Multilinear estimates for periodic KdV equations and applications
- 格式:pdf
- 大小:436.57 KB
- 文档页数:39
arXiv:math/0110049v3 [math.AP] 14 Jul 2006MULTILINEARESTIMATESFORPERIODICKDVEQUATIONS,
ANDAPPLICATIONS
J.COLLIANDER,M.KEEL,G.STAFFILANI,H.TAKAOKA,ANDT.TAO
Abstract.WeproveanendpointmultilinearestimatefortheXs,bspaces
associatedtotheperiodicAiryequation.Asaconsequenceweobtainsharp
localwell-posednessresultsforperiodicgeneralizedKdVequations,aswellas
someglobalwell-posednessresultsbelowtheenergynorm.
Contents
1.Introduction2
1.1.MainResults3
1.2.Remarksandpossibleextensions4
1.3.Outline5
2.Acounter-example6
3.LinearEstimates7
4.Reductiontoamultiplierbound10
5.Thenon-endpointcase12
6.Someelementarynumbertheory13
7.Theproofof(4.4)intheendpointcase.152J.COLLIANDER,M.KEEL,G.STAFFILANI,H.TAKAOKA,ANDT.TAO
8.Theproofof(4.5)intheendpointcase.17
9.ProofofProposition121
10.Localwell-posednessforsmalldata24
11.Largeperiods25
12.Aninterpolationlemma29
13.Globalwell-posedness31
14.ProofofLemma13.133
References38
1.Introduction
ThispaperstudiestheCauchyproblemforperiodicgeneralizedKdVequations
oftheform
(1.1)
∂
tu+1
4π2isconvenientinordertomakethe
dispersionrelationτ=ξ3,butitisinessentialandwerecommendthatthereader
ignoreallpowersof2πwhichappearinthesequel.WecanassumethatFhasno
constantorlineartermsincethesecanberemovedbyaGallileantransformation.
Themainresultestablishedinthispaperisasharpmultilinearestimatewhich
allowsustoshowtheinitialvalueproblem(1.1)islocallywell-posedinHs(T)for
s≥1MULTILINEARESTIMATESANDAPPLICATIONS3
Thelow-regularitystudyoftheequation(1.1)onThasbeenbasedaround
iterationinthespacesXs,1
2+ξsˆu
L2
ξL1
τ.
WeshallalsoneedthecompanionspacesZsdefinedby
(1.3)u
Zs:=u
s,−1τ−ξ3
L2
ξL1
τ.
1.1.MainResults.Themaintechnicalresultofthispaperisthefollowingmul-
tilinearestimate.
Theorem1.Foranys≥1
2k
i=1u
i
Ys.
Thisimprovesontheresultsin[29],wherethisestimatewasprovenfors≥1.
BycombiningthisestimatewithanestimateofKenig,Ponce,andVega[24]we
shallobtain
Proposition1.Foranys≥1
2.
In[24]therestrictions≥1
2fork≥4,andalsoforthek=3caseifoneallowsthemeanofthe
u
itobenon-zero.Inthek=3casewithmeanzerothecounter-exampleisalittle
trickier,andisdiscussedinSection2.
Thesharpestimate(1.5)ofProposition1willbeusefulinstudyingthedynami-
calbehaviorofsolutionsofpolynomialgeneralizationsoftheKdVequation.Inthis
paper,weuseProposition1toobtainsomelocalandglobalwell-posednessresults
fortheCauchyproblem(1.1).In[29](seealso[5],[22]),suchequationswereshown
tobegloballywell-posedforH1data.4J.COLLIANDER,M.KEEL,G.STAFFILANI,H.TAKAOKA,ANDT.TAO
Theorem2.IfF(u)isapolynomial,thentheCauchyproblemfortheperiodicgeneralizedKdVequation(1.1)islocallywell-posedinHs(T)foralls≥12[24](seealso[5],[7]).WhenFiscubicwehavethemodifiedKdVequation,for
whichlocalwell-posednesswasalreadyobtainedfors≥1
2;thisexamplecan
beextendedtogeneralpolynomialsFofdegreeatleast3.
OnthereallinewithF(u)=uk+1,theequation(1.1)isknowntobelocally
well-poseddowntothescalingexponents≥1
kfork≥4[22](seealso[4];
earlierresultsarein[18]).Thiswasrecentlyextendedtok=3(exceptatthe
endpoints=1
k)in[19].Thusthereisalossof2
4lossonehasinthek=1,2
cases.Theseobservationsresolveaproblem2posedbyCarlosKenig.
TherearesomeotherconsequencesofTheorem1.Itallowsustocompletethe
proof(in[11])ofglobalwell-posednessoftheKdVandmKdVequationsdownto
s≥−1
2.Inparticularinthesymplecticspace˙H−1
4π2u
xxx+u3u
x=0
u(x,0)=u
0(x),x∈T
islocallywell-posedforlargeHs(T)datafors≥1
6.Moreover,theinitialvalueproblem(1.6)isanalytically
ill-posedinHs(T)fors<1
6forglobalwell-posedness
fallsquiteshortofthelocalconditions≥1
2SeetheproblemposedafterTheorem5.3inKenig’slecturenotesat
http://www.msri.org/publications/ln/msri/1997/ha/kenig/5/banner/03.html.MULTILINEARESTIMATESANDAPPLICATIONS5
onthefluctuationofourmodifiedHamiltonian.FromourexperiencewiththeKdV
andmKdVequationsin[11]howeverwebelieveitisreasonabletohopethatglobal
well-posednessshouldholdforalls≥1
14−2
8π2u2
x−α
2ands≥1
2.Section3recordslinearesti-
matesbetweenspacesassociatedtotheAiryequation.Section4reducesTheorem
1toamultiplierboundwhichweestablishinthenon-endpointcase,s>1
2.Section9
establishesProposition1.Theorem2isproveninSection10.Section11rescales
variousestimatestothesettingoflargeperiods4.Section12containsageneral
interpolationresultrevealingacertainflexibilityinproofsoflocalwell-posedness.
TheglobalresultofTheorem3isproveninSections13and14.
TheauthorsthankJorgeSilvaforacorrection.