当前位置:文档之家› 半导体物理第五章习题答案

半导体物理第五章习题答案

半导体物理第五章习题答案
半导体物理第五章习题答案

第5章 非平衡载流子

1. 一个n 型半导体样品的额外空穴密度为1013cm -3,已知空穴寿命为100μs ,计算空穴的复合率。

解:复合率为单位时间单位体积内因复合而消失的电子-空穴对数,因此

13

1730

6

101010010

U cm s ρτ--===?? 2. 用强光照射n 型样品,假定光被均匀吸收,产生额外载流子,产生率为g p ,

空穴寿命为τ,请 ①写出光照开始阶段额外载流子密度随时间变化所满足的方程; ②求出光照下达到稳定状态时的额外载流子密度。

解:⑴光照下,额外载流子密度?n =?p ,其值在光照的开始阶段随时间的变化决定于产生和复合两种过程,因此,额外载流子密度随时间变化所满足的方程由产生率g p 和复合率U 的代数和构成,即

()p d p p

g dt τ

=- ⑵稳定时额外载流子密度不再随时间变化,即

()

0d p dt

= ,于是由上式得 0p p p p g τ?=-=

3. 有一块n 型硅样品,额外载流子寿命是1μs ,无光照时的电阻率是10Ω?cm 。今用光照射该样品,光被半导体均匀吸收,电子-空穴对的产生率是1022/cm 3?s ,试计算光照下样品的电阻率,并求电导中少数载流子的贡献占多大比例?

解:光照被均匀吸收后产生的稳定额外载流子密度

226163101010 cm p p n g τ-?=?==?=-

取21350/()n cm V s μ=?,2

500/()p cm V s μ=?,则额外载流子对电导率的贡献

1619()10 1.610(1350500) 2.96 s/cm n p pq σμμ-=?+=???+=

无光照时00

1

0.1/s cm σρ=

=,因而光照下的电导率

0 2.960.1 3.06/s cm σσσ=+=+=

相应的电阻率 1

1

0.333.06

cm ρσ

=

=

=Ω?

少数载流子对电导的贡献为:p p p p q p pq pq g σμμτμ=≈=

代入数据:16190()10 1.6105000.8/p p p p p q pq s cm σμμ-=+?≈?=???=

00.8

0.26263.06

p σσσ

=

==+ ﹪ 即光电导中少数载流子的贡献为26﹪

4.一块半导体样品的额外载流子寿命τ =10μs ,今用光照在其中产生非平衡载流子,问光照突然停止后的20μs 时刻其额外载流子密度衰减到原来的百分之几?

解:已知光照停止后额外载流子密度的衰减规律为

0()t

P t p e τ-

=

因此光照停止后任意时刻额外载流子密度与光照停止时的初始密度之比即为

()

t P t e P τ-= 当520210t s s μ-==?时

202100

(20)

0.13513.5P e e P --==== ﹪ 5. 光照在掺杂浓度为1016cm -3的n 型硅中产生的额外载流子密度为?n=?p= 1016cm -3。计算无光照和有光照时的电导率。

解:根据新版教材图4-14(a )查得N D =1016cm -3的n 型硅中多子迁移率

21100/()n cm V s μ=?

少子迁移率

2500/()p cm V s μ=?

设施主杂质全部电离,则无光照时的电导率

16190010 1.6101100 1.76 s/cm n n q σμ-==???=

有光照时的电导率

14190() 1.7610 1.610(1100400) 1.784 s/cm n p nq σσμμ-=+?+=+???+=

6.画出p 型半导体在光照(小注入)前后的能带图,标出原来的费米能级和光照时的准费米能级。

光照前能带图 光照后(小注入)能带图

注意细节:

① p 型半导体的费米能级靠近价带;

② 因为是小注入,?p <

③ 即便是小注入,p 型半导体中也必是?n >>n 0,故E Fn 要远比E F 更接近导带,但因为是小注入,?n <

7. 光照在施主浓度N D =1015cm -3的n 型硅中产生额外载流子?n=?p=1014cm -3。试计算这种情况下准费米能级的位置,并和原来的费米能级作比较。

解:设杂质全部电离,则无光照时0D n N = 由0i F E E kT

i n n e

--=得光照前

15

010

10ln 0.026ln 0.2891.510

F i i i i n E E kT E E n =+=+=+?eV 光照后1530 1.110n n n cm -=+=? ,这种情况下的电子准费米能级

15

10

1.110ln 0.026ln 0.291 eV 1.510Fn i i i i n E E kT E E n ?=+=+=+?

空穴准费米能级

14

10

10ln 0.026ln 0.229 eV 1.510

F p

i i i i p E E kT E E n ==-=-?- 与E F 相比,电子准费米能级之差0.002 eV Fn F E E -=,相差甚微;而空穴准费米能级之差0.518 eV F Fp E E -=,即空穴准费米能级比平衡费米能级下降了0.52eV 。由此可见,对n 型半导体,小注入条件下电子准费米能级相对于热平衡费米能级的变化很小,但空穴

准费米能级变化很大。

E V

E F E Fn

E Fp

E C

8. 在一块p 型半导体中,有一种复合-产生中心,小注入时,被这些中心俘获的电子发射回导带的过程和它与空穴复合的过程具有相同的几率。试求这种复合-产生中心的能级位置,并说明它能否成为有效的复合中心?

解:用E T 表示该中心的能级位置,参照参考书的讨论,知单位时间单位体积中由E T 能级发射回导带的电子数应等于E T 上俘获的电子数n T 与电子的发射几率S -之积(S -=r n n 1),与价带空穴相复合的电子数则为r p pn T ;式中,r p p 可视为E T 能级上的电子与价带空穴相复合的几率。由题设条件知二者相等,即

1n p r n r p =

式中1C T E E kT

C n N e

--=。对于一般复合中心,n p r r ≈或相差甚小,因而可认为 n 1=p ;再由小

注入条件p =(p 0+?p )≈p 0,即得

10n p

C T F V E E E E kT

kT

C V N e

N e

---

-

=

由此知

ln C

T C V F V

N E E E E kT N =+-- ∵本征费米能级01

(ln )2c i c v v

N E E E k T N =

+- ∴上式可写成2T i F E E E =-,或写成

T i i F E E E E -=-

室温下, p 型半导体F E 一般远在i E 之下,所以T E 远在i E 之上,故不是有效复合中心。

10.一块n 型硅内掺有1016cm -3的金原子,试求它在小注入时的寿命。若一块p 型硅内也掺有1016cm -3的金原子,它在小注入时的寿命又是多少?

解:n 型Si 中金能级作为受主能级而带负电成为Au -

,其空穴俘获率

731.1510/p r cm s -=?

因而n 型Si 中的少子寿命

10

716

118.7101.151010

p p T s r N τ--=

=≈??? p 型Si 中金能级作为施主能级而带正电成为Au +

,其电子俘获率

836.310/n r cm s -=?

因而p 型Si 中的少子寿命

9816

11

1.59106.31010

n n T s r N τ--=

=≈???

11.在下述条件下,是否有载流子的净复合或者净产生:

① 载流子完全耗尽(即n ,p 都大大小于n i )的半导体区域。 ② 在只有少数载流子被耗尽(例如p n <

>n i 。

解:⑴载流子完全耗尽即意味着i n n ,i p n ,2i np n ,因而额外载流子的复合率

002

0()()

i c

i t i E E E E k T

k T

p i n i np n U n n e

p n e

ττ---=

<+++ 即该区域产生大于复合,故有载流子净产生。

⑵若0n n n n =,0n n p p ,则002

n n n n i n p n p n = ,即2i np n 按上列复合率公式知该区域复合率U <0,故有载流子净产生。

⑶若n p =且i n n ,则必有2i np n ,按上列复合率公式知该区域U >0,即该区域有载流子的净复合。

12、对掺杂浓度N D =1016cm -3、少数载流子寿命τp =10μs 的n 型硅,求少数载流

子全部被外界清除时电子-空穴对的产生率。(设E T =E i )

解:在少数载流子全部被清除(耗尽)、即n 型硅中p=0的情况下,通过单一复合中心进行的复合过程的复合率公式 (5-42) 变成

2

()i p i n i

n U n n n ττ-=

++ 式中已按题设E T =E i 代入了n 1=p 1=n i 。由于n =N D =1016cm -3,而室温硅的n i 只有1010cm -3量级,因而n +n i >>n i ,上式分母中的第二项可略去,于是得

2102931

61610

(1.510)U 2.2510 cm s ()1010(10 1.510)

i p i n n n τ----?===-??+??+?- 复合率为负值表示此时产生大于复合,电子-空穴对的产生率

9312.2510 cm s G U --=-=??

另解:若非平衡态是载流子被耗尽,则恢复平衡态的驰豫过程将由载流子的复合变为热激发产生,产生率与少子寿命的乘积应等于热平衡状态下的少数载流子密度,因此得

2

20

01i i p p p D p n n G n N τττ==?=102931616

(1.510) 2.2510 cm s 101010

---?==????

注意:严格说,上式(产生率公式)中的少子寿命应是额外载流子的产生寿命而非小注入复合寿命。产生寿命 τsc 与小注入复合寿命τn 和τp 的关系为(见陈治明、王建农合著《半导体器件的材料物理学基础》p.111):

T i

i T E E E E kT

kT

sc p n e

e

τττ--=+

13. 室温下,p 型锗中电子的寿命为τn =350μs ,电子迁移率μn =3600cm 2/V ?s ,试求电子的扩散长度。

解:由爱因斯坦关系知室温下半导体中电子的扩散系数

140

n n n kT D q μμ=

= 相应地,扩散长度

n n L ==

代入数据得室温下p 型Ge 中电子的扩散长度

221017.710 cm 1.77 mm n L --=

=?= 14. 某半导体样品具有线性分布的空穴密度,其3μm 内的密度差为1015cm -3,

μp =400cm 2/V ?s 。试计算该样品室温下的空穴扩散电流密度。

解:按菲克第一定律,空穴扩散电流密度可表示为

()()

()p p p kT d p d p J D q q

dx q dx

μ==? 扩 式中,空穴密度梯度

()d p p dx x ≈ ,室温1

0.02640

kT ev ev ==,因此 15192

4

110()400 1.610 5.3A /cm 40310

p J --=????=?扩

15. 在电阻率为1Ω?cm 的p 型硅中,掺金浓度N T =1015cm -3,由边界稳定注入的

电子密度 ?n =1010cm -3,试求边界处的电子扩散电流。

解:在存在额外载流子(少子)一维密度梯度的半导体中,坐标为x 处的少子扩散电流可表

示为(对p 型材料)

()n

n n

D J qS q

n x L =-=- n 式中D n 和L n 分别为电子的扩散系数和扩散长度。为求其值,须知题设硅样品的电子迁移率和寿命。由于迁移率是掺杂浓度的函数,因而需要了解该样品的电离杂质总浓度的大小。

于是,首先对ρ=1Ω?cm 的p 型硅由图4-15查得其受主浓度N A =1.6?1016cm -3

,考虑电离杂质对载流子迁移率的影响,杂质浓度取受主杂质浓度与金浓度之和,即

1631.710 cm i A T N N N -=+=?

由图4-14(a)中的μn 少子曲线,知该样品的μn 约为1100cm 2

/V ?s 。因而由爱因斯坦关系得

21

110027.5 cm /s 40

n n kT D q μ=

=?= 下面再根据掺金浓度N T 计算少子寿命和扩散长度: 将r n =6.3?10-8cm 3/V ?s 代入小注入寿命式,得

8158

T 11 1.591010 6.310

n s N r τ--=

==???

46.610 cm n L -===?

已知表面处注入电子密度?n =1010cm -3,于是得电子扩散电流密度

191052

4

27.51.61010 6.6710A /cm 6.610

n J ---=-??

?=?? 16.一块电阻率为3Ω?cm 的n 型硅样品,空穴寿命τp =5μs ,若在其平面形表面稳定注入空穴,表面空穴密度?p (0)=1013cm -3。计算从这个表面扩散进入半导体内部的空穴电流密度,以及在离表面多远处过剩空穴浓度等于1012cm -3。

解:参照上题的思路,首先由图4-15查得ρ=3Ω?cm 的n 型硅的施主浓度N D =1.6?1015cm -3,

再由图4-14(a)中的μp 少子曲线知其μp 约为500cm 2/V ?s 。于是知扩散系数

21

50012.5 cm /s 40

p p kT D q μ=

=?= 扩散长度

37.910 cm p L -=

==?

从表面进入样品的空穴扩散电流密度

1913

323

12 1.610100 2.5310A /cm 7.910

p

p p D J q p L ---???=?=??.5()= 再根据注入空穴在样品表面以内的一维分布

()0p

x

L p x p e

-= ()

可以算出空穴密度衰减到1012

cm -3

的位置距表面的距离为

123

213()10ln 7.910ln 1.810 cm 010

p p x x L p --=-=-??=? ()

17.光照一个1Ω?cm 的n 型硅样品,均匀产生额外载流子对,产生率为1017/cm 3?s 。

设样品的少子寿命为10μs ,表面复合速度为100cm/s 。计算: ①单位时间在单位面积表面复合的空穴数。 ②单位时间单位表面积下离表面三个扩散长度的体积内复合的空穴数。

解:⑴ 按式(5-48),单位时间在单位面积表面复合掉的空穴数(即表面复合率U S )应为

(0)S p U S p =?

式中p S 为表面复合速度。按式(5-162),均匀光照样品中考虑表面复合的额外载流子分布

0()[1]p

x L p p p p p p p

S p x p g e

L S τττ-

=+-

+

因而表面(x=0)处的额外空穴密度

0(0)(0)[1]p p p p p p p

S p p p g L S τττ?=-=-

+

对电阻率为1Ω?cm 的n-Si ,查表知其N D =5?1015cm -3,相应的空穴迁移率μp 约为500cm 2/V ?s 。于是算得空穴扩散长度:

21.110 cm p L -=

==? 表面的额外空穴密度:

66

17

113

26

1001010(0)101010(1)9.210 cm 1.1101001010

P ----???=???-=??+??- 单位时间在单位面积表面复合掉的空穴数即为

111321S U (0)9.1101009.110p S p cm s --=??=??=??

⑵为求在单位时间单位表面积下离表面三个扩散长度的体积内复合掉的空穴数,须先求该体积中的额外空穴数目?p(3L p )。因该体积内的额外空穴密度随距离变化,因而空穴总数必须通过积分求解,即

300

(3)(())p

L p p L p x p dx ?=-?

式中 0()[1]p

x L p p p p p p p

S p x p g e

L S τττ-

=+-

+

因此 32

30

(3)[1]3p p

p

p

L x x L L L p p p p p p p p p p p p p p p

p p p

S g S L p L g e

dx g L e

L S L S ττττττ-

-

=

-

=+

++?

代入数据得: 102

p 3L 310 cm P -?=?()

故单位时间位表面积下离表面三个扩散长度的体积内复合掉的空穴数为

101521

5310310 cm s 10

p

τ---?==?? 18、一块施主浓度为2?1016cm -3的硅片,含均匀分布的金,浓度为3?1015cm -3,

表面复合中心密度为1010cm -2,已知硅中金的r p =1.15?10-7cm 3/s ,表面复合

中心的r s =2 ?10-6cm 3/s ,求:

1)小注入条件下的少子寿命,扩散长度和表面复合速度;

2)在产生率g=1017/s.cm 3的均匀光照下的表面空穴密度和空穴流密度.

解:1) 小注入条件下的少子寿命

1p t r N τ=

9

715

18.7101.151010

s --==??? 由总杂质浓度1615163T 21010 2.110 cm i D N N N -=+=?+=?查图4-14(a)知该硅片中少数载流子的迁移率3500/p cm V s μ=?,因而扩散系数

21

50012.5 cm /s 40

P p kT D q μ=

=?= 扩散长度

43.310 cm p L -=

==?

表面复合速度:7

10

3

1.151010 1.1510/p p st S r N cm s -==??=? 2)按式(5-162),均匀光照下考虑表面复合的空穴密度分布

0()[1]p

x

L p p p p p p p

S p x p g e

L S τττ-

=+-

+

因而表面(x=0)处的空穴密度

0(0)[1]p p p p p p p

S p p g L S τττ=+-

+

式中p 0=n i 2/n 0,考虑到金在n 型Si 中起受主作用,n 0=N D -N T =1.9?1016 /cm 3,故

2102

4301616

(1.1510) 1.18101.910 1.910

i n p cm -?===??? 代入数据得表面空穴密度

39

4

9

17

439

1.15108.710(0) 1.18108.71010(1)

2.7610 1.15108.710

p ----???=?+???-?+??? 838.410cm -=?

因为p 0<

S U (0)p S p ?=3841121.1510(8.410 1.1810)9.6610 /cm s =???-?=??

半导体物理试卷b答案

一、名词解释(本大题共5题每题4分,共20分) 1. 直接复合:导带中的电子越过禁带直接跃迁到价带,与价带中的空穴复合,这样的复合过程称为直接复合。 2.本征半导体:不含任何杂质的纯净半导体称为本征半导体,它的电子和空穴数量相同。 3.简并半导体:半导体中电子分布不符合波尔兹满分布的半导 体称为简并半导体。 过剩载流子:在光注入、电注入、高能辐射注入等条件下,半导体材料中会产生高于热平衡时浓度的电子和空穴,超过热平衡浓度的电子△0和空穴△0称为过剩载流子。 4. 有效质量、纵向有效质量与横向有效质量 答:有效质量:由于半导体中载流子既受到外场力作用,又受到半导体内部周期性势场作用。有效概括了半导体内部周期性势场的作用,使外场力和载流子加速度直接联系起来。在直接由实验测得的有效质量后,可以很方便的解决电子的运动规律。 5. 等电子复合中心 等电子复合中心:在 V族化合物半导体中掺入一定量与主原子等价的某种杂质原子,取代格点上的原子。由于杂质原子与主原子之间电性上的差别,中性杂质原子可以束缚电子或空穴而成为带电中心。带电中心吸引与被束缚载流子符号相反的载流子,形成一个激子束缚态。这种激子束缚态叫做等电子复合中心。二、选择题(本大题共5题每题3分,共15分)

1.对于大注入下的直接辐射复合,非平衡载流子的寿命与(D ) A. 平衡载流子浓度成正比 B. 非平衡载流子浓度成正比 C. 平衡载流子浓度成反比 D. 非平衡载流子浓度成反比 2.有3个硅样品,其掺杂情况分别是: 甲.含铝1×10-153乙.含硼和磷各1×10-173丙.含镓1×10-173 室温下,这些样品的电子迁移率由高到低的顺序是(C )甲乙丙 B. 甲丙乙 C. 乙甲丙D. 丙甲乙 3.有效复合中心的能级必靠近( A ) A.禁带中部 B.导带 C.价带 D.费米能级 4.当一种n型半导体的少子寿命由直接辐射复合决定时,其小注入下的少子寿命正比于(C ) A.10 B.1/△n C.10 D.1/△p 5.半导体中载流子的扩散系数决定于其中的( A ) A.散射机构 B. 复合机构 C.杂质浓变梯度 D.表面复合速度 6.以下4种半导体中最适合于制作高温器件的是( D )

半导体物理学试题库完整

一.填空题 1.能带中载流子的有效质量反比于能量函数对于波矢的_________.引入有效质量的意义在于其反映了晶体材料的_________的作用。(二阶导数.内部势场) 2.半导体导带中的电子浓度取决于导带的_________(即量子态按能量如何分布)和_________(即电子在不同能量的量子态上如何分布)。(状态密度.费米分布函数) 3.两种不同半导体接触后, 费米能级较高的半导体界面一侧带________电.达到热平衡后两者的费米能级________。(正.相等) 4.半导体硅的价带极大值位于空间第一布里渊区的中央.其导带极小值位于________方向上距布里渊区边界约0.85倍处.因此属于_________半导体。([100]. 间接带隙) 5.间隙原子和空位成对出现的点缺陷称为_________;形成原子空位而无间隙原子的点缺陷称为________。(弗仑克耳缺陷.肖特基缺陷) 6.在一定温度下.与费米能级持平的量子态上的电子占据概率为_________.高于费米能级2kT能级处的占据概率为_________。(1/2.1/1+exp(2)) 7.从能带角度来看.锗、硅属于_________半导体.而砷化稼属于_________半导体.后者有利于光子的吸收和发射。(间接带隙.直接带隙) 8.通常把服从_________的电子系统称为非简并性系统.服从_________的电子系统称为简并性系统。(玻尔兹曼分布.费米分布) 9. 对于同一种半导体材料其电子浓度和空穴浓度的乘积与_________有关.而对于不同的半导体材料其浓度积在一定的温度下将取决于_________的大小。(温度.禁带宽度) 10. 半导体的晶格结构式多种多样的.常见的Ge和Si材料.其原子均通过共价键四面体相互结合.属于________结构;与Ge和Si晶格结构类似.两种不同元素形成的化合物半导体通过共价键四面体还可以形成_________和纤锌矿等两种晶格结构。(金刚石.闪锌矿) 11.如果电子从价带顶跃迁到导带底时波矢k不发生变化.则具有这种能带结构的半导体称为_________禁带半导体.否则称为_________禁带半导体。(直接.间接) 12. 半导体载流子在输运过程中.会受到各种散射机构的散射.主要散射机构有_________、 _________ 、中性杂质散射、位错散射、载流子间的散射和等价能谷间散射。(电离杂质的散射.晶格振动的散射) 13. 半导体中的载流子复合可以有很多途径.主要有两大类:_________的直接复合和通过禁带内的_________进行复合。(电子和空穴.复合中心)

《半导体物理学》习题库

《半导体物理学》习题库 它们之间的异同 7。ICBO、IEBO和ICEO的逆流是如何定义的?写出ic eo 和icbo的关系并讨论。 8。如何定义反向击穿电压bucbo、buceo、buebo?写下布奇奥和布奇博之间的关系,并进行讨论。9.高频时晶体管电流放大系数降低的原因是什么? 10。描述晶体管的主要频率参数是什么?它们各自的含义是什么? 11.影响特征频率的因素有哪些?如何描述频率ft? 12。绘制晶体管共基极高频等效电路图和共发射极高频等效电路图13.大电流下晶体管β 0和傅立叶变换减小的主要原因是什么? 14。简述了大注入效应、基极扩展效应和发射极电流边缘效应的机理 15。晶体管最大耗散功率是多少?这与什么因素有关?如何降低晶体管热阻? 16。画出晶体管的开关波形,表示延迟时间τ d 、上升时间tr、 存储时间ts和下降时间tf,并解释其物理意义 17。解释晶体管的饱和状态、关断状态、临界饱和和深度饱和的物理意义

18。以NPN硅平面为例,当发射极结正向偏置而集电极结反向偏置时,从发射极进入的电子流分别用晶体管的发射极区、发射极结势垒区、基极区、集电极结势垒区和集电极区的传输过程中哪种运动形式(扩散或漂移)占主导地位来解释 6 19。尝试比较fα、fβ和ft的相对大小 20。画出晶体管饱和状态下的载流子分布,并简要描述过剩储存电荷的消失过程 21。画出普通晶体门的基本结构图,简述其基本工作原理22.有一种低频低功率合金晶体管,它使用N型锗作为衬底,电阻率为1.5?通过燃烧铟合金制备发射极区和集电极区。两个区域的掺杂浓度约为3×1018/cm3,ro (Wb=50?m,Lne=5?m) 23。一个对称的P+NP+锗合金管,其底部宽度为5?基区杂质浓度为5×1015cm-3,基区腔寿命为10?秒(AE=AC=10-3cm2)计算UEB = 0.26伏和UCB =-50伏时的基极电流IB?得到了上述条件下的α0和β0(r0≈1)。24.已知γ0=0.99,BUCBO = 150V伏,Wb=18.7?m,基极区中的电子寿命ηb = 1us(如果忽略发射极结的空间电荷区复合和基极区表面复合),找到α0、β0、β0*和BUCEO(设置Dn=35cm2/s)。25。NPN双扩散外延平面晶体管是已知的,集电极区电阻率ρc = 1.2ω·cm,集电极区厚度Wc=10?m,硼扩散表面浓度NBS=5×1018cm-3,结深Xjc=1.4?m分别计算集电极偏置电压为25V

半导体物理 课后习题答案

第一章习题 1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近 能量E V (k)分别为: E c =0 2 20122021202236)(,)(3m k h m k h k E m k k h m k h V - =-+ 0m 。试求: 为电子惯性质量,nm a a k 314.0,1== π (1)禁带宽度; (2) 导带底电子有效质量; (3)价带顶电子有效质量; (4)价带顶电子跃迁到导带底时准动量的变化 解:(1) eV m k E k E E E k m dk E d k m k dk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43 (0,060064 3 382324 3 0)(2320 2121022 20 202 02022210 1202== -==<-===-==>=+===-+ 因此:取极大值 处,所以又因为得价带: 取极小值处,所以:在又因为:得:由导带: 04 32 2 2*8 3)2(1 m dk E d m k k C nC ===

s N k k k p k p m dk E d m k k k k V nV /1095.704 3 )() ()4(6 )3(25104 3002 2 2*1 1 -===?=-=-=?=- == 所以:准动量的定义: 2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107 V/m 的电场时,试分别 计算电子自能带底运动到能带顶所需的时间。 解:根据:t k h qE f ??== 得qE k t -?=? s a t s a t 137 19 282 1911027.810 10 6.1)0(102 7.810106.1) 0(----?=??-- =??=??-- = ?π π 第三章习题和答案 1. 计算能量在E=E c 到2 *n 2 C L 2m 100E E π+= 之间单位体积中的量子态数。 解 3 2 2233 *28100E 212 33*22100E 00212 3 3 *231000L 8100)(3222)(22)(1Z V Z Z )(Z )(22)(23 22 C 22C L E m h E E E m V dE E E m V dE E g V d dE E g d E E m V E g c n c C n l m h E C n l m E C n n c n c π ππππ=+-=-=== =-=*++??** )()(单位体积内的量子态数) (

半导体物理试卷b答案

半导体物理试卷b答案 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

一、名词解释(本大题共5题每题4分,共20分) 1. 直接复合:导带中的电子越过禁带直接跃迁到价带,与价带中的空穴复合,这样的复合过程称为直接复合。 2.本征半导体:不含任何杂质的纯净半导体称为本征半导体,它的电子和空穴数量相同。 3.简并半导体:半导体中电子分布不符合波尔兹满分布的半导体称为简并半导体。 过剩载流子:在光注入、电注入、高能辐射注入等条件下,半导体材料中会产生高于热平衡时浓度的电子和空穴,超过热平衡浓度的电子△n=n-n 和空穴 称为过剩载流子。 △p=p-p 4. 有效质量、纵向有效质量与横向有效质量 答:有效质量:由于半导体中载流子既受到外场力作用,又受到半导体内部周期性势场作用。有效概括了半导体内部周期性势场的作用,使外场力和载流子加速度直接联系起来。在直接由实验测得的有效质量后,可以很方便的解决电子的运动规律。 5. 等电子复合中心 等电子复合中心:在III- V族化合物半导体中掺入一定量与主原子等价的某种杂质原子,取代格点上的原子。由于杂质原子与主原子之间电性上的差别,中性杂质原子可以束缚电子或空穴而成为带电中心。带电中心吸引与被束缚载流子符号相反的载流子,形成一个激子束缚态。这种激子束缚态叫做等电子复合中心。 二、选择题(本大题共5题每题3分,共15分) 1.对于大注入下的直接辐射复合,非平衡载流子的寿命与(D ) A. 平衡载流子浓度成正比 B. 非平衡载流子浓度成正比 C. 平衡载流子浓度成反比 D. 非平衡载流子浓度成反比2.有3个硅样品,其掺杂情况分别是: 甲.含铝1×10-15cm-3乙.含硼和磷各1×10-17cm-3丙.含镓1×10-17cm-3室温下,这些样品的电子迁移率由高到低的顺序是(C ) 甲乙丙 B. 甲丙乙 C. 乙甲丙 D. 丙甲乙

半导体物理学练习题(刘恩科)

第一章半导体中的电子状态 例1.证明:对于能带中的电子,K状态和-K状态的电子速度大小相等,方向相反。即:v(k)= -v(-k),并解释为什么无外场时,晶体总电流等于零。 解:K状态电子的速度为: (1)同理,-K状态电子的速度则为: (2)从一维情况容易看出: (3)同理 有: (4) (5) 将式(3)(4)(5)代入式(2)后得: (6)利用(1)式即得:v(-k)= -v(k)因为电子占据某个状态的几率只同该状态的能量有关,即:E(k)=E(-k)故电子占有k状态和-k状态的几率相同,且v(k)=-v(-k)故这两个状态上的电子电流相互抵消,晶体中总电流为零。 例2.已知一维晶体的电子能带可写成: 式中,a为晶格常数。试求: (1)能带的宽度; (2)能带底部和顶部电子的有效质量。 解:(1)由E(k)关 系 (1)

(2) 令得: 当时,代入(2)得: 对应E(k)的极小值。 当时,代入(2)得: 对应E(k)的极大值。 根据上述结果,求得和即可求得能带宽度。 故:能带宽度 (3)能带底部和顶部电子的有效质量: 习题与思考题: 1 什么叫本征激发?温度越高,本征激发的载流子越多,为什么?试定性说明之。 2 试定性说明Ge、Si的禁带宽度具有负温度系数的原因。 3 试指出空穴的主要特征。 4 简述Ge、Si和GaAs的能带结构的主要特征。

5 某一维晶体的电子能带为 其中E0=3eV,晶格常数a=5×10-11m。求: (1)能带宽度; (2)能带底和能带顶的有效质量。 6原子中的电子和晶体中电子受势场作用情况以及运动情况有何不同?原子中内层电子和外层电子参与共有化运动有何不同? 7晶体体积的大小对能级和能带有什么影响? 8描述半导体中电子运动为什么要引入“有效质量”的概念?用电子的惯性质量 描述能带中电子运动有何局限性? 9 一般来说,对应于高能级的能带较宽,而禁带较窄,是否如此?为什么? 10有效质量对能带的宽度有什么影响?有人说:“有效质量愈大,能量密度也愈大,因而能带愈窄。”是否如此?为什么? 11简述有效质量与能带结构的关系? 12对于自由电子,加速反向与外力作用反向一致,这个结论是否适用于布洛赫电子? 13从能带底到能带顶,晶体中电子的有效质量将如何变化?外场对电子的作用效果有什么不同? 14试述在周期性势场中运动的电子具有哪些一般属性?以硅的本征激发为例,说明半导体能带图的物理意义及其与硅晶格结构的联系? 15为什么电子从其价键上挣脱出来所需的最小能量就是半导体的禁带宽度?16为什么半导体满带中的少量空状态可以用具有正电荷和一定质量的空穴来描述? 17有两块硅单晶,其中一块的重量是另一块重量的二倍。这两块晶体价带中的能级数是否相等?彼此有何联系? 18说明布里渊区和k空间等能面这两个物理概念的不同。 19为什么极值附近的等能面是球面的半导体,当改变存储反向时只能观察到一个共振吸收峰? 第二章半导体中的杂质与缺陷能级 例1.半导体硅单晶的介电常数=11.8,电子和空穴的有效质量各为= 0.97, =0.19和=0.16,=0.53,利用类氢模型估计: (1)施主和受主电离能; (2)基态电子轨道半径 解:(1)利用下式求得和。

半导体物理练习题

一、选择填空(含多项选择) 1. 与半导体相比较,绝缘体的价带电子激发到导带所需的能量() A. 比半导体的大 B. 比半导体的小 C. 与半导体的相等
2. 室温下,半导体 Si 掺硼的浓度为 1014cm-3,同时掺有浓度为 1.1×1015cm-3 的磷,则电子浓度约为(),空穴浓度为(),费米能级();将该半导体升温至 570K,则多子浓度约为(),少子浓度为(),费米能级()。(已知:室温下,ni ≈1.5×1010cm-3,570K 时,ni≈2×1017cm-3) A. 1014cm-3 C. 1.1×1015cm-3 E. 1.2×1015cm-3 G. 高于 Ei I. 等于 Ei 3. 施主杂质电离后向半导体提供(),受主杂质电离后向半导体提供(),本征 激发后向半导体提供()。 A. 空穴 B. 电子 B. 1015cm-3 D. 2.25×1015cm-3 F. 2×1017cm-3 H. 低于 Ei
4. 对于一定的半导体材料, 掺杂浓度降低将导致禁带宽度 () 本征流子浓度 , () , 功函数()。 A. 增加 B. 不变 C. 减少
5. 对于一定的 n 型半导体材料,温度一定时,较少掺杂浓度,将导致()靠近 Ei。 A. Ec B. Ev C. Eg D. Ef
6. 热平衡时,半导体中电子浓度与空穴浓度之积为常数,它只与()有关,而与 ()无关。 A. 杂质浓度 B. 杂质类型 C. 禁带宽度 D. 温度
7. 表面态中性能级位于费米能级以上时,该表面态为()。

A. 施主态
B. 受主态
C. 电中性
8. 当施主能级 Ed 与费米能级 Ef 相等时,电离施主的浓度为施主浓度的()倍。 A. 1 B. 1/2 C. 1/3 D. 1/4
9. 最有效的复合中心能级位置在()附近;最有利陷阱作用的能级位置在()附 近,常见的是()的陷阱 A. Ea B. Ed C. E D. Ei E. 少子 F. 多子
10. 载流子的扩散运动产生()电流,漂移运动长生()电流。 A. 漂移 B. 隧道 C. 扩散
11. MIS 结构的表面发生强反型时,其表面的导电类型与体材料的(),若增加掺 杂浓度,其开启电压将()。 A. 相同 二、思考题 1. 简述有效质量与能带结构的关系。 2. 为什么半导体满带中的少量空状态可以用带有正电荷和具有一定质量的空穴来 描述? 3. 分析化合物半导体 PbS 中 S 的间隙原子是形成施主还是受主?S 的缺陷呢? 4. 说明半导体中浅能级杂质、深能级杂质的作用有何不同? 5. 为什么 Si 半导体器件的工作温度比 Ge 半导体器件的工作温度高?你认为在高 温条件下工作的半导体应满足什么条件工厂生产超纯 Si 的室温电阻率总是夏天低, 冬天高。试解释其原因。 6. 试解释强电场作用下 GaAs 的负阻现象。 7. 稳定光照下, 半导体中的电子和空穴浓度维持不变, 半导体处于平衡状态下吗? 为什么? 8. 爱因斯坦关系是什么样的关系?有何物理意义? B. 不同 C. 增加 D. 减少

半导体物理学第五章习题答案

第五章习题 1. 在一个n 型半导体样品中,过剩空穴浓度为1013cm -3, 空穴的寿命为100us 。计算空穴的复合率。 2. 用强光照射n 型样品,假定光被均匀地吸收,产生过剩载流子,产生率为,空 穴寿命为。 (1)写出光照下过剩载流子所满足的方程; (2)求出光照下达到稳定状态时的过载流子浓度。 3. 有一块n 型硅样品,寿命是1us ,无光照时电阻率是10??cm 。今用光照射该样品,光被半导体均匀的吸收,电子-空穴对的产生率是1022cm -3s-1,试计算光照下样品的电阻率,并求电导中少数在流子的贡献占多大比例 s cm p U s cm p U p 31710 10010 313/10U 100,/10613 ==?= ====?-??-τ τμτ得:解:根据?求:已知:τ τ τ ττ g p g p dt p d g Ae t p g p dt p d L L t L =?∴=+?-∴=?+=?+?-=?∴-. 00 )2()(达到稳定状态时,方程的通解:梯度,无飘移。 解:均匀吸收,无浓度cm s pq nq q p q n pq np cm q p q n cm g n p g p p n p n p n p n L /06.396.21.0500106.1101350106.11010.0:101 :1010100 .19 16191600'000316622=+=???+???+=?+?++=+=Ω=+==?==?=?=+?-----μμμμμμσμμρττ光照后光照前光照达到稳定态后

4. 一块半导体材料的寿命=10us ,光照在材料中会产生非平衡载流子,试求光照突然停止20us 后,其中非平衡载流子将衰减到原来的百分之几 5. n 型硅中,掺杂浓度N D =1016cm -3, 光注入的非平衡载流子浓度n=p=1014cm -3。计算无光照和有光照的电导率。 6. 画出p 型半导体在光照(小注入)前后的能带图,标出原来的的费米能级和光照时的准费米能级。 % 2606.38.006.3500106.1109. ,.. 32.0119 161 0' '==???=?∴?>?Ω==-σσ ρp u p p p p cm 的贡献主要是所以少子对电导的贡献献 少数载流子对电导的贡Θ。 后,减为原来的光照停止%5.1320%5.13) 0() 20()0()(1020 s e p p e p t p t μτ ==???=?--cm s q n qu p q n p p p n n n cm p cm n cm p n cm n K T n p n i /16.21350106.110:,/1025.2,10/10.105.1,30019160000003403160314310=???=≈+=?+=?+=?===?=??==---μμσ无光照则设半导体的迁移率) 本征 空穴的迁移率近似等于的半导体中电子、 注:掺杂有光照131619140010(/19.20296.016.2)5001350(106.11016.2)(: --=+=+???+≈+?++=+=cm cm s nq q p q n pq nq p n p n p n μμμμμμσ

半导体物理期末试卷(含部分答案

一、填空题 1.纯净半导体Si 中掺错误!未找到引用源。族元素的杂质,当杂质电离时释放 电子 。这种杂质称 施主 杂质;相应的半导体称 N 型半导体。 2.当半导体中载流子浓度的分布不均匀时,载流子将做 扩散 运动;在半导体存在外加电压情况下,载流子将做 漂移 运动。 3.n o p o =n i 2标志着半导体处于 平衡 状态,当半导体掺入的杂质含量改变时,乘积n o p o 改变否? 不变 ;当温度变化时,n o p o 改变否? 改变 。 4.非平衡载流子通过 复合作用 而消失, 非平衡载流子的平均生存时间 叫做寿命τ,寿命τ与 复合中心 在 禁带 中的位置密切相关,对于强p 型和 强n 型材料,小注入时寿命τn 为 ,寿命τp 为 . 5. 迁移率 是反映载流子在电场作用下运动难易程度的物理量, 扩散系数 是反映有浓度梯度时载 q n n 0=μ ,称为 爱因斯坦 关系式。 6.半导体中的载流子主要受到两种散射,它们分别是电离杂质散射 和 晶格振动散射 。前者在 电离施主或电离受主形成的库伦势场 下起主要作用,后者在 温度高 下起主要作用。 7.半导体中浅能级杂质的主要作用是 影响半导体中载流子浓度和导电类型 ;深能级杂质所起的主要作用 对载流子进行复合作用 。 8、有3个硅样品,其掺杂情况分别是:甲 含铝1015cm -3 乙. 含硼和磷各1017 cm -3 丙 含镓1017 cm -3 室温下,这些样品的电阻率由高到低的顺序是 乙 甲 丙 。样品的电子迁移率由高到低的顺序是甲丙乙 。费米能级由高到低的顺序是 乙> 甲> 丙 。 9.对n 型半导体,如果以E F 和E C 的相对位置作为衡量简并化与非简并化的标准,那么 T k E E F C 02>- 为非简并条件; T k E E F C 020≤-< 为弱简并条件; 0≤-F C E E 为简并条件。 10.当P-N 结施加反向偏压增大到某一数值时,反向电流密度突然开始迅速增大的现象称为 PN 结击穿 ,其种类为: 雪崩击穿 、和 齐纳击穿(或隧道击穿) 。 11.指出下图各表示的是什么类型半导体? 12. 以长声学波为主要散射机构时,电子迁移率μn 与温度的 -3/2 次方成正比 13 半导体中载流子的扩散系数决定于其中的 载流子的浓度梯度 。 14 电子在晶体中的共有化运动指的是 电子不再完全局限在某一个原子上,而是可以从晶胞中某一点自由地运动到其他晶胞内的对应点,因而电子可以在整个晶体中运动 。 二、选择题 1根据费米分布函数,电子占据(E F +kT )能级的几率 B 。 A .等于空穴占据(E F +kT )能级的几率 B .等于空穴占据(E F -kT )能级的几率 C .大于电子占据E F 的几率 D .大于空穴占据 E F 的几率 2有效陷阱中心的位置靠近 D 。 A. 导带底 B.禁带中线 C .价带顶 D .费米能级 3对于只含一种杂质的非简并n 型半导体,费米能级E f 随温度上升而 D 。 A. 单调上升 B. 单调下降 C .经过一极小值趋近E i D .经过一极大值趋近E i 7若某半导体导带中发现电子的几率为零,则该半导体必定_D _。 A .不含施主杂质 B .不含受主杂质 C .不含任何杂质 D .处于绝对零度

半导体物理学题库20121229

1.固体材料可以分为 晶体 和 非晶体 两大类,它们之间的主要区别是 。 2.纯净半导体Si 中掺V 族元素的杂质,当杂质电离时释放 电子 。这种杂质称 施主 杂质;相应的半 导体称 N 型半导体。 3.半导体中的载流子主要受到两种散射,它们分别是 电离杂质散射 和 晶格振动散射 。前者在 电离施 主或电离受主形成的库伦势场 下起主要作用,后者在 温度高 下起主要作用。 4.当半导体中载流子浓度的分布不均匀时,载流子将做 扩散 运动;在半导体存在外加电压情况下,载 流子将做 漂移 运动。 5.对n 型半导体,如果以E F 和E C 的相对位置作为衡量简并化与非简并化的标准,那末, 为非 简并条件; 为弱简并条件; 简并条件。 6.空穴是半导体物理学中一个特有的概念,它是指: ; 7.施主杂质电离后向 带释放 ,在材料中形成局域的 电中心;受主杂质电离后 带释放 , 在材料中形成 电中心; 8.半导体中浅能级杂质的主要作用是 ;深能级杂质所起的主要作用 。 9. 半导体的禁带宽度随温度的升高而__________;本征载流子浓度随禁带宽度的增大而__________。 10.施主杂质电离后向半导体提供 ,受主杂质电离后向半导体提供 ,本征激发后向半导体提 供 。 11.对于一定的n 型半导体材料,温度一定时,较少掺杂浓度,将导致 靠近Ei 。 12.热平衡时,半导体中电子浓度与空穴浓度之积为常数,它只与 和 有关,而与 、 无关。 A. 杂质浓度 B. 杂质类型 C. 禁带宽度 D. 温度 12. 指出下图各表示的是什么类型半导体? 13.n o p o =n i 2标志着半导体处于 平衡 状态,当半导体掺入的杂质含量改变时,乘积n o p o 改变否? 不 变 ;当温度变化时,n o p o 改变否? 改变 。 14.非平衡载流子通过 复合作用 而消失, 非平衡载流子的平均生存时间 叫做寿命τ,寿命 τ与 复合中心 在 禁带 中的位置密切相关,对于强p 型和 强n 型材料,小注入时寿命τn 为 ,寿命τp 为 . 15. 迁移率 是反映载流子在电场作用下运动难易程度的物理量, 扩散系数 是反映有浓度梯度时载流子 运动难易程度的物理量,联系两者的关系式是 q n n 0=μ ,称为 爱因斯坦 关系式。 16.半导体中的载流子主要受到两种散射,它们分别是电离杂质散射 和 晶格振动散射 。前者在 电离施主或电离受主形成的库伦势场 下起主要作用,后者在 温度高 下起主要作用。 17.半导体中浅能级杂质的主要作用是 影响半导体中载流子浓度和导电类型 ;深能级杂质所起的主 要作用 对载流子进行复合作用 。

半导体物理习题及解答

第一篇 习题 半导体中的电子状态 1-1、 什么叫本征激发温度越高,本征激发的载流子越多,为什么试定性说明 之。 1-2、 试定性说明Ge 、Si 的禁带宽度具有负温度系数的原因。 1-3、 试指出空穴的主要特征。 1-4、简述Ge 、Si 和GaAS 的能带结构的主要特征。 1-5、某一维晶体的电子能带为 [])sin(3.0)cos(1.01)(0ka ka E k E --= 其中E 0=3eV ,晶格常数a=5х10-11m 。求: (1) 能带宽度; (2) 能带底和能带顶的有效质量。 第一篇 题解 半导体中的电子状态 刘诺 编 1-1、 解:在一定温度下,价带电子获得足够的能量(≥E g )被激发到导带成为 导电电子的过程就是本征激发。其结果是在半导体中出现成对的电子-空穴对。 如果温度升高,则禁带宽度变窄,跃迁所需的能量变小,将会有更多的 电子被激发到导带中。 1-2、 解:电子的共有化运动导致孤立原子的能级形成能带,即允带和禁带。 温度升高,则电子的共有化运动加剧,导致允带进一步分裂、变宽;允

带变宽,则导致允带与允带之间的禁带相对变窄。反之,温度降低,将导致禁带变宽。 因此,Ge、Si的禁带宽度具有负温度系数。 1-3、解:空穴是未被电子占据的空量子态,被用来描述半满带中的大量电子的集体运动状态,是准粒子。主要特征如下: A、荷正电:+q; B、空穴浓度表示为p(电子浓度表示为n); C、E P =-E n D、m P *=-m n *。 1-4、解: (1)Ge、Si: a)Eg (Si:0K) = ;Eg (Ge:0K) = ; b)间接能隙结构 c)禁带宽度E g随温度增加而减小; (2)GaAs: a)E g (300K) 第二篇习题-半导体中的杂质和缺陷能级 刘诺编 2-1、什么叫浅能级杂质它们电离后有何特点 2-2、什么叫施主什么叫施主电离施主电离前后有何特征试举例说明之,并用能带图表征出n型半导体。 2-3、什么叫受主什么叫受主电离受主电离前后有何特征试举例说明之,并用能带图表征出p型半导体。

半导体物理习题答案

第一章半导体中的电子状态例1.证明:对于能带中的电子,K状态和-K状态的电子速度大小相等,方向相反。即:v(k)= -v(-k),并解释为什么无外场时,晶体总电流等于零。 解:K状态电子的速度为: ?????????????????????????????????????????? (1)同理,-K状态电子的速度则为: ????????????????????????????????????????(2)从一维情况容易看出:??????? ????????????????????????????????????????????????????????(3)同理有:????????????????????????????? ????????????????????????????????????????????????????????(4)???????????????????????????????????????????????????????? ?????????????????????(5) 将式(3)(4)(5)代入式(2)后得: ??????????????????????????????????????????(6)利用(1)式即得:v(-k)= -v(k)因为电子占据某个状态的几率只同该状态的能量有关,即:E(k)=E(-k)故电子占有k状态和-k状态的几率相同,且v(k)=-v(-k)故这两个状态上的电子电流相互抵消,晶体中总电流为零。

例2.已知一维晶体的电子能带可写成: 式中,a为晶格常数。试求: (1)能带的宽度; (2)能带底部和顶部电子的有效质量。 解:(1)由E(k)关系??????????????????? ??????????????????????????????????????????????? (1) ????????????????????????????????????(2)令???得:????? 当时,代入(2)得: 对应E(k)的极小值。 ?当时,代入(2)得: 对应E(k)的极大值。 根据上述结果,求得和即可求得能带宽度。 故:能带宽度????????? (3)能带底部和顶部电子的有效质量: 习题与思考题: 1 什么叫本征激发?温度越高,本征激发的载流子越多,为什么?试定性说明之。 2 试定性说明Ge、Si的禁带宽度具有负温度系数的原因。

半导体物理学期末复习试题及答案一

1.与绝缘体相比,半导体的价带电子激发到导带所需要的能量 ( B )。 A. 比绝缘体的大 B.比绝缘体的小 C. 和绝缘体的相同 2.受主杂质电离后向半导体提供( B ),施主杂质电离后向半 导体提供( C ),本征激发向半导体提供( A )。 A. 电子和空穴 B.空穴 C. 电子 3.对于一定的N型半导体材料,在温度一定时,减小掺杂浓度,费 米能级会( B )。 A.上移 B.下移 C.不变 4.在热平衡状态时,P型半导体中的电子浓度和空穴浓度的乘积为 常数,它和( B )有关 A.杂质浓度和温度 B.温度和禁带宽度 C.杂质浓度和禁带宽度 D.杂质类型和温度 5.MIS结构发生多子积累时,表面的导电类型与体材料的类型 ( B )。 A.相同 B.不同 C.无关 6.空穴是( B )。 A.带正电的质量为正的粒子 B.带正电的质量为正的准粒子 C.带正电的质量为负的准粒子 D.带负电的质量为负的准粒子 7.砷化稼的能带结构是( A )能隙结构。 A. 直接 B.间接 8.将Si掺杂入GaAs中,若Si取代Ga则起( A )杂质作

用,若Si 取代As 则起( B )杂质作用。 A. 施主 B. 受主 C. 陷阱 D. 复合中心 9. 在热力学温度零度时,能量比F E 小的量子态被电子占据的概率为 ( D ),当温度大于热力学温度零度时,能量比F E 小的 量子态被电子占据的概率为( A )。 A. 大于1/2 B. 小于1/2 C. 等于1/2 D. 等于1 E. 等于0 10. 如图所示的P 型半导体MIS 结构 的C-V 特性图中,AB 段代表 ( A ),CD 段代表(B )。 A. 多子积累 B. 多子耗尽 C. 少子反型 D. 平带状态 11. P 型半导体发生强反型的条件( B )。 A. ???? ??=i A S n N q T k V ln 0 B. ??? ? ??≥i A S n N q T k V ln 20 C. ???? ??=i D S n N q T k V ln 0 D. ??? ? ??≥i D S n N q T k V ln 20 12. 金属和半导体接触分为:( B )。 A. 整流的肖特基接触和整流的欧姆接触 B. 整流的肖特基接触和非整流的欧姆接触 C. 非整流的肖特基接触和整流的欧姆接触 D. 非整流的肖特基接触和非整流的欧姆接触 13. 一块半导体材料,光照在材料中会产生非平衡载流子,若光照

半导体物理学 (第七版) 习题答案

半导体物理习题解答 1-1.(P 32)设晶格常数为a 的一维晶格,导带极小值附近能量E c (k )和价带极大值附近能量E v (k )分别为: E c (k)=0223m k h +022)1(m k k h -和E v (k)= 0226m k h -0 2 23m k h ; m 0为电子惯性质量,k 1=1/2a ;a =0.314nm 。试求: ①禁带宽度; ②导带底电子有效质量; ③价带顶电子有效质量; ④价带顶电子跃迁到导带底时准动量的变化。 [解] ①禁带宽度Eg 根据dk k dEc )(=0232m k h +0 12)(2m k k h -=0;可求出对应导带能量极小值E min 的k 值: k min = 14 3 k , 由题中E C 式可得:E min =E C (K)|k=k min = 2 10 4k m h ; 由题中E V 式可看出,对应价带能量极大值Emax 的k 值为:k max =0; 并且E min =E V (k)|k=k max =02126m k h ;∴Eg =E min -E max =021212m k h =2 02 48a m h =11 28282 2710 6.1)1014.3(101.948)1062.6(----???????=0.64eV ②导带底电子有效质量m n 0202022382322 m h m h m h dk E d C =+=;∴ m n =022 283/m dk E d h C = ③价带顶电子有效质量m ’ 022 26m h dk E d V -=,∴022 2'61/m dk E d h m V n -== ④准动量的改变量 h △k =h (k min -k max )= a h k h 83431= [毕] 1-2.(P 33)晶格常数为0.25nm 的一维晶格,当外加102V/m ,107V/m 的电场时,试分别计算电子自能带 底运动到能带顶所需的时间。 [解] 设电场强度为E ,∵F =h dt dk =q E (取绝对值) ∴dt =qE h dk

半导体物理习题与问题

半导体物理习题与问题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第一章半导体中的电子状态 例1.证明:对于能带中的电子,K状态和-K状态的电子速度大小相等,方向相反。即:v(k)= -v(-k),并解释为什么无外场时,晶体总电流等于零。 解:K状态电子的速度为: (1)同理,-K状态电子的速度则为: (2)从一维情况容易看出: (3)同理 有:(4 )(5) 将式(3)(4)(5)代入式(2)后得: (6)利用(1)式即得:v(-k)= -v(k)因为电子占据某个状态的几率只同该状态的能量有关,即:E(k)=E(-k)故电子占有k状态和-k状态的几

率相同,且v(k)=-v(-k)故这两个状态上的电子电流相互抵消,晶体中总电流为零。 例2.已知一维晶体的电子能带可写成: 式中,a为晶格常数。试求: (1)能带的宽度; (2)能带底部和顶部电子的有效质量。 解:(1)由E(k)关 系(1) (2)令得: 当时,代入(2)得: 对应E(k)的极小值。 当时,代入(2)得: 对应E(k)的极大值。 根据上述结果,求得和即可求得能带宽度。

故:能带宽度 (3)能带底部和顶部电子的有效质量: 习题与思考题: 1 什么叫本征激发温度越高,本征激发的载流子越多,为什么试定性说明之。 2 试定性说明Ge、Si的禁带宽度具有负温度系数的原因。 3 试指出空穴的主要特征。 4 简述Ge、Si和GaAs的能带结构的主要特征。 5 某一维晶体的电子能带为 其中E0=3eV,晶格常数a=5×10-11m。求: (1)能带宽度; (2)能带底和能带顶的有效质量。

半导体物理学第七版 完整课后题答案

第一章习题 1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)与价带极大值附近 能量E V (k)分别为: E c =0 2 20122021202236)(,)(3m k h m k h k E m k k h m k h V -=-+ 0m 。试求: 为电子惯性质量,nm a a k 314.0,1==π (1)禁带宽度; (2) 导带底电子有效质量; (3)价带顶电子有效质量; (4)价带顶电子跃迁到导带底时准动量的变化 解:(1) eV m k E k E E E k m dk E d k m k dk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43(0,060064 30382324 30)(2320212102 2 20 202 02022210 1202==-==<-===-== >=+== =-+ηηηηηηηη因此:取极大值处,所以又因为得价带: 取极小值处,所以:在又因为:得:由导带: 04 3222* 83)2(1m dk E d m k k C nC ===η

s N k k k p k p m dk E d m k k k k V nV /1095.704 3)()()4(6 )3(25104300222* 11-===?=-=-=?=-==ηηηηη所以:准动量的定义: 2、 晶格常数为0、25nm 的一维晶格,当外加102V/m,107 V/m 的电场时,试分别计 算电子自能带底运动到能带顶所需的时间。 解:根据:t k h qE f ??== 得qE k t -?=?η s a t s a t 13719282 1911027.810106.1) 0(1027.810106.1) 0(----?=??--= ??=??-- =?π πηη 补充题1 分别计算Si(100),(110),(111)面每平方厘米内的原子个数,即原子面密度(提示:先 画出各晶面内原子的位置与分布图) Si 在(100),(110)与(111)面上的原子分布如图1所示: (a)(100)晶面 (b)(110)晶面

半导体物理第四章习题答案

半导体物理第四章习题 答案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第四篇 题解-半导体的导电性 刘诺 编 4-1、对于重掺杂半导体和一般掺杂半导体,为何前者的迁移率随温度的变化趋势不同?试加以定性分析。 解:对于重掺杂半导体,在低温时,杂质散射起主体作用,而晶格振动散射与一般掺杂半导体的相比较,影响并不大,所以这时侯随着温度的升高,重掺杂半导体的迁移率反而增加;温度继续增加后,晶格振动散射起主导作用,导致迁移率下降。对一般掺杂半导体,由于杂质浓度较低,电离杂质散射基本可以忽略,起主要作用的是晶格振动散射,所以温度越高,迁移率越低。 4-2、何谓迁移率影响迁移率的主要因素有哪些 解:迁移率是单位电场强度下载流子所获得的漂移速率。影响迁移率的主要因素有能带结构(载流子有效质量)、温度和各种散射机构。 4-3、试定性分析Si 的电阻率与温度的变化关系。 解:Si 的电阻率与温度的变化关系可以分为三个阶段: (1) 温度很低时,电阻率随温度升高而降低。因为这时本征激发极弱,可以 忽略;载流子主要来源于杂质电离,随着温度升高,载流子浓度逐步增加,相应地电离杂质散射也随之增加,从而使得迁移率随温度升高而增大,导致电阻率随温度升高而降低。 (2) 温度进一步增加(含室温),电阻率随温度升高而升高。在这一温度范 围内,杂质已经全部电离,同时本征激发尚不明显,故载流子浓度基本没有变化。对散射起主要作用的是晶格散射,迁移率随温度升高而降低,导致电阻率随温度升高而升高。 (3) 温度再进一步增加,电阻率随温度升高而降低。这时本征激发越来越 多,虽然迁移率随温度升高而降低,但是本征载流子增加很快,其影响大大超过了迁移率降低对电阻率的影响,导致电阻率随温度升高而降低。当然,温度超过器件的最高工作温度时,器件已经不能正常工作了。 4-4、证明当μn ≠μp ,且电子浓度p n i n n μμ/0=,空穴浓度n p i n p μμ/0=时半导体的电导率有最小值,并推导min σ的表达式。 证明:

相关主题
文本预览
相关文档 最新文档