当前位置:文档之家› 空间频率滤波实验报告

空间频率滤波实验报告

空间频率滤波实验报告
空间频率滤波实验报告

空间频率滤波

空间频率滤波是在光学系统的空间频谱面上放置适当的滤波器,去掉(或有选择地通过)

某些空间频率或改变它们的振幅和位相,使物体的图像按照人们的希望得到改善。它是信息光学中最基本、最典型的基础实验,是相干光学信息处理中的一种最简单的情况。

一、实验目的

1.了解傅里叶光学基本理论的物理意义,加深对光学空间频率、空间频谱和空间频率

滤波等概念的理解;

2.验证阿贝成像原理,理解成像过程的物理实质一一“分频”与“合成”过程,了解透镜孔径对显微镜分辨率的影响;

二、实验原理

1.傅里叶光学变换

设有一个空间二维函数g(x, y),其二维傅里叶变换为

G( , ) g(x,y)exp[ i2 ( x y)] dxdy (1)

式中,分别为x,y方向的空间频率,而g(x, y)则为G(,)的傅里叶逆变换,即

g(x, y) G( , )exp[i2 ( x y)]d d (2)

式(2)表示,任意一个空间函数g(x, y)可表示为无穷多个基元函数exp[i2 ( x y)]的线性迭加,G(,)是相应于空间频率为,的基元函数的权重,G(,)称为g(x, y)的空间频谱。

用光学的方法可以很方便地实现二维图像的傅里叶变换,获得它的空间频谱。由透镜的

傅里叶变换性质知,只要在傅里变换透镜的前焦面上放置一透率为g(x,y)的图像,并以相干平行光束垂直照明之,则在透镜后焦面上的光场分布就是g(x, y)的傅里叶变换

G(,),即空间频谱G(x.. f,y.「f)。其中为光波波长,f为透镜的焦距,(x,y) 为后焦面(即频谱面)上任意一点的位置坐标。

显然,后焦面上任意一点(x , y )对应的空间频率为

x / f y / f

2.阿贝成像原理

傅里叶变换光学在光学成像中的重要性,首先在显微镜的研究中显示出来。阿贝在1873年提出了相干光照明下显微镜的成像原理。他认为在相干平等光照明下,显微镜的成像过程

可以分成二步。第一步是通过物的衍射光在透镜的后焦面(即频谱面)上形成空间频谱,这

是衍射所引起的“分频”作用;第二步是代表不同空间频率的各光束在像平面上相干迭加而形成物体的像,这是干涉所引起的“合成”作用。图1表示这下一成像光路和过程。

图1阿贝成像原理成像的这二个过程,本质上就是两次傅里叶变换。第一个过程把物面光场的空间分布

g(x, y)变为频谱面上空间频率分布G(,),第二个过程则是将频谱面上的空间频谱分布

G(,)作傅里

叶逆变换还原为空间分布(即将各频谱分量又复合为像)。因此,成像过程经历了从空间域

到频率域,又从频率域到空间域的两次变换过程。如果两次变换完全是理想的,即信息没有

任何损失,则像和物应完全相似(除了有放大或缩小外)。但一般说来像和物不可能完全相

似,这是由于透镜的孔径是有限的,总有一部分衍射角度大的高次成分(高频信息)不有进入到物镜而被丢弃了,所以像的信息总是比物的信息要少一些,像和物不可能完全一样。因

为高频信息主要反应物的细节,所以,当高频信息受到孔径的阻挡而不能到达像平面时,无论显微镜有多大放大倍数,也不可能在像平面上分辨这些细节,这是显微镜分辨率受到限制

的根本原因。特别当物的结构非常精细(如很密的光栅)或物镜孔径非常小时,有可能只有

0级衍射(空间频率为0)能通过,则在像平面上虽有光照,却完全不能形成图像。

3. 空间滤波

由以上讨论知,成像过程本质上是两次傅里叶变换。 即从空间复振幅分布函数

g (x,

y )变

为频谱函数G (,),然后再由频谱函数 G (,)变回到空间函数g (x, y )(忽略放大率) 显然,如果我们在频谱面(即透镜后焦面)上人为地放一些模板(吸收板或相移板)以减弱 某些空间频率成份或改变某些频率成分的相位,

便可使像面上的图像发生相应的变化,

这样

的图像处理称为空间滤波。 频谱面上这种模板称为滤波器, 最简单的滤波器是一些特殊形状

的光阑,如图2所示。

图2简单的空间滤波器

图2中(a )为高通滤波器,它是一个中心部分不透光的光屏,它能滤去低频成分而允许 高频成分通过,可用于突出像的边沿部分或者实现像的衬度反转; (b )为低通滤波器,其作

用是滤掉高频成分,仅让靠近零频的低频成分通过。

它可用来滤掉高频噪声,例如滤去网板

照片中的网状结构;(c )为带通滤器,它可让某些需要的频谱分量通过,其余被滤掉,可用 于消除噪音;(d )为方向滤波器,可用于去除某些方向的频谱或仅让某些方向的频谱通过, 用于突出图像的某些特征。

三、实验光路

实验光路如图3所示。其中L i , L 2组成的倒装望远系统将激光扩展成具有较大截面的平 行光束,透镜L 为成像透镜。

(b)

(d

四、实验内容

1.光路调节,按图3布置光路,并按以下步骤调节光路:

(1)调节激光束与导轨平行(调节时,可在导轨上放置一与导轨同轴的小孔光阑,当光

阑在导轨上前后移动时,激光束始终能通过小孔即可) 。

(2)将L i, L2放入光路并使它们与激光束共轴。调节L i与L2之间的距离使之等于它们

的焦距之和以获得截面较大的平行光。

(3)将物和成像透镜L放入光路,调节L与物之间的距离使像面上得到一放大的实像。

2.空间滤波

(1)在谱面上不放置任何滤光片,观察后焦面上的频谱分布及像面上的像。

(2)在频谱面上放置不同的滤波器,观察像变化情况并将观察到的图像记录在表中,对图像的变化作出适当的解释。

3.选作

将透明图案板作为物,观察后焦面上的频谱分布和像面上的像,然后在后焦面上放一高

通滤波器挡住谱面中心,观察像面上的图像并解释之。

五、实验内容及结果

1.空间滤波

表空间滤波实验结果

2.选作部分

将透明图案板作为物,观察后焦面上的频谱分布和像面上的像,然后在后焦面上放一高通滤波器挡住谱面中心,观察像面上的图像并解释之。

实验现象: 想面上出现圆圈图像, 高通滤波器是一个中心部分不透光的光屏, 它能滤过低频成分而能允许高频成分通过, 本实验中突出像的边沿部分, 故观察到频率比中间高的圆圈.

五、实验结果分析

1. 在单透镜系统中加入简单滤波器进行滤波之后,观察到得实验现象各不相同,

(1)低通滤波器,它只允许位于频谱面中心及其附近的低通分量通过,去掉频谱面上离光轴较远的高频成份从而滤掉高频噪音,由于仅保留了离轴较近的低频成份,因而图像细结构消失,利用它可以消除图像上周期性的网格;

(2)高通滤波器,它阻挡低频分量而允许高频成份通过,可以实现图像的衬度反转或边缘增强,所以图像轮廓明显。若把高通滤波器的挡光屏变小,仅滤去零频成份,则可除去图像中的背景,提高图像质量,进行边缘增强;

(3)带通滤波器,它只允许特定空间的频谱通过,可以去除随机噪声,还可以对信号或缺陷进行检测,分离各种有用信息;

(4)方向滤波器,它仅通过(或阻挡)特定方向上的频谱分量,可以突出某些方向特

征。

2.实验证明了阿贝成像理论的正确性:

像的结构直接依赖于频谱的结构,只要改变频谱的组分,便能够改变像的结构;像和物的相似程度完全取决于物体有多少频率成分能被系统传递到像面。

3.实验充分证明了傅里叶分析和综合的正确性:

(1)频谱面上的横向分布是物的纵向结构的信息;频谱面上的纵向分布是物的横向结构的信息;

(2)零频分量是直流分量,它只代表像的本底;

(3)阻挡零频分量,在一定条件下可使像的衬度发生反转;

(4)仅允许低频分量通过时,像的边缘锐度降低;仅允许高频分量通过时,像的边缘效应增强;

(5)采用选择型滤波器,可望完全改变像的性质

六、思考题

1. 当光源换成白光光源时,仍用本实验所用的滤波器进行空间滤波,其结果如何?答: 会产生多个衍

空间频率滤波word版

空间频率滤波 空间频率滤波是在光学系统的空间频谱面上放置适当的滤波器,去掉(或有选择地通过)某些空间频率或改变它们的振幅和位相,使物体的图像按照人们的希望得到改善。它是信息光学中最基本、最典型的基础实验,是相干光学信息处理中的一种最简单的情况。 早在1873年,德国人阿贝(E.Abbe,1840~1905)在蔡司光学公司任职期间研究如何提高显微镜的分辨本领时,首次提出了二次衍射成像的理论。阿贝和波特 (A.B.Porter )分别于1893年和1906年以一系列实验证实了这一理论。1935年泽尼可(Zernike )提出了相衬显微镜的原理。这些早期的理论和实验其本质上都是一种空间滤波技术,是傅里叶光学的萌芽,为近代光学信息处理提供了深刻的启示。但由于它属于相干光学的范畴,在激光出现以前很难将它在实际中推广使用。1960年激光问世后,它才重新振兴起来,其相应的基础理论——“傅里叶光学”形成了一个新的光学分支。目前光信息处理技术已广泛应用到实际生产和生活各个领域中。 一、实验目的 1. 了解傅里叶光学基本理论的物理意义,加深对光学空间频率、空间频谱和空间频率滤波等概念的理解; 2. 验证阿贝成像原理,理解成像过程的物理实质——“分频”与“合成”过程,了解透镜孔径对显微镜分辨率的影响; 二、实验原理 1. 傅里叶光学变换 设有一个空间二维函数),(y x g ,其二维傅里叶变换为 dxdy y x i y x g G )](2exp[),(),(ηξπηξ+-=??∝∝- (1) 式中ηξ,分别为x,y 方向的空间频率,而),(y x g 则为),(ηξG 的傅里叶逆变换,即 ηξηξπηξd d y x i G y x g ??+=∝∝-)](2exp[),(),( (2) 式(2)表示,任意一个空间函数),(y x g 可表示为无穷多个基元函数)](2exp[y x i ηξπ+的线性迭加,),(ηξG 是相应于空间频率为ηξ,的基元函数的权重,

卡尔曼滤波计算举例

卡尔曼滤波计算举例 ?计算举例 ?卡尔曼滤波器特性

假设有一个标量系统,信号与观测模型为 [1][][]x k ax k n k +=+[][][] z k x k w k =+其中a 为常数,n [k ]和w [k ]是不相关的零均值白噪声,方差分别为和。 系统的起始变量x [0]为随机变量,其均值为零,方差为。2n σ2 σ[0]x P (1)求估计x [k ]的卡尔曼滤波算法;(2)当时的卡尔曼滤波增益和滤波误差方差。 22 0.9,1,10,[0]10 n x a P =σ=σ==1. 计算举例

根据卡尔曼算法,预测方程为: ??[/1][1/1]x k k ax k k -=--预测误差方差为: 2 2 [/1][1/1]x x n P k k a P k k -=--+σ 卡尔曼增益为: () 1 22 22 22 [][/1][/1][1/1][1/1]x x x n x n K k P k k P k k a P k k a P k k -=--+σ --+σ=--+σ+σ ???[/][/1][]([][/1])??[1/1][]([][1/1])?(1[])[1/1][][]x k k x k k K k z k x k k ax k k K k z k ax k k a K k x k k K k z k =-+--=--+---=---+滤波方程:

()() 2 2222222 222 22 [/](1[])[/1] [1/1]1[1/1][1/1][1/1][1/1]x x x n x n x n x n x n P k k K k P k k a P k k a P k k a P k k a P k k a P k k =--??--+σ=---+σ ?--+σ+σ??σ--+σ = --+σ+σ 滤波误差方差 起始:?[0/0]0x =[0/0][0] x x P P =

低通滤波器实验报告

(科信学院) 信息与电气工程学院 电子电路仿真及设计CDIO三级项目 设计说明书 (2012/2013学年第二学期) 题目: ____低通滤波器设计____ _____ _____ _ 专业班级:通信工程 学生姓名: 学号: 指导教师: 设计周数:2周 2013年7月5日 题目: ____低通滤波器设计____ _____ _____ _ (1)

第一章、电源的设计 (2) 1.1实验原理: (2) 1.1.1设计原理连接图: (2) 1. 2电路图 (5) 第二章、振荡器的设计 (7) 2.1 实验原理 (7) 2.1.1 (7) 2.1.2定性分析 (7) 2.1.3定量分析 (8) 2.2电路参数确定 (10) 2.2.1确定R、C值 (10) 2.2.2 电路图 (10) 第三章、低通滤波器的设计 (12) 3.1芯片介绍 (12) 3.2巴特沃斯滤波器简介 (13) 3.2.1滤波器简介 (13) 3.2.2巴特沃斯滤波器的产生 (13) 3.2.3常用滤波器的性能指标 (14) 3.2.4实际滤波器的频率特性 (15) 3.3设计方案 (17) 3.3.1系统方案框图 (17) 3.3.2元件参数选择 (18) 3.4结果分析 (20) 3.5误差分析 (23) 第四章、课设总结 (24) 第一章、电源的设计 1.1实验原理: 1.1.1设计原理连接图:

整体电路由以下四部分构成: 电源变压器:将交流电网电压U1变为合适的交流电压U2。 整流电路:将交流电压U2变为脉动的直流电压U3。 滤波电路:将脉动直流电压U3转变为平滑的直流电压U4。 稳压电路:当电网电压波动及负载变化时,保持输出电压Uo的稳定。 1)变压器变压 220V交流电端子连一个降压变压器,把220V家用电压值降到9V左右。 2)整流电路 桥式整流电路巧妙的利用了二极管的单向导电性,将四个二极管分为两组,根据变压器次级电压的极性分别导通。见变压器次级电压的正极性端与负载电阻的上端相连,负极性端与负载的电阻的下端相连,使负载上始终可以得到一个单方向的脉动电压。单项桥式整流电路,具有输出电压高,变压器利用率高,脉动系数小。

北航卡尔曼滤波课程-捷联惯导静基座初始对准实验

卡尔曼滤波实验报告 捷联惯导静基座初始对准实验 一、实验目的 ①掌握捷联惯导的构成和基本工作原理; ②掌握捷联惯导静基座对准的基本工作原理; ③了解捷联惯导静基座对准时的每个系统状态的可观测性; ④了解双位置对准时系统状态的可观测性的变化。 二、实验原理 选取状态变量为:[]T E N E N U x y x y z X V V δδεεε=ψψψ??,其

中导航坐标系选为东北天坐标系,E V δ为东向速度误差,N V δ为北向速度误差,E ψ为东向姿态误差角,N ψ为北向姿态误差角,U ψ为天向姿态误差角,x ?为东向加速度偏置,y ?为北向加速度偏置,x ε为东向陀螺漂移,y ε为北向陀螺漂移,z ε为天向陀螺漂移。则系统的状态模型为: X AX W =+ (1) 其中, 1112212211 12 1321222331323302sin 000002sin 000000000sin cos 0000sin 000000cos 0000000000000000000000000000000000000000000000000000 0L g C C L g C C L L C C C L C C C L C C C A Ω-? ? ??-Ω????Ω-Ω? ?-Ω????Ω=? ?????? ?????????? ? [00000]E N E N U T V V W W W W W W δδψψψ=,E D V W W δψ 为零均值高斯 白噪声,分别为加速度计误差和陀螺漂移的噪声成分,Ω为地球自转角速度,ij C 为姿态矩 阵n b C 中的元素,L 为当地纬度。 量测量选取两个水平速度误差:[ ]T E N Z V V δδ=,则量测方程为: 10000000000100000000E E N N V X V δηδη???? ??=+???????????? (2) 即Z HX η=+ 其中,H 为量测矩阵,[]T E N ηηη=为量测方程的随机噪声状态矢量,为零均值高 斯白噪声。 要利用基本卡尔曼滤波方程进行状态估计,需要将状态方程和量测方程进行离散化。 系统转移矩阵为: 2323/1111102!3!! n n k k k k k k n T T T I TA A A A n ∞ -----=Φ=++++=∑ (3)

数字图像处理实验报告.docx

谢谢观赏 数字图像处理试验报告 实验二:数字图像的空间滤波和频域滤波 姓名:XX学号:2XXXXXXX 实验日期:2017 年4 月26 日 1.实验目的 1. 掌握图像滤波的基本定义及目的。 2. 理解空间域滤波的基本原理及方法。 3. 掌握进行图像的空域滤波的方法。 4. 掌握傅立叶变换及逆变换的基本原理方法。 5. 理解频域滤波的基本原理及方法。 6. 掌握进行图像的频域滤波的方法。 2.实验内容与要求 1. 平滑空间滤波: 1) 读出一幅图像,给这幅图像分别加入椒盐噪声和高斯噪声后并与前一张图显示在同一 图像窗口中。 2) 对加入噪声图像选用不同的平滑(低通)模板做运算,对比不同模板所形成的效果,要 求在同一窗口中显示。 3) 使用函数 imfilter 时,分别采用不同的填充方法(或边界选项,如零填 充、’replicate’、’symmetric’、’circular’)进行低通滤波,显示处理后的图 像。 4) 运用 for 循环,将加有椒盐噪声的图像进行 10 次,20 次均值滤波,查看其特点, 显 示均值处理后的图像(提示:利用fspecial 函数的’average’类型生成均值滤波器)。 5) 对加入椒盐噪声的图像分别采用均值滤波法,和中值滤波法对有噪声的图像做处理,要 求在同一窗口中显示结果。 6) 自己设计平滑空间滤波器,并将其对噪声图像进行处理,显示处理后的图像。 2. 锐化空间滤波 1) 读出一幅图像,采用3×3 的拉普拉斯算子 w = [ 1, 1, 1; 1 – 8 1; 1, 1, 1] 对其进行滤波。 2) 编写函数w = genlaplacian(n),自动产生任一奇数尺寸n 的拉普拉斯算子,如5 ×5的拉普拉斯算子 w = [ 1 1 1 1 1 1 1 1 1 1 1 1 -24 1 1 1 1 1 1 1 1 1 1 1 1] 3) 分别采用5×5,9×9,15×15和25×25大小的拉普拉斯算子对blurry_moon.tif 谢谢观赏

空间频率滤波及角度调制

空间频率滤波与角度调制 背景:空间频率滤波是在光学系统的空间频谱面上放置适当的滤波器,去掉(或有选择地通过)某些空间频率或改变它们的振幅和位相,使物体的图像按照人们的希望得到改善。它是信息光学中最基本、最典型的基础实验,是相干光学信息处理中的一种最简单的情况。 一、实验目的 1. 了解傅里叶光学基本理论的物理意义,加深对光学空间频率、空间频谱和空间频率滤波等概念的理解; 2. 验证阿贝成像原理,理解成像过程的物理实质——“分频”与“合成”过程,了解透镜孔径对显微镜分辨率的影响; 二、实验原理 1. 傅里叶光学变换 设有一个空间二维函数),(y x g ,其二维傅里叶变换为 dxdy y x i y x g G )](2exp[),(),(ηξπηξ+-=??∝∝- (1) 式中ηξ,分别为x,y 方向的空间频率,而),(y x g 则为),(ηξG 的傅里叶逆变换,即 ηξηξπηξd d y x i G y x g ??+=∝∝-)](2exp[),(),( (2) 式(2)表示,任意一个空间函数),(y x g 可表示为无穷多个基元函数)](2exp[y x i ηξπ+的线性迭加,),(ηξG 是相应于空间频率为ηξ,的基元函数的权重,),(ηξG 称为),(y x g 的空间频谱。 用光学的方法可以很方便地实现二维图像的傅里叶变换,获得它的空间频谱。由透镜的傅里叶变换性质知,只要在傅里变换透镜的前焦面上放置一透率为),(y x g 的图像,并以相干平行光束垂直照明之,则在透镜后焦面上的光场分布就是),(y x g 的傅里叶变换),(ηξG ,即空间频谱),(f y f x G λ''。其中λ为光波波长,f 为透镜的焦距,(y x '',)为后焦面(即频谱面)上任意一点的位置坐标。 显然,后焦面上任意一点(y x '',)对应的空间频率为

滤波器设计的实验报告

实验三滤波器设计 一、实验目的: 1、熟悉Labview的软件操作环境; 2、了解VI设计的方法和步骤,学会简单的虚拟仪器的设计; 3、熟悉创建、调试VI; 4、利用Labview制作一个滤波器,实现低通、高通、带通、带阻等基本滤波功能,并调节截止频率实现滤波效果。 二、实验要求: 1、可正弦实现低通、高通、带通、带阻等基本滤波功能,并图形显示滤波前后波形; 2、可调节每种滤波器的上限截止频率或者下限截止频率; 3、给出每种滤波器的幅频特性; 三、设计原理: 1、利用LABVIEW中的数字IIR、FIR数字滤波器实现数字滤波功能,参数可调;

2、将两路不同频率的信号先叠加,然后通过滤波,将一路信号滤除,而保留有用信号,Hz f Hz f 100,2021==; 3、叠加即将两个信号相加,用到一个数学公式; 4、信号进入case 结构,结构中有两路分支,每路分支均有一个滤波模块,其中一个为IIR 滤波器,另一个为FIR 滤波器,通过按钮可选择IIR 或是FIR.每个滤波模块都可通过外部按钮对其参数进行调整,各个过程的波形都用波形图显示出来; 5、将IIR 、FIR 滤波器的“滤波信息”接线端用控件按名称解除捆绑接入波形图,观察波形的幅度和相位; 6、用一个while 循环实现不重新启动既可以改参数。 四、设计流程: 1、前面板的设计:

2、程序框图的设计: 五、实验结果: 1、低通滤波功能:将100Hz的信号滤除,保留20Hz的信号 用IIR巴特沃斯滤波器,将低截止频率设置为25Hz。

用FIR滤波器,拓扑类型选择Windowed FIR,将最低通带设置为50。 用IIR巴特沃斯滤波器,将低截止频率设置为90Hz。

阿贝成像与空间滤波实验汇总

实验6-3 阿贝成像与空间滤波实验 【实验目的】 1、 通过实验了解空间频率、空间频谱的概念以及傅里叶光学的基本思想。 2、 了解阿贝成像的原理,理解透镜成像的物理过程。 3、 了解如何通过空间滤波的方法,实现对图象的改造。 【实验原理】 1、傅里叶光学变换 设有一个空间二维函数()y x g ,,其二维傅里叶变换为: ()()[]()()[] dxdy y f x f i y x g y x g F f f G y x y x +-==??∞π2exp ,,, (6-3-1) 式中x f 、y f 分别为x 、y 方向的空间频率,()y x g ,是()y x f f G ,的逆傅里叶变换,即: ()[]()()[]y x y x y x y x df df y f x f i f f G f f G F y x g +==??∞-π2exp ,,),(1 (6-3-2) 该式表示:任意一个空间函数()y x g ,可表示为无穷多个基元函数()[]y f x f i y x +π2exp 的线性叠加。()y x y x df df f f G ,是相应于空间频率为x f 、y f 的基元函数的权重,()y x f f G ,称为()y x g ,的空间频谱。 理论上可以证明,对在焦距为f 的会聚透镜的前焦面上放一振幅透过率为()y x g ,的图像作为物,并用波长为λ的单色平面波垂直照明,则在透镜后焦面()y x '',上的复振幅分布就是()y x g ,的傅里叶变换() y x f f G ,,其中空间频率x f 、y f 与坐标x '、y '的关系为: ??? ????' ='=f y f f x f y x λλ (6-3-3) 故()y x '',面称为频谱面(或傅氏面),由此可见,复杂的二维傅里叶变换可以用一透镜来实现,称为光学傅里叶变换,频谱面上的光强分布,也就是物的夫琅禾费衍射图。 2、阿贝成像原理 阿贝(E.Abbe )在1873年提出了相干光照明下显微镜的成像原理。他认为,在相干光照明下,显微镜的成像可分为两个步骤:第一步是通过物的衍射光在物镜的后焦面上形成一个衍射图;第二步是物镜后焦面上的衍射图复合为(中间)像,这个像可以通过目镜观察到。 成像的这两个步骤本质上就是两次傅里叶变换。第一步把物面光场的空间分布()y x g ,变为频谱面上空间频率分布()y x f f G ,,第二步则是再作一次变换,又将() y x f f G ,还原到空间分布()y x g ,。

自适应滤波实验报告

LMS 自适应滤波实验报告 姓名: 学号: 日期:2015.12.2 实验内容: 利用自适应滤波法研究从宽带信号中提取单频信号的方法。 设()()()()t f B t f A t s t x 212cos 2cos π?π+++=,()t s 是宽带信号,A ,B ,1f ,2f , ?任选 (1)要求提取两个单频信号; (2)设f f f ?+=12,要求提取单频信号()t f 22cos π,研究f ?的大小对提取单频信号的影响。 1. 自适应滤波器原理 自适应滤波器理论是现代信号处理技术的重要组成部分,它对复杂信号的处理具有独特的功能。自适应滤波器在信号处理中属于随机信号处理的范畴。在一些信号和噪声特性无法预知或他们是随时间变化的情况下,自适应滤波器通过自适应滤波算法调整滤波器系数,使得滤波器的特性随信号和噪声的变化,以达到最优滤波的效果,解决了固定全系数的维纳滤器和卡尔曼滤波器的不足。 (1) 自适应横向滤波器 所谓自适应滤波,就是利用前一时刻已获得的滤波器参数等结果,自动调节现时刻的滤波器参数,以适应信号和噪声未知或随时间变化的统计特性,从而实现最优滤波。自适应滤波器由两个部分组成:滤波器结构和调节滤波器系数的自适应算法。自适应滤波器的特点是自动调节自身的冲激响应,达到最优滤波,此算法适用于平稳和非平稳随机信号,并且不要求知道信号和噪声的统计特性。 一个单输入的横向自适应滤波器的原理框图如图所示:

实际上这种单输入系统就是一个FIR 网络结构,其输出()n y 用滤波器单位脉冲响应表示成下式: ()()()∑-=-=1 N m m n x m w n y 这里()n w 称为滤波器单位脉冲响应,令:()()n i n x x i w w m i i i ,1,1,1+-=-=+=用j 表示,上式可以写成 ∑==N i ij i j x w y 1 这里i w 也称为滤波器加权系数。用上面公式表示其输出,适用于自适应线性组合器,也适用于FIR 滤波器。将上式表示成矩阵形式: X W W X j T T j j y == 式中 [][ ] T Nj j j j T N x x x w w w X W ,...,,, ,...,,2121== 误差信号表示为 X W j T j j j j d y d e -=-= (2) 最小均方(LMS )算法 Widrow 等人提出的最小均方算法,是用梯度的估计值代替梯度的精确值,这种算法简单易行,因此获得了广泛的应用。 LMS 算法的梯度估计值用一条样本曲线进行计算,公式如下:

低通滤波器设计实验报告

低通滤波器设计实验报 告 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

低通滤波器设计 一、设计目的 1、学习对二阶有源RC 滤波器电路的设计与分析; 2、练习使用软件ORCAD (PISPICE )绘制滤波电路; 3、掌握在ORCAD (PISPICE )中仿真观察滤波电路的幅频特性与相频特性曲线 。 二、设计指标 1、设计低通滤波器截止频率为W=2*10^5rad/s; 2、品质因数Q=1/2; 三、设计步骤 1、考虑到原件分散性对整个电路灵敏度的影响,我们选择 R1=R2=R,C1=C2=C ,来减少原件分散性带来的问题; 2、考虑到电容种类比较少,我们先选择电容的值,选择电容 C=1nF; 3、由给定的Wp 值,求出R 12121C C R R Wp ==RC 1=2*10^5 解得:R=5K? 4、根据给定的Q ,求解K Q=2121C C R R /K)RC -(1+r2)C1+(R1= K -31 解得:K=3-Q 1= 5、根据求出K 值,确定Ra 与Rb 的值

Ra=2 K=1+ Rb Ra=Rb 这里取 Ra=Rb=10K?; 四、电路仿真 1、电路仿真图: 2、低通滤波器幅频特性曲线 3、低通滤波器相频特性曲线 注:改变电容的值:当C1=C2=C=10nF时 低通滤波器幅频特性曲线 低通滤波器相频特性曲线 五、参数分析 1、从幅频特性图看出:该低通滤波器的截止频率大约33KHz, 而我们指标要求设计截止频率 f= Wp/2?= 存在明显误差; 2、从幅频特性曲线看出,在截至频率附近出现凸起情况,这是二阶滤波器所特有的特性; 3、从相频特性曲线看出,该低通滤波器的相频特性相比比较好。 4、改变电容电阻的值,发现幅频特性曲线稍有不同,因此,我们在设计高精度低误差的滤波器时一定要注意原件参数的选择。 六、设计心得:

实验七 空间滤波实验

实验七 空间频率滤波器 一、实验目的 (1)知道光信息处理的原理。 (2)掌握光信息处理的实验装置和技术。 (3)掌握基本空间滤波器的作用。 二、原理概述 用(图7-1)来说明最常见的在频域内作光信息处理的实验装置,常称为三透镜系统。三个透镜的焦距都相同为f ,两透镜之间的距离为2f 。其中插有平面,平面与相邻透镜的距离为也f 。 光信息处理的原理是基于透镜的傅立叶变换性质和谱面上的空间滤波。在(图7-1)中第一个透镜1L 把点光源变为平行光束,照射到照片(物)上,该照片置于第二个透镜2L 的前焦面上,在透镜2L 的后焦面上,可观察到照片的频谱。第三个透镜3L 把置于自己前焦面的照片频谱,又重新变换为原照片的像,像位于3L 的后焦面上。如果在谱面上采用各种不同的空间滤波器来改变照片的频谱,就能改变照片像的性质,这就是光学空间滤波过程。在谱面上插入一个滤波器,实际上是对照片的频谱进行调制,能去处或增加照片的频谱,当滤波后的频谱被透镜3L 傅里叶变换到像面上后,照片的像将发生改变,不需要的部份(例如噪声)就会被去除,或增加某些新的内容,以方便我们进行照片识别,这就叫做图像处理。其关键技术就是各种滤波器的制作和使用。本实验仅介绍几种常见的简单空间滤波器。 1. 低通和高通滤波器 如(图7-2a)所示的一中心透光的圆孔,它就 是低通滤波器。它的作用是能让低空间频率的光 波通过,而将高空间频率的光波档住。因为在频 谱面上位置坐标,越靠近光轴的点,也就是衍射 角较小的点,它的空间频率越低。当照片上有小 的霉点和灰尘时,它们的频谱会充满整个谱面, 如果使用低通滤波器,就能挡住它们的绝大部分 (图17-1)光信息处理的三透镜系统实验装置 (a)低通滤波器 (b)高通滤波器 (图17-2)低通和高通滤波器

卡尔曼滤波简介和实例讲解.

卡尔曼,美国数学家和电气工程师。1930年5月 19日生于匈牙利首都布达佩斯。1953年在美国麻省理工学院毕业获理学士学位,1954年获理学硕士学位,1957年在哥伦比亚大学获科学博士学位。1957~1958年在国际商业机器公司(IBM)研究大系统计算机控制的数学问题。1958~1964年在巴尔的摩高级研究院研究控制和数学问题。1964~1971年到斯坦福大学任教授。1971年任佛罗里达大学数学系统理论研究中心主任,并兼任苏黎世的瑞士联邦高等工业学校教授。1960年卡尔曼因提出著名的卡尔曼滤波器而闻名于世。卡尔曼滤波器在随机序列估计、空间技术、工程系统辨识和经济系统建模等方面有许多重要应用。1960年卡尔曼还提出能控性的概念。能控性是控制系统的研究和实现的基本概念,在最优控制理论、稳定性理论和网络理论中起着重要作用。卡尔曼还利用对偶原理导出能观测性概念,并在数学上证明了卡尔曼滤波理论与最优控制理论对偶。为此获电气与电子工程师学会(IEEE)的最高奖──荣誉奖章。卡尔曼著有《数学系统概论》(1968)等书。 什么是卡尔曼滤波 最佳线性滤波理论起源于40年代美国科学家Wiener和前苏联科学家Kолмогоров等人的研究工作,后人统称为维纳滤波理论。从理论上说,维纳滤波的最大缺点是必须用到无限过去的数据,不适用于实时处理。为了克服这一缺点,60年代Kalman把状态空间模型引入滤波理论,并导出了一套递推估计算法,后人称之为卡尔曼

滤波理论。卡尔曼滤波是以最小均方误差为估计的最佳准则,来寻求一套递推估计的算法,其基本思想是:采用信号与噪声的状态空间模型,利用前一时刻地估计值和现时刻的观测值来更新对状态变量的估计,求出现时刻的估计值。它适合于实时处理和计算机运算。 卡尔曼滤波的实质是由量测值重构系统的状态向量。它以“预测—实测—修正”的顺序递推,根据系统的量测值来消除随机干扰,再现系统的状态,或根据系统的量测值从被污染的系统中恢复系统的本来面目。 释文:卡尔曼滤波器是一种由卡尔曼(Kalman)提出的用于时变线性系统的递归滤波器。这个系统可用包含正交状态变量的微分方程模型来描述,这种滤波器是将过去的测量估计误差合并到新的测量误差中来估计将来的误差。 卡尔曼滤波的应用 斯坦利.施密特(Stanley Schmidt)首次实现了卡尔曼滤波器.卡尔曼在NASA埃姆斯研究中心访问时,发现他的方法对于解决阿波罗计划的轨道预测很有用,后来阿波罗飞船的导航电脑使用了这种滤波器. 关于这种滤波器的论文由Swerling (1958), Kalman (1960)与 Kalman and Bucy (1961)发表.

自适应滤波实验报告

LMS 自适应滤波实验报告 : 学号: 日期:2015.12.2 实验容: 利用自适应滤波法研究从宽带信号中提取单频信号的方法。 设()()()()t f B t f A t s t x 212cos 2cos π?π+++=,()t s 是宽带信号,A ,B ,1f ,2f , ?任选 (1)要求提取两个单频信号; (2)设f f f ?+=12,要求提取单频信号()t f 22cos π,研究f ?的大小对提取单频信号的影响。 1. 自适应滤波器原理 自适应滤波器理论是现代信号处理技术的重要组成部分,它对复杂信号的处理具有独特的功能。自适应滤波器在信号处理中属于随机信号处理的畴。在一些信号和噪声特性无法预知或他们是随时间变化的情况下,自适应滤波器通过自适应滤波算法调整滤波器系数,使得滤波器的特性随信号和噪声的变化,以达到最优滤波的效果,解决了固定全系数的维纳滤器和卡尔曼滤波器的不足。 (1) 自适应横向滤波器 所谓自适应滤波,就是利用前一时刻已获得的滤波器参数等结果,自动调节现时刻的滤波器参数,以适应信号和噪声未知或随时间变化的统计特性,从而实现最优滤波。自适应滤波器由两个部分组成:滤波器结构和调节滤波器系数的自适应算法。自适应滤波器的特点是自动调节自身的冲激响应,达到最优滤波,此算法适用于平稳和非平稳随机信号,并且不要求知道信号和噪声的统计特性。

一个单输入的横向自适应滤波器的原理框图如图所示: 实际上这种单输入系统就是一个FIR 网络结构,其输出()n y 用滤波器单位脉冲响应表示成下式: ()()()∑-=-=1 N m m n x m w n y 这里()n w 称为滤波器单位脉冲响应,令: ()()n i n x x i w w m i i i ,1,1,1+-=-=+=用j 表示,上式可以写成 ∑==N i ij i j x w y 1 这里i w 也称为滤波器加权系数。用上面公式表示其输出,适用于自适应线性组合器,也适用于FIR 滤波器。将上式表示成矩阵形式: X W W X j T T j j y == 式中 [][ ] T Nj j j j T N x x x w w w X W ,...,,, ,...,,2121== 误差信号表示为 X W j T j j j j d y d e -=-= (2) 最小均方(LMS )算法 Widrow 等人提出的最小均方算法,是用梯度的估计值代替梯度的精确值,这种算法简单易行,因此获得了广泛的应用。

有源滤波器实验报告

有源滤波器实验报告文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)

实验七集成运算放大器的基本应用(Ⅱ)—有源滤波器 一、实验目的 1、熟悉用运放、电阻和电容组成有源低通滤波、高通滤波和带通、带阻滤波器。 2、学会测量有源滤波器的幅频特性。 二、实验原理 (a)低通(b)高通 (c) 带通(d)带阻 图7-1 四种滤波电路的幅频特性示意图 由RC元件与运算放大器组成的滤波器称为RC有源滤波器,其功能是让一定频率范围内的信号通过,抑制或急剧衰减此频率范围以外的信号。可用在信息处理、数据传输、抑制干扰等方面,但因受运算放大器频带限制,这类滤波器主要用于低频范围。根据对频率范围的选择不同,可分为低通(LPF)、高通(HPF)、带通(BPF)与带阻(BEF)等四种滤波器,它们的幅频特性如图7-1所示。 具有理想幅频特性的滤波器是很难实现的,只能用实际的幅频特性去逼近理想的。一般来说,滤波器的幅频特性越好,其相频特性越差,反之亦然。滤波器的阶数越高,幅频特性衰减的速率越快,但RC网络的节数越多,元件参数计算越繁琐,电路调试越困难。任何高阶滤波器均可以用较低的二阶RC有滤波器级联实现。 1、低通滤波器(LPF) 低通滤波器是用来通过低频信号衰减或抑制高频信号。

如图7-2(a )所示,为典型的二阶有源低通滤波器。它由两级RC 滤波环节与同相比例运算电路组成,其中第一级电容C 接至输出端,引入适量的正反馈,以改善幅频特性。图7-2(b )为二阶低通滤波器幅频特性曲线。 (a)电路图 (b)频率特性 图7-2 二阶低通滤波器 电路性能参数 1 f uP R R 1A + = 二阶低通滤波器的通带增益 RC 2π1 f O = 截止频率,它是二阶低通滤波器通带与阻带的界限频率。 uP A 31 Q -= 品质因数,它的大小影响低通滤波器在截止频率处幅频特性的形状。 2、高通滤波器(HPF ) 与低通滤波器相反,高通滤波器用来通过高频信号,衰减或抑制低频信号。 只要将图7-2低通滤波电路中起滤波作用的电阻、电容互换,即可变成二阶有源高通滤波器,如图7-3(a)所示。高通滤波器性能与低通滤波器相反,其频率响应和低通滤波器是“镜象”关系,仿照LPH 分析方法,不难求得HPF 的幅频特性。

北航卡尔曼滤波实验报告-GPS静动态滤波实验

卡尔曼滤波实验报告

2014 年 4 月 GPS 静/动态滤波实验 一、实验要求 1、分别建立GPS 静态及动态卡尔曼滤波模型,编写程序对静态和动态GPS 数据进行Kalman 滤波。 2、对比滤波前后导航轨迹图。 3、画出滤波过程中估计均方差(P 阵对角线元素开根号)的变化趋势。 4、思考:① 简述动态模型与静态模型的区别与联系;② R 阵、Q 阵,P0阵的选取对滤波精度及收敛速度有何影响,取值时应注意什么;③ 本滤波问题是否可以用最小二乘方法解决,如果可以,请阐述最小二乘方法与Kalman 滤波方法的优劣对比。 二、实验原理 2.1 GPS 静态滤波 选取系统的状态变量为[ ]T L h λ=X ,其中L 为纬度(deg),λ为经度(deg),h 为高度 (m)。设()w t 为零均值高斯白噪声,则系统的状态方程为: 310()w t ?=+X (1) 所以离散化的状态模型为: ,111k k k k k W ---=+X X Φ (2) 式中,,1k k -Φ为33?单位阵,k W 为系统噪声序列。 测量数据包括:纬度静态量测值、经度静态量测值和高度构成31?矩阵Z ,量测方程

可以表示为: k k k Z HX V =+ (3) 式中,H 为33?单位阵,k V 为量测噪声序列。 系统的状态模型是十分准确的,所以系统模型噪声方差阵可以取得十分小,取Q 阵零矩阵。 系统测量噪声方差阵R 由测量确定,由于位置量测精度为5m ,采用克拉索夫斯基地球椭球模型,长半径e R 为6378245m ,短半径p R 为6356863m 。所以R 阵为: 2 2 25180()0 05180 ( )0cos()00 5p e R R L ππ ??? ?? ? ??= ??? ? ? ?? ? R (4) 2.2 GPS 动态滤波 动态滤波基于当前统计模型,在地球坐标系下解算。选取系统的状态变量为 T x x x y y y z z z X x v a y v a z v a εεε??=??,其中,,,x x x x v a ε依次为地球坐标系下x 轴上的位置、速度、加速度和位置误差分量,,y z 轴同理。系统的状态模型可以表示为: ()()()()t t t t =++X AX U W (5) 式中,位置误差视为有色噪声,为一阶马尔科夫过程,可表示为: x x x x y y y y z z z z w w w εετεετεετ?=-+????=-+????=-+?? 1 11 (6) 其中,i τ(,,i x y z =)为对应马尔科夫过程的相关时间常数,(,,)i w i x y z =为零均值高斯白噪声。

有源滤波器实验报告

实验七 集成运算放大器的基本应用(n )—有源滤波器 一、 实验目的 i 熟悉用运放、电阻和电容组成有源低通滤波、高通滤波和带通、带阻滤波器。 2、学会测量有源滤波器的幅频特性。 二、 实验原理 (a )低通 (b )高通 (c)带通 (d )带阻 图7—1四种滤波电路的幅频特性示意图 由RC 元件与运算放大器组成的滤波器称为 RC 有源滤波器,其功能是让一定频率范围内的信号通过, 抑制或急剧衰减此频率范围以外的信号。 可用在信息处理、数据传输、 抑制干扰等方面,但因受运算放 大器频带限制,这类滤波器主要用于低频范围。根据对频率范围的选择不同,可分为低通 (LPF)、高通 (HPF)、带通(BPF)与带阻(BEF)等四种滤波器,它们的幅频特性如图 7— 1所示。 具有理想幅频特性的滤波器是很难实现的, 只能用实际的幅频特性去逼近理想的。 一般来说,滤波 器的幅频特性越好,其相频特性越差,反之亦然。滤波器的阶数越高 ,幅频特性衰减的速率越快,但 RC 网络的节数越多,元件参数计算越繁琐,电路调试越困难。任何高阶滤波器均可以用较低的二阶 RC 有 滤波器级联实现。 1、低通滤波器(LPF ) 低通滤波器是用来通过低频信号衰减或抑制高频信号 如图7— 2 (a )所示,为典型的二阶有源低通滤波器。它由两级 RC 滤波环节与同相比例运算电路 组成,其中第一级电容 C 接至输出端,弓I 入适量的正反馈,以改善幅频特性。图 7—2 (b )为二阶低 通滤波器幅频特性曲线。 (a) 电路图 图7—2二阶低通滤波器 电路性能参数 ―1奈二阶低通滤波器的通带增益 截止频率,它是二阶低通滤波器通带与阻带的界限频率。 (b)频率特性 1 2 T RC

空间频率与空间滤波

空间频谱与空间滤波 一, 实验背景: 阿贝成像原理认为:透镜成像过程可分为两步,第一步是通过物体衍射的光在系统的频谱面上形成空间频谱,这是衍射引起的“分频”作用;第二步是代表不同空间频率的各光束在像平面上相互叠加而形成物体的像,这是干涉引起的“合成”作用。这两步从本质上对应着两次傅里叶变换。如果这两次傅里叶变换完全理想,则像和物应完全一样。如果在频谱面上设置各种空间滤波器,当去频谱中某一频率的成分,则将明显地影响图像,此即为空间滤波。 二, 实验目的: 1, 掌握光具座上光学调整技术; 2, 掌握空间滤波的基本原理,理解成像过程中“分频” 与“合成”作用。 3, 掌握方向滤波,高通滤波,低通滤波等滤波技术,观察各种滤波器产生的滤波效果,加深对光学信息处理实质的认识。 三, 实验原理: 1, 傅立叶变换 近代光学中,对光的传播和成像过程用傅立叶变换来表达,形成了傅立叶光学,可以处理一些无法用经典光学理论解决的问题。傅立叶变换时处理振荡和波这类问题的有力工具。对振动和波的傅立叶分析一般在时域和频域中进行,而对光的传播与成像分析是在空间和倒数空间中进行的。不考虑时域,单色平面光波的表达式如下: 0()[()]f r Aexp i k r ?=?+ (1) 直角坐标系中,k 的方向余弦为(cos ,cos ,cos )αβγ,r 为(x ,y ,z ) 2(cos cos ,cos )k r x y z παβγλ ?=+ (2) 波矢量的物理意义可以理解为平面波的空间频率,在x ,y ,z 方向上三个分量分别为 222cos , cos , cos x y z f f f π π π αβγλλλ=== (3) 在傅立叶光学中,将物光作为一个输入函数(物函数),研究其经过具有傅立叶变换作用的光学元件后在接收面上得到的输出函数(像函数)。以物是平面图像为例,物函数g (x ,y )可以表示成一系列不同空间频率的单色平面波的线性叠加,即 (,)(,)exp[2()]x y x y x y g x y G f f i xf yf df df π∞ -∞ =+?? (4) 其中(,)x y G f f 被称为物函数的空间频谱函数。它可以 由物函数g (x ,y )求得,其关系式为 ??∞ ∞-+π-=dxdy y f x f i y x g f f G y x y x )](2exp[),(),( (5) 图1

北航卡尔曼滤波实验报告_GPS静动态滤波实验

卡尔曼滤波实验报告 2014 年 4 月 GPS静/动态滤波实验 一、实验要求 1、分别建立GPS静态及动态卡尔曼滤波模型,编写程序对静态和动态GPS数据进行Kalman滤波。 2、对比滤波前后导航轨迹图。

3、画出滤波过程中估计均方差(P 阵对角线元素开根号)的变化趋势。 4、思考:① 简述动态模型与静态模型的区别与联系;② R 阵、Q 阵,P0阵的选取对滤波精度及收敛速度有何影响,取值时应注意什么;③ 本滤波问题是否可以用最小二乘方法解决,如果可以,请阐述最小二乘方法与Kalman 滤波方法的优劣对比。 二、实验原理 2.1 GPS 静态滤波 (deg) 度(m) (1) 所以离散化的状态模型为: (2) 可以表示为: (3) 矩阵。 5m ,采用克拉索夫斯基地球 6378245m 6356863m (4) 2.2 GPS 动态滤波 动态滤波基于当前 统计模型,在地球坐标系下解算。选取系统的状态变量为 (5)

式中,位置误差视为有色噪声,为一阶马尔科夫过程,可表示为: ε τεετεετ-=- =-1 1 (6) 白噪声。 (7) (8) 系统噪声为: (9) 量测量为纬度动态量测值、经度动态量测值、高度和三向速度量测值。由于滤波在地球 坐标系下进行,为了简便首先将纬度、经度和高度转化为三轴位置坐标值,转化方式如下: (10) 量测方程为: (11)

综上,离散化的Kalman滤波方程为: (12) 离散化的系统噪声协方差阵为: 2 [ π ?] ? k x = +<0 “当前”加速度 (13) 离散化量测噪声协方差阵为:diag = R 三、实验结果 3.1 GPS静态滤波

卡尔曼滤波与组合导航课程报告

卡尔曼滤波与组合导航》课程实验报告 实验 捷联惯导 /GPS 组合导航系统静态导航实验 实验序号 3 姓名 陈星宇 系院专业 17 班级 ZY11172 学号 ZY1117212 日期 2012-5-15 指导教师 宫晓琳 成绩 、实验目的 ① 掌握捷联惯导 /GPS 组合导航系统的构成和基本工作原理; ②掌握采用卡尔曼滤波方法进行捷联惯导 /GPS 组合的基本原理; ③掌握捷联惯导 /GPS 组合导航系统静态性能; ④了解捷联惯导 /GPS 组合导航静态时的系统状态可观测性; 、实验原理 ( 1)系统方程 X FX GW 系统噪声矢量由陀螺仪和加速度计的随机误差组成,表达式为: 2)量测方程 和 H 分别为捷联解算与 GPS 的东向速度、北向速度、天向速度、纬度、经度和高度之 差;量测矩阵 H H V H P T ,H P 03 6 diag R M H, (R N H )cos L, 036 , H V 033 diag 1, 1, 1 039 ,v v V E v V N v V U v L v v H 为量测噪声。 量测噪声 v E v N T v U L h x y z x y z 其中, E 、 N 、 U 为数学平台失准角; v E 、 v N 、 v U 分别为载体的东向、北向和天向速度误差; L 、 、 h 分别为纬度误差、经度误差和高度误差; x 、 y 、 z 、 x 、 y 、 z 分别为陀螺随 机常值漂移和加速度计随机常值零偏。(下 标 系统的噪声转移矩阵 G 为: E 、N 、 U 分别代表东、北、天) C b n 3 3 0 9 3 3 3 C n C b 9 3 15 6 系统的状态转移矩阵 w w w w F 组成内容为: w z F 06N 9 F S F M ,其中 F N 中非零元素为可由惯导误差模型获得。 F S C b n 3 3 0 3 3 3 3 C b n 3 3 96 量测变量 z V E V N V U L H , , V E 、 V N 、 V U 、 L 、 X U

实验报告基于MATLAB的数字滤波器设计

实验7\8基于MATLAB勺数字滤波器设计实验目的:加深对数字滤波器的常用指标和设计过程的理解。 实验原理:低通滤波器的常用指标: 1 一6P 兰G(e^) ≤ 1 + 6P , for 国≤ ωP G(J") ≤ 6s, for 国s ≤ ⑷≤ ∏ 通带边缘频率:'P ,阻带边缘频率:'s, 通带起伏:J P,通带峰值起伏: C(P= —20 IOg io (^-OP )【d B 】阻带起伏.冠S PaSSband StOPband Tran Siti on band Fig 7.1 TyPiCaI magn itude SPeCifiCati On for a digital LPF :S = -20 log ιo(r)[dB 】 O 数字滤波器有IIR和FlR两种类型,它们的特点和设计方法不同。 在MATLAB^,可以用[b , a]=butter ( N,Wr)等函数辅助设计IIR数字滤波器,也可以用b=fir1(N,Wn, 'type ')等函数辅助设计FIR数字滤波器。 实验内容:利用MATLAB编程设计一个数字带通滤波器,指标要求如下: 通带边缘频率:??P1=0.45^,?? P2=0?65 二,通带峰值起伏:[dB】O 阻带边缘频率:'s1 0.3…,'s2 0.75…,最小阻带衰减:-S 4°[dB] O 分别用IIR和FlR两种数字滤波器类型进行设计。 实验要求:给出IIR数字滤波器参数和FIR数字滤波器的冲激响应,绘出它们的幅度和相位频响曲线,讨论它们各自的实现形式和特点。 实验内容: IRR代码: wp=[0.45*pi,0.65*pi]; ws=[0.3*pi,0.75*pi]; Ap=1; A S=40; [N,Wc]=buttord(wp∕pi,ws∕pi,Ap,As); [b,a]=butter(N,Wc)%[b,a] = butter( n, Wn,'ftype') 最小阻带衰减:

相关主题
文本预览
相关文档 最新文档