当前位置:文档之家› TiO2纳米管阵列薄膜制备及生长机理的研究

TiO2纳米管阵列薄膜制备及生长机理的研究

TiO2纳米管阵列薄膜制备及生长机理的研究
TiO2纳米管阵列薄膜制备及生长机理的研究

碳纳米管的现状和前景

碳纳米管的现状和前景 信息技术更新日新月异,正如摩尔定律所言,集成电路的集成度每隔18 个月翻一番,即同样的成本下,集成电路的功能翻一倍。这些进步基于晶体管的发展,晶体管的缩小提高了集成电路的性能。 在硅基微电子学发展的过程中,器件的特征尺寸随着集成度的越来越高而日益减小,现在硅器件已经进入深微亚米阶段,也马上触及到硅器件发展的瓶颈,器件将不再遵从传统的运行规律,具有显著的量子效应和统计涨落特性. 为了解决这些问题,人们进行了不懈地努力,寻找新的材料和方法,来提高微电子器件的性能。研究基于碳纳米管的纳电子器件就是其中很有前途的一种方法。 碳纳米管简介 一直以来都认为碳只有两种形态——金刚石和石墨。直至1985年发现了以碳60为代表的富勒烯、从而改变了人类对碳形态的认识。1991年,日本筑波NEC研究室内科学家首次在电子显微镜里观察到有奇特的、由纯碳组成的纳米量级的线状物。此类纤细的分子就是碳纳米管 碳纳米管有许多优异的性能,如超高的反弹性、抗张强度和热稳定性等。被认为将在微型机器人、抗撞击汽车车身和抗震建筑等方面有着极好的应用前景。但是碳纳米管的第一个获得应用的领域是电子学领域、近年来,它已成为微电子技术领域的研究重要方面。 研究工作表明,在数十纳米上下的导线和功能器件可以用碳纳米管来制造,并连接成电子电路。其工作速度将过高于已有的产品而功率损耗却极低! 不少研究组已经成功地用碳纳米管制成了电子器件。例如IBM 的科学家们就用单根半导体碳纳米管和它两端的金属电极做成了场效应管(FETs)。通过是否往第三电极施加电压,可以成为开关,此器件在室温下的工作特性和硅器件非常相似,而导电性却高出许多,消耗功率也小。按理论推算,纳米级的开关的时钟频率可以达到1太赫以上,比现有的处理器要快1000倍。 碳纳米管的分类 石墨烯的碳原子片层一般可以从一层到上百层,根据碳纳米管管壁中碳原子层的数目被分为单壁和多壁碳纳米管。 单壁碳纳米管(SWNT)由单层石墨卷成柱状无缝管而形成是结构完美的单分子材料。SWNT 的直径一般为1-6 nm,最小直径大约为0.5 nm,与C36 分子的直径相当,但SWNT 的直径大于6nm 以后特别不稳定,会发生SWNT 管的塌陷,长度则可达几百纳米到几个微米。因为SWNT 的最小直径与富勒烯分子类似,故也有人称其为巴基管或富勒管。 多壁碳纳米管MWNT可看作由多个不同直径的单壁碳纳米管同轴套构而成。其层数从2~50 不等,层间距为0.34±0.01nm,与石墨层间距(0.34nm)相当。多壁管的典型直径和长度分别为2~30nm 和0.1~50μm。多壁管在开始形成的时候,层与层之间很容易成为陷阱中心而捕获各种缺陷,因而多壁管的管壁上通常

纳米线制备

模板法: 按模板材料可分为碳纳米管模板法、多孔氧化铝模板法、聚合物膜模板法和生命分子模板法。其中聚合物模板法廉价易得。模板法的模板主要有两种:一种是径迹蚀刻聚合物膜,如聚碳酸脂膜,另一种是多孔阳极氧化铝膜,两者相比,氧化铝模板具有较好的化学稳定性、热稳定性和绝缘性,其余还有介孔沸石法、多孔玻璃、多孔Si 模板、MCM-41、金属、生物分子模板、碳纳米光模板等聚碳酸脂膜(聚合物)模板法:聚碳酸脂膜模板是所有聚合物膜模板中使用最广的一种,C.Schonenoberge等以不同规格不同厂家的聚碳酸酯过滤膜为模板,用电化学沉积的方法成功涤制备出了不同直径的Ni、Co、Cu和Au纳米线。 多孔氧化铝模板:采用该方法时,多孔氧化铝模板只是作为模具使用,纳米材料仍需要常规的化学反应来制备,如电化学沉积、化学镀、溶胶-凝胶沉积、化学 气相沉积等方法。多孔阳极氧化铝模板(AAO: porous anodic aluminum oxide)是典型的自组织生长的纳米结构的多孔材料,微孔直径大约在10~500nm之间, 密度为二丄1「「个/諾之间,阳极氧化法制备的有序多孔氧化铝模板的孔径大小一致,排列有序,呈均匀分布的六方密排柱状。通常孔径在20?250nm范围内,孔间距在5?500nm范围内。目前大部分究主要局限在以草酸为电解液的中孔径模板的制备和研究中。这是由于在草酸电解液中制得的模板较厚、孔径均一、大 小适中。膜厚可达100卩m以上。 当然模板法中这些只是作为模具使用,具体的纳米材料仍需要一些其它的方法来得到,常用的有电化学沉积、化学气相沉积法(CVD)化学聚合、溶胶-凝胶沉积等电化学沉积:电沉积方法主要分为三步,1、阳极氧化铝模板的制备及孔径的调节; 2、对氧化铝模板及阻挡层的径蚀,释放出有序的纳米线阵列,再经后续处理得到所需的纳米材料,开发出各种纳米器件。电沉积法只能制备导电材料纳米线,如金属、合金、半导体、导电高分子等。 按照电源不同分为直流沉积、交流沉积、循环伏安法沉积、脉冲电沉积。Al 在阳极氧化的过程中,表面生成由致密阻挡层和多孔外层组成的氧化铝膜,极薄的阻挡层具有半导体的特性,在沉积之前要先从铝基底上将多孔薄膜剥离,通孔,通过离子喷射或热蒸发等在模板表面涂上一层金属薄膜作为电镀阴极。该方法比 较复杂,也有研究者试图不将薄膜从铝基底上剥离,采用磷酸腐蚀致密层薄膜,但是该方法同时使多孔膜变薄,不易控制,也影响了纳米线的纵横比。 交流电沉积方法工艺简单可行,且不需要将模板和铝基底分离,通过控制电流、电压、频率、时间等参数,可合成各种纳米线有序阵列,其缺点是只能在孔中组装单一的金属或合金,当前对于交流沉积时,电流是如何通过阻挡层还没有定论。交流电沉积过程中的阳极电压作用至关重要! 循环伏安法、脉冲电流法:Sun等采用该法,制备了长径比达500的Ag纳米线阵列,Kim采用脉冲电化学沉积法首次利用Ti涂层解决了AAO膜的阻挡层去除问题,并得到了Si基底上的Pd纳米线阵列。 交流电沉积没有滞留点沉积得到的排列有序且易堆叠,。AAO模板与循环伏安法相结合,被证实是一种制备形状与尺寸可控的有序金属或半导体自支持纳米线阵列结构的有效方法。与直流电沉积相比,脉冲电沉积具有高度可靠性,可补偿纳米孔区域内离子扩散输运动力的不足。 国内学者近几年来在这方面做的工作也较多,于冬亮等人分别在AAO 模板中采

关于碳纳米管的研究进展综述

关于碳纳米管的研究进展 1、前言 1985年9月,Curl、Smally和Kroto发现了一个由个60个碳原子组成的完美对称的足球状分子,称作为富勒烯。这个新分子是碳家族除石墨和金刚石外的新成员,它的发现刷新了人们对这一最熟悉元素的认识,并宣告一种新的化学和全新 的“大碳结构”概念诞生了。之后,人们相继发现并分离出C 70、C 76 、C 78 、C 84 等。 1991年日本的Iijima教授用真空电弧蒸发石墨电极时,首次在高分辨透射电子显微镜下发现了具有纳米尺寸的碳的多层管状物—碳纳米管。年,日本公司的科学家和匆通过改进电弧放电方法,成功的制备了克量级的碳纳米管。1993年,通过在电弧放电中加入过渡金属催化剂,NEC和IBM研究小组同时成功地合成了单壁碳纳米管;同年,Yacaman等以乙炔为碳源,用铁作催化剂首次针对性的由化学气相沉积法成功地合成了多壁碳纳米管。1996年,我国科学家实现了碳纳米管的大面积定向生长。1998年,科研人员利用碳纳米管作电子管阴极同年,科学家使用碳纳米管制作室温工作的场效应晶体管;中国科学院金属研究所成会明研究小组采用催化热解碳氢化合物的方法得到了较高产率的单壁碳纳米管和由多根单壁碳纳米管形成的阵列以及由该阵列形成的数厘米长的条带。1999年,韩国的一个研究小组制成了碳纳米管阴极彩色显示器样管。2000年,日本科学家制成了高亮度的碳纳米管场发射显示器样管。2001年,Schlitter等用热解有纳米图形的前驱体,通过自组装合成了单壁碳纳米管单晶,表明已经可以在微米级制得整体材料的单壁碳纳米管,并为宏量制备指出了方向。 2、碳纳米管的制备方法 获得大批量、管径均匀和高纯度的碳纳米管,是研究其性能及应用的基础。而大批量、低成本的合成工艺是碳纳米管实现工业化应用的保证。因此对碳纳米管制备工艺的研究具有重要的意义。目前,常用的制备碳纳米管的方法包括石墨电弧法、化学气相沉积法和激光蒸发法。一般来说,石墨电弧法和激光蒸发法制备的碳纳米管纯度和晶化程度都较高,但产量较低。化学气相沉积法是实现工业化大批量生产碳纳米管的有效方法,但由于生长温度较低,碳纳米管中通常含有

TiO2阵列薄膜

TiO2和HfTiO4薄膜在微电子中应用与表征研究 摘要:研究掺TiO2阵列基透明氧化物半导体在微电子的应用,通过低压集中热 反应磁控溅射法制备TiO 2和掺Hf的TiO 2 薄膜,沉积在(100)方向的硅基板上,沉 积后在空气中1000K进行退火处理4小时。通过X衍射(XRD),原子显微镜(AFM),X 射线光电子能谱(XPS)研究薄膜阵列的性质。XRD分析表明经热处理后将增强薄 膜的结晶,TiO 2和斜方HfTiO 2 薄膜出现形状规则的金红石相。AFM图分析表明该 纳米薄膜显示高度有序,整个样品表面上晶粒的尺寸和排列时均匀的。薄膜的化学计量比可以通过XPS检测来确定。 关键字:TiO2 薄膜 HfTiO4阵列透明氧化物半导体 Abstract:We study the possible microelectronics applications of transparent oxide semiconductors based on TiO2-doped matrix. TiO2 and Hf-doped TiO2 thin films were prepared by low pressure hot target reactive magnetron sputtering (LP HTRS) and deposited onto monocrystalline (100) silicon substrate. After deposition thin films were additionally annealed in air for 4 hours at 1000 K. Properties of the thinfilms matrixes were studied by means of X-ray diffraction(XRD), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). XRD investigations have shown that heat treatment enhances the crystallity of the thin films. Well-shaped lines of the rutile phase for TiO2 and the orthorhombic HfIiO4 have appeared. AFM images showed that the nanocrystalline thin films exhibit the high ordering grade. The dimension and arrangement of grains were homogenous on the whole sample surface. The stoichiometry of manufactured thin films was confirmed by XPS examinations. Keywords:TiO2 thin films HfTiO4 matrix transparent oxide semiconductors 1 引言 TiO2是一种重要的无机功能材料,因有氧空位存在而呈N型,二氧化钛有锐钛矿、金红石和板钛矿3 种晶型,可用于制备染料敏化太阳能电池[1]、气敏传感器[2]、光催化薄膜[3]、电介质材料、光裂解水[4]、无机涂料等,应用于水或空气的净化,水分解制氢,无机薄膜太阳能电池等能源与环境领域。1991年,Gr?tzel等[1]利用具有大比表面积TiO2纳米晶多孔薄膜作为光阳极材料制备了电池器件,获得的能量转换效率高达7.1%,这种Gr?tzel电池因其制备简单、材料易得和成本低廉等优点而备受关注。近年来,利用半导体材料降解环境中的污染物已越来越受到人们的关注。TiO2的禁带宽度仅为3.2eV,只能吸收波长小于387.5 nm 的紫外光(约占太阳光的4.5%),而可见光占太阳光的45%,严重限制了其实际应用。而且,在光催化反应中,纯相TiO2产生的光生电子和空穴易在光催化剂体相内和表面快速复合,极大地降低了其量子效率[5–6]。因此,有必要寻找有效的方法来提高其可见光活性和光生载流子的分离效率。TiO2这种半导体材料的光催化性能自上世纪70年代开始受到人们的重视,其中,TiO2是一种理想的半导体光催化剂材料,因为它拥有较宽的禁带宽度,光催化活性高,催化简单有机物彻底,良好的化学稳定性,不会引起二次污染等优势。因此,它被广泛应用于杀菌、除臭、污水处理、空气净化等方面。将TiO2与窄带半导体复合形成异质结可有效解决上面的两个问题,Sun 等[7]制备了CdS/TiO2纳米管阵列,其光电效应是TiO2 纳米管阵列的35 倍;Zhang 等[8]将CdSe 沉积到TiO2纳米管中,显著提高了其可见光下的光电流;Hou等[9]将Cu2O 与TiO2纳米管复合后有效提高了其可见光光催化活性。在可见光照射下,从这些窄带半导体上激

碳纳米管阵列超双疏性质的发现_翟锦

碳纳米管阵列超双疏性质的发现 * 翟 锦 李欢军 李英顺 李书宏 江 雷 - (中国科学院化学研究所 北京 100080) 摘 要 用高温裂解酞菁金属络合物方法制备了几种具有不同形貌的阵列碳纳米管膜,并对其超疏水和超双疏性质进行了研究.对于具有均匀长度和外径的阵列碳纳米管膜,文章作者发现,在未经任何处理时,其表现出超疏水和超亲油性质,与水的接触角为15815?115b ,与油的接触角为0?110b .经氟化处理后,则表现出超双疏性质,与水和油的接触角分别为171?015b 和161?110b .对具有类荷叶结构的阵列碳纳米管膜,其表面形貌与荷叶的十分接近,且在未经任何处理时所表现出的超疏水性也与荷叶的非常接近,与水的接触角为166b ,滚动角为8b .这种超疏水和超双疏性质是由表面的纳米结构以及微米结构和纳米结构的结合产生的.这一发现为无氟超疏水表面P 界面材料的研究提供了新的思路. 关键词 阵列碳纳米管膜,超疏水,超双疏 DISC OVERY OF SUPER-AMPHIPHOBIC PROPERTIES OF ALIGNED CARBON NA NOTUBE FILMS Z HAI Jin LI Huan -Jun LI Ying -Shun LI Shu -Hong JI ANG Lei - (Institu te o f Che mistry ,Chin ese Aca de my o f Scien ces ,Be ijin g 100080,Ch ina ) Abstract Several kinds of aligned ca rbon nanotube(ACN T )films with different morphologie s were prepared by pyrolysis of me tal phthalocyanines.Supe r -hydrophobic and supe r -amphiphobic prope rties were studied in detail.The ACN T films with fairly uniform length and external diame ter sho wed supe r -hydrophobic and super -oileophilic prope r -ties,with contact angle s(CAs)of 15815?115b and 0?110b for wate r and rape seed oil respectively.After fluorina -tion trea tment,the se angles beca me 171?015b and 161?110b ,respec tively,showing both super -hydrophobic and super -oileophobic properties,typical of a super -a mphiphobic surface.For ACN T films wi th lotus -like structures,not only wa s the morphology close to tha t of lotus leave s,but their supe r -hydrophobic properties we re almost the same a-l so.The CA and sliding angle for wate r of this kind of films were 166b and 8b ,respectively.These super -hydrophobic and super -amphiphobic properties are caused by the nanostructures and the c ombina t ion of nanostructures and mic ro -structures on the surface.This discove ry may provide a ne w method to study supe r -hydrophobic surface P interface ma -terials without fluorine. Key words aligned c arbon nanotube films,super -hydrophobic,super -amphiphobic * 国家重点基础研究项目(批准号:G1999064504),国家自然科学 基金重大项目(批准号:29992530)2001-12-21收到 - 通讯联系人.E -mail:ji anglei@https://www.doczj.com/doc/f68697904.html, 在降雨之后的荷塘里,我们常常可以看到许多 水滴漂浮在荷叶上.这种现象是由于在荷叶的表面上有许多微小的乳突,这些乳突上含有疏水的蜡状物质,使得水滴不能渗入到荷叶中而引起的.这类疏水效果非常好的表面与水的接触角都比较大.最近,我们提出了双疏表面和超双疏表面的概念[1] ,即,既疏水又疏油的表面为双疏表面,而与水和油的接触角都大于150b 的表面为超双疏表面.超疏水和超双疏界面材料在工农业生产上和人们的日常生活中都有非常广阔的应用前景.例如,超疏水界面材料用在室外天线上,可以防积雪从而保证高质量地接收信 号;超双疏界面材料可涂在轮船的外壳和燃料储备箱上,可以达到防污、防腐的效果;在将它应用于石油管道的运输过程中,可以防止石油对管道壁粘附,从而减少运输过程中的损耗,并防止管道堵塞;将它用于水中运输工具或水下核潜艇上,可以减少水的阻力,提高行驶速度;用于微量注射器针尖上,可以完全消除昂贵的药品在针尖上的黏附及由此带来的

纳米线的制备方法

纳米线的制备方法 与零维量子点相比,纳米线具有阵列结构因此有更大的表面或体积比,尤其是他们所具有的直线电子传输特性,十分有利于光能的吸收和光生载流子的快速转移,由此使得这类准一维纳米结构更适宜制作高效率太阳电池(Si纳米线太阳电池)。《TiO2纳米线和ZnO纳米线则主要用于染料敏化太阳电池的光阳极制作》。 Si纳米线的生长方法: 迄今为止,已采用各种方法制备了具有不同直径、长度和形状的高质量的Si纳米线,利用各种表征技术对其结构特征进行了检测分析,就制备方法而言,目前主要有热化学气相沉积、低压化学气相沉积、等离子体化学气相沉积、激光烧浊沉积、热蒸发、电子束蒸发(EBE)、溶液法和水热法等;就生长机制而言,则主要有气—液—固(VLS)法、气—固(VS)法、气—固—固(VSS)法、固—液—固(SLS)法等,就纳米线类型而言,又有本证Si纳米线和掺杂Si 纳米线之分。研究指出,Si纳米线的生长于Si纳米晶粒和量子点的形成不同,后者只需衬底表面具有合适密度与尺寸的成核位置,而前者除了具备上述条件外,还需要同时满足线状结构的生长规律与特点,因此工艺技术要求更加严格。研究者从实验中发现,如果能够利用某一催化剂进行诱导,使纳米点或团簇在催化剂的方向趋使作用下按一定去向生长,预计可以形成纳米线及其阵列结构。大量的研究报道指出,以不同的金属作为Si纳米线合成的催化剂,利用VLS机制

可以实现在Si晶体表面上Si纳米线的成功生长。 目前,作为制备Si纳米线的主流工艺应首推采用金属催化的VLS 生长技术,这种方法的主要工艺步骤是:首先在Si衬底表面上利用溅射或蒸发等工艺沉积一薄层具有催化作用的金属(Au、Fe、Ni、Ga、Al),然后进行升温加热,利用金属与Si衬底的共晶作用形成合金液滴,该液滴的直径和分布于金属的自身性质、衬底温度和金属层厚度直接相关。此后,通过含Si的源气体(SiH4、Si2H6、SiCl4)的气相输运或固体靶的热蒸发,使参与Si纳米线生长的原子在液滴处凝聚成核,当这些原子数量超过液相中的平衡浓度以后,结晶便会在合金液滴的下部分析出并最终生长成纳米线,而合金则留在其顶部,也就是说,须状的结晶是从衬底表面延伸,按一定的方向形成具有一定形状、直径和长度Si纳米线的。 除了VLS机制外,SLS机制也可以用于Si纳米线的可控生长,在这种情况下,预先在Si衬底表面沉积一层约厚10nm的金属薄膜(Au、Ni、Fe),然后再N2保护下进行热处理,随着温度的升高,金属催化粒子开始向Si衬底中扩散在界面形成Au-Si合金,当温度达到二者的共熔点时,合金开始融化并形成合金液滴,此时将有更多的Si原子扩散到这些合金液滴中去,当氮气通入反应室中时,液滴便面温度会迅速降低,这将导致Si原子从合金的表面分离和析出,其后,在退火温度为1000°C和氮气流量为1.5L/min的条件下,便可以实现可控Si纳米线的生长。在这,SLS与VLS生长机制的主要不同是:前者是以Si晶片衬底作为参与Si纳米线生长的Si原子的原

碳纳米管科普

碳纳米管科普 骞伟中?
一 心细如发,发真得够细吗??
中国有句谚语为"心细如发",用来形容一个人的心思缜密,细微程度达 到了头发丝的尺寸。 在古人的眼里, 头发丝已经是非常细的东西的代表了。 或者, 人们形容薄时,爱用“薄如蝉翼” ,但蝉翼真得够薄吗?然而,大家知识头发丝 的直径或蝉翼的厚度是什么尺度的吗?仅仅是几十微米而已。 有没有比头发丝更 细的丝及比蝉翼更薄的纸吗? 事实上还多得很。 比如铜丝,现代的加工技术可以将铜丝拉伸到小于 10 微米的级别。用于光 导通讯的玻璃纤维丝,也能达到这个级别。 而更绝的是,用激光刻蚀可以在硅片上刻出几十纳米(nm)的细槽,从而成 为现代超级计算机的基础。 但你可能更加想不到的是, 人类真得造出了直径仅 0.4‐1nm 的碳丝(图 1), 而 且还是中空结构。这种材料与头发丝相比,直径小了 1 万倍。另外一种比喻可以 让你进一步想象 1nm 有多大,人的指甲的生长速度几乎是不为人察觉的。人一 般觉得指甲长了,总得一周左右 的时间。但即使这样,您的指甲 仍以每秒 1nm 的速度在不停地生 长。但由于一个分子的大小也就 在 0.3nm(如氢气分子)到 0.6 nm(如苯分子),所以你可以想象 这种碳丝在本质上就是一种原子 线或分子线。但它的确构成了一 种长径比巨大的固体材料,成为 一种实物,而不再是无所束缚的, 到处乱跑的分子或原子。
图1 碳纳米管的三种卷曲结构 (从上而下的英文 字形结构;手性结构)?
armchair
zigzag
chiral
为:扶手椅式结构;Z

实际上, 这种神奇的材料的发现是基于非常偶然的机缘。 在 1985‐1990 年间, 科学家热衷于制造一种形状像足球的由 60 个碳组成的分子。这种分子通常是用 电弧放电,将石墨靶上的碳原子进行激发,然后进行自组装而得。而在偶然的机 缘里,科学家发现,只要能量足够,这些碳原子就会自动连接起来,形成一条碳 链。而利用放大倍数在 10 万倍至 100 万倍的电子显微镜下,科学家惊异地发现 这个丝状的材料竟然是中空的管状材料,所以,根据其元素,尺寸与形状,科学 家形象地称这种材料为“碳纳米管” 。应该说这种丝状材料与头发相比,才是真 正算得上细与小。当然如果说一个人“心细如碳纳米管” ,则恐怕不只是“心细 如发”的赞许与褒扬,而或许带有一种调侃或讽刺意味的“小心眼”了。由此可 见,社会科学中的词语包含了粗与细的平衡,什么事都得适可而止,非常玄妙。 然而,在追求真理与真知的“实心眼”科学家那里,却不是这样,自从 C60 与碳纳米管的发现,人类正式进行了纳米时代,可能大家都听过“纳米领带” , “纳米洗衣机” 或 “纳米药物” 。 不论这些东西是否属实, 却毫无疑问地夸耀 “细” 与“小”的作用。 事实上,追求细小或细微或精细,是人类科技进步的一条主线。 从人类走过的路程可以看到,从旧石器时代,新石器时代,以及青铜时代, 铁器时代,到火车轮船时代,以及飞机及计算机时代。从手工打造,铸造,到普 通车床加工, 再到数字车床加工, 激光刻蚀。 比如, 普通汽车与拖拉机的发动机, 一般有成千至万个零件。而飞机或火箭的发动机则有上百万个零件组成。而保证 这个零件良好组合或密封,以及长时间工作不损伤的关键因素,就在加工结构的 精细化与细微化。一般来说,汽车与拖拉机对应的加工精度为微米级,而计算机 与手机等通讯产品中硅片的加工精度则为纳米级。人类加工的产品越来越精细, 也就越来越有功能。而到达纳米级后,计算机硅片的加工要求又从 100 nm,小 到 60?nm,直到目前的 15?nm。这些数字减小的后面,是一代一代计算机的更新 换代与巨大的产业价值。 而我们故事的主人公:碳纳米管,竟然可以小至 0.4‐1nm。大家可以想见, 如果计算机的加工基础可以小到这个程度,或由这么小的材料来组装器件,则现 代的工业革命又将会发生什么样的变化。 在此开篇,有必要向大家介绍一下时空的概念。在时间尺度上,生物的新陈

题名 “一维纳米结构和纳米线有序阵列”

题名“一维纳米结构和纳米线有序阵列” 作者张立德;孟国文;李广海;叶长辉;李勇; 中文关键词 单位 中文摘要<正>随着纳米材料研究的不断深入,对性能的研究愈来愈迫切。但研究无序随机排列的纳米材料性能却非常困难,既便能获得一些结果,却由于试样之间的不统一与不均匀,使不同研究者获得的同类实验结果没有对比性。为此,我们发展了基于有序多孔氧化铝模板的纳米线有序阵列制备技术,实现了纳米线直径可控、密度可调。为纳米材料性能的研究提供了保障,为纳米材料的应用奠定了基础。 基金 刊名中国科技奖励 年2007 期03 第一责任人张立德; 2 题名纳米线阵列及纳米图形制备技术的研究进展 作者雷淑华;林健;黄文旵;卞亓; 中文关键词纳米线阵列;;纳米图形;;信息技术 单位同济大学材料科学与工程学院,同济大学材料科学与工程学院,同济大学材料科学与工程学院,同济大学材料科学与工程学院上海200092,上海200092,上海200092,上海200092 中文摘要当今纳米技术研究的前沿和热点之一是将纳米线按一定方式排列与组装构成纳米线阵列及纳米图形,它们是下一代纳米结构器件设计的材料基础,在激光技术、信息存储及计算技术、生物技术等各领域均有广阔的应用前景。介绍了在纳米线阵列材料制备以及纳米图形制作方面的技术研究进展,详述了模板法、自组装法以及纳米刻蚀法等技术的发展。 基金国家自然科学基金资助项目(50572069) 刊名材料导报 年2007 期01 第一责任人雷淑华; 3 题名硅纳米线阵列的制备及其光伏应用 作者吴茵;胡崛隽;许颖;彭奎庆;朱静; 中文关键词硅纳米线阵列;;减反射;;太阳电池 单位清华大学材料科学与工程系,清华大学材料科学与工程系,北京市太阳能研究所,清华大学材料科学与工程系,清华大学材料科学与工程系北京100084,北京100084,北京100083,北京100084,北京100084 中文摘要采用金属催化化学腐蚀方法在单晶硅片表面可以制备出大面积排列整齐、与原始硅片取向一致的硅纳米线阵列,得到的硅纳米线单晶性好、轴向可控且掺杂浓度不受掺杂类型和晶向的影响。基于此,我们成功制备了大面积硅纳米线p-n结二极管阵列。此外,硅纳米线阵列结构具有优异的减反射性能,探索了其在太阳电池中的应用。目前初步研制出了基于硅纳米线阵列的新型太阳电池,获得了最高为9.23%电池效率。同时也研究了限制硅纳米线阵列太阳电池转换效率的主要因素,为以后的应用做了前期的探索工作。 基金 刊名太阳能学报

碳纳米技术发展综述

碳纳米管技术发展概况 学院:电子信息工程学院 专业:通信工程 姓名:彭昱 学号:3013204217 【摘要】随着社会经济的飞速发展,碳纳米材料的应用日趋广泛,以富勒烯、石墨烯和碳纳米管为代表的碳纳米材料。在经历20世纪90年代的研究高潮后,如今也已经进入了平稳扎实的研究阶段。随着研究的不断深入,碳纳米材料在人类生产生活中显示出越来越多不可替代的重要作用。碳纳米管(CNT)也是“纳米世界”中的重要一员,因其独特的结构和优异的物理化学性能,具有广阔的应用前景和商业价值。本文综述了碳纳米管的发展历程、结构性能,应用及其发展前景及展望。 【关键词】碳纳米管;发展历程;结构;特性;应用;前景 碳纳米管的发展历程 1985 年英国萨塞克斯大学的波谱学家Kroto 教授与美国莱斯大学的Smalley和Curl 两教授在合作研究中,发现碳元素可以形成由60 个或70 个碳原子构成的高度对称性笼状结构的C60和C70分子,被称为巴基球(Buckyballs);1991 年,日本NEC 科学家Iijima 在制取C60的阴极结疤中首次采用高分辨隧道电子显微镜发现一种外径为515nm、内径为213nm,仅由两层同轴类石墨圆柱面叠而成的碳纳米管;1992年,科研人员发现碳纳米管壁曲卷结构不同而呈现出半导体或良导体的特异导电性;1995年,科学家研究并证实其优良的场发射性能;1996年,我国科学家实现碳纳米管大面积定向生长;1998年,科研人员应用碳纳米管作电子管阴极,同年,科学家使用碳纳米管制作室温工作的场效应晶体管;1999年,韩国一个研究小组制成碳纳米管阴极彩色显示器样管;2000年,日本科学家制成高亮度的碳纳米管场发射显示器样管。 碳纳米管的结构 碳纳米管是由单层或多层石墨片绕中心按一定角度卷曲而成的无缝、中空纳米管。按照所含石墨片层数的不同,碳纳米管可分为:单壁碳纳米管和多壁碳纳米管。单壁管典型直径在0.6-2nm,多壁管最内层可达0.4nm,最粗可达数百纳米,但典型管径为2-100nm。下图为常见的碳纳米管结构图。虽然从本质上讲,碳纳米管都是有相同的石墨层构成的但它们的导电特性却并不一样,具体情况取决于起的是金属还是半导体的作用。 碳纳米管的特性 碳纳米管的独特结构决定了它具有许多特殊的物理和化学性质。组成碳纳米管的C=C 共价键是自然界最稳定的化学键,所以使得碳纳米管具有非常优异的力学性能。理论计算表明,碳纳米管具有极高的强度和极大的韧性。其理论值估计杨氏模量可达5TPa,强度约为钢的100 倍,而重量密度却只有钢的1/6。Treacy 等首次利用了TEM 测量了温度从室温到800 度变化范围内多壁碳纳米管的均方振幅,从而推导出多壁碳纳米管的平均杨氏模量约为1.8Tpa。而Salvetat 等测量了小直径的单壁碳纳米管的杨氏模量,并导出其剪切模量为1Tpa。Wong 等用原子力显微镜测量多壁碳纳米管的弯曲强度平均值为14.2±10.8GPa,而碳纤维的弯曲强度却仅有1GPa。碳纳米管无论是强度还是韧性,都远远优于任何纤维,被认为是未来的“超级纤维”。直径、螺旋角以及层间作用力等存在的差异是碳纳米管兼导体和半导体的特性;独特的螺旋分子结构使碳纳米管构筑的吸波材料具有比一般吸收材料高的吸收率。此外,碳纳米管还具有独特的光学性能,良好的热传导性,极高的耐酸、碱性和热稳定性。

纳米线的制备综述

现代材料制备技术 期末报告 姓名:翁小康 学号:12016001388 专业:材料工程 教师:朱进

2017年6月24日

Si纳米线的制备方法总结及其应用 摘要:Si纳米线是一种新型的一维纳米半导体材料,具有独特的电子输运特性、场发射特性和光学特性等。此外,硅纳米线在宽波段、宽入射角范围内有着优异的减反射性能以及在光电领域的巨大应用前景。传统器件已不满足更快更小的要求,因此纳米线器件成为研究的热点。关于硅纳米线阵列的制备方法,本文主要从“自下而上”和“自上而下”两大类出发,分别阐述了模板辅助的化学气相沉积法、化学气相沉积结合Langmuir-Blodgett技术法和金属催化化学刻蚀法等方法。最后介绍了Si纳米线在场效应晶体管、太阳能电池、传感器、锂电池负极材料等方面相关应用。 关键词:Si纳米线;阵列;制备方法;器件应用 0 引言 近年来,Si纳米线及其阵列的制备方法、结构表征、光电性质及其新型器件应用的研究,已成为Si基纳米材料科学与技术领域中一个新的热点课题。人们之所以对Si纳米线的研究广泛关注,是由于这种准一维纳米结构具有许多显著不同于其他低维半导体材料的电学、光学、磁学以及力学等新颖物理性质,从而使其在场发射器件、单电子存储器件、高效率激光器、纳米传感器以及高转换效率太阳电池等光电子器件中具有重要的实际应用[1]。 硅纳米线阵列( silicon nanowires arrays,简称SiNWs阵列) 是由众多的一维硅纳米线垂直于基底排列而成的,SiNWs阵列与硅纳米线之间的关系如同整片森林与单棵树木一样,它除了具有硅纳米线的特性外,还表现出集合体的优异性能:SiNWs阵列独特的“森林式”结构,使其具有优异的减反射特性,在宽波段、宽入射角范围都能保持很高的光吸收率,显著高于目前普遍使用的硅薄膜。例如,对于波长300—800 nm的光,在正入射的情况下,硅薄膜的平均光吸收率为65% ,而SiNWs阵列的平均光吸收率在80% 以上;在光入射角为60°时,硅薄膜的平均光吸收率为45%,而SiNWs阵列的平均光吸收率达70%[2]。这对于硅材料在太阳能高效利用方面,具有十分重要的意义。本文将对国内外关于硅纳米线阵列的制备及其在光电领域应用的研究进展进行系统阐述。 1 Si纳米线阵列的制备方法 近年来,为制备有序的SiNWs阵列,研究者先后开发出多种制备方法,这些方法大体上可分为两类:“自下而上( bottom-up )”和“自上而下( topdown)”。前者是从原子或分子出发控制组装成SiNWs阵列;而后者则是从体硅(硅片)出

碳纳米管

碳纳米管“太空天梯” 未来的“太空天梯” 碳纳米管是由石墨分子单层绕同轴缠绕而成或由单层石墨圆筒沿同轴层层套构而成的管状物。其直径一般在一到几十个纳米之间,长度则远大于其直径。1991年,日本NEC公司基础研究实验室的电子显微镜专家饭岛在高分辨透射电子显微镜下检验石墨电弧设备中产生的球状碳分子时,意外发现了这一特别的分子结构。 碳纳米管作为一维纳米材料,重量轻,六边形结构连接完美,具有许多异常的力学、电学和化学性能。作为人类发现的力学性能最好的材料,碳纳米管有着极高的拉伸强度、杨氏模量和断裂伸长率。例如,碳纳米管的单位质量上的拉伸强度是钢铁的276倍,远远超过其他任何材料。 目前碳纳米管的研究现状 自从1991年碳纳米管被正式报道以来,为了提高其长度,全世界的碳纳米管研究者进行了大量艰辛的探索。然而一直到2009年,碳纳米管的最大长度只有18.5厘米,直到目前成功制备出单根长度达到半米以上的碳纳米管。这种有限的长度极大地限制了碳纳米管的实际应用。 碳纳米管的优点。 (1)界面层的存在和界面层厚度的增大均降低

碳纳米管和界面层的应力传递效率随长径比的变化了应力传递效率和纤维的饱和应力, 但同时增大了碳纳米管纤维的有效长度。所以界面层比较明显地承担了应力载荷, 则在碳纳米管复合材料中应该考虑界面层存在和界面层厚度的影响。 (2)碳纳米管的长径比只在较小时影响有效长度和应力传递效率。 长径比所影响的具体范围不同, 对碳纳米管有效长度为小于50 , 而对于应力传递效率则小于10 。 (3)碳纳米管的应力传递效率要远比界面层的应力传递效率大。 在碳纳米管复合材料中虽应要考虑界面层的影响, 但应力载荷的最主要承担者仍是碳纳米管纤维。对碳纳米管复合材料的应力场、纤维的饱和应力和应力传递效率以及有效长度的分析, 为碳纳米管复合材料力学性能的分析、结构优化和功能化设计以及寿命预测等做好必要的准备。 碳纳米管的缺点 (1)如何实现高质量碳纳米管的连续批量工业化生产。 碳纳米管的制备现状大致是:MWNTs能较大量生产,SWNTs多数处于实验室研制阶段,某些制备方法得到的碳纳米管生长机理还不明确,对碳纳米管的结构(管径、管长、螺旋度、壁厚等)还不能做到任意调节和控制,影响碳纳米管的产量、质量及产率的因素太多。 (2)有限的长度极大地限制了碳纳米管的实际应用。 提高了碳纳米管的长度,唯一的途径就是尽可能地提高其催化剂活性概率。对于碳纳米管的生长而言,在其生长过程中催化剂失活从而使其停止生长是一个不可逆转的规律,从而造成了超长碳纳米管很难达到很长的长度,并且也使其单位宽度上的生长密度急剧下降。 (3) 对人体的毒害作用 碳纳米管对人体存在一定的毒性作用,目前研究主要集中在肺脏毒性和细胞毒性,表现为可引起肺脏炎症、肉芽肿和细胞凋亡、活力下降、细胞周期改变等。其毒力大小与碳纳米管的特性有关,如结构、长度、表面积、制备方法、浓度、

碳纳米管的制备工艺与生长机理_朱宝华

?建筑材料及应用? 文章编号:100926825(2007)3320174202 碳纳米管的制备工艺与生长机理 收稿日期:2007206219 作者简介:朱宝华(19772),男,重庆交通大学硕士研究生,重庆 400074 朱宝华 摘 要:针对碳纳米管的独特结构和性能,介绍了电弧法、激光蒸发法和化学气相沉积法三种制备碳纳米管的方法,并建 立不同的物理模型,详细阐述了以上三种方法的生长机理,为研究碳纳米管技术提供了参考借鉴。关键词:碳纳米管,生长机理,制备工艺中图分类号:TU551文献标识码:A 碳纳米管(简称CN Ts )自1991年由Iijima 发现以来,立即受 到全球科学家的关注,很快就变成研究最多的纳米材料。碳纳米管分为单壁和多壁两种,由于多壁碳纳米管结构的复杂性,单壁碳纳米管作为理论计算的研究对象,根据形成碳纳米管的石墨面的卷曲方式,它可以分为非螺旋型和螺旋型两类,对于非螺旋型结构,管壁上原子六元环碳链的排列方向平行于管轴时为“椅式”结构,而当其排列方向垂直于管轴则为“齿式”结构。实际上对于大多数碳纳米管而言,管壁上任何碳原子六元环链的排列方向大都既不平行也不垂直于碳纳米管的轴线方向,而是相对于碳纳米管的轴线方向具有一定的螺旋角,碳六元环以这样的方式排列形成的纳米管就是螺旋型的碳纳米管。螺旋型的碳纳米管具有手性的区别,因此也被称为具有“手性”结构的碳纳米管。 碳纳米管的管状结构和较大长度直径比,使其成为理想的和有前途的准一维材料,而且理论预言这种纯碳分子所构成的直径最细、结构多变的纳米管具有很多奇异的性质,必将在纳米材料科学、分子电子器件及纳米生命科学中发挥重要作用。 1 单壁碳纳米管的制备1.1 电弧法 电弧是一种气体放电现象,当电极两端的电流功率较大时, 电极间的气体被击穿,产生几千度甚至上万度的高压,电能在瞬间转化为光能和热能。将石墨棒作阳极插入反应室,与室内已装有的石墨棒(或短铜棒)阴极接触产生电弧后,在电弧区生成的碳纳米管落下,沉积在筒的底部,反应室内充满液氮。此法的突出优点在于液氮提供保护性气氛及缓冲气源,使得产物在惰性气氛下易保存输运,避免了复杂的真空密封装置。1993年,S ?Iijima 等人就是首次用此方法成功合成单壁碳纳米管。 1.2 激光蒸发法 激光蒸发法制备单壁碳纳米管是将一根金属催化剂和石墨混合的石墨靶放置于一长形石英管中间,该管则置于一加热炉内。当炉温升到1473K 时,将惰性气体充入管内,并将一束激光聚焦于石墨靶上。石墨靶在激光照射下将生成气态碳,这些气态碳和 4 混凝土的早期养护 实践证明,混凝土常见的裂缝,大多数是不同深度的表面裂缝,其主要原因是温度梯度造成寒冷地区的温度骤降也容易形成裂缝。因此说混凝土的保温对防止表面早期裂缝尤其重要。 从温度应力观点出发,保温应达到下述要求:1)防止混凝土内外温度差及混凝土表面梯度,防止表面裂缝。2)防止混凝土超冷,应该尽量设法使混凝土的施工期最低温度不低于混凝土使用期的稳定温度。3)防止旧混凝土过冷,以减少新旧混凝土间的约束。 混凝土的早期养护,主要目的在于保持适宜的温湿条件,以达到两个方面的效果:a.使混凝土免受不利温、湿度变形的侵袭,防止有害的冷缩和干缩。b.使水泥水化作用顺利进行,以期达到设计的强度和抗裂能力。 适宜的温湿度条件是相互关联的。混凝土的保温措施常常也有保湿的效果。 从理论上分析,新浇混凝土中所含水分完全可以满足水泥水 化热的要求而有余。但由于蒸发等原因常引起水分损失,从而推迟或防碍水泥的水化,表面混凝土最容易而且直接受到这种不利影响。因此混凝土浇筑后的最初几天是养护的关键时期,在施工过程中应切实重视起来。 5 结语 以上对混凝土的施工温度与裂缝之间的关系进行了理论和实践上的初步探讨,虽然学术界对于混凝土裂缝的成因和计算方法有不同的理论,但对于具体的预防和改善措施意见还是比较统一,同时在实践中的应用效果也是比较好的。在施工中要靠多观察、多比较,出现问题后多分析、多总结,结合多种预防处理措施,混凝土的裂缝是完全可以避免的。参考文献: [1]李惠强.高层建筑施工技术[M ].北京:机械工业出版社, 2005.5. [2]赵建光.浅谈施工质量管理的若干要素[J ].建筑学报,2004 (2):31233. R easons of temperature and cracks during construction of pouring concrete L I Feng 2jun JIANG Chu ang 2feng CHENG Xia Abstract :It analyzes the reasons of cracks in pouring concrete.Through analysis of temperature stress ,it brings forward some measures of controlling temperature and protecting cracks ,and elaborates the early maintaining of concrete ,s o as to av oid the happening of concrete cracks.K ey w ords :pouring concrete ,temperature cracks ,early maintaining ,temperature stress ? 471?第33卷第33期2007年11月 山西建筑SHANXI ARCHITECTURE Vol.33No.33Nov. 2007

相关主题
文本预览
相关文档 最新文档