当前位置:文档之家› 函数与导数专题复习

函数与导数专题复习

函数与导数专题复习
函数与导数专题复习

函数与导数专题复习【知识网络】

第1课时 客观题中的函数常见题型

【典例分析】

题型一、函数的解析式

例1.(2010年高考陕西卷理科5)已知函数?????≥+<+=1

,1

,12)(2x ax x x x f x ,若((0))f f =4a ,

则实数a =( )

(A )

12 (B )4

5

(C) 2 (D ) 9 题型二、函数的定义域与值域

例2.(2009年江西卷)函数2

34

y x x =

--+的定义域为( )

A .(4,1)--

B .(4,1)-

C .(1,1)-

D .(1,1]-

例3.(2008年江西卷)若函数()y f x =的值域是1,32??????

,则函数()()1

()F x f x f x =+

的值域是( ) A .[21,3] B .[2,310] C .[25,310] D .[3,3

10]

整理:求函数值域的方法: (1) 观察法:观察函数特点

(2) 图像法:一元二次函数, 对勾函数, 指数函数, 对数函数, 三角函数

(3) 分离常数

(4) 换元法

题型三、函数的性质(奇偶性、单调性与周期性) 例4.(2010年高考山东卷理科4)设f(x)为定义在R 上的奇函数,当x ≥0时,f(x)=2x +2x+b(b 为常数),则f(-1)=

(A) 3 (B) 1 (C)-1 (D)-3

例5.(2010年高考江西卷理科9)给出下列三个命题:

①函数11cos ln

21cos x y x -=

+与ln tan 2

x

y =是同一函数; ②若函数()y f x =与()y g x =的图像关于直线y x =对称,则函数(2)y f x =与

1

()2

y g x =的图像也关于直线y x =对称;

③若奇函数()f x 对定义域内任意x 都有()(2)f x f x =-,则()f x 为周期函数.

其中真命题是 A .①② B .①③

C .②③

D .②

题型四、函数图像的应用 例6.(2010年高考山东卷理科11)函数y =2x -2

x 的图像大致是

题型五、函数的最值与参数的取值范围 例7.(2010年高考江苏卷试题14)将边长为1m 正三角形薄片,沿一条平行于底边的

直线剪成两块,其中一块是梯形,记2

(S =梯形的周长)

梯形的面积

,则S 的最小值是_______.

例8.( 2010年高考全国卷I 理科10)已知函数F(x)=|lgx|,若0

(A)(22,)+∞ (B)[22,)+∞ (C)(3,)+∞ (D)[3,)+∞

题型六、函数方程与函数不等式

例9. (2010年高考重庆市理科15)已知函数()f x 满足:1(1)4

f =

,4()()()(),(,)f x f y f x y f x y x y R =++-∈,则(2010)f =_______.

例10.(2010年高考江苏卷试题11)已知函数21,0

()1,

0x x f x x ?+≥=?

2(1)(2)f x f x ->的x 的范围是_____.

题型七、函数的零点

例11.(2010年高考福建卷理科4)函数2x +2x-3,x 0

x)=-2+ln x,x>0

f ?≤?

?(的零点个数为 ( ) A.0 B.1 C.2 D.3

题型八、函数的应用

例12.(2010·佛山调研)下列四组函数中,表示同一函数的是 ( )

A .y =x -1与y =(x -1)2

B .y =x -1与y =x -1x -1

C .y =4lg x 与y =2lg x

2

D .y =lg x -2与y =lg x

100

【跟踪训练1】(2010年高考广东卷理科3)若函数f (x )=3x +3-x 与g (x )=3x -3-x 的定义域均为R ,则( )

A .f (x )与g (x )均为偶函数 B. f (x )为偶函数,g (x )为奇函数 C .f (x )与g (x )均为奇函数 D. f (x )为奇函数,g (x )为偶函数

【跟踪训练2】(2009年山东卷)定义在R 上的函数f(x )满足f(x)= ?

??>---≤-0),2()1(0

),1(log 2x x f x f x x ,

则f (2009)的值为( )

A.-1

B. 0

C.1

D. 2

【跟踪训练3】(2008年浙江卷)已知t 为常数,函数t x x y --=22

在区间[0,3]上的最大值为2,则t=__________.

【跟踪训练4】(2010年高考天津卷理科8)设函数f (x )=()212

log log x x ??

?-??

0,0x x >< 若f(a)>f(-a),则实数a 的取值范围是 ( )

(A )(-1,0)∪(0,1) (B )(-∞,-1)∪(1,+∞) (C )(-1,0)∪(1,+∞) (D )(-∞,-1)∪(0,1)

【跟踪训练5】(2008·陕西)定义在R 上的函数f (x )满足f (x +y )=f (x )+f (y )+2xy (x ,y ∈R ),f (1)=2,则f (-3)等于 ( )

A .2

B .3

C .6

D .9

【跟踪训练6】(2009年辽宁卷)已知偶函数()f x 在区间[0,)+∞单调增加,则满足

(21)f x -<1

()3f 的x 取值范围是( )

(A )(13,23) (B) [13,23) (C)(12,23) (D) [12,23

【跟踪训练11】(2010年高考天津卷理科2)函数()23x

f x x =+的零点所在的一个区间是

(A )(-2,-1) (B )(-1,0) (C )(0,1) (D )(1,2)

第2课时 客观题中的导数常见题型

【典例分析】

题型一、导数的定义与运算

例1. (2009年湖北卷)已知函数()'()cos sin ,4f x f x x π=+则()4

f π

的值为 .

题型二、导数与切线问题

例2. (2010年全国高考宁夏卷)曲线2

x

y x =

+在点(-1,-1)处的切线方程为( ) (A )y=2x+1 (B)y=2x-1 C y=-2x-3 D.y=-2x-2

题型三、函数与导数的图像间的关系 例3.(2009年广东卷)已知甲、乙两车由同一起点同时出发,并沿同一路线〈假定为直线)行驶.甲车、乙车的速度曲线分别为v v 乙甲和(如图2所示).那么对于图中给定的01t t 和,下列判断中一定正确的是

A .在1t 时刻,甲车在乙车前面

B .1t 时刻后,甲车在乙车后面

C .在0t 时刻,两车的位置相同

D .0t 时刻后,乙车在甲车前面

题型四、函数的单调性 例4. (2009年江苏卷)函数

32()15336f x x x x =--+的单调减区间为 .

题型五、函数的极值与最值

例5.(2008年广东卷)设a ∈R ,若函数3ax

y e x =+,x ∈R 有大于零的极值点,则( ) A. 3a >-

B. 3a <-

C. 1

3

a >-

D. 13

a <-

题型六、求参数的取值范围

例6.(2008年江苏卷)()3

31f x ax x =-+对于[]1,1x ∈-总有()f x ≥0 成立,则

a = .

题型七、定积分的计算

例7. (2010年高考湖南卷理科5)4

21

d x x ?等于( )

A .2ln 2-

B .2ln 2

C .ln 2-

D .ln 2

【跟踪训练1】()f x '是3

1()213

f x x x =

++的导函数,则(1)f '-的值是 .

【跟踪训练2】(1)设函数()f x 在2x =处可导,且(2)1f '=,则

(2)(2)

lim

2h f h f h h

→+--= .

(2)已知()(1)(2)(2008)f x x x x x =+++,求(0)f '= .

【跟踪训练3】(2010年高考全国2卷理数10)若曲线12

y x -

=在点12,a a -?

? ???

处的切线

与两个坐标围成的三角形的面积为18,则a =

(A )64 (B )32 (C )16 (D )8

【跟踪训练4】(2010年高考辽宁卷理科10)已知点P 在曲线y=4

1

x e +上,a 为曲线在点P 处的切线的倾斜角,则a 的取值范围是( ) (A)[0,

4

π

) (B)[,)42ππ 3(,]24ππ (D) 3[,)4ππ

【跟踪训练5】(2008年全国卷I )汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( )

【跟踪训练6】(2009年天津卷)设函数1

()ln (0),3

f x x x x =->则()y f x = A 在区间1(,1),(1,)e e 内均有零点 B 在区间1

(,1),(1,)e e 内均无零点

C 在区间1

(,1)e 内有零点,在区间(1,)e 内无零点

D 在区间1

(,1)e

内无零点,在区间(1,)e 内有零点

s O

A .

s O

s O

s

O

B .

C .

D .

【跟踪训练7】已知P (x ,y )是函数y =e x +x 图象上的点,则点P 到直线2x -y -3=0的最小距离为______

【跟踪训练8】 函数2

221

x

y x =-+的极小值是 .

【跟踪训练9】(2008年湖北卷)若2

1()ln(2)2

f x x b x =-

++∞在(-1,+)上是减函数,则b 的取值范围是 ( )

A.[-1,+∞)

B.(-1,+∞)

C.(-∞,-1]

D.(-∞,-1)

【跟踪训练10】(2008年宁夏卷)由直线x =12,x =2,曲线1

y x

=及x 轴所围图形的面积为( )

(A )154 (B )174 (C )1

ln 22

(D )2ln2

第3课时 解答题中的函数与导数综合题

【典例分析】

一、与导数的定义、几何意义的交汇

【例1】 ( 2006年重庆卷)已知函数f (x )=(x 2+bx +c ) e x ,其中b ,c ∈R 为常数. (I )若b 2>4(c -1),讨论函数f (x )的单调性;

二、与不等式的交汇

【例2】(2009年全国卷II)设函数()()21f x x aln x =++有两个极值点12x x 、,且

12x x <.

(I )求a 的取值范围,并讨论()f x 的单调性;

三、与向量的交汇

【例3】 (2005年湖北卷理)已知向量a =(2

x ,x+1),b = (1-x ,t) .若函数)(x f =a ·b 在区间(-1,1)上是增函数,求t 的取值范围.

四、与函数的交汇

【例4】(2011年东城7校联考)已知函数()2

()1ln 1,0f x x a x a a =---∈≠R (). (1)当8a =时,求函数()f x 的单调区间;

【跟踪训练1】(

江苏省高三上学期期中考试)函数

f(x)=x 3-3ax 2

+3bx 的图象与直线12x+y-1=0相切于点(1,-11).

(1)求

a 、

b 的值;

(2)方程f(x)=c 有三个不同的实数解,求c 的取值范围.

【跟踪训练2】(2010年高考湖南卷)已知函数2

()(,),f x x bx c b c R =++∈对任意的

,()()x R f x f x '∈≤恒有.

(Ⅰ)证明:当2

0()();x f x x c ≥≤+时,

【跟踪训练5】(2011年东城区期末理18)已知函数()ln f x x x =. (Ⅰ)求函数()f x 在[1,3]上的最小值;

(Ⅱ)若存在1

[,e]e

x ∈(e 为自然对数的底数,且e =2.71828

)使不等式

22()3f x x ax ≥-+-成立,求实数a 的取值范围.

【跟踪训练10】(2010年浙江省宁波市高三数学模拟)设()ln a

f x x x x

=

+, 32()3g x x x =--.

(1)当2a =时,求曲线()y f x =在1x =处的切线方程;

(2)如果存在12,[0,2]x x ∈,使得12()()g x g x M -≥成立,求满足上述条件的最大整数M ;

(3)如果对任意的1

,[,2]2

s t ∈,都有()()f s g t ≥成立,求实数a 的取值范围.

解:(1)当2a =时,2()ln f x x x x =

+,22

'()ln 1f x x x

=-++,(1)2f =,'(1)1f =-,

所以曲线()y f x =在1x =处的切线方程为3y x =-+;

(2)存在12,[0,2]x x ∈,使得12()()g x g x M -≥成立,等价于:

12max [()()]g x g x M -≥,考察32()3g x x x =--,22

'()323()3

g x x x x x =-=-,

由上表可知:min max 285

()(),()(2)13

27

g x g g x g ==-

==, 12max max min 112

[()()]()()27

g x g x g x g x -=-=,所以满足条件的最大整数4M =; (3)对任意的1

,[,2]2s t ∈,都有()()f s g t ≥成立

等价于:在区间1

[,2]2

上,函数()f x 的最小值不小于()g x 的最大值,

由(2)知,在区间1

[,2]2

上,()g x 的最大值为(2)1g =。

(1)1f a =≥,下证当1a ≥时,在区间1

[,2]2

上,函数()1f x ≥恒成立。

当1a ≥且1[,2]2x ∈时,1

()ln ln a f x x x x x x x =+≥+,

记1()ln h x x x x =+,21

'()ln 1h x x x =-++, '(1)0h =。

当1[,1)2x ∈,21'()ln 10h x x x =-++<;当(1,2]x ∈,21

'()ln 10h x x x

=-++>,

所以函数1()ln h x x x x =+在区间1

[,1)2

上递减,在区间(1,2]上递增,

min ()(1)1h x h ==,即()1h x ≥,所以当1a ≥且1

[,2]2

x ∈时,()1f x ≥成立,

即对任意1

,[,2]2s t ∈,都有()()f s g t ≥.

(3)另解:当1[,2]2x ∈时,()ln 1a f x x x x =+≥恒成立,等价于2

ln a x x x ≥-恒成

立,记2

()ln h x x x x =-,'()12ln h x x x x =--, '(1)0h =.

记()12ln m x x x x =--,'()32ln m x x =--,由于1

[,2]2

x ∈,

'()32ln 0m x x =--<, 所以()'()12ln m x h x x x x ==--在1

[,2]2

上递减,

当1[,1)2

x ∈时,'()0h x >,(1,2]x ∈时,'()0h x <,

即函数2

()ln h x x x x =-在区间1[,1)2

上递增,在区间(1,2]上递减, 所以max ()(1)1h x h ==,所以1a ≥.

函数与导数专题试卷(含答案)

高三数学函数与导数专题试卷 说明:1.本卷分第Ⅰ卷(选择题),第Ⅱ卷(填空题与解答题),第ⅠⅡ卷的答案写在答题卷的答案纸上,学生只要交答题卷. 第Ⅰ卷 一.选择题(10小题,每小题5分,共50分) (4)()f x f x +=,当(0,2)x ∈时,()2f x x =+,则(7)f =( ) A . 3 B . 3- C . D . 1- 2.设A ={x ||x |≤3},B ={y |y =-x 2+t },若A ∩B =?,则实数t 的取值范围是( ) A .t <-3 B .t ≤-3 C .t >3 D .t ≥3 3.设0.3222,0.3,log (0.3)(1)x a b c x x ===+>,则,,a b c 的大小关系是 ( ) A .a b c << B .b a c << C .c b a << D .b c a << 4.函数x x f +=11)(的图像大致是( ) 5.已知直线ln y kx y x ==是的切线,则k 的值为( ) A. e B. e - C. 1e D. 1e - 6.已知条件p :x 2+x-2>0,条件q :a x >,若q 是p 的充分不必要条件,则a 的取值范围可以是( ) A .1≥a B .1≤a C .1-≥a D.3-≤a 7.函数3()2f x x ax =+-在区间(1,)+∞上是增函数,则a 的取值范围是( ) A. [3,)+∞ B. [3,)-+∞ C. (3,)-+∞ D. (,3)-∞- 8. 已知函数f (x )=log 2(x 2-2x -3),则使f (x )为减函数的区间是( ) A .(-∞,-1) B .(-1,0) C .(1,2) D .(-3,-1)

4导数研究三次函数的性质

4导数研究三次函数的性质 复习目标:掌握三次函数的图象和性质,尤其是利用导数研究单调性、极值情况,以及三次函数 的零点。 复习重点难点:(1)三次函数的图象的四种情况;(2)三次函数的极值情况; 【典型例题】 题型一:三次函数单调性的讨论 例1.已知函数32()2f x ax x x =++在R 上恒为增函数,求实数a 的取值范围. 例2.已知函数f (x )=-x 3+3x 2+9x +a , (I )求f (x )的单调递减区间; (II )若f (x )在区间[-2,2]上的最大值为20,求它在该区间上的最小值.

题型二:三次函数极值,最值的讨论 例3. 已知a 是实数,函数2()()f x x x a =-; (1)若'(1)3f =,求a 的值及曲线()y f x =在点(1,(1))f 处的切线方程; (2)求()f x 在区间[]2,0上的最大值. 例4.已知函数()f x 的导数2()33,f x x ax '=-(0).f b =,a b 为实数,12a <<. (1)若()f x 在区间[1, 1]-上的最小值、最大值分别为2-、1,求a 、b 的值; (2)设函数2()(()61)x F x f x x e '=++?,试判断函数()F x 的极值点个数.

【课后作业】 1.过曲线y =x 3+x-2上的点P 0的切线平行于直线y =4x-1,则切点P 0的坐标为 2.已知向量a =(x 2,x +1),b =(1-x ,t ).若函数f (x )=a·b 在区间(-1,1)上是增函数,求t 的取值范围. 3.函数f (x )=x 3+x 2-x 在区间[-2,1]上的最大值和最小值分别是 4.已知某生产厂家的年利润y (单位:万元)与年产量x (单位:万件)的函数关系式为 31812343 y x x =-+-,则使该生产厂家获得最大年利润的年产量为 5.设函数b x a ax x x f +-+-=223323 1)( (0

(完整版)函数与导数专题(含高考试题)

函数与导数专题1.在解题中常用的有关结论(需要熟记):

考点一:导数几何意义: 角度一 求切线方程 1.(2014·洛阳统考)已知函数f (x )=3x +cos 2x +sin 2x ,a =f ′? ?? ?? π4,f ′(x )是f (x ) 的导函数,则过曲线y =x 3上一点P (a ,b )的切线方程为( ) A .3x -y -2=0 B .4x -3y +1=0 C .3x -y -2=0或3x -4y +1=0 D .3x -y -2=0或4x -3y +1=0 解析:选A 由f (x )=3x +cos 2x +sin 2x 得f ′(x )=3-2sin 2x +2cos 2x ,则a = f ′? ?? ??π4=3-2sin π2+2cos π2=1.由y =x 3得y ′=3x 2,过曲线y =x 3上一点P (a ,b )的切线的斜率k =3a 2=3×12=3.又b =a 3,则b =1,所以切点P 的坐标为(1,1),故过曲线y =x 3上的点P 的切线方程为y -1=3(x -1),即3x -y -2=0. 角度二 求切点坐标 2.(2013·辽宁五校第二次联考)曲线y =3ln x +x +2在点P 0处的切线方程为4x -y -1=0,则点P 0的坐标是( ) A .(0,1) B .(1,-1) C .(1,3) D .(1,0) 解析:选C 由题意知y ′=3 x +1=4,解得x =1,此时4×1-y -1=0,解得y =3,∴点P 0的坐标是(1,3). 角度三 求参数的值 3.已知f (x )=ln x ,g (x )=12x 2+mx +7 2(m <0),直线l 与函数f (x ),g (x )的图像都相切,且与f (x )图像的切点为(1,f (1)),则m 等于( )

三次函数与导数--例题与练习答案

三次函数与导数例题与练习答案 例1.(14全国大纲卷文21,满分12分)函数32()33(0)f x ax x x a =++≠. (1)讨论函数()f x 的单调性; (2)若函数()f x 在区间(1,2)是增函数,求a 的取值范围. 解:(Ⅰ)2()363f x ax x '=++,2 ()3630f x ax x '=++=的判别式△=36(1-a ). (ⅰ)当a ≥1时,△≤0,则()0f x '≥恒成立,且()0f x '=当且仅当1,1a x ==-,故此时()f x 在R 上是增函数. (ⅱ)当1a <且0a ≠,时0>?,()0f x '= 有两个根:12x x = = , 若01a <<,则12x x <, 当2(,)x x ∈-∞或1(,)x x ∈+∞时,()0f x '>,故()f x 在 21(,),(,)x x -∞+∞上是增函数;当21(,)x x x ∈时,()0f x '<,故()f x 在21(,)x x 上是减函数; 若0,故()f x 在),(21x x 上是增函数; (Ⅱ)当0>a 且0>x 时, 0363)(2 >++='x ax x f ,所以 当0a >时,()f x 在区间(1,2)是增函数. 当0a <时, ()f x 在区间(1,2)是增函数,当且仅当(1)0f '≥且(2)0f '≥,解得5 04 a - ≤<. 综上,a 的取值范围是5 [,0)(0,)4 -+∞U . 例2.(14安徽文数 20)(本小题满分13分) 设函数23()1(1)f x a x x x =++--,其中0a >。(1)讨论()f x 在其定义域上的单调性; (1) 当[0,1]x ∈时,求()f x 取得最大值和最小值时的x 的值. (Ⅰ) ()f x 的定义域为(,)-∞+∞,2 ()123f x a x x '=+-- 令()0f x '=,得121211,33 x x x x --+= =< 所以12()3()()f x x x x x '=--- 当1x x <或2x x >时,()0f x '<;当12x x x <<时,()0f x '>, 故()f x 在12(,)(,)x x -∞+∞和内单调递减,在12(,)x x 内单调递增 (Ⅱ)因为0a >,所以120,0x x <> (ⅰ)当4a ≥时,21x ≥,由(Ⅰ)知,()f x 在[0,1]上单调递增, 所以()f x 在 0x =和1x =处分别取得最小值和最大值 (ⅱ)当04a <<时,21x <,由(Ⅰ)知,()f x 在[0,2x ]上单调递增,在[2x ,1] 上单调递减,因此()f x 在213 x x -+==处取得最大值 又(0)1,(1)f f a ==,所以 当01a <<时,()f x 在1x =处取得最小值; 当1a =时,()f x 在0x =和1x =处同时取得最小值; 当04a <<时,()f x 在0x =处取得最小值。 例4.(14年天津文科19,满分14分)已知函数232 ()(0),3 f x x ax a x R =->∈ (1) 求()f x 的单调区间和极值;(2)若对于任意的1(2,)x ∈+∞,都存在 2(1,)x ∈+∞,使得12()()1f x f x ?=,求a 的取值范围 解:(Ⅰ)由已知,有2 ()22(0)f x x ax a '=->

用导数研究三次函数

用导数研究三次函数 一、知识点解析 1定义: 定义1、形如y =ax3?bx2? CX ?d(a =0)的函数,称为“三次函数”。 定义2、三次函数的导函数为二次函数:f / (x) = 3ax2 2bx c(a = 0),我们把 2 2 =4b -12ac=4(b -3ac),叫做三次函数导函数的判别式。 2、三次函数图象与性质的探究: 1、单调性 2 3 2 一般地,当b -3ac二0时,三次函数y = ax bx ?cχ?d(a=0)在R上是单调函数;当b -3ac 0时,三次函数y = ax bx CX d(a 0)在R上有三个单调区间。 2、对称中心 3 2 三次函数f (x) = ax bx CX d (^?-z 0)是关于点对称,且对称中心为点 b b (—I f (—)),此点的横坐标是其导函数极值点的横坐标。 3a 3a y= f(x)图象的对称中心在导函数y=∕'O)的对称轴上,且又是两个极值点的中点, 同时也是二阶导为零的点。 3、三次方程根的问题 (1)当.?, =b2 _3ac乞0时,由于不等式「(X)恒成立,函数是单调递增的,所以原方程仅有一个实根。 ■ 0时,由于方程f(X)= 0有两个不同的实根x1, X2,不妨设 (2)当厶=b2 _3ac X i :::x2, 可知,(χ1,f(χj)为函数的极大值点,(X2, f(x2))为极小值点,且函数y = f(x)在(」:,X1)和(x2, ■--)上单调递增,在"x1,x2 I上单调递减。 此时: ①若f (x1) f (x2) 0 ,即函数y = f (x)极大值点和极小值点在X轴同侧,图象均与X轴只有一个交点,所以原方程有且只有一个实根。 ②若f (χ1) f (χ2) :::0 ,即函数y = f (x)极大值点与极小值点在X轴异侧,图象

函数与导数专题复习

函数与导数专题复习 类型一 导数的定义 运算及几何意义 例1:已知函数)(x f 的导函数为)('x f ,且满足x xf x f ln )1(2)(' +=,则=)1('f ( ) A .-e B.-1 C.1 D.e 解:x f x f 1)1(2)(''+=,1)1(1)1(2)1('''-=∴+=f f f 【评析与探究】求值常用方程思想,利用求导寻求)('x f 的方程是求解本题的关键。 变式训练1 曲线33+-=x x y 在点(1,3)处的切线方程为 类型二 利用导数求解函数的单调性 例2:d cx bx x x f +++= 233 1)(何时有两个极值,何时无极值?)(x f 恒增的条件是什么? 解:,2)(2'c bx x x f ++=当0442>-=?c b 时, 即c b >2时,0)('=x f 有两个异根2,1x x ,由)('x f y =的图像知,在2,1x x 的左右两侧)('x f 异号,故2,1x x 是极值点,此时)(x f 有两个极值。 当c b =2时,0)('=x f 有实数根0x ,由)('x f y =的图像知,在0x 左右两侧)(' x f 同号,故0x 不是)(x f 的极值点 当c b <2时,0)(' =x f 无根,当然无极值点 综上所述,当时c b ≤2,)(x f 恒增。 【评析与探究】①此题恒增条件c b ≤2易掉“=”号,②c b =2 时,根0x 不是极值点也易错。 变式训练2 已知函数b x x g ax x x f +=+=232)(,)(,它们的图像在1=x 处有相同的切线 ⑴求函数)(x f 和)(x g 的解析式;

2015高考复习专题五 函数与导数 含近年高考试题

2015专题五:函数与导数 在解题中常用的有关结论(需要熟记): (1)曲线()y f x =在0x x =处的切线的斜率等于0()f x ',切线方程为000()()()y f x x x f x '=-+ (2)若可导函数()y f x =在0x x =处取得极值,则0()0f x '=。反之,不成立。 (3)对于可导函数()f x ,不等式()f x '0>0<()的解集决定函数()f x 的递增(减)区间。 (4)函数()f x 在区间I 上递增(减)的充要条件是:x I ?∈()f x '0≥(0)≤恒成立 (5)函数()f x 在区间I 上不单调等价于()f x 在区间I 上有极值,则可等价转化为方程 ()0f x '=在区间I 上有实根且为非二重根。 (若()f x '为二次函数且I=R ,则有0?>)。 (6)()f x 在区间I 上无极值等价于()f x 在区间在上是单调函数,进而得到()f x '0≥或 ()f x '0≤在I 上恒成立 (7)若x I ?∈,()f x 0>恒成立,则min ()f x 0>; 若x I ?∈,()f x 0<恒成立,则max ()f x 0< (8)若0x I ?∈,使得0()f x 0>,则max ()f x 0>;若0x I ?∈,使得0()f x 0<,则min ()f x 0<. (9)设()f x 与()g x 的定义域的交集为D 若x ?∈D ()()f x g x >恒成立则有[]min ()()0f x g x -> (10)若对11x I ?∈、22x I ∈,12()()f x g x >恒成立,则min max ()()f x g x >. 若对11x I ?∈,22x I ?∈,使得12()()f x g x >,则min min ()()f x g x >. 若对11x I ?∈,22x I ?∈,使得12()()f x g x <,则max max ()()f x g x <. (11)已知()f x 在区间1I 上的值域为A,,()g x 在区间2I 上值域为B , 若对11x I ?∈,22x I ?∈,使得1()f x =2()g x 成立,则A B ?。 (12)若三次函数f(x)有三个零点,则方程()0f x '=有两个不等实根12x x 、,且极大值大 于0,极小值小于0. (13)证题中常用的不等式: ① ln 1(0)x x x ≤->② ln +1(1)x x x ≤>-()③ 1x e x ≥+ ④ 1x e x -≥-⑤ ln 1 (1)12 x x x x -<>+⑥ 22 ln 11(0)22x x x x <->

2012函数与导数(较难)含答案)

函数与导数问题解题方法探寻及典例剖析【考情分析】 【常见题型及解法】 1. 常见题型 2. 在解题中常用的有关结论(需要熟记):

【基本练习题讲练】 【例1】“龟兔赛跑”讲述了这样的故事:领先的兔子看着慢慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发 现乌龟快到终点了,于是急忙追赶,但为时已晚 乌龟还是先到达了终点……用S1、S2分别表示乌龟和兔子所行的路程,t 为时间,则下图与故事情节相吻合的是( ) 【答案】 B 【解析】在选项B 中,乌龟到达终点时,兔子在同一时间的路程比乌龟短.【点评】函数图象是近年高考的热点的试题,考查函数图象的实际应用,考查学生解决问题、分析问题的能力, 在复习时应引起重视. 【例2】(山东高考题)已知定义在R 上的奇函数)(x f ,满足(4)()f x f x -=-,且在区间[0,2]上是增函数,若 方程 ()(0 f x m m =>在区间 [8,8 -上有四个不同的根 123,,,x x x x ,则 1234 _________.x x x x +++= A B C D

【例3】若1x 是方程lg 3x x +=的解,2x 是310=+x x 的解,则21x x +的值为( ) A . 2 3错误!未指定书签。 B . 3 2 C .3 D . 31 【例4】若函数 ()(01)x f x a x a a a =-->≠且有两个零点,则实数a 的取值范围是 . 【例 5】已知偶函数()f x 在区间[0,)+∞单调递增,则满足(21)f x -<1 ()3 f 的x 取值范围是( ) (A )( 1,2) (B) [1,2) (C)(1,2) (D) [1,2)

第07讲(三次函数的导数问题)(原卷版)

第07讲(三次函数的导数问题) 【目标导航】 运用三次函数的图像研究零点问题, 三次函数的单调性问题, 三次函数的极值与最值问题。 【例题导读】 例1、若13 x 3-x 2+ax -a =0只有一个实数根,求实数a 的取值范围. 例2、 已知函数f (x )=13x 3-k +12x 2,g (x )=13 -kx ,若函数f (x )与g (x )的图象有三个不同的交点,求实数k 的取值范围. 例3、设函数f (x )=13x 3-a 2x 2+1,其中a >0,若过点(0,2)可作曲线y =f (x )的三条不同切线,求实数a 的取值范围. 例4、已知函数f (x )=14 x 3-x 2+x . (1)求曲线y =f (x )的斜率为1的切线方程; (2)当x ∈[-2,4]时,求证:x -6≤f (x )≤x ; (3)设F (x )=|f (x )-(x +a )|(a ∈R ),记F (x )在区间[-2,4]上的最大值为M (a ).当M (a )最小时,求a 的值. 例5、已知函数f(x)=?????-x 3+x 2,x<0,e x -ax ,x≥0,其中常数a ∈R . (1) 当a =2时,求函数f (x )的单调区间; (2) 若方程f (-x )+f (x )=e x -3在区间(0,+∞)上有实数解,求实数a 的取值范围;

例6、已知函数32()1f x x ax bx a b =+++∈,,R . (1)若20a b +=, ① 当0a >时,求函数()f x 的极值(用a 表示); ② 若()f x 有三个相异零点,问是否存在实数a 使得这三个零点成等差数列?若存在,试求出a 的值;若不存在,请说明理由; 例7、已知函数32()1(0,)f x x ax bx a b =+++>∈R 有极值,且导函数'()f x 的极值点是()f x 的零点.(极值点是指函数取极值时对应的自变量的值) (1)求b 关于a 的函数关系式,并写出定义域; (2)证明:33b a >; (3)若(),'()f x f x 这两个函数的所有极值之和不小于72 -,求a 的取值范围. 例8、已知函数f(x)=2x 3-3(a +1)x 2+6ax ,a ∈R . (1) 曲线y =f (x )在x =0处的切线的斜率为3,求a 的值; (2) 若对于任意x ∈(0,+∞),f (x )+f (-x )≥12ln x 恒成立,求a 的取值范围; (3) 若a >1,设函数f (x )在区间[1,2]上的最大值、最小值分别为M (a ),m (a ),记h (a )=M (a )-m (a ),求h (a )的最小值.

2021届高三数学之函数与导数(文理通用)专题04 函数与导数之零点问题

专题04 函数与导数之零点问题 一.考情分析 零点问题涉及到函数与方程,但函数与方程是两个不同的概念,但它们之间有着密切的联系,方程f (x )=0的解就是函数y =f (x )的图像与x 轴的交点的横坐标,函数y =f (x )也可以看作二元方程f (x )-y =0通过方程进行研究.就中学数学而言,函数思想在解题中的应用主要表现在两个方面: ①是借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题:②是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关性 质,达到化难为易,化繁为简的目的. 许多有关方程的问题可以用函数的方法解决,反之,许多函数问题也可以用方程的方法来解决.函数与方程的思想是中学数学的基本思想,也是各地模考和历年高考的重点. 二.经验分享 1.确定函数f (x )零点个数(方程f (x )=0的实根个数)的方法: (1)判断二次函数f (x )在R 上的零点个数,一般由对应的二次方程f (x )=0的判别式Δ>0,Δ=0,Δ<0来完成;对于一些不便用判别式判断零点个数的二次函数,则要结合二次函数的图象进行判断. (2)对于一般函数零点个数的判断,不仅要用到零点存在性定理,还必须结合函数的图象和性质才能确定,如三次函数的零点个数问题. (3)若函数f (x )在[a ,b ]上的图象是连续不断的一条曲线,且是单调函数,又f (a )·f (b )<0,则y =f (x )在区间(a ,b )内有唯一零点. 2.导数研究函数图象交点及零点问题 利用导数来探讨函数)(x f y =的图象与函数)(x g y =的图象的交点问题,有以下几个步骤: ①构造函数)()()(x g x f x h -=; ②求导)('x h ;

原函数和导函数的关系

课题:探究原函数与导函数的关系 首师大附中数学组王建华 设计思路 这节课是在学完导数和积分之后,学生从大量的实例中对原函数和导函数的关系有了一定的认识的基础上展开教学的。由于这部分内容课本上没有,但数学内部的联系规律和对称美又会使学生既觉得有挑战性又充满探究的兴趣。备这个课的过程中我虽然参考了大量已有的资料,但需要做更深入地思考这些命题间的联系,以什么方式展开更利于学生拾级而上,最终登上高峰体会一览众山小的乐趣和成就感。教师实际上是在引导学生进行一次理论的探险,大胆地猜,小心地证,谨慎地修改条件,步步逼近真理。最终学生能否记住这些结论并不重要,重要的是研究相互关联的事物的一般思路和方法。对优秀生或热爱数学的学生来说会有更多的收获。 整个教学流程 1. 从经验观察发现,猜想得命题p,q. 这两个命题为真命题,证明它们的方法用复合函数求导,比较容易上手。 2. 学生自然会想到这个命题的逆命题是否成立,尝试证明。证明的思路也要逆向思考。发现由于导数确定后原函数不能唯一确定,有上下平移的可能,这样关于y轴对称的性质能够保持,但关于原点对称的性质就不能保证了。 3. 函数的平移不改变函数图象的对称性,因此将奇函数的性质拓展为关于中心对称,将偶 对称,研究前面的四个命题还是否成立。研究方法可以类函数的性质拓展为关于直线x a 比迁移前面的方法。能成立的严格证明,不能成立的举出反例,并尝试通过改变条件使之成为真命题。 4.已有成果的应用:利用二次函数的对称性性质研究三次函数的对称性。 教学目标 在这个探究过程中 1.加强学生对导函数与原函数相生相伴的关系的理解; 2.增强学生对函数对称性的理解和抽象概括表达能力; 3体验研究事物的角度,一个新定理是怎样诞生的,怎样才是全面地认识了一个事物。 4.培养学生的思辨能力,分析法解决问题的能力,举反例的能力等等。 教学重点 以原函数与导函数的对称性的联系为载体让学生体验观察发现、概括猜想、辨别真伪的过程。 教学难点 灵活运用所学知识探索未知领域。 新课引入 前面解题时我们常根据导函数的符号示意图画出原函数的单调性示意图,你能根据原函数的图像画出导函数的示意图吗? 一.探究由原函数的奇偶性能否推出导函数的奇偶性。

高考数学压轴专题2020-2021备战高考《函数与导数》真题汇编含答案

【最新】《函数与导数》专题 一、选择题 1.三个数0.20.4 0.44,3,log 0.5的大小顺序是 ( ) A .0.40.2 0.43<4log 0.5< B .0.40.2 0.43.

专题03 函数与导数(解析版)

专题03 函数与导数 1.(2020?北京卷)已知函数()21x f x x =--,则不等式()0f x >的解集是( ). A . (1,1)- B . (,1)(1,)-∞-+∞ C . (0,1) D . (,0)(1,)-∞?+∞ 【答案】D 【解析】作出函数2x y =和1y x =+的图象,观察图象可得结果. 【详解】因为()21x f x x =--,所以()0f x >等价于21x x >+, 在同一直角坐标系中作出2x y =和1y x =+的图象如图: 两函数图象的交点坐标为(0,1),(1,2),不等式21x x >+的解为0x <或1x >. 所以不等式()0f x >的解集为:()(),01,-∞?+∞.故选:D. 【点睛】本题考查了图象法解不等式,属于基础题. 2.(2020?北京卷)函数1 ()ln 1 f x x x =++的定义域是____________. 【答案】(0,)+∞ 【解析】根据分母不为零、真数大于零列不等式组,解得结果. 【详解】由题意得0 10 x x >?? +≠?,0x ∴>故答案为:(0,)+∞ 【点睛】本题考查函数定义域,考查基本分析求解能力,属基础题. 3.(2020?北京卷)已知函数2 ()12f x x =-. (Ⅰ)求曲线()y f x =的斜率等于2-的切线方程; (Ⅱ)设曲线()y f x =在点(,())t f t 处的切线与坐标轴围成的三角形的面积为()S t ,求()S t 的最小值. 【答案】(Ⅰ)2130x y +-=,(Ⅱ)32.

【解析】(Ⅰ)根据导数的几何意义可得切点的坐标,然后由点斜式可得结果; (Ⅱ)根据导数的几何意义求出切线方程,再得到切线在坐标轴上的截距,进一步得到三角形的面积,最后利用导数可求得最值. 【详解】(Ⅰ)因为()212f x x =-,所以()2f x x '=-, 设切点为()00,12x x -,则022x -=-,即01x =,所以切点为()1,11, 由点斜式可得切线方程:()1121y x -=--,即2130x y +-=. (Ⅱ)显然0t ≠, 因为()y f x =在点( )2 ,12t t -处的切线方程为:()()2 122y t t x t --=--, 令0x =,得2 12y t =+,令0y =,得2122t x t +=,所以()S t =()221121222||t t t +?+?, 不妨设0t >(0t <时,结果一样),则()423241441144 (24)44t t S t t t t t ++==++, 所以()S t '=422 2211443(848)(324)44t t t t t +-+-=222 22 3(4)(12)3(2)(2)(12)44t t t t t t t -+-++== , 由()0S t '>,得2t >,由()0S t '<,得02t <<, 所以()S t 在()0,2上递减,在()2,+∞上递增,所以2t =时,()S t 取得极小值, 也是最小值为()1616 2328 S ?= =. 【点睛】本题考查了利用导数的几何意义求切线方程,考查了利用导数求函数的最值,属于中档题. 4.(2020?全国1卷)函数43()2f x x x =-的图像在点(1 (1))f ,处的切线方程为( ) A. 21y x =-- B. 21y x =-+ C. 23y x =- D. 21y x =+ 【答案】B 【解析】求得函数()y f x =的导数()f x ',计算出()1f 和()1f '的值,可得出所求切线的点斜式方程,化简即可. 【详解】 ()432f x x x =-,()3246f x x x '∴=-,()11f ∴=-,()12f '=-,

用导数研究三次函数

用导数研究三次函数 一、知识点解析 1、定义: 定义1、形如3 2 (0)y ax bx cx d a =+++≠的函数,称为“三次函数”。 定义2、三次函数的导函数为二次函数:)0(23)(2 /≠++=a c bx ax x f ,我们把 )3412422ac b ac b -=-=?(,叫做三次函数导函数的判别式。 2、三次函数图象与性质的探究: 1、单调性 一般地,当032 ≤-ac b 时,三次函数)0(2 3≠+++=a d cx bx ax y 在R 上是单调函数;当032 >-ac b 时,三次函数)0(2 3≠+++=a d cx bx ax y 在R 上有三个单调区间。 2、对称中心 三次函数)0()(2 3 ≠+++=a d cx bx ax x f 是关于点对称,且对称中心为点 ))3(,3(a b f a b -- ,此点的横坐标是其导函数极值点的横坐标。 y =f(x)图象的对称中心在导函数y = 的对称轴上,且又是两个极值点的中点, 同时也是二阶导为零的点。 3、三次方程根的问题 (1)当032≤-=?ac b 时,由于不等式0)(≥'x f 恒成立,函数是单调递增的,所以原方程仅有一个实根。 (2)当△=032>-ac b 时,由于方程0)(='x f 有两个不同的实根21,x x ,不妨设21x x <, 可知,))(,(11x f x 为函数的极大值点,))(,(22x f x 为极小值点,且函数)(x f y =在) ,(1x -∞和),(2+∞x 上单调递增,在[]21,x x 上单调递减。

此时: ①若0)()(21>?x f x f ,即函数)(x f y =极大值点和极小值点在x 轴同侧,图象均与x 轴只有一个交点,所以原方程有且只有一个实根。 ②若0)()(21时,三次函数()y f x =在(),-∞+∞上的极值点要么有两个。 当0?≤时,三次函数()y f x =在(),-∞+∞上不存在极值点。 5、最值问题。 函数 若,且 ,则:()()()(){}max 0,,f x f m f x f n =; 。 6、过三次函数上一点的切线问题 设点P 为三次函数)0()(2 3≠+++=a d cx bx ax x f 图象上任一点,则过点P 一定有 直线与)(x f y =的图象相切。若点P 为三次函数图象的对称中心,则过点P 有且只有一条切线;若点P 不是三次函数图象的对称中心,则过点P 有两条不同的切线。 7、过三次函数外一点的切线问题 设点 ) ,(00y x P 为三次函数)0()(2 3≠+++=a d cx bx ax x f 图象外,则过点P 一定有 直线与)(x f y =图象相切。可能有一条、两条或三条。(具体情况分析不作要求)

高考理科数学二轮复习专题强化训练(十五)函数与导数理

专题强化训练(十五) 函数与导数 一、选择题 1.[2019·全国卷Ⅱ]若a >b ,则( ) A .ln(a -b )>0 B .3a <3b C .a 3 -b 3 >0 D .|a |>|b | 解析:通解:由函数y =ln x 的图象(图略)知,当0<a -b <1时,ln(a -b )<0,故A 不正确;因为函数y =3x 在R 上单调递增,所以当a >b 时,3a >3b ,故B 不正确;因为函数 y =x 3在R 上单调递增,所以当a >b 时,a 3>b 3,即a 3-b 3>0,故C 正确;当b <a <0时, |a |<|b |,故D 不正确.故选C. 优解:当a =0.3,b =-0.4时,ln(a -b )<0,3a >3b ,|a |<|b |,故排除A ,B ,D ,故选C. 答案:C 2.[2019·唐山模拟]设函数f (x )=x (e x +e -x ),则f (x )( ) A .是奇函数,且在(0,+∞)上是增函数 B .是偶函数,且在(0,+∞)上是增函数 C .是奇函数,且在(0,+∞)上是减函数 D .是偶函数,且在(0,+∞)上是减函数 解析:通解:由条件可知,f (-x )=(-x )(e -x +e x )=-x (e x +e -x )=-f (x ),故f (x )为奇函数.f ′(x )=e x +e -x +x (e x -e -x ),当x >0时,e x >e -x ,所以x (e x -e -x )>0,又e x +e -x >0,所以f ′(x )>0,所以f (x )在(0,+∞)上是增函数,故选A. 优解:根据题意知f (-1)=-f (1),所以函数f (x )为奇函数.又f (1)

导数与三次函数问题有答案

导数与三次函数问题 ★ 知识梳理★ 一、定义:、形如3 2 (0)y ax bx cx d a =+++≠的函数,称为“三次函数” 三次函数的导数2 32(0)y ax bx c a '=++≠, 2412b ac ?=-叫做三次函数导函数的判别式。 二、三次函数图象与性质 1.三次函数3 2 ()(0)f x ax bx cx d a =+++≠图象 2.函数()(0)f x ax bx cx d a =+++≠单调性、极值点个数情况。()f x =32ax bx c ++, 记?=2 2 4124(3)b ac b ac -=-,(其中x 1,x 2是方程' ()f x =0的根,且x 1-ac b ,且0)()(21>?x f x f ,则0)(=x f 恰有一个实根; (3) 若032 >-ac b ,且0)()(21=?x f x f ,则0)(=x f 有两个不相等的实根; (4) 若032 >-ac b ,且0)()(21

三次函数)0()(2 3≠+++=a d cx bx ax x f 是关于点对称,且对称中心为点 ))3(,3(a b f a b -- ,此点的横坐标是其导函数极值点的横坐标。 ★典型考题★ 1.已知函数f(x)=ax 3+bx 2+cx+d 的图象如图所示,则( A ) A .b ∈(-∞,0) ∈(0,1) C .b ∈(1,2) D. b ∈(2,+∞) 2.如图,函数y =f (x )的图象如下,则函数f (x )的解析式可以为( A ) A)f (x )=(x -a )2 (b -x ) B)f (x )=(x -a )2 (x +b ) C)f (x )=-(x -a )2(x +b ) D)f (x )=(x -b )2(x -a ) 3.设<b,函数的图像可能是( C ) 4.已知函数,当(,0)(5,)k ∈-∞?+∞时,只有一个实数根;当(0,5),()0k f x k ∈-=时有3个相异实根,现给出下列4个命题: ①函数有2个极值点; ②函数()f x 有3个极值点;③方程()5f x =-的根小于()0f x '=的任意实根; ④()0f x =和()0f x '=有一个相同的实根.其中正确命题的个数是( C )。 A .1 B .2 C .3 D .4 5、函数在闭区间[-3,0]上的最大值、最小值分别是( C ) A. 1,-1 B. 1,-17 C. 3,-17 D. 9,-19 6.函数f (x )=x 3/3+ax 2/2+ax-2 (a ∈R)在(-∞,+∞)上为单调增函数,求实数a 的取值范围是——————。a ∈[0,4] 7.已知函数f (x )=x 3/3-(4m -1)x 2+(15m 2-2m -7)x +2在实数集R上是增函数,求实数m 的取值范围。 解:∵y =f (x )在R上是单调增函数 ∴f ′(x )=x 2-2(4m -1)x +15m 2 -2m -7≥0在R上恒成立, Δ=… =m 2 -6m +8≤0得2≤m ≤4 8.已知曲线y = x 3/3+4/3,求曲线在点(2,4)处的切线方程 解:f ′(x )=x 2,f ′(2)=4, 曲线在点(2,4)处的切线斜率为k =f ′(2)=4 ∴代入直线方程的斜截式,得切线方程为:y -4=4(x -2), 即 y =4x -4 变式:已知曲线y =x 3/3+4/3,则曲线过点(2,4)的切线方程——————。 错解:依上题,直接填上答案4x -y -4=0 错因剖析:如下图所示,在曲线上的点A 处的切线与该曲线还有一个交点。

导数与三次函数(教案)

导数与三次函数(教案) 教学目标 (1)知识目标:以三次函数为载体,掌握用导数研究函数的单调性、极值、最值等问题的方法。 (2)能力目标:深化数形结合、转化与化归、分类讨论、从特殊到一般等数学思想在解有关问题中的运用,培养学生探究问题的能力和综合分析、解决问题的能力。 (3)情感目标:以数形联系的观点看数学问题,体会由特殊到一般的方法探究数学问题的过程。鼓励学生大胆猜想,敢于质疑,严密论证。 教学重点:导数应用。 教学难点:三次函数的单调性、极值点个数的探求。 教学模式:以问题为主线,运用探究式与变式教学相结合的教学模式。 教学过程 一 回顾复习 引出本课课题 叙述利用导数求可导函数单调区间的步骤。 二 再现陈题 掌握导数应用 例1 已知函数3()3f x x x =-,R x ∈ (1)求函数()f x 的单调区间; (2)求()f x 在[0,3]上的最值; (3)过点A (2,2)作曲线y=f(x)的切线,求切线方程。 特别警示:求切线方程首先要判断该点是否在曲线上 点评1 导数的主要应用:可导函数的单调性、极值、在闭区间上的最值,以及利用导数的几何意义研究切线问题。 变式一 若关于x 的不等式()f x a ≥在0≤x ≤3上恒成立,求实数a 的取值范围; 变式二 关于x 的方程f(x)=a 恰有3个不等的实根,求实数a 的取值范围.(图象法) 画3 ()3f x x x =-草图的方法:利用函数有关性质 (1)确定极值点对应的点(简称关键点) (2)结合单调性 点评 2 数形结合,以形助数来解决问题。 二 改变命题 探求字母系数 例 2 若函数32 ()331f x kx x x =+++(0k ≠)在R 上是增函数,求实数k 的取值范围。 分析 '()f x =2 363kx x ++,0k ≠,'()f x ∴图象是一条过(0,3)的抛物线, 由于f(x)在R 上是增函数,则 1)300k >?? ?在R 上恒成立,f(x)在R 上是增函数; 2)300 k >???=?,即1k =,323()331(1)f x x x x x =+++=+,显然f(x)在R 上是增函数;

三次函数与导数专题 10

导数与三次函数问题 [真题1] (优质试题年安徽卷)设a<b,函数2 ()() y x a x b =--的图像可能是() [命题探究] 考题的命制,直接给出函数图像,然后设计了四个选项,意在通过对问题的判断, 直接考查三次函数的性质:单调区间和极值问题。这里,函数的化简、图像的观察等等,不仅需要 扎实的基本功,而且还需要熟练的解题技巧。 [知识链接] 1.三次函数32 ()(0) f x ax bx cx d a =+++≠ a>0 a<0 ?>0 ?≤0 ?>0 ?≤0 图 象 32 ()(0) f x ax bx cx d a =+++≠ '() f x=2 32 ax bx c ++, x x1 x2 x0 x x1 x2 x x0 x

记?=224124(3)b ac b ac -=- 1,x 2是方程'()f x 1

数是二次函数,这类问题的难点是研究其中的参数的取值范围.破解难点的方法是对三次函数求导后,化归成二次函数,通过二次函数要的分布求解,或利用数形结合思想画出函数的极大值、极小值后进行对比分析,求出参数的取值范围。解三次函数的问题,可借助导数工具进行研究,推进了二次函数性质的深化与二次函数方法的研究。 《规范解答》 [考题再现](06福建文21)已知()f x 是二次函数,不等式()0f x <的解集是(0,5),且()f x 在区 间[]1,4-上的最大值是12。 (I )求()f x 的解析式;(II )是否存在自然数,m 使得方程37()0f x x +=在区间(,1)m m +内有 且只有两个不等的实数根?若存在,求出m 的取值范围;若不

相关主题
文本预览
相关文档 最新文档