当前位置:文档之家› 常微分方程考研复试真题及标准答案

常微分方程考研复试真题及标准答案

常微分方程考研复试真题及标准答案
常微分方程考研复试真题及标准答案

常微分方程计算题

2.指出下列方程中的阶数,是线性方程还是非线性方程,并说明理由;

(1) t 2

2

2dt

u d +t dt du +( t 2

-1)u=0 (2)

dx dy =x 2+y 2

; (3)dx dy +2x

y =0

3.求曲线族y=C 1e x

+C 2x e x 所满足的微分方程 4.验证函数y= C 1e

x 2+ C 2

e

x

2-是微分方程y ``

-4y=0的解,进一步验证它是通解。

5.试用一阶微分方程形式不变性求解方程

dx

dy =2x 6.什么叫积分一个微分方程?

7.什么是求解常微分方程的初等积分法? 8.分离变量一阶方程的特征是什么? 9.求下列方程的通解

(1)

y `=sinx

(2)

x 2y 2y `+1=y (3)

tgx dx

dy

=1+y (4)

dx

dy

=exp(2x-y) (5) dx

dy =21y 2-

(6) x 2

ydx=(1- y 2

+x-2

x

2

y 2

)dx

(7)( x 2

+1)( y 2

-1)dx+xydy=0 10.叙述齐次函数的定义

11.试给出一阶方程y `

=f(x,y)或p(x,y)dx+ q(x,y)dy=0为齐次方程的特征。说明二个方程的关系。

12.求解齐次方程通常用什么初等变换,新旧函数导数关系如何?

13.求解下列方程

dx dy

=222y

x xy - 14.求解下列方程 (1)(x+2y )dx —xdy=0

(2)

dx dy =x y +y x 2 15.

dx dy =2

2y x xy + 16(x 2+y 2)dx —2xydy=0 17.

dx dy =5

242+---y x x y 18―――――19

20―――――――27

28――――37

38――――44

45――――49

50――――56

57――――62

63――――68

69―――71

72――――81

82――――87

88――――92

93――――94

95――――97

98――――100

101――――105

106――――113

114――――122

2(1)未知函数u的导数最高阶为2,u``,u`,u 均为一次,所以它是二阶线性方程。(2)为y最高阶导数为1,而y2为二次,故它是一阶非线性常微分方程。

(3)果y是未知函数,它是一阶线性方程;如果将x看着未知函数,它是一阶非线性方程。

3. 提示:所满足的方程为y``-2 y`+y=0

4.直接代入方程,并计算Jacobi行列式。

5.方程变形为dy=2xdx=d(x2),故y= x2+C

6. 微分方程求解时,都与一定的积分运算相联系。因此,把求解一个微分方程的过程称为一个微分方程。微分方程的解又称为(一个)积分。

7.把微分方程的通解用初等函数或通过它们的积分来表达的方法。注意如果通解能归结为初等函数的积分表达,但这个积分如果不能用初等函数表示出来,我们也认为求解了这个微分方程,因为这个式子里没有未知函数的导数或微分。

8.y`=f(x,y)主要特征是f(x,y)能分解为两个因式的乘积,其中一个因式仅含有x,另一

因式仅含y,而方程p(x,y)dx+q(x,y)dy=0是可分离变量方程的主要特征,就像f(x,y)一样,p,q分别都能分解成两个因式和乘积。

9

(1)积分得x=-cosx+c

(2) 将方程变形为x 2

y 2

dy=(y-1)dx 或1-y y 2=2x

dx

,当xy ≠0,y ≠1时积分得

22x +y+ln 1-y +x

1=c (3)方程变形为

y dy +1=x

x sin cos dx,当y ≠-1,sinx ≠0时积分得 y=Csinx-1

(4)方程变形为 exp(y)dy=exp(2x)dx,积分得

exp(y)=

2

1

exp(2x)+C (5)当y ≠±1时,求得通积分ln 1

1

+-y y =x+c

(6)方程化为 x 2

ydx=(1- y 2

)(1+x 2

)dx 或2

2

1x

x +dx=y y 21-dy,积分得 x -arctgx -ln y +

2

1y 2

=C (7)当x(y 2--1)≠0时,方程变形得

x x 12+dx+1

2-y ydy

=0

两边积分并化简得 y 2

=1+

2x

C exp(-x 2

) 10.二元函数f(x,y)满足f(rx,ry)=r m

f(x,y),r.>0,则称f(x,y)为m 次齐次函数。m=0则称它为0次齐次函数。

11.如果f(x,y)是0次齐次函数,则y `

=f(x,y)称为齐次方程。 如果p(x,y)和q(x,y)同为m 次齐次函数,则pdx+qdy=0为齐次方程。 如果q ≠0则

dx

dy

=-y)q(x,y)p(x,≡ f(x,y),由p,q 为m 次齐次函数推知f(x,y)为0次齐次函数故

y `

=f(x,y)为齐次方程。

12. 求解齐次方程经常用变换y=zx.用函数乘积导数的公式得

dx dy =x dx

dz

+z

13. 这是齐次方程。令y=zx,

dx dy =x dx

dz +z,将方程化为 z+x dx dz =212z z -,并即x dx dz =231z z z -+分离变量得x dx

z z dz z -=+-)1()1(2

2积分得ln|n|+ln(z 2

+2)-ln|z|=ln|C|,或z

z x )

1(2+=C 用z=y\x 代入得原来的变量。 x 2+y 2=Cy.

注意y=0方程的解。 14.

(1)

当x ≠0时,方程化为

dx dy =1+2x

y

令y=ux,则原方程化为x dx du =1+u,当1+u ≠0时,可分离变量得u+1=cx:;通解为y=cx 2+x

(2)

作变换y=ux,则原方程化为2udu=

x

dx 于是u 2

=ln|x|+C,代回原变量,得通积分: y 2=x 2(ln|x|+C )

15. 这是齐次方程。令y=zx 原方程化为

-321u u +du=x dx 两边积分得 2

21z -ln|z|=ln|cx|

用z=

x

y

代入得 y=c 1exp(2

22y

x ) y=0也是原方程的解。

16.变形为

dx dy = y x 2+x y 2 ,令y=ux 得2

12u

u -==x dx 积分得-ln|1-u 2|=ln|x|--c,代原变量得通积分 x 2

- y 2

=cx

17. 方程右边分子,分母两条直线交点为(x 0 , y 0)=(-2,1)作变换u=x+2,v=y-1,原方程化为

du dv =v u u v --22,此为齐次方程,令v=uz,经简单计算得1

22--z z dz=u du

,积分得3

3)1(1u z z +-=C 原方程通积分为 y=x+c(x+y+1)3

+3

18―――――――19

20――――27

28―――――37

38――――44

45――――49

《常微分方程》期末试卷

《常微分方程》期末试卷(16) 班级 学号 姓名 得分 评卷人 一、填空题(每小题5分,本题共30分) 1.方程x x y x y e sin d d =+的任一解的最大存在区间必定是 . 2.方程04=+''y y 的基本解组是 . 3.向量函数组)(,),(),(21x x x n Y Y Y 在区间I 上线性相关的________________条件是在区间I 上它们的朗斯基行列式0)(=x W . 4.李普希兹条件是保证一阶微分方程初值问题解惟一的 条件. 5.n 阶线性齐次微分方程的所有解构成一个 维线性空间. 6.向量函数组)(,),(),(21x x x n Y Y Y 在其定义区间I 上线性相关的 条件是它们的朗斯基行列式0)(=x W ,I x ∈. 得分 评卷人 二、计算题(每小题8分,本题共40分) 求下列方程的通解 7. x y x y 2e 3d d =+ 8. 0)d (d )(3223=+++y y y x x xy x 9.0e =-'+'x y y 10.求方程x y y 5sin 5='-''的通解. 11.求下列方程组的通解. ???????+=+=y x t y y x t x 4d d d d 得分 评卷人 三、证明题(每小题15分,本题共30分)

12.设)(1x y ?=和)(2x y ?=是方程0)(=+''y x q y 的任意两个解,求证:它们的朗斯基行列式C x W ≡)(,其中C 为常数. 13.设)(x ?在区间),(∞+-∞上连续.试证明方程 y x x y sin )(d d ?= 的所有解的存在区间必为),(∞+-∞.

常微分方程试题库

常微分方程试题库 二、计算题(每题6分) 1. 解方程:0cot tan =-xdy ydx ; 2. 解方程:x y x y e 2d d =+; 3. 解方程:; 4. 解方程: t e x dt dx 23=+; 5. 解方程:0)2(=+---dy xe y dx e y y ; 6. 解方程:0)ln (3=++dy x y dx x y ; 7. 解方程:0)2()32(3222=+++dy y x x dx y x xy ; 8. 解方程:0485=-'+''-'''x x x x ; 9. 解方程:02)3()5()7(=+-x x x ; 10. 解方程:02=-''+'''x x x ; 11. 解方程:1,0='-'='+'y x y x ; 12. 解方程: y y dx dy ln =; 13. 解方程:y x e dx dy -=; 14. 解方程:02)1(22=+'-xy y x ; 15. 解方程:x y dx dy cos 2=; 16. 解方程:dy yx x dx xy y )()(2222+=+; 17. 解方程:x xy dx dy 42=+; 18. 解方程:23=+ρθ ρ d d ; 19. 解方程:22x y xe dx dy +=; 20. 解方程:422x y y x =-'; 选题说明:每份试卷选2道题为宜。

二、计算题参考答案与评分标准:(每题6分) 1. 解方程:0cot tan =-xdy ydx 解: ,2,1,0,2 ,±±=+==k k x k y π ππ是原方程的常数解, (2分) 当2 ,π ππ+ ≠≠k x k y 时,原方程可化为: 0cos sin sin cos =-dx x x dy y y , (2分) 积分得原方程的通解为: C x y =cos sin . (2分) 2. 解方程: x y x y e 2d d =+ 解:由一阶线性方程的通解公式 ? ? +? =-),)(()()(dx e x f C e y dx x p dx x p (2分) x x x x dx x dx e Ce dx e C e dx e e C e 3 1 )() (23222+=+=?+?=---?? 分) (分) (22 3. 解方程: 解:由一阶线性方程的通解公式 ??+?=-))(()()(dx e x f C e y dx x p dx x p (2分) =??+?-)sec (tan tan dx xe C e xdx xdx (2分) ?+=)sec (cos 2xdx C x x x C sin cos +=. (2分) 4. 解方程: t e x dt dx 23=+ 解:由一阶线性方程的通解公式 ??+? =-))(()()(dt e t f C e x dt t p dt t p (2分) =??+?-)(323dt e e C e dt t dt (2分) ?+=-)(53dt e C e t t

常微分方程试题(卷)

一单项选择题(每小题2分, 共40分) 1. 下列四个微分方程中, 为三阶方程的有( )个. (1) (2) (3) (4) A. 1 B. 2 C. 3 D. 4 2. 为确定一个一般的n阶微分方程=0的一个特解, 通常应给出的初始条件是( ). A. 当时, B. 当时, C. 当时, D. 当时, 3. 微分方程的一个解是( ). A. B. C. D.

4. 下列方程中, 既是齐次方程又是线性方程的是( ). A. B. C. D. 5. 若方程是恰当方程, 则(). A. B. C. D. 6. 若方程有只与y有关的积分因子, 则可取为( ). A. B. C. D. 7. 可用变换( )将伯努利方程化为线性方程. A. B. C. D. 8. 是满足方程和初始条件( )的唯一解. A. B. C. D. 9. 设是n阶齐线性方程的解,

其中是某区间中的连续函数. 如下叙述中, 正确的是( ). A.若的伏朗斯基行列式为零, 则线性无关 B.若的伏朗斯基行列式不为零, 则线性相关 C.若的伏朗斯基行列式不为零, 则线性无关 D.由的伏朗斯基行列式是否为零, 不能确定的线性相关性 10. 设线性无关的函数和是方程的解,则方程 的通解是( ) A.(是任意常数, 下同) B. C. D. 11. 三阶系数齐线性方程的特征根是( ). A. 0, 1, 1 B. 0, 1, -1 C. 1, D. 1, 12. 方程的基本解组是( ).

A. B. C. D. 13. 方程的待定特解可取如下( )的形式: A. B. C. D. 14. 已知是某一三阶齐线性方程的解, 则 和 的伏朗斯基行列式( ). A. 3 B. 2 C. 1 D. 0 15. 可将三阶方程化为二阶方程的变换为( ). A. B. C. D. 16. 方程组满足初始条件的解为( ). A. B. C. D. 17. n阶函数方阵在上连续, 方程组有基解矩阵,

常微分方程期末考试题大全东北师大

证明题: 设()x f 在[)+∞,0上连续,且()b x f x =+∞ →lim ,又0>a ,求证:对于方程 ()x f ay dx dy =+的一切解()x y ,均有()a b x y x =+∞→lim 。 证明 由一阶线性方程通解公式,方程的任一解可表示为 ()()?? ????+=?-x at ax dt e t f C e x y 0, 即 ()()ax x at e dt e t f C x y ?+= 。 由于b x f x =+∞ →)(lim ,则存在X ,当X x >时,M x f >)(。因而 ()dt e M dt e t f dt e t f x X at X at x at ??? +≥0 )( ())(0 aX ax X at e e a M dt e t f -+ = ? , 由0>a ,从而有()∞=?? ????+?+∞→x at x dt e t f C 0lim ,显然+∞=+∞ →ax x e lim 。 应用洛比达法则得 ()()ax x at x x e dt e t f C x y ?+=+∞ →+∞ →0 lim lim ()ax ax x ae e x f +∞→=lim ()a b a x f x ==+∞ →lim 。 证明题:线性齐次微分方程组x A x )(t ='最多有n 个线性无关的解,其中)(t A 是定义在区间b t a ≤≤上的n n ?的连续矩阵函数。 证 要证明方程组x A x )(t ='最多有n 个线性无关的解,首先要证明它有n 个线性无关的解,然后再证明任意1+n 个解都线性相关。

常微分方程练习题及答案复习题)

常微分方程练习试卷 一、 填空题。 1. 方程23 2 10d x x dt +=是 阶 (线性、非线性)微分方程. 2. 方程 ()x dy f xy y dx =经变换_______,可以化为变量分离方程 . 3. 微分方程 3230d y y x dx --=满足条件(0)1,(0)2y y '==的解有 个. 4. 设常系数方程 x y y y e αβγ'''++=的一个特解*2()x x x y x e e xe =++,则此方程的系数α= ,β= ,γ= . 5. 朗斯基行列式 ()0W t ≡是函数组12(),(),,()n x t x t x t 在a x b ≤≤上线性相关的 条件. 6. 方程 22(2320)0xydx x y dy ++-=的只与y 有关的积分因子为 . 7. 已知 ()X A t X '=的基解矩阵为()t Φ的,则()A t = . 8. 方程组 20'05??=???? x x 的基解矩阵为 . 9.可用变换 将伯努利方程 化为线性方程. 10 .是满足方程 251y y y y ''''''+++= 和初始条件 的唯一解. 11.方程 的待定特解可取 的形式: 12. 三阶常系数齐线性方程 20y y y '''''-+=的特征根是 二、 计算题 1.求平面上过原点的曲线方程, 该曲线上任一点处的切线与切点和点(1,0)的连线相互垂直. 2.求解方程13 dy x y dx x y +-=-+. 3. 求解方程 222()0d x dx x dt dt += 。 4.用比较系数法解方程. . 5.求方程 sin y y x '=+的通解. 6.验证微分方程 22(cos sin )(1)0x x xy dx y x dy -+-=是恰当方程,并求出它的通解.

常微分方程考研讲义 一阶微分方程解的存在定理

第三章一阶微分方程解的存在定理 [教学目标] 1.理解解的存在唯一性定理的条件、结论及证明思路,掌握逐次逼近法,熟练 近似解的误差估计式。 2.了解解的延拓定理及延拓条件。 3.理解解对初值的连续性、可微性定理的条件和结论。 [教学重难点] 解的存在唯一性定理的证明,解对初值的连续性、可微性定理的 证明。 [教学方法] 讲授,实践。 [教学时间] 12学时 [教学内容] 解的存在唯一性定理的条件、结论及证明思路,解的延拓概念及延 拓条件,解对初值的连续性、可微性定理及其证明。 [考核目标] 1.理解解的存在唯一性定理的条件、结论,能用逐次逼近法解简单的问题。 2.熟练近似解的误差估计式,解对初值的连续性及可微性公式。 3.利用解的存在唯一性定理、解的延拓定理及延拓条件能证明有关方程的某些性质。 §1 解的存在性唯一性定理和逐步逼近法 微分方程来源于生产实践际,研究微分方程的目的就在于掌握它所反映的客 观规律,能动解释所出现的各种现象并预测未来的可能情况。在第二章介绍了一 阶微分方程初等解法的几种类型,但是,大量的一阶方程一般是不能用初等解法 求出其通解。而实际问题中所需要的往往是要求满足某种初始条件的解。因此初 值问题的研究就显得十分重要,从前面我们也了解到初值问题的解不一定是唯一的。他必须满足一定的条件才能保证初值问题解的存在性与唯一性,而讨论初值 问题解的存在性与唯一性在常微分方程占有很重要的地位,是近代常微分方程定 性理论,稳定性理论以及其他理论的基础。 例如方程 过点(0,0)的解就是不唯一,易知0 y=是方程过(0,0)的解,此外,容易验证,2 =或更一般地,函数 y x 都是方程过点(0,0)而且定义在区间01 <<的任一数。 c ≤≤上的解,其中c是满足01 x

《常微分方程》期末模拟试题

《常微分方程》模拟练习题及参考答案 一、填空题(每个空格4分,共80分) 1、n 阶线性齐次微分方程基本解组中解的个数恰好是 n 个。 2、一阶微分方程 2=dy x dx 的通解为 2=+y x C (C 为任意常数) ,方程与通过点(2,3)的特解为 2 1=-y x ,与直线y=2x+3相切的解是 2 4=+y x ,满足条件3 3ydx =?的解为 22=-y x 。 3、李普希兹条件是保证一阶微分方程初值问题解惟一的 必要 条件。 4、对方程 2()dy x y dx =+作变换 =+u x y ,可将其化为变量可分离方程,其通解为 tan()=+-y x C x 。 5、方程过点共有 无数 个解。 6、方程 ''2 1=-y x 的通解为 42 12122=-++x x y C x C ,满足初始条件13|2,|5====x x y y 的特解为 4219 12264 =-++x x y x 。 7、方程 无 奇解。 8、微分方程2260--=d y dy y dx dx 可化为一阶线性微分方程组 6?=??? ?=+??dy z dx dz z y dx 。 9、方程 的奇解是 y=0 。 10、35323+=d y dy x dx dx 是 3 阶常微分方程。 11、方程 22dy x y dx =+满足解得存在唯一性定理条件的区域是 xoy 平面 。 12、微分方程22450d y dy y dx dx --=通解为 512-=+x x y C e C e ,该方程可化为一阶线性微分方程组 45?=??? ?=+??dy z dx dz z y dx 。 2 1d d y x y -=)1,2 (πx x y x y +-=d d y x y =d d

2018常微分方程考研复试真题及答案

常微分方程计算题 2.指出下列方程中的阶数,是线性方程还是非线性方程,并说明理由; (1) t 2 2 2dt u d +t dt du +( t 2 -1)u=0 (2) dx dy =x 2+y 2 ; (3)dx dy +2x y =0 3.求曲线族y=C 1e x +C 2x e x 所满足的微分方程 4.验证函数y= C 1e x 2+ C 2 e x 2-是微分方程y `` -4y=0的解,进一步验证它是通解。 5.试用一阶微分方程形式不变性求解方程 dx dy =2x 6.什么叫积分一个微分方程? 7.什么是求解常微分方程的初等积分法? 8.分离变量一阶方程的特征是什么? 9.求下列方程的通解 (1) y ` =sinx (2) x 2 y 2 y ` +1=y (3) tgx dx dy =1+y (4) dx dy =exp(2x-y) (5) dx dy =2 1y 2- (6) x 2 ydx=(1- y 2 +x-2 x 2 y 2 )dx (7)( x 2 +1)( y 2 -1)dx+xydy=0 10.叙述齐次函数的定义 11.试给出一阶方程y ` =f(x,y)或p(x,y)dx+ q(x,y)dy=0为齐次方程的特征。说明二个方程的关系。 12.求解齐次方程通常用什么初等变换,新旧函数导数关系如何? 13.求解下列方程 dx dy =222y x xy - 14.求解下列方程 (1)(x+2y )dx —xdy=0

(2) dx dy =x y +y x 2 15. dx dy =2 2y x xy + 16(x 2 +y 2 )dx —2xydy=0 17. dx dy =5 242+---y x x y 18―――――19 20―――――――27 28――――37

常微分方程试题

常微分方程试题

一单项选择题(每小题2分, 共40分) 1. 下列四个微分方程中, 为三阶方程的有( )个. (1) (2) (3) (4) A. 1 B. 2 C. 3 D. 4 2. 为确定一个一般的n阶微分方程=0的一个特解, 通常应给出的初始条件是( ). A. 当时, B. 当时, C. 当时, D. 当时, 3. 微分方程的一个解是( ). A. B. C. D.

4. 下列方程中, 既是齐次方程又是线性方程的是( ). A. B. C. D. 5. 若方程是恰当方程, 则(). A. B. C. D. 6. 若方程有只与y有关的积分因子, 则可取为( ). A. B. C. D. 7. 可用变换( )将伯努利方程化为线性方程. A. B. C. D. 8. 是满足方程和初始条件( )的唯一解. A. B. C. D. 9. 设是n阶齐线性方程的解,

其中是某区间中的连续函数. 如下叙述中, 正确的是( ). A.若的伏朗斯基行列式为零, 则线性无关 B.若的伏朗斯基行列式不为零, 则线性相关 C.若的伏朗斯基行列式不为零, 则线性无关 D.由的伏朗斯基行列式是否为零, 不能确定的线性相关性 10. 设线性无关的函数和是方程的解,则方程 的通解是( ) A.(是任意常数, 下同) B. C. D. 11. 三阶系数齐线性方程的特征根是( ). A. 0, 1, 1 B. 0, 1, -1 C. 1, D. 1, 12. 方程的基本解组是( ).

A. B. C. D. 13. 方程的待定特解可取如下( )的形式: A. B. C. D. 14. 已知是某一三阶齐线性方程的解, 则 和 的伏朗斯基行列式( ). A. 3 B. 2 C. 1 D. 0 15. 可将三阶方程化为二阶方程的变换为( ). A. B. C. D. 16. 方程组满足初始条件的解为( ). A. B. C. D. 17. n阶函数方阵在上连续, 方程组有基解矩阵,

常微分方程期末考试练习题及答案

一,常微分方程的基本概念 常微分方程: 含一个自变量x,未知数y及若干阶导数的方程式。一般形式为:F(x,y,y,.....y(n))=0 (n≠0). 1. 常微分方程中包含未知函数最高阶导数的阶数称为该方程的阶。如:f(x)(3)+3f(x)+x=f(x)为3阶方程。 2.若f(x)使常微分方程两端恒等,则f(x)称为常微分方程的解。 3.含有独立的任意个常数(个数等于方程的阶数)的方程的解称为常微分方程的通解。如常系数三阶微分方程F(t,x(3))=0的通解的形式为:x(t)=c1x(t)+c2x(t)+c3x(t)。 4.满足初值条件的解称为它的特解(特解不唯一,亦可能不存在)。 5.常微分方程之线性及非线性:对于F(x,y,y,......y(n))=0而言,如果方程之左端是y,y,......y(n)的一次有理式,则次方程为n阶线性微分方程。(方程线性与否与自变量无关)。如:xy(2)-5y,+3xy=sinx 为2阶线性微分方程;y(2)+siny=0为非线性微分方程。 注:a.这里主要介绍几个主要的,常用的常微分方程的基本概念。余者如常微分方程之显隐式解,初值条件,初值问题等概念这里予以略去。另外,有兴趣的同学不妨看一下教材23页的雅可比矩阵。 b.教材28页第八题不妨做做。 二.可分离变量的方程 A.变量分离方程

1.定义:形如 dx dy =f (x)φ(y)的方程,称为分离变量方程。这里f (x ),φ(x )分别是x ,y 的连续函数。 2.解法:分离变量法? ? +=c dx x f y dy )()(?. (*) 说明: a 由于(*)是建立在φ(y )≠0的基础上,故而可能漏解。需视情况补上φ(y )=0的特解。(有时候特解也可以和通解统一于一式中) b.不需考虑因自变量引起的分母为零的情况。 例1.0)4(2=-+dy x x ydx 解:由题意分离变量得:04 2=+-y dy x dx 即: 0)141(41=+--y dy dx x x 积分之,得:c y x x =+--ln )ln 4(ln 4 1 故原方程通解为:cx y x =-4)4( (c 为任意常数),特 解y=0包含在通解中(即两者统一于一式中)。 *例2.若连续函数f (x )满足 2 ln )2 ()(20 +=? dt t f x f x ,则f (x )是? 解:对给定的积分方程两边关于x 求导,得: )(2)('x f x f = (变上限求积分求导) 分离变量,解之得:x Ce x f 2)(= 由原方程知: f (0)=ln2, 代入上解析式得: C=ln2, B.可化为分离变量方程的类型。 解决数学题目有一个显而易见的思想:即把遇到的新问题,结合已知

《常微分方程》考试参考答案(A卷)

《常微分方程》考试参考答案(A 卷) 一、填空题(每空2分,共30分) 1、()dy y g dx x = ln y x c x =+ 2、()()dy f x y dx ?= 2x y e = 3、2222M N y x = 4、1212(,)(,)f x y f x y L y y -≤- 5、存在不全为0的常数12,k c c c ,使得恒等式11()()0k k c x t c x t +=对于所有[,]t a b ∈ 都成立 ()0w t ≡ 6、412341011i i λλλλλ-===-==- 1234cos sin t t x c e c e c t c t -=+++ 7、322x xy y c -+= 二、判断题(每题2分,共10分) 1、√ 2、× 3、× 4、√ 5、√ 三、计算题(每题15分,共60分) 1、解:231()dy y dx x x y +=+ 变量分离23 1y dx dy y x x =++ 两边积分2221(1)1211y x dx dx y x x λ+=-++??? 2211ln 1ln ln 122 y x x +=-+ 22ln(1)(1)2ln ||y x x ++= 从而解得通解为:222(1)(1)x y cx ++=

2、解:先求30dx x dt +=的通解:33dt t x ce ce --?== 利用常数变易法,令原方程解为3()t x c t e -= 解得:3223551()5 dt t t t t t c t e e dt c e e dt c e dt c e c --?=+=+=+=+??? ∴原方程的通解为:533211()55 t t t t x e c e ce e --=+=+ 3、解:先求对应齐线性方程:(4)20x x x ''-+=的通解 特征函数42()210F λλλ=-+= 123411λλ==- 从而通解为:1234()()t t x c c t e c c t e -=+++ 现求原方程一个特解,这里:2()30f t t λ=-= 0λ=不是特征根,即原方程有形如:2x At Bt c =++的特解 把它代入原方程有:2243A At Bt C t -+++=- 解得101A B C === 21x t =+ ∴原方程通解为:21234()()1t t x e c c t e c c t t -=+++++ 4、解:令cos sin y p t x t '==?= 2cos dy pdx tdt == 原方程的通解为:11sin 242 y t t c =++ 5、解:由111x y +≤≤得112011a b x y ==-≤≤-≤≤ 从而()(,)4222x y R f M max f x y y y L y -∈?===-=≤=?

2018常微分方程考研复试真题及答案

常微分方程计算题 2.指出下列方程中的阶数,是线性方程还是非线性方程,并说明理由; (1) t 2 2 2dt u d +t dt du +( t 2 -1)u=0 (2) dx dy =x 2+y 2 ; (3)dx dy + 2 x y =0 3.求曲线族y=C 1e x +C 2x e x 所满足的微分方程 4.验证函数y= C 1e x 2+ C 2e x 2-是微分方程y `` -4y=0的解,进一步验证它是通解。 5.试用一阶微分方程形式不变性求解方程 dx dy =2x 6.什么叫积分一个微分方程? 7.什么是求解常微分方程的初等积分法? 8.分离变量一阶方程的特征是什么? 9.求下列方程的通解 (1) y `=sinx (2) x 2 y 2 y ` +1=y (3) tgx dx dy =1+y (4) dx dy =exp(2x-y) (5) dx dy =21y 2- (6) x 2 ydx=(1- y 2 +x-2 x 2 y 2 )dx (7)( x 2 +1)( y 2-1)dx+xydy=0 10.叙述齐次函数的定义 11.试给出一阶方程y ` =f(x,y)或p(x,y)dx+ q(x,y)dy=0为齐次方程的特征。说明二个方程的关系。 12.求解齐次方程通常用什么初等变换,新旧函数导数关系如何? 13.求解下列方程 dx dy =2 22y x xy -

14.求解下列方程 (1)(x+2y )dx —xdy=0 (2) dx dy =x y +y x 2 15. dx dy =22y x xy + 16(x 2+y 2)dx —2xydy=0 17. dx dy =5 242+---y x x y 18―――――19 20―――――――27 28――――37

常微分方程期末历年考试(B)

广西师范大学漓江学院试卷 课程名称:常微分方程课程序号:开课院系:理学系 任课教师: 年级、专业:07数学考试时间:120分钟 考核方式:闭卷 ■ 开卷 □试卷类型:A 卷□B 卷■ 一、填空题(本大题共10小题,每小题3分,共30分) (请在每小题地空格中填上正确答案,错填、不填均无分). 1、当_______________时,方程(,)(,)0M x y dx N x y dy +=称为恰当方程. 2、求(,)dy f x y dx =满足00()y x y =地解等价于求积分方程地连续解. 3、函数组t t t e e e 2,,-地朗斯基行列式值为. 4、二阶齐次线性微分方程地两个解)(),(21x y x y 为方程地基本解组充分必要条件是. 5、若矩阵A 具有n 个线性无关地特征向量n v v v ,,,21Λ,它们对应地特征值分别为n λλλΛ,,21,那么常系数线性方程组Ax x ='地一个基解矩阵)(t Φ=. 6、方程tan dy x y dx =地所有常数解是. 7、如果存在常数0L >,使得不等式对于所有12,),(,)x y x y R ∈(都成立,称函数),(y x f 在R 上关于y 满足利普希茨条件,其中L 为利普希茨常数. 8、)()(x Q y x P dx dy += 称为一阶线性方程,它有积分因子 ?-dx x P e )( ,其通解为 _________ . 9、方程22y x dx dy +=定义在矩形域R:-222,2≤≤-≤≤y x 上,则经过点(0,0)地解地存在区间是. 10、若(),()t t Φψ是齐次线性方程组()X A t X '=地基解矩阵,则()t Φ与()t ψ具有关系. 年 级 : 专 业: 装订密封线 考 生 答 题 不 得 出 现 红 色字 迹 , 除 画 图 外 , 不 能 使用 铅笔答 题;答题 留 空 不 足 时 , 可 写到 试卷 背面 ;请 注意 保 持试 卷完 整.

常微分方程试题库.

常微分方程 一、填空题 1 .微分方程(立)n +业—VEX? = 0的阶数是 dx dx 答:1 2 .若M (x, V)和N (x, V)在矩形区域R内是(x, V)的连续函数,且有连续的一阶偏导数,则 方程M (x,y)dx + N(x, y)dy =0有只与V有关的积分因子的充要条件是 血 f N -1 答:(亏一寸M)= (V) 3. ^为齐次方程. 答:形如dV =g(V)的方程 dx x 4 .如果f (x, V) ___________________________________________ M ,业=f (x, V)存在 dx 唯一的解y = %x),定义丁区问x-x o

8. 若X i (t)(i =1,2,.....n)为齐次线性方程的一个基本解组,x(t)为非齐次线性方程的一个 特解,则非齐次线性方程的所有解可表为 答:X =' c i x i - X i 4 9. 若中(X)为毕卡逼近序列虬(X)}的极限,则有|%x)M n(x)W 答:MLh n1 (n 1)! 10. 为黎卡提方程,若它有一个特解y(x),则经过变换 ____________________ ,可化为伯努利方程. 答:形如—=p(x)y2+q(x)y + r (x)的方程y = z + y dx 11. 一个不可延展解的存在区间一定是区间. 答:开 12. ______________________________________________________________ 方程业=后〔满足解的存在唯一性定理条件的区域是_______________________________ . dx ' 答:D ={(x,y)在R2y >0},(或不含x轴的上半平■面) 13 .方程华=x2sin y的所有常数解是. dx 答:y =k二,k =0, —1, —2, 14. 函数组明(x)*2(x),…,气(x)在区间I上线性无关的条件是它们的朗 斯基行列式在区间I上不包等丁零. 答:充分 15. 二阶线性齐次微分方程的两个解y〔(x), y2(x)为方程的基本解组充分必要条件 是. 答:线性无关(或:它们的朗斯基行列式不等丁零) 16. 方程广-2y'+y=0的基本解组是 答:e x, xe X 17. 若y =%x)在(s,十8)上连续,则方程d^=

常微分方程期末试题B答案

2005——2006学年第二学期 常微分方程课程试卷(B) 一、填空题(每空2 分,共16分)。 1.李普希滋条件是初值问题存在唯一解的充分条件. 2. 一阶微分方程的一个特解的图像是二 维空间上的一条曲线. 3.线性齐次微分方程组Y A Y ) ( d d x x =的一个基本解组的个数不能多于n个,其中R ∈ x,n R Y∈. 4.二阶线性齐次微分方程的两个解) ( 1 x y? =,) ( 2 x y? =成为其基本解组的充要条件是线性无关. 5.方程2 sin() y xy y '' =+的通解是 6.变量可分离方程()()()()0= +dy y q x p dx y N x M的积分因子是()() x P y N 1 7.性齐次微分方程组的解组) ( , ), ( ), ( 2 1 x x x n Y Y Y 为基本解组的充分必要条件是它们的朗斯基行列式0 ) (≠ x W. 8.方程540 y y y ''' ++=的基本解组是x x e e4 ,- - 二、选择题(每小题3 分,共15分)。 9.两个不同的线性齐次微分方程组( D )的基本解组. (A) 一定有相同(B) 可能有相同 (C) 一定有相似(D) 没有相同 10.方程组 ? ? ? ?? ? ? + = + = y x t y y x t x 4 3 d d 2 d d 的奇点)0,0(的类型是(D ). (A)稳定焦点(B)不稳定焦点(C)鞍点(D)不稳定结点11.方程x(y2-1)d x+y(x2-1)d y=0的所有常数解是( C ). (A) 1± = x(B)1± = y

(C )1±=y , 1±=x (D )1=y , 1=x 12.n 阶线性非齐次微分方程的所有解( D ). (A )构成一个线性空间 (B )构成一个1-n 维线性空间 (C )构成一个1+n 维线性空间 (D )不能构成一个线性空间 13.方程4d d +-=x y x y ( A )奇解. (A) 无 (B) 有一个 (C) 有两个 (D) 可能有 三、计算题(每小题8分,共48分) 。 14.求方程 x y x y x y tan d d +=的通解 解:令x y u =,则u x u y '+=', u x u x tan d d = 当0tan ≠u 时,等号两边积分 1d tan d C x x u u +=?? C x u ln ln sin ln += 0≠C Cx x y =sin 15.求方程0d d )1(2=+--y x x y x 的通解 解:积分因子21)(x x =μ, 则 0d 1d 122=+--y x x x y x 为全微分方程.取10=x ,00=y ,于是通积分为 1012 2d d 1C y x x y x y x =+--?? 即 C x x x y =++1 16.求方程2221)(x y x y y + '-'=的通解 解:令 p y =',得到2 2 2x xp p y +-= (*) ,两端同时关于求导,

最新常微分方程试题库试卷库

常微分方程试题库试 卷库

常微分方程期终考试试卷(1) 一、 填空题(30%) 1、方程(,)(,)0M x y dx N x y dy +=有只含x 的积分因子的充要条件是( )。有只含y 的积分因子的充要条件是______________。 2、_____________称为黎卡提方程,它有积分因子______________。 3、__________________称为伯努利方程,它有积分因子_________。 4、若12(),(),,()n X t X t X t 为n 阶齐线性方程的n 个解,则它们线性无关的充要条件是__________________________。 5、形如___________________的方程称为欧拉方程。 6、若()t φ和()t ψ都是' ()x A t x =的基解矩阵,则()t φ和()t ψ具有的关系是 _____________________________。 7、当方程的特征根为两个共轭虚根是,则当其实部为_________时,零解是稳定的,对应的奇点称为___________。 二、计算题(60%) 1、 3 ()0ydx x y dy -+= 2、sin cos2x x t t ''+=- 3、若 2114A ?? =?? -??试求方程组x Ax '=的解12(),(0)t η??ηη??==????并求expAt 4、32( )480 dy dy xy y dx dx -+= 5、求方程2 dy x y dx =+经过(0,0)的第三次近似解 6.求1,5 dx dy x y x y dt dt =--+=--的奇点,并判断奇点的类型及稳定性. 三、证明题(10%) 1、n 阶齐线性方程一定存在n 个线性无关解。 试卷答案 一填空题 1、()M N y x x N ???-??= ()M N y x y M ???-??=-

常微分方程期末考试试卷(6)

常微分方程期末考试试卷(6) 学院 ______ 班级 _______ 学号 _______ 姓名 _______ 成绩 _______ 一. 填空题 (共30分,9小题,10个空格,每格3分)。 1.当_______________时,方程M(x,y)dx+N(x,y)dy=0称为恰当方程,或称全 微分方程。 2、________________称为齐次方程。 3、求dx dy =f(x,y)满足00)(y x =?的解等价于求积分方程____________________的连续解。 4、若函数f(x,y)在区域G 内连续,且关于y 满足利普希兹条件,则方程),(y x f dx dy = 的解 y=),,(00y x x ?作为00,,y x x 的函数在它的存在范围内是__________。 5、若)(),...(),(321t x t x t x 为n 阶齐线性方程的n 个解,则它们线性无关的充要条件是__________________________________________。 6、方程组x t A x )(/=的_________________称之为x t A x )(/=的一个基本解组。 7、若)(t φ是常系数线性方程组Ax x =/的基解矩阵,则expAt =____________。 8、满足___________________的点(**,y x ),称为方程组的奇点。 9、当方程组的特征根为两个共轭虚根时,则当其实部________时,零解是稳定 的,对应的奇点称为___________。 二、计算题(共6小题,每题10分)。 1、求解方程:dx dy =3 12+++-y x y x 2.解方程: (2x+2y-1)dx+(x+y-2)dy=0

常微分方程试题模拟试题(一)

常微分方程试题模拟试题(一) 一、填空题(每小题3分,本题共15分) 1 .方程d d y x =满足初值解的存在且惟一性的区域是 . 2.方程0d )1(d )1(=+++y x x y 所有常数解是 . 3.线性方程0y y ''+=的基本解组是 . 4.(,)y f x y '有界是保证方程d (,)d y f x y x =初值解惟一的 条件. 5.向量函数组在区间I 上的朗斯基行列式()0W x =是它们线性相关的 条件. 二、单项选择题(每小题3分,本题共15分) 6.积分方程11()1()d x y x y s s s =+?的解是( ) . (A )1y = (B )e x y = (C )0y = (D )y x = 7. 一阶线性微分方程d ()()d y p x y q x x +=的积分因子是( ). (A )?=x x p d )(e μ (B )?=x x q d )(e μ (C )?=-x x p d )(e μ (D )?=-x x q d )(e μ 8.方程 ?????≠==0 ,ln 00d d y y y y x y 当当, 在xoy 平面上任一点的解( ). (A )都不是惟一的 (B )都是惟一的 (C )都与x 轴相交 (D )都与x 轴相切 9.平面系统???????+=+=y x t y y x t x 43d d 2d d 的奇点类型是( ). (A )不稳定结点 (B )稳定焦点 (C )不稳定焦点 (D )鞍点 10.方程0y y ''+=的任一非零解在(,)x y 平面的x 轴上任意有限区间内( )零点. (A )无 (B )只有一个 (C )至多只有有限个 (D )有无限个 三、计算题(每小题8分,共40分) 求下列方程的通解或通积分: 11. 2211d d x y x y --= 12. ()d ()d 0x y x x y y +--= 13. 2y xy y ''=+ 14.012)(2=+'-'y x y 15.032 22=-'-''y x y y y 四、计算题(本题15分)

常微分方程模拟试题

常微分方程模拟试题 一、填空题(每小题3分,本题共15分) 1.一阶微分方程的通解的图像是 2 维空间上的一族曲线. 2.二阶线性齐次微分方程的两个解)(),(21x y x y 为方程的基本解组充分必要条件是 . 3.方程02=+'-''y y y 的基本解组是 . 4.一个不可延展解的存在在区间一定是 区间. 5.方程 21d d y x y -=的常数解是 . 二、单项选择题(每小题3分,本题共15分) 6.方程y x x y +=-31d d 满足初值问题解存在且唯一定理条件的区域是( ). (A )上半平面 (B )xoy 平面 (C )下半平面 (D )除y 轴外的全平面 7. 方程 1d d +=y x y ( )奇解. (A )有一个 (B )有两个 (C )无 (D )有无数个 8.)(y f 连续可微是保证方程 )(d d y f x y =解存在且唯一的( )条件. (A )必要 (B )充分 (C )充分必要 (D )必要非充分 9.二阶线性非齐次微分方程的所有解( ). (A )构成一个2维线性空间 (B )构成一个3维线性空间 (C )不能构成一个线性空间 (D )构成一个无限维线性空间 10.方程32 3d d y x y =过点(0, 0)有( B ). (A) 无数个解 (B) 只有一个解 (C) 只有两个解 (D) 只有三个解 三、计算题(每小题6分,本题共30分) 求下列方程的通解或通积分: 11. y y x y ln d d = 12. x y x y x y +-=2)(1d d 13. 5d d xy y x y += 14.0)d (d 22 2=-+y y x x xy 15.3 )(2y y x y '+'= 四、计算题(每小题10分,本题共20分) 16.求方程2 55x y y -='-''的通解. 17.求下列方程组的通解. ?????? ?-=+=x t y t y t x d d sin 1d d

《常微分方程》考试试卷(A卷)

《常微分方程》考试试卷(A 卷) 班别: 学号: 姓名: 成绩: 一、填空题(每空2分,共30分) 1、形如 的方程,称为齐次方程;齐次方程1dy y dx x =+的通 解为: 。 2、形如 的方程,称为变量分离方程;方程 2dy xy dx =满足初始条件:0x =,1y =的特解为: 。 3、设(,)M x y , (,)N x y 在某区域内是x ,y 连续函数, 且具有连续的一阶偏导数,则微分方程(,)(,)0M x y dx N x y dy +=是恰当方程的充要条件是: 。 4、函数(,)f x y 称为在R 上关于y 满足利普希茨条件,如果存在常数0L >,使得不等式 对于所有1(,)x y ,2(,)x y R ∈都成立。 5、定义在区间a t b ≤≤上的函数1()x t ,2()x t ,…()k x t ,如果 ,则称这些函数是线性相关的;若函数1()x t ,2()x t ,…()k x t 线性相关,则在[,]a b 上它们的伏朗斯基行列式恒为 。 6、 微分方程440d x x dt -=的特征方程为 ,特征根为 、 、 、 ,方程的通解为 。 7、利用分项组合法,微分方程2(3)(4)0y x dx y x dy ---=的通解为 。

二、判断题(每题2分,共10分) 1、微分方程 2 2 30 dy dy x y dx dx ?? +-= ? ?? 的阶数为1 () 2、sin(2) y wx =为方程 2 2 2 d y w y dx +=的解() 3、微分方程的通解包括所有的解。() 4、方程 2 2 d y y dx -=是2阶齐线性微分方程。() 5、函数1,t,2t,…,k t在任何区间上都线性无关。() 三、计算题(每题12分,共60分) 1、解微分方程 2 3 1 dy y dx xy x y + = +

相关主题
文本预览
相关文档 最新文档