金凝固时,除了需要结构起伏和能量起伏外,还要有_____________起伏。 3. 按液固界面微观结构,界面可分为__________________和 ____________________。 4. 液态金属凝固时,粗糙界面晶体的长大机制是__________________________,光滑界面晶体的长大机制是_____________________和_____________________。 5 在一般铸造条件下固溶体合金容易产生____________偏析,用 _________________热处理方法可以消除。 6 液态金属凝固时,若温度梯度dT/dX>0(正温度梯度下),其固、液界面呈 ________________状,dT/dX<0时(负温度梯度下),则固、液界面为 ________________状。 7. 靠近共晶点的亚共晶或过共晶合金,快冷时可能得到全部共晶组织,这称为______________。 8 亚共晶合金的典型平衡组织为_________________,亚共析合金的典型平衡组织为___________________________。 9 共晶,包晶,偏晶,熔晶反应式分别为______________________, ____________________, _________________________, ___________________________。 10 共析,偏析,包析反应式分别为______________,______________, _____________。

(整理)如何测绘二元合金相图.

二组分固---液相图的绘制 一、实验目的 1.学会用热分析法测绘Sn —Bi 二组分金属相图。 2.了解热分析法测量技术。 3.掌握SWKY 数字控温仪和KWL-08可控升降温电炉的基本原理和使用。 二、预习要求 了解纯物质的步冷曲线和混合物的步冷曲线的形状有何不同,其相变点的温度应如何确定。 三、实验原理 测绘金属相图常用的实验方法是热分析法,其原理是将一种金属或合金熔融后,使之均匀冷却,每隔一定时间记录一次温度,表示温度与时间关系的曲线叫步冷曲线。当熔融体系在均匀冷却过程中无相变化时,其温度将连续均匀下降得到一光滑的冷却曲线;当体系内发生相变时,则因体系产生之相变热与自然冷却时体系放出的热量相抵偿,冷却曲线就会出现转折或水平线段,转折点所对应的温度,即为该组成合金的相变温度。利用冷却曲线所得到的一系列组成和所对应的相变温度数据,以横轴表示混合物的组成,纵轴上标出开始出现相变的温度,把这些点连接起来,就可绘出相图。 二元简单低共熔体系的冷却曲线具有图1所示的形状。 图1 根据步冷曲线绘制相图 拐点后,开始有固体凝固出来,液相成分不断变化,平衡温度也不断随之改变,直到达到其低 共熔点温度,体系平衡,温度保持不变(平台);直到液相完全凝固后,温度又迅速下降。 用热分析法测绘相图时,被测体系必须时时处于或接近相平衡状态,因此必须保证冷却速度足 够慢才能得到较好的效果。此外,在冷却过程中,一个新的固相出现以前,常常发生过冷现象,轻微过冷则有利于测量相变温度;但严重过冷现象,却会使折点发生起伏,使相变温度的确定产生困难。见图2。遇此情况,可延长DC 线与AB 线相交,交点E 即为转折点。 图3是二元金属体系一种常见的步冷曲线。 当金属混合物加热熔化后冷却时,由于无相变发生,体系的温度随时间变化较大,冷却较快(1~2段)。若冷却过程中发生放热凝固,产生固相,将减小温度随时间的变化,使体系的冷却速度减慢(2~3段)。当融熔液继续冷却到某一点时,如3点,由于此时液相的组成为低共熔物的组成。在最低共熔混合物完全凝固以前体系温度保持不变,步冷曲线出现平台,(如图3~4段)。当融熔液完全凝固形成两种固态金属后,体系温度又继续下降(4~5段)。若图III-5-4中的步冷曲线为图III-5-5中总组成为P 的混合体系的冷却曲线,则转折点2 相当于相图中的G 点,为纯固相开始析出的状态。水平段3~4相当于相图中H 点,即低共熔物凝固的过程。因此,根据一系列不同组成混合体系的步冷拐点:相变温度 平台 A+L B+L L A+B

第四章材料的成形凝固与二元合金相图参考答案.doc

第四章材料的成形凝固与二元合金相图 习题参考答案 一、解释下列名词 答:1、凝固:物质由液态转变为固态的过程。 2、过冷度:实际结晶温度与理论结晶温度之差称为过冷度。 3、自发形核:在一定条件下,从液态金属中直接产生,原子呈规则排列的结晶核心。 4、非自发形核:是液态金属依附在一些未溶颗粒表面所形成的晶核。 5、变质处理:在液态金属结晶前,特意加入某些难熔固态颗粒,造成大量可以成为非自发晶核的固态质点,使结晶时的晶核数目大大增加,从而提高了形核率,细化晶粒的处理方法。 6、变质剂:在浇注前所加入的难熔杂质称为变质剂。 7、同素异构转变:金属在固态下随温度的改变,由一种晶格转变为另一种晶格的现象。 8、合金:通过熔炼,烧结或其它方法,将一种金属元素同一种或几种其它元素结合在一起所形成的具有金属特性的新物质。 9、组元:组成合金的最基本的、独立的物质。 10相:在金属或合金中,凡成分相同、结构相同并与其它部分有界面分开的均匀组成部分。 11、相图:用来表示合金系中各个合金的结晶过程的简明图解称为相图。 12、枝晶偏析:实际生产中,合金冷却速度快,原子扩散不充分,使得先结晶出来的固溶体合金含高熔点组元较多,后结晶含低熔点组元较多,这种在晶粒内化学成分不均匀的现象。 13、比重偏析:比重偏析是由组成相与溶液之间的密度差别所引起的。如果先共晶相与溶液之间的密度差别较大,则在缓慢冷却条件下凝固时,先共晶相便会在液体中上浮或下沉,从而导致结晶后铸件上下部分的化学成分不一致的现象。 二、填空题 1、实际结晶温度比理论结晶温度略低一些的现象称为金属结晶的过冷现象,实际结晶温度与理论结晶温度之差称为过冷度。 2、金属结晶过程是晶核形成与晶核长大的过程,这是结晶的基本规律。 3、金属结晶时的冷却速度越快,则过冷度越大,结晶后的晶粒越细,其强度越高,塑性和韧性越好。 4、典型的金属铸锭组织由三层组成,即表层细晶区、柱状晶区、中心粗等轴晶区。 5、在金属铸锭中,除组织不均匀外,还经常存在缩孔、气孔、疏松等各种铸造缺陷。 6、其它条件相同时,在下列铸造条件下,就铸件晶粒大小来说:

第四章 二元合金相图与合金凝固答案教学内容

第四章二元合金相图与合金凝固答案

第四章二元合金相图与合金凝固 一、本章主要内容: 相图基本原理:相,相平衡,相律,相图的表示与测定方法,杠杆定律; 二元匀晶相图:相图分析,固溶体平衡凝固过程及组织,固溶体的非平衡凝固与微观偏析 固溶体的正常凝固过程与宏观偏析:成分过冷,溶质原子再分配,成分过冷的形成及对组织的影响,区域熔炼; 二元共晶相图:相图分析,共晶系合金的平衡凝固和组织,共晶组织及形成机理:粗糙—粗糙界面,粗糙—光滑界面,光滑—光滑界面; 共晶系非平衡凝固与组织:伪共晶,离异共晶,非平衡共晶; 二元包晶相图:相图分析,包晶合金的平衡凝固与组织,包晶反应的应用 铸锭:铸锭的三层典型组织,铸锭组织控制,铸锭中的偏析 其它二元相图:形成化合物的二元相图,有三相平衡恒温转变的其它二元相图:共析,偏晶,熔晶,包析,合晶,有序、无序转变,磁性转变,同素异晶转变 二元相图总结及分析方法 二元相图实例:Fe-Fe3C亚稳平衡相图, 相图与合金性能的关系 相图热力学基础:自由能—成分曲线,异相平衡条件,公切线法则,由成分—自由能曲线绘制二元相图 二、 1.填空 1 相律表达式为___f=C-P+ 2 ___。 2. 固溶体合金凝固时,除了需要结构起伏和能量起伏外,还要有___成分 _______起伏。 3. 按液固界面微观结构,界面可分为____光滑界面_____和_______粗糙界面___。

4. 液态金属凝固时,粗糙界面晶体的长大机制是______垂直长大机制_____,光滑界面晶体的长大机制是____二维平面长大____和_____依靠晶体缺陷长大___。 5 在一般铸造条件下固溶体合金容易产生__枝晶____偏析,用____均匀化退火___热处理方法可以消除。 6 液态金属凝固时,若温度梯度dT/dX>0(正温度梯度下),其固、液界面呈___平直状___状,dT/dX<0时(负温度梯度下),则固、液界面为______树枝___状。 7. 靠近共晶点的亚共晶或过共晶合金,快冷时可能得到全部共晶组织,这称为____伪共晶。 8 共晶,包晶,偏晶,熔晶反应式分别为_______L1→α+β______, __ L+α→β ____, ______ L1—L2+α________, ___________γ→α+ L _______。 10 共析,偏析,包析反应式分别为______γ→α+β________,______ α1—α2+β________,_______α+β→γ______。 11 固溶体合金凝固时,溶质分布的有效分配系数k0=__ C s/C l __ 14 固溶体合金定向凝固时,液相中溶质混合越充分,则凝固后铸锭成分_偏析最严重__。 15. 在二元相图中,L1→α+L2叫___偏晶___反应,β→L+α称为___熔晶__转变,而反应α1—α2+β称为____偏析___反应,α+β→γ称为___包析___反应。19 Fe-Fe3C相图中含碳量小于__ 0.0218-2.11% __为钢,大于___ 2.11% __为铸铁;铁碳合金室温平衡组织均由_______F______和____ Fe3C __________两个基本相组成;根据溶质原子的位置,奥氏体其晶体结构是____ FCC __________,是____间隙________固溶体,铁素体是_____ ____间隙固溶体 ______固溶体,其晶体结构是__ BCC ____,合金平衡结晶时,奥氏体的最大含C量是___ 2.11 _______;珠光体是由___铁素体____和__渗碳体__组成的两相混合物;莱氏体的含碳量_____ 4.3% ____;在常温下,亚共析钢的平衡组织是___ P+F ___,过共析钢的平衡组织是____ P+Fe3C II ____,亚共晶白口铸铁的平

各元素对铝合金性能影响

1合金元素影响 铜元素 铝铜合金富铝部分平衡相图如图所示。548时,铜在铝中的最大溶解度为 5.65%,温度降到302时,铜的溶解度为0.45%。铜是重要的合金元素,有一定的固溶强化效果,此外时效析出的C u A l2有着明显的时效强化效果。铝合金中铜含量通常在 2.5%~5%,铜含量在4%~6.8%时强化效果最好,所以大部分硬铝合金的含铜量处于这范围。 铝铜合金中可以含有较少的硅、镁、锰、铬、锌、铁等元素。 硅元素 A l—S i合金系平衡相图富铝部分如图所示。在共晶温度577时,硅在固溶体中的最大溶解度为 1.65%。尽管溶解度随温度降低而减少,介这类合金一般是不能热处理强化的。铝硅合金具有极好的铸造性能和抗蚀性。 若镁和硅同时加入铝中形成铝镁硅系合金,强化相为M g S i。镁和硅的质量比为 1.73:1。设计A l-M g-S i系合金成分时,基体上按此比例配置镁和硅的含量。有的A l-M g-S i合金,为了提高强度,加入适量的铜,同时加入适量的铬以抵消铜对抗蚀性的不利影响。 A l-M g2S i合金系合金平衡相图富铝部分如图所示。M g2S i在铝中的最大溶解度为 1.85%,且随温度的降低而减速小。 变形铝合金中,硅单独加入铝中只限于焊接材料,硅加入铝中亦有一定的强化作用。 镁元素 A l-M g合金系平衡相图富铝部分如图所示。尽管溶解度曲线表明,镁在铝中的溶解度随温度下降而大大地变小,但是在大部分工业用变形铝合金中,镁的含量均小于6%,而硅含量也低,这类合金是不能热处理强化的,但是可焊性良好,抗蚀性也好,并有中等强度。 镁对铝的强化是明显的,每增加1%镁,抗拉强度大约升高瞻远34M P a。如果加入1%以下的锰,可能补充强化作用。因此加锰后可降低镁含量,同时可降低热裂倾向,另外锰还可以使M g5A l8化合物均匀沉淀,改善抗蚀性和焊接性能。 锰元素 A l-M n合金系平平衡相图部分如图所示。在共晶温度658时,锰在固溶体中的最大溶解度为 1.82%。合金强度随溶解度增加不断增加,锰含量为0.8%时,延伸率达最大值。A l-M n合金是非时效硬化合金,即不可热处理强化。 锰能阻止铝合金的再结晶过程,提高再结晶温度,并能显著细化再结晶晶粒。再结晶晶粒的细化主要是通过 M n A l6化合物弥散质点对再结晶晶粒长大起阻碍作用。M n A l6的另一作用是能溶解杂质铁,形成(F e、M n)A l6,减小铁的有害影响。 锰是铝合金的重要元素,可以单独加入形成A l-M n二元合金,更多的

二元合金相图

教学课题二元合金相图 教学课时 2 教学目的让学生了解了解相图的分析方法及共晶转变的概念 掌握共晶转变的定义、应具备的条件 教学难点共晶转变的定义、应具备的条件 教学重点共晶转变的定义、应具备的条件 教学方法讲解法 教具准备教材 教学过程

授课内容 一、二元合金相图的建立 相图:合金的成分、温度和组织之间关系的一个简明图表。 相图的作用:研究和选用合金的重要工具,对于金属的加工及热处理,具有指导意义。 相图的表示形式:平面坐标图的形式表示。(纵坐标表示温度,横坐标表示合金的成分)(教材P36页) 例如:F、G、M含义 ) F点表示:400℃时含B 20% 含A 80%合金 G点表示:800℃时含B 60% 含A 40%合金 M点表示:1000℃时含B 80% 含A 20%合金 相图的建立是通过实验的方法测定出来的。最常用的是热分析法。 以铅锑二元合金为例,说明步骤: (1)配制不同成分的Pb-Sb合金。 (2)将它们熔化,再用热分析法测定各合金的冷却曲线。 (3)根据各冷却曲线上的转折点,确定其临界点的位置。(临界点:金属发生 结构改变的温度。指合金的结晶开始及终了温度。) (4)把各合金的临界点描绘在温度—成分坐标系的相对位置上,并将意义相同

的临界点连接起来,即得相图。 举例说明Cu —Ni 二元合金相图。 二、铅锑二元合金相图的分析 ℃℃) A (327 ) 1、A 点:铅的熔点 (327℃) 2、B 点:锑的熔点 (631℃) 3、C 点:共晶点( Sb11%+Pb89% 252℃ ) 4、ACB :液相线 5、DCE :固相线 6个区域(如图) 共晶转变:一定成分的液态合金,在某一恒温下,同时结晶出两种固相的转变。 结晶过程 1、共晶转变:(Sb11%+Pb89%) 252℃ Lc ===== (Sb + Pb ) 共晶合金:在恒温下从液相中,同时结晶出 Sb 和 Pb 的混合物(共晶体),继续冷却,共晶体不再发生变化。这一合金称为共晶合金。 2、亚共晶转变: ( Sb <11% )

(完整版)铁碳合金相图(习题)

铁碳合金相图 一、选择题 1. 铁素体是碳溶解在()中所形成的间隙固溶体。 A.α-Fe B.γ-Fe C.δ-Fe D.β-Fe 2.奥氏体是碳溶解在()中所形成的间隙固溶体。 A.α-Fe B.γ-Fe C.δ-Fe D.β-Fe 3.渗碳体是一种()。 A.稳定化合物 B.不稳定化合物 C.介稳定化合物 D.易转变化合物 4.在Fe-Fe3C相图中,钢与铁的分界点的含碳量为()。 A.2% B.2.06% C.2.11% D.2.2% 5.莱氏体是一种()。 A.固溶体B.金属化合物 C.机械混合物 D.单相组织金属 6.在Fe-Fe3C相图中,ES线也称为()。 A.共晶线 B.共析线 C.A3线 D.Acm线 7.在Fe-Fe3C相图中,GS线也称为()。 A.共晶线 B.共析线 C.A3线 D.Acm线 8. 在Fe-Fe3C相图中,共析线也称为()。 A.A1线 B.ECF线 C.Acm线 D.PSK线 9.珠光体是一种()。 A.固溶体 B.金属化合物 C.机械混合物 D.单相组织金属 10.在铁-碳合金中,当含碳量超过()以后,钢的硬度虽然在继续增加,但强度却在明显下降。 A.0.8% B.0.9% C.1.0% D.1.1% 11.通常铸锭可由三个不同外形的晶粒区所组成,其晶粒区从表面到中心的排列顺序为()。 A.细晶粒区-柱状晶粒区-等轴晶粒区 B.细晶粒区-等轴晶粒区-柱状晶粒区 C.等轴晶粒区-细晶粒区-柱状晶粒区 D.等轴晶粒区-柱状晶粒区-细晶粒区 12.在Fe-Fe3C相图中,PSK线也称为()。 A.共晶线 B.共析线 C.A3线 D.Acm线 13.Fe-Fe3C相图中,共析线的温度为()。 A.724℃ B.725℃ C.726℃ D.727℃ 14.在铁碳合金中,共析钢的含碳量为()。 A.0.67% B.0.77% C.0.8% D.0.87% 二、填空题 1. 珠光体是(铁素体)和(二次渗碳体)混合在一起形成的机械混合物。 2. 碳溶解在(α-F e)中所形成的(固溶体)称为铁素体。

第三章 二元合金相图和合金的凝固

第三章二元合金相图和合金的凝固 一.名词解释 相图、相律、匀晶转变、共晶转变、包晶转变、共析转变、包析转变、异晶转变、平衡结晶、不平衡结晶、异分结晶、平衡分配系数、晶内偏析、显微偏析、区域偏析、区域提纯、成份过冷、胞状组织、共晶组织、亚共晶组织、过共晶组织、伪共晶、离异共晶、 二.填空题 1.相图可用于表征合金体系中合金状态与和之间的关系。 2.最基本的二元合金相图有、、。 3.根据相律,对于给定的金属或合金体系,可独立改变的影响合金状态的内部因 素和外部因素的数目,称为,对于纯金属该数值最多为,而对于二元合金该数值最多为。 4.典型的二元合金匀晶相图,如Cu-Ni二元合金相图,包含、两 条相线,、、三个相区。 5.同纯金属结晶过程类似,固溶体合金的结晶包括和两 个基本过程。 6.勻晶反应的特征为_____________,其反应式可描述为________ 。 7.共晶反应的特征为_____________,其反应式可描述为___________ _。 8.共析反应的特征为_____________,其反应式可描述为_____________。 9.金属或合金在极缓慢冷却条件下进行的结晶过程称为。纯金属结 晶时所结晶出的固相成分与液相成分,称为;而固溶体合金结晶时所结晶出的固相成分与液相成分,称为。 10.固溶体合金经不平衡结晶所产生的两类成分偏析为、。 11.固溶体合金产生晶内偏析的程度受到溶质原子扩散能力的影响,若结晶温度较 高,溶质原子的扩散能力小,则偏析程度。如磷在钢中的扩散能力较硅小,所以磷在钢中的晶内偏析程度较,而硅的偏析较。 12.固溶体合金结晶后出现枝晶偏析时,结晶树枝主轴含有较多的________组元。 严重的晶内偏析降低合金的,为消除枝晶偏析,工业生产中广泛采用的方法。 13.根据区域偏析原理,人们开发了,除广泛用于提纯金属、金属化合物 外,还应用于半导体材料及有机物的提纯。通常,熔化区的长度,液体

铁碳合金相图分析报告

第四章铁碳合金 第一节铁碳合金的相结构与性能 一、纯铁的同素异晶转变 δ-Fe→γ-Fe→α-Fe 体心面心体心 同素异晶转变——固态下,一种元素的晶体结构 随温度发生变化的现象。 特点: ? 是形核与长大的过程(重结晶) ? 将导致体积变化(产生内应力) ? 通过热处理改变其组织、结构→ 性能 二、铁碳合金的基本相 第二节铁碳合金相图 一、相图分析 两组元:Fe、Fe3C 上半部分图形(二元共晶相图) 共晶转变: 1148℃727℃ L4.3 → A2.11+ Fe3C → P + Fe3C莱氏体Ld Ld′ 2、下半部分图形(共析相图) 两个基本相:F、Fe3C 共析转变: 727℃ A0.77→ F0.0218 + Fe3C 珠光体P 二、典型合金结晶过程 分类:

三条重要的特性曲线 ① GS线---又称为A3线它是在冷却过程中由奥氏体析出铁素体的开始线或者说在加热过程中铁素体溶入奥氏体的终了线. ② ES线---是碳在奥氏体中的溶解度曲线当温度低于此曲线时就要从奥氏体中析出次生渗碳体通常称之为二次渗碳体因此该曲线又是二次渗碳体的开始析出线.也叫Acm线. ③ PQ线---是碳在铁素体中的溶解度曲线.铁素体中的最大溶碳量于727oC时达到最大值0.0218%.随着温度的降低铁素体中的溶碳量逐渐减少在300oC以下溶碳量小于0.001%.因此当铁素体从727oC冷却下来时要从铁素体中析出渗碳体称之为三次渗碳体记为Fe3CⅢ. 工业纯铁(<0.0218%C) 钢(0.0218-2.11%C)——亚共析钢、共析钢(0.77%C)、过共析钢 白口铸铁(2.11-6.69%C)——亚共晶白口铸铁、共晶白口铸铁、过共晶白口铸铁 L → L+A → A → P(F+Fe3C) L → L+A → A → A+F → P+F L → L+A → A → A+ Fe3CⅡ→ P+ Fe3CⅡ 4、共晶白口铸铁L → Ld(A+Fe3C) → Ld(A+Fe3C+ Fe3CⅡ) → Ld′(P+Fe3C+ Fe3CⅡ) 5、亚共晶白口铸铁L → Ld(A+Fe3C) + A → Ld+A+ Fe3CⅡ→ Ld′+P+ Fe3CⅡ 6、过共晶白口铸铁L → Ld(A+Fe3C) + Fe3C → Ld + Fe3C→ Ld′+ Fe3C

材料成型原理第四章答案

第四章 1. 何谓结晶过程中的溶质再分配?它是否仅由平衡分配系数K 0所决定?当相图上的液相线和固相线皆为直线时,试证明K 0为一常数。 答:结晶过程中的溶质再分配:是指在结晶过程中溶质在液、固两相重新分布的 现象。 溶质再分配不仅由平衡分配系数K 0决定 ,还受自身扩散性质的制约,液相中的对流强弱等因素也将影响溶质再分配。 当相图上的液相线和固相线皆为直线时K 0为一常数,证明如下:如右图所示: 液相线及固相线为直线,假设 其斜率分别为m L 及m S ,虽然 C *S 、C * L 随温度变化有不同值,但 L m S m L S m T T m T T C C K /)(/)(0* *** --===S L m m =常数, 此时,K 0与温度及浓度无关, 所以,当液相线和固相线为直 线时,不同温度和浓度下K 0为 定值。 2. 某二元合金相图如右所示。合金液成分为C B =40%,置于长瓷舟中并从左端开始凝固。温度梯度大到足以使固-液界面保持平面生长。假设固相无扩散,液相均匀混合。试求:①α相与液相之间的平衡分配系数K 0;②凝固后共晶体的数量占试棒长度的百分之几?③凝固后的试棒中溶质B 的浓度沿试棒长度的分布曲线。 解:(1)平衡分配系数K 0 的求解: 由于液相线及固相线均为直 线不同温度和浓度下K 0为 定值,所以:如右图, 当T=500℃时, K 0 =**L C C α=% 60%30=0.5 K 0即为所求 α相与液相之间的 平衡分配系数. (2)凝固后共晶体的数量占试棒长度的百分数的计算: 由固相无扩散液相均匀混合下溶质再分配的正常偏析方程 ) 1(00-* =K L L f C C 图 4-43 二元合金相图 K 0<1C 0K 0C 0/K 0T C * S C * L C 0C T * Tm

实验六 步冷曲线法绘制二元合金相图

实验六步冷曲线法绘制二元合金相图 一、目的要求 1. 用热分析法测熔融体步冷曲线,再绘制绘Bi-Sn二元合金相图。 2. 了解热分析法的实验技术及热电偶测量温度的方法。 二、实验原理 1.相图 相图是多相(二相或二相以上)体系处于相平衡状态时体系的某些物理性质(如温度或压力)对体系的某一变量(如组成)作图所得的图形,因图中能反映出相图平衡情况(相的数目及性质等),故称为相图。由于相图能反映出多相平衡体系在不同自变量条件下的相平衡情况,因此,研究多相体系相平衡情况的演变(例如钢铁及其它合金的冶炼过程,石油工业分离产品的过程),都要用到相图。由于压力对仅由液相和固相构成的凝聚体系的相平衡影响很小,所以二元凝聚体系的相图通常不考虑压力的影响,而常以组成为自变量,其物理性质则取温度。 2.热分析法测绘步冷曲线 热分析法是绘制相图常用的基本方法。其原理是将体系加热融熔成一均匀液相,然后让体系缓慢冷却,用体系的温度随时间的变化情况来判断体系是否发生了相变化。记录体系的温度随时间的变化关系,再以时间为横坐标,温度为纵坐标,绘制成温度--时间曲线,称为步冷曲线(如图6-1)。从步冷曲线中一般可以判断在某一温度时,体系有无相变发生。当系统缓慢而均匀地冷却时,若系统内无相的变化,则温度将随时间而均匀地改变,即在T-t曲线上呈一条直线,若系统内有相变化,则因放出相变热,使系统温度变化不均匀,在T-t图上有转折或水平线段,由此判断系统是否有相变化。 对于二组分固态不互溶凝聚系统(A-B系统),其典型冷却曲线形状大致有三种形态,见图6-1所示。 图6-1(a) 图6-1(b) 图6-1(c) 图6-1(a)体系是单组分体系。在冷却过程中,在a~a1段是单相区,只有液相,没有相变发生,温度下降速度较均匀,曲线平滑。冷却到a1时,达到物质的凝固点,有固相开始析出,两相共存,自由度为零,温度保持不变,冷却曲线出现平台(温度不随时间而改变)。当到达a1′点液相完全消失,系统成

相关主题
文本预览
相关文档 最新文档