当前位置:文档之家› 研究生数值分析2012-2013试卷

研究生数值分析2012-2013试卷

研究生数值分析2012-2013试卷
研究生数值分析2012-2013试卷

山东科技大学 2012-2013 学年第一学期

《数值分析》考试试卷

[][]

[][]其收敛阶

出的牛顿迭代格式,并指的写出求方程为正数,记设六、计算题

插值多项式。

的三次写出时,已知当五、计算题

差。

多项式,并估计平方误上的一次最佳平方逼近在区间求设函数四、计算题一个复化求积公式

利用该求积公式构造等分,并记作)将区间

(斯型,并说明理由;

)判断该公式是否为高(数精度;

代数精度,并指出其代,使其具有尽可能高的试确定求积系数给定求积公式:

三、计算题

差限。

的绝对误差限与相对误位有效数字,试分析均具有设二、计算题

。计算、设的值。与计算、设一、计算题

**21

1212121710610360)(,,)(ewton )(,5,2,3,1)(5,3,2,020)(,)(,,,1,0,1,2n 11-32,,)1()

1()0()1()(365.3,1.12,,,,723226131,1252222222,13)(1x x f a x a a x x f N x f x f x x f x x f n k i ih x n

h C B A Cf Bf Af d x f x x x x A A x x A x L f L f x x x f n n i x F ==-=====+-==++-≈+==????

??????-=??????????-=++=?-∞

并指出其精度。写出改进的欧拉公式,,记取正整数题考虑常微分方程初值问八、计算题

消去法求方程组的解。

用列主元迭代格式的敛散性;

试分析迭代格式。

迭代格式与写出给定线性方程组七、计算题

.0,,n ,)(),,(auss )3(eidel -auss )2(eidel -auss acobi )1(215702031-22-1'321n i ih a x n a b h a y b x a y x f y G S G S G J x x x i ≤≤+=-=?

??=≤≤=????

??????-=????????????????????η

数值分析试卷及答案

二 1求A的LU分解,并利用分解结果求 解由紧凑格式 故 从而 故 2求证:非奇异矩阵不一定有LU分解 证明设非奇异,要说明A不一定能做LU分解,只需举出一个反例即可。现考虑矩阵,显然A为非奇异矩阵。若A有LU分解,则 故,而,显然不能同时成立。这矛盾说明A不能做LU分解,故只假定A非奇异并不能保证A能做LU分解,只有在A的前阶顺序主子式 时才能保证A一定有LU分解。

3用追赶法求解如下的三对角方程组 解设有分解 由公式 其中分别是系数矩阵的主对角线元素及其下边和上边的次对角线元素,故有 从而有 故,,, 故,,,

4设A是任一阶对称正定矩阵,证明是一种向量范数 证明(1)因A正定对称,故当时,,而当时, (2)对任何实数,有 (3)因A正定,故有分解,则 故对任意向量和,总有 综上可知,是一种向量范数。 5 设,,已知方程组的精确解为 (1)计算条件数; (2)若近似解,计算剩余; (3)利用事后误差估计式计算不等式右端,并与不等式左边比较,此结果说明了什么?解(1) (2) (3)由事后误差估计式,右端为 而左端

这表明当A为病态矩阵时,尽管剩余很小,误差估计仍然较大。因此,当A病态时,用大小作为检验解的准确度是不可靠的。 6矩阵第一行乘以一数成为,证明当时,有最小值 证明设,则 又 故 从而当时,即时,有最小值,且 7讨论用雅可比法和高斯-赛德尔法解方程组时的收敛性。如果收敛,比较哪一种方 法收敛较快,其中 解对雅可比方法,迭代矩阵 , 故雅可比法收敛。 对高斯-赛德尔法,迭代矩阵

,故高斯-赛德尔法收敛。 因=故高斯-赛德尔法较雅可比法收敛快。 8设,求解方程组,求雅可比迭代法与高斯-赛德尔迭代法收敛的充要条件。 解雅可比法的迭代矩阵 , 故雅可比法收敛的充要条件是。 高斯-赛德尔法的迭代矩阵 ,

2014级硕士研究生数值分析上机实习报告

2014级硕士研究生数值分析上机实习(第一次) 姓名:学号:学院: 实习题目:分别用二分法和Newton迭代法求方程x3■ 2x210x-20=0的根.实习目的:掌握两种解法,体会两种解法的收敛速度. 实习要求:用C程序语言编程上机进行计算,精确到8位有效数字. 报告内容: 1.确定实根的个数以及所在区间 2.将最后两次计算结果填入下表(保留8位数字): 3.实习过程中遇到哪些问题?如何解决?有何心得体会?

4.两种解法的计算程序(此页写不下时可以加页):

2014级硕士研究生数值分析上机实习(第二次)姓名:学号:学院: 实习题目:计算8阶三对角矩阵A=tridiag(0.235, 1.274, 0.235)的行列式.实习目的:掌握计算行列式的方法. 实习要求:首先选择一种算法,然后用C程序语言编程上机进行计算.报告内容: 1.简单描述所采用的算法: 2?计算结果: A 3.实习过程中遇到哪些问题?如何解决?有何心得体会?

4.写出C语言计算程序(此页写不下时可以加页):

2014级硕士研究生数值分析上机实习(第三次) 姓名:学号:学院: 分别用Jacobi迭代法和Gauss-Seidel迭代法求解线性方程组实习题目: 2lx + 9.8y+ 3.4z= 6.7 <2.7x + 1.8y+ 7.2z= 2.4 8.6x + 1.5y + 3.4z = 1.9 实习目的:感受两种迭代法的收敛速度. 首先构造收敛的Jacobi迭代法和Gauss-Seidel迭代法,然后用实习要求: C程序语言编程上机进行求解,初始值均取为0,精确到4位小 数. 报告内容: 1.写出收敛的Jacobi迭代法和Gauss-Seidel迭代法:

数值分析试题及答案汇总

数值分析试题 一、 填空题(2 0×2′) 1. ?? ????-=? ?????-=32,1223X A 设x =是精确值x *=的近似值,则x 有 2 位 有效数字。 2. 若f (x )=x 7-x 3+1,则f [20,21,22,23,24,25,26,27]= 1 , f [20,21,22,23,24,25,26,27,28]= 0 。 3. 设,‖A ‖∞=___5 ____,‖X ‖∞=__ 3_____, ‖AX ‖∞≤_15_ __。 4. 非线性方程f (x )=0的迭代函数x =?(x )在有解区间满足 |?’(x )| <1 ,则使用该迭代 函数的迭代解法一定是局部收敛的。 5. 区间[a ,b ]上的三次样条插值函数S (x )在[a ,b ]上具有直到 2 阶的连续导数。 6. 当插值节点为等距分布时,若所求节点靠近首节点,应该选用等距节点下牛顿差商 公式的 前插公式 ,若所求节点靠近尾节点,应该选用等距节点下牛顿差商公式的 后插公式 ;如果要估计结果的舍入误差,应该选用插值公式中的 拉格朗日插值公式 。 7. 拉格朗日插值公式中f (x i )的系数a i (x )的特点是:=∑=n i i x a 0)( 1 ;所以当 系数a i (x )满足 a i (x )>1 ,计算时不会放大f (x i )的误差。 8. 要使 20的近似值的相对误差小于%,至少要取 4 位有效数字。 9. 对任意初始向量X (0)及任意向量g ,线性方程组的迭代公式x (k +1)=Bx (k )+g (k =0,1,…)收 敛于方程组的精确解x *的充分必要条件是 ?(B)<1 。 10. 由下列数据所确定的插值多项式的次数最高是 5 。 11. 牛顿下山法的下山条件为 |f(xn+1)|<|f(xn)| 。 12. 线性方程组的松弛迭代法是通过逐渐减少残差r i (i =0,1,…,n )来实现的,其中的残差 r i = (b i -a i1x 1-a i2x 2-…-a in x n )/a ii ,(i =0,1,…,n )。 13. 在非线性方程f (x )=0使用各种切线法迭代求解时,若在迭代区间存在唯一解,且f (x )

2009哈工大级研究生《数值分析》试卷

2009级研究生《数值分析》试卷 一.(6分) 已知描述某实际问题的数学模型为x y y x y x u 223),(+=,其中,y x ,由 统计方法得到,分别为4,2==y x ,统计方法的误差限为0.01,试求出u 的误差限 )(u ε和相对误差限)(u r ε. 二.(6分) 已知函数13)(3+=x x f 计算函数)(x f 的2阶均差]2,1,0[f ,和4阶均差]4,3,2,1,0[f . 三.(6分)试确定求积公式: )]1(')0('[12 1 )]1()0([21)(10f f f f dx x f -++≈?的代数精 度. 四.(12分) 已知函数122)(2 3 -++=x x x x f 定义在区间[-1,1]上,在空间 },,1{)(2x x Span x =Φ上求函数)(x f 的最佳平方逼近多项式. 其中,权函数1)(=x ρ,15 4 ))(),((,1532))(),((,34))(),((210-==-=x x f x x f x x f ???. 五.(16分) 设函数)(x f 满足表中条件: (1) 填写均差计算表(标有*号处不填): (2) 分别求出满足条件)2,1,0(),()(),()(22===k x f x N x f x L k k k k 的 2次 Lagrange 和 Newton 差值多项式.

(3) 求出一个四次插值多项式)(4x H ,使其满足表中所有条件.并用多项式降幂形式表示. 六.(16分) (1). 用Romberg 方法计算?3 1 dx x ,将计算结果填入下表(*号处不填). (2). 试确定三点 Gauss-Legender 求积公式?∑-=≈1 1 2 )()(k k k x f A dx x f 的Gauss 点k x 与系数 k A ,并用三点 Gauss-Legender 求积公式计算积分: ?3 1dx x . 七.(14分) (1) 证明方程02ln =--x x 在区间(1,∞)有一个单根.并大致估计单根的取值范围. (2) 写出Newton 迭代公式,并计算此单根的近似值.(要求精度满足: 5 110||-+<-k k x x ). 八. (12分) 用追赶法求解方程组: ???? ?? ? ??=??????? ????????? ??022112111131124321x x x x 的解. 九. (12分) 设求解初值问题???==0 0)() ,('y x y y x f y 的计算格式为: )],(),([111--+++=n n n n n n y x bf y x af h y y ,假设11)(,)(--==n n n n y x y y x y ,试确定参数b a ,的值,使该计算格式的局部截断误差为二阶,即截断部分为: )(3h o .

数值分析试卷及其答案

1、(本题5分)试确定7 22 作为π的近似值具有几位有效数字,并确定其相对误差限。 解 因为 7 22 =3.142857…=1103142857 .0-? π=3.141592… 所以 312102 11021005.0001264.0722--?=?=<=- π (2分) 这里,3,21,0=-=+-=n n m m 由有效数字的定义可知7 22 作为π的近似值具有3位有效数字。 (1分) 而相对误差限 3102 1 0005.00004138.0001264.07 22-?= <≈= -= π π πε r (2分) 2、(本题6分)用改进平方根法解方程组:??? ?? ??=????? ??????? ??--654131*********x x x ; 解 设???? ? ??????? ? ?????? ??===????? ??--11111 1 131321112323121 32 132 31 21 l l l d d d l l l LDL A T 由矩阵乘法得: 5 7,21,215 27 ,25,2323121321- ==-== -==l l l d d d (3分) 由y D x L b Ly T 1 ,-==解得 T T x y )9 23 ,97,910(,)563, 7,4(== (3分) 3、(本题6分)给定线性方程组???????=++-=+-+=-+-=-+17 7222382311387 510432143213 21431x x x x x x x x x x x x x x 1)写出Jacoib 迭代格式和Gauss-Seidel 迭代格式; 2)考查Jacoib 迭代格式和Gauss-Seidel 迭代格式的敛散性; 解 1)Jacoib 迭代格式为

数值分析试卷及其答案2

1、(本题5分)试确定7 22作为π的近似值具有几位有效数字,并确定其相对误差限。 解 因为 7 22=3.142857…=1103142857.0-? π=3.141592… 所以 3 12 10 2 110 21005.0001264.07 22--?= ?= <=- π (2分) 这里,3,21,0=-=+-=n n m m 由有效数字的定义可知7 22作为π的近似值具有3位有效数字。 (1分) 而相对误差限 3 10 2 10005.00004138.0001264.07 22-?= <≈= -= π π πε r (2分) 2、(本题6分)用改进平方根法解方程组:???? ? ??=????? ??????? ??--654131321 112321x x x ; 解 设???? ? ? ?????? ? ?????? ??===????? ? ?--11 1 11113 1321 11232312132 1 32 31 21 l l l d d d l l l LDL A T 由矩阵乘法得: 5 7,21,21527,25,2323121321- == - == -==l l l d d d (3分) 由y D x L b Ly T 1 ,-==解得 T T x y )9 23,97,910( ,)5 63, 7,4(== (3分) 3、(本题6分)给定线性方程组??? ? ? ??=++-=+-+=-+-=-+17722238231138751043214321 321431x x x x x x x x x x x x x x 1)写出Jacoib 迭代格式和Gauss-Seidel 迭代格式; 2)考查Jacoib 迭代格式和Gauss-Seidel 迭代格式的敛散性; 解 1)Jacoib 迭代格式为

研究生数值分析试卷

2005~2006学年第一学期硕士研究生期末考试试题(A 卷) 科目名称:数值分析 学生所在院: 学号: 姓名: 注意:所有的答题内容必须答在答题纸上,凡答在试题或草稿纸上的一律无效。 一、(15分)设求方程 0cos 2312=+-x x 根的迭代法 k k x x cos 3 2 41+=+ (1) 证明对R x ∈?0,均有*lim x x k k =∞ →,其中*x 为方程的根. (2) 此迭代法收敛阶是多少? 证明你的结论. 二、(12分)讨论分别用Jacobi 迭代法和Gauss-Seidel 迭代法求解下列方程组的收敛性。 ??? ??=++-=++=-+. 022,1, 122321 321321x x x x x x x x x 三、(8分)若矩阵??? ? ? ??=a a a a A 000002,说明对任意实数0≠a ,方程组b AX =都是非病态的。(范数用∞?) 四、( 求)(x f 的Hermite 插值多项式)(3x H ,并给出截断误差)()()(3x H x f x R -=。 五、(10分)在某个低温过程中,函数 y 依赖于温度x (℃)的试验数据

为 已知经验公式的形式为 2bx ax y += ,试用最小二乘法求出 a ,b 。 六、(12分)确定常数 a ,b 的值,使积分 [ ] dx x b ax b a I 2 1 1 2 ),(?--+= 取得最小值。 七、(14分)已知Legendre(勒让德)正交多项式)(x L n 有递推关系式: ?? ? ? ???=+-++===-+),2,1()(1)(112)()(, 1)(1110 n x L n n x xL n n x L x x L x L n n n 试确定两点的高斯—勒让德(G —L )求积公式 ? -+≈1 1 2211)()()(x f A x f A dx x f 的求积系数和节点,并用此公式近似计算积分 ?=2 11 dx e I x 八、(14分)对于下面求解常微分方程初值问题 ?????==0 0)() ,(y x y y x f dx dy 的单步法: ??? ? ??? ++==++=+) ,() ,()2 121(1 21211 hk y h x f k y x f k k k h y y n n n n n n

数值分析试题及答案

一、单项选择题(每小题3分,共15分) 1. 3.142和3.141分别作为π的近似数具有( )和( )位有效数字. A .4和3 B .3和2 C .3和4 D .4和4 2. 已知求积公式 ()()2 1 121 1()(2)636f x dx f Af f ≈ ++? ,则A =( ) A . 16 B .13 C .12 D .2 3 3. 通过点 ()()0011,,,x y x y 的拉格朗日插值基函数()()01,l x l x 满足( ) A . ()00l x =0, ()110l x = B . ()00l x =0, ()111l x = C .() 00l x =1,()111 l x = D . () 00l x =1,()111 l x = 4. 设求方程 ()0 f x =的根的牛顿法收敛,则它具有( )敛速。 A .超线性 B .平方 C .线性 D .三次 5. 用列主元消元法解线性方程组 1231231 220223332 x x x x x x x x ++=?? ++=??--=? 作第一次消元后得到的第3个方程( ). A . 232 x x -+= B .232 1.5 3.5 x x -+= C . 2323 x x -+= D . 230.5 1.5 x x -=- 单项选择题答案 1.A 2.D 3.D 4.C 5.B 得 分 评卷人 二、填空题(每小题3分,共15分)

1. 设T X )4,3,2(-=, 则=1||||X ,2||||X = . 2. 一阶均差 ()01,f x x = 3. 已知3n =时,科茨系数()()() 33301213,88C C C ===,那么 () 33C = 4. 因为方程()420 x f x x =-+=在区间 []1,2上满足 ,所以()0f x =在区间 内有根。 5. 取步长0.1h =,用欧拉法解初值问题 ()211y y y x y ?'=+?? ?=? 的计算公式 . 填空题答案 1. 9和29 2. ()() 0101 f x f x x x -- 3. 1 8 4. ()()120 f f < 5. ()12 00.1 1.1,0,1,210.11k k y y k k y +???? ?=+? ?=+???? =??L 得 分 评卷人 三、计算题(每题15分,共60分) 1. 已知函数 21 1y x = +的一组数据: 求分 段线性插值函数,并计算 () 1.5f 的近似值. 计算题1.答案 1. 解 []0,1x ∈, ()1010.510.50110x x L x x --=?+?=---% []1,2x ∈,()210.50.20.30.81221x x L x x --=?+?=-+--%

数值分析试题及答案

数值分析试题及答案 一、单项选择题(每小题3分,共15分) 1. 3.142和3.141分别作为的近似数具有()和()位有效数字. A.4和3 B.3和2 C.3和4 D.4和4 2. 已知求积公式,则=() A. B.C.D. 3. 通过点的拉格朗日插值基函数满足() A.=0,B.=0, C.=1,D.=1, 4. 设求方程的根的牛顿法收敛,则它具有()敛速。 A.超线性B.平方C.线性D.三次 5. 用列主元消元法解线性方程组作第一次消元后得到的第3个方程(). A.B. C.D. 单项选择题答案 1.A 2.D 3.D 4.C 5.B 得分评卷 人 二、填空题(每小题3分,共15分) 1. 设, 则, . 2. 一阶均差 3. 已知时,科茨系数,那么 4. 因为方程在区间上满足,所以在区间内有根。 5. 取步长,用欧拉法解初值问题的计算公式.填空题答案

1. 9和 2. 3. 4. 5. 得分评卷 人 三、计算题(每题15分,共60分) 1. 已知函数的一组数据:求分段线性插值函数,并计算的近似值. 计算题1.答案 1. 解, , 所以分段线性插值函数为 2. 已知线性方程组 (1)写出雅可比迭代公式、高斯-塞德尔迭代公式; (2)对于初始值,应用雅可比迭代公式、高斯-塞德尔迭代公式分别计算(保留小数点后五位数字). 计算题2.答案 1.解原方程组同解变形为 雅可比迭代公式为 高斯-塞德尔迭代法公式 用雅可比迭代公式得 用高斯-塞德尔迭代公式得 3. 用牛顿法求方程在之间的近似根 (1)请指出为什么初值应取2? (2)请用牛顿法求出近似根,精确到0.0001. 计算题3.答案

北航2010-2011年研究生数值分析期末模拟试卷1-3

数值分析模拟试卷1 一、填空(共30分,每空3分) 1 设??? ? ??-=1511A ,则A 的谱半径=)(a ρ______,A 的条件数=________. 2 设 ,2,1,0,,53)(2==+=k kh x x x f k ,则],,[21++n n n x x x f =________, ],,[321+++n n n n x x x x f ,=________. 3 设?????≤≤-++≤≤+=2 1,121 0,)(2 323x cx bx x x x x x S ,是以0,1,2为节点的三次样条函数,则b=________,c=________. 4 设∞=0)]([k k x q 是区间[0,1]上权函数为x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0=x q ,则 ?=1 )(dx x xq k ________,=)(2 x q ________. 5 设???? ??????=11001a a a a A ,当∈a ________时,必有分解式,其中L 为下三角阵,当 其对角线元素)3,2,1(=i L ii 满足条件________时,这种分解是唯一的. 二、(14分)设4 9,1,41,)(2102 3 === =x x x x x f , (1)试求)(x f 在]4 9,41[上的三次Hermite 插值多项式)(x H 使满足 2,1,0),()(==i x f x H i i ,)()(11x f x H '='. (2)写出余项)()()(x H x f x R -=的表达式. 三、(14分)设有解方程0cos 2312=+-x x 的迭代公式为n n x x cos 3 2 41+ =+, (1) 证明R x ∈?0均有? ∞ →=x x n x lim (? x 为方程的根); (2) 取40=x ,用此迭代法求方程根的近似值,误差不超过,列出各次迭代值; (3)此迭代的收敛阶是多少?证明你的结论. 四、(16分) 试确定常数A ,B ,C 和,使得数值积分公式 有尽可能高的代数精度. 试问所得的数值积分公式代数精度是多少?它是否为Gauss 型的?

数值分析试卷及其答案1

1. 已知325413.0,325413*2*1==X X 都有6位有效数字,求绝对误差限。(4分) 解: 由已知可知6 5.0102 1 ,0,6,10325413.0016*1=?= =-=?=ε绝对误差限n k k X 2分 620*2102 1 ,6,0,10325413.0-?= -=-=?=ε绝对误差限n k k X 2分 2. 已知?? ???=0 01 A 220- ?????440求21,,A A A ∞ (6分) 解: {}, 88,4,1max 1==A 1分 {}, 66,6,1max ==∞A 1分 () A A A T max 2λ= 1分 ?????=0 1 A A T 4 2 ???? ? -420?????0 01 2 20 - ???? ?440= ?????0 01 80 ???? ?3200 2分 {}32 32,8,1max )(max ==A A T λ

1分 24322==A 3. 设32)()(a x x f -= (6分) ① 写出f(x)=0解的迭代格式 ② 当a 为何值时,)(1k k x x ?=+ (0,1……)产生的序列{}k x 收敛于 2 解: ①迭代格式为: x a x x x a x a x x a x x x f x f x x k k k k k k k k k k 665)(665)(6)()(')(2 2 32 1 += +=---=-=+? 3 分 ②时迭代收敛即当222,112 10)2(',665)('2<<-<-=-= a a x a x ?? 3分 4. 给定线性方程组,其中:?? ?=13A ?? ?2 2,?? ? ???-=13b 用迭代公式 )()()()1(k k k Ax b x x -+=+α(0,1……)求解,问取什么实数α ,可使 迭代收敛 (8分) 解: 所给迭代公式的迭代矩阵为?? ? --???--=-=ααααα21231A I B 2分

2008级研究生数值分析试题

太原科技大学 2008级硕士研究生08/09学年第一学期 《数值分析》考试试卷 说明:1、Legendre 正交多项式)(x L n 有三项递推关系式: ?? ?? ???=+-++===-+ ,2,1)(1)(112)()(,1)(1110n x L n n x xL n n x L x x L x L n n n 2、Chebyshev 多项式)(x T n 有三项递推关系式: ?? ? ??=-===-+ ,2,1)()(2)()(,1)(1110n x T x xT x T x x T x T n n n 一、填空题:(每题4分,共20分) 1、设??? ? ??-=1511A ,则=∞)(A Cond 2、为提高数值计算精度,当x 充分小时,应将 x x sin cos 1-改写为 3、设)5()(2 -+=x a x x ?,要使)(1k k x x ?=+局部收敛到5* = x ,则a 的取值范围为 4、近似数235.0* =x 关于真值229.0=x 有 位有效数字。 5、设,1)(3 -+=x x x f 则差商=]3,2,1,0[f 二、(本题满分10分)用数值积分的方法建立求解初值问题b x a y a y y x f y a ≤≤==',)(),,(的Simpson 公式: )4(3 1111-+-++++=n n n n n f f f h y y 其中1,,1),,(+-==n n n i y x f f i i i ,11-+-=-=n n n n x x x x h . 三、(本题满分15分)设要用Gauss-Seidel 迭代法求解下列线性方程组

数值分析习题集及答案Word版

数值分析习题集 (适合课程《数值方法A 》和《数值方法B 》) 长沙理工大学 第一章 绪 论 1. 设x >0,x 的相对误差为δ,求ln x 的误差. 2. 设x 的相对误差为2%,求n x 的相对误差. 3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指 出它们是几位有效数字: *****123451.1021,0.031,385.6,56.430,7 1.0.x x x x x =====? 4. 利用公式(3.3)求下列各近似值的误差限: ********12412324(),(),()/,i x x x ii x x x iii x x ++其中**** 1234 ,,,x x x x 均为第3题所给的数. 5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少? 6. 设028,Y =按递推公式 1n n Y Y -=…) 计算到100Y .27.982(五位有效数字),试问计算100Y 将有多大误差? 7. 求方程2 5610x x -+=的两个根,使它至少具有四位有效数字27.982). 8. 当N 充分大时,怎样求2 1 1N dx x +∞+?? 9. 正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝2 ? 10. 设 212S gt = 假定g 是准确的,而对t 的测量有±0.1秒的误差,证明当t 增加时S 的绝对 误差增加,而相对误差却减小. 11. 序列 {}n y 满足递推关系1101n n y y -=-(n=1,2,…),若0 1.41y =≈(三位有效数字), 计算到 10y 时误差有多大?这个计算过程稳定吗? 12. 计算6 1)f =, 1.4≈,利用下列等式计算,哪一个得到的结果最好? 3 -- 13. ()ln(f x x =,求f (30)的值.若开平方用六位函数表,问求对数时误差有多大?

《数值计算方法》试题集及答案

《数值计算方法》复习试题 一、填空题: 1、????? ?????----=410141014A ,则A 的LU 分解为 A ??? ?????????=? ?????????? ?。 答案: ?? ????????--??????????--=1556141501 4115401411A 2、已知3.1)3(,2.1)2(,0.1)1(===f f f ,则用辛普生(辛卜生)公式计算求得 ?≈3 1 _________ )(dx x f ,用三点式求得≈')1(f 。 答案:2.367,0.25 3、1)3(,2)2(,1)1(==-=f f f ,则过这三点的二次插值多项式中2 x 的系数为 ,拉 格朗日插值多项式为 。 答案:-1, )2)(1(21 )3)(1(2)3)(2(21)(2--------= x x x x x x x L 4、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字; 5、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是( ); 答案 )(1)(1n n n n n x f x f x x x '--- =+ 6、对1)(3 ++=x x x f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 ); 7、计算方法主要研究( 截断 )误差和( 舍入 )误差; 8、用二分法求非线性方程 f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为 ( 1 2+-n a b );

9、求解一阶常微分方程初值问题y '= f (x ,y ),y (x 0)=y 0的改进的欧拉公式为 ( )] ,(),([2111+++++=n n n n n n y x f y x f h y y ); 10、已知f (1)=2,f (2)=3,f (4)=5.9,则二次Newton 插值多项式中x 2系数为 ( 0.15 ); 11、 两点式高斯型求积公式?1 d )(x x f ≈( ?++-≈1 )] 321 3()3213([21d )(f f x x f ),代数精 度为( 5 ); 12、 解线性方程组A x =b 的高斯顺序消元法满足的充要条件为(A 的各阶顺序主子式均 不为零)。 13、 为了使计算 32)1(6 )1(41310-- -+-+ =x x x y 的乘除法次数尽量地少,应将该表 达式改写为 11 ,))64(3(10-= -++=x t t t t y ,为了减少舍入误差,应将表达式 19992001-改写为 199920012 + 。 14、 用二分法求方程01)(3 =-+=x x x f 在区间[0,1]内的根,进行一步后根的所在区间 为 0.5,1 ,进行两步后根的所在区间为 0.5,0.75 。 15、 计算积分?1 5 .0d x x ,取4位有效数字。用梯形公式计算求得的近似值为 0.4268 , 用辛卜生公式计算求得的近似值为 0.4309 ,梯形公式的代数精度为 1 ,辛卜生公式的代数精度为 3 。 16、 求解方程组???=+=+042.01532121x x x x 的高斯—塞德尔迭代格式为 ? ????-=-=+++20/3/)51()1(1)1(2)(2)1(1 k k k k x x x x ,该迭代格式的迭代矩阵的谱半径)(M ρ= 121 。

2012数值分析试卷答案

昆明理工大学2012级硕士研究生试卷 科目: 数值分析 考试时间: 出题教师: 集体 考生姓名: 专业: 学号: 考试要求:考试时间150分钟;填空题答案依顺序依次写在答题纸上,填在试卷卷面上的不予计分;可带计算器。 一、 填空题(每空2分,共40分) 1.设*0.231x =是真值0.228x =的近似值,则*x 有 位有效数字,*x 的相对误差限 为 。 2.设 133)(47+++=x x x x f ,则=]2,,2,2[710 f ,=]2,,2,2[810 f 。 3. 过点)0,2(),0,1(-和)3,1(的二次拉格朗日插值函数为 )(2x L = , 并计 算=)0(2L 。 4.设 32()3245f x x x x =+-+在[]1,1-上的最佳二次逼近多项式为 , 最佳二次平方逼近多项式为 。 5.高斯求积公式 )()()(1101 0x f A x f A dx x f x +≈? 的系数0A = , 1A = ,节点0x = , 1x = 。 6.方程组 b Ax =,,U L D A --=建立迭代公式f Bx x k k +=+)()1(,写出雅可比迭代法和 高斯-赛德尔迭代法的迭代矩阵, =Jacobi B ,=-Seidel Gauss B 。 7.0 0100A ??? =? ???,其条件数2()Cond A = 。 8.设?? ? ???=2113A ,计算矩阵A 的范数,1||||A = , 2||||A = 。

9.求方程 ()x f x =根的牛顿迭代格式是 。 10.对矩阵??? ? ? ??=513252321A 作LU 分解,其L=________________, U= __________________。 二、计算题(每题10分,共50分) 1. 求一个次数不高于4次的多项式P (x ), 使它满足:1)1(,0)0(,0)0('===p p p ,1)1(,'=p ,1)2(=p 并写出其余项表达式(要求有推导过程)。 2. 若用复合梯形公式计算积分 dx e x ? 1 ,问区间[0, 1]应分成多少等分才能使截断误差不超过 5102 1 -?? 若改用复合辛普森公式,要达到同样的精度区间[0, 1]应该分成多少等份? 由下表数据,用复合辛普森公式计算该积分的近似值。 3. 线性方程组b Ax =,其中???? ??????=18.04.08.014.04.04.01A ,T b ]3,2,1[=,(1)建立雅可比迭代法和 高斯-赛德尔迭代法的分量形式。(2)问雅可比迭代法和高斯-赛德尔迭代法都收敛吗 ? 4. 已知如下实验数据4,,1,0),,( =i y x i i , 用最小二乘法求形如x a a y 10+=的经验公式,并 计算最小二乘法的误差。 5. 用改进的欧拉公式(预估-校正方法),解初值问题0)0(,10022=+=y y x dx ,取步长,1.0=h 计算到2.0=x (保留到小数点后四位) 。 三、证明题(共10分) 1. 如果 A 是对称正定矩阵,则A 可唯一地写成T LL A =,其中L 是具有正对角元的下三角 阵。

研究生《数值分析》教学大纲

研究生《数值分析》教学大纲 课程名称:数值分析 课程编号:S061005 课程学时:64 学时 课程学分: 4 适用专业:工科硕士生 课程性质:学位课 先修课程:高等数学,线性代数,计算方法,Matlab语言及程序设计 一、课程目的与要求 “数值分析”课是理工科各专业硕士研究生的学位课程。主要介绍用计算机解决数学问题的数值计算方法及其理论。内容新颖,起点较高,并加强了数值试验和程序设计环节。通过本课程的学习,使学生熟练掌握各种常用的数值算法的构造原理和过程分析,提高算法设计和理论分析能力,并且能够根据数学模型,提出相应的数值计算方法编制程序在计算机上算出结果。力求使学生掌握应用数值计算方法解决实际问题的常用技巧。 二、教学内容、重点和难点及学时安排: 第一章? 数值计算与误差分析( 4学时) 介绍数值分析的研究对象与特点,算法分析与误差分析的主要内容。 第一节数值问题与数值方法 第二节数值计算的误差分析 第三节数学软件工具----MATLAB 语言简介 重点:误差分析 第二章? 矩阵分析基础( 10学时) 建立线性空间、赋范线性空间、内积空间的概念,为学习以后各章打好基础。矩阵分解是解决数值代数问题的常用方法,掌握矩阵的三角分解、正交分解、奇异值分解,并能够编写算法程序。 第一节? 矩阵代数基础

第二节? 线性空间 第三节? 赋范线性空间 第四节? 内积空间和内积空间中的正交系 第五节矩阵的三角分解 第六节矩阵的正交分解 第七节矩阵的奇异值分解 难点:内积空间中的正交系。矩阵的正交分解。 重点:范数,施密特(Schmidt) 正交化过程,正交多项式,矩阵的三角分解, 矩阵的正交分解。 第三章? 线性代数方程组的数值方法( 12学时) 了解研究求解线性代数方程组的数值方法分类及直接法的应用范围。高斯消元法是解线性代数方程组的最常用的直接法,也是其它类型直接法的基础。在此方法基础上加以改进,可得选主元的高斯消元法、按比例增减的高斯消元法,其数值稳定性更高。掌握用列主元高斯消元法解线性方程组及计算矩阵的行列式及逆,并且能编写算法程序。掌握矩阵的直接三角分解法:列主元LU 分解,Cholesky分解。了解三对角方程组的追赶法的分解形式及数值稳定性的充分条件。掌握矩阵条件数的定义,并能利用条件数判别方程组是否病态以及对方程组的直接方法的误差进行估计。 迭代解法是求解大型稀疏方程组的常用解法。熟练掌握雅可比迭代法、高斯- 塞德尔迭代法及SOR 方法的计算分量形式、矩阵形式,并能在计算机上编出三种方法的程序用于解决实际问题。了解极小化方法:最速下降法、共轭斜量法。迭代法的收敛性分析是研究解线性代数方程组的迭代法时必须考虑的问题。对于上述常用的迭代法,须掌握其收敛的条件。而对一般的迭代法,掌握其收敛性分析的基本方法和主要结果有助于进一步探究新的迭代法。 第一节求解线性代数方程组的基本定理 第二节高斯消元法及其计算机实现 第三节矩阵分解法求解线性代数方程组 第三节? 误差分析和解的精度改进 第四节? 大型稀疏方程组的迭代法 第五节? 极小化方法 难点:列主元高斯消元法,直接矩阵三角分解。迭代法的收敛性,雅可比迭代法,高斯-塞德尔迭代法,SOR 迭代法。

数值分析计算方法试题集及答案

数值分析复习试题 第一章 绪论 一. 填空题 1.* x 为精确值 x 的近似值;() **x f y =为一元函数 ()x f y =1的近似值; ()**,*y x f y =为二元函数()y x f y ,2=的近似值,请写出下面的公式:**e x x =-: *** r x x e x -= ()()()*'1**y f x x εε≈? ()() () ()'***1**r r x f x y x f x εε≈ ? ()()()() ()* *,**,*2**f x y f x y y x y x y εεε??≈?+??? ()()()()() ** * *,***,**222r f x y e x f x y e y y x y y y ε??≈ ?+??? 2、 计算方法实际计算时,对数据只能取有限位表示,这时所产生的误差叫 舍入误 差 。 3、 分别用2.718281,2.718282作数e 的近似值,则其有效数字分别有 6 位和 7 位;又取 1.73≈-21 1.73 10 2 ≤?。 4、 设121.216, 3.654x x ==均具有3位有效数字,则12x x 的相对误差限为 0.0055 。 5、 设121.216, 3.654x x ==均具有3位有效数字,则12x x +的误差限为 0.01 。 6、 已知近似值 2.4560A x =是由真值T x 经四舍五入得 到,则相对误差限为 0.0000204 . 7、 递推公式,??? ? ?0n n-1y =y =10y -1,n =1,2, 如果取0 1.41y ≈作计算,则计算到10y 时,误 差为 81 10 2 ?;这个计算公式数值稳定不稳定 不稳定 . 8、 精确值 14159265.3* =π,则近似值141.3*1=π和1415.3*2=π分别有 3

硕士研究生数值分析试卷

数值分析(研究生,2008-12-15) 1.(10分)求函数???≤≤++<≤-+=1 0,101,1sin )(2x x x x x x f 在区间[-1,1]上的最佳平方逼近式 x e a x a a x 210)(++=φ。 2.(15分)利用乘幂法计算下列矩阵的主特征值和相应的特征向量 ???? ??????----110141012,初始向量为T x ]0,0,1[0=(要求结果有三位有效数字)。同时计算该矩阵的1-条件数和谱条件数。

3.(15分)已知函数x x f sin )(=在36.0,3 4.0,32.0210===x x x 处的值分别为352274.0,333487.0,314567.0210===y y y 。用Lagrange 插值多项式对3167.0=x 的函数值进行近似计算,并估计近似计算的误差界。

4.(15分)用Newton 迭代法求方程0ln 2=+x x 在区间(0,2 π)内的解,选择你认为合适的初始点,计算方程的根,使得近似解具有四位有效数字。请从理论上估计达到所需精度所需的迭代次数。

5.(15分)用Gauss-Seidel 迭代法解方程组 ?????? ????-=????????????????????---542834*********x x x 取初始近似向量0[0,0,0]T x =,估计达到4位有效数字需要的迭代次数,并实际计算之。就该具体问题分析计算过程中总的乘除法计算量。

6. (10分)应用拟牛顿法解非线性方程组 ?????=-+=-+. 12,2322112221x x x x x x 取T x ]1,0[)0(= ,终止容限210-=ε。 7.(10分) 求解矛盾方程组 ???????=++=++=++=++2 32328.12221321321 321321x x x x x x x x x x x x

数值分析试题及答案汇总

数值分析试题及答案汇 总 TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】

数值分析试题 一、填空题(2 0×2′) 1. ?? ????-=? ?????-=32,1223X A 设x =是精确值x *=的近似值,则x 有 2 位有效数字。 2. 若f (x )=x 7-x 3+1,则f [20,21,22,23,24,25,26,27]= 1 , f [20,21,22,23,24,25,26,27,28]= 0 。 3. 设,‖A ‖∞=___5 ____,‖X ‖∞=__ 3_____, ‖AX ‖∞≤_15_ __。 4. 非线性方程f (x )=0的迭代函数x =(x )在有解区间满足 |’(x )| <1 ,则使用该迭代函数 的迭代解法一定是局部收敛的。 5. 区间[a ,b ]上的三次样条插值函数S (x )在[a ,b ]上具有直到 2 阶的连续导数。 6. 当插值节点为等距分布时,若所求节点靠近首节点,应该选用等距节点下牛顿差 商公式的 前插公式 ,若所求节点靠近尾节点,应该选用等距节点下牛顿差商公式的 后插公式 ;如果要估计结果的舍入误差,应该选用插值公式中的 拉格朗日插值公式 。 7. 拉格朗日插值公式中f (x i )的系数a i (x )的特点是:=∑=n i i x a 0)( 1 ;所以当系数 a i (x )满足 a i (x )>1 ,计算时不会放大f (x i )的误差。 8. 要使 20的近似值的相对误差小于%,至少要取 4 位有效数字。 9. 对任意初始向量X (0)及任意向量g ,线性方程组的迭代公式x (k +1)=Bx (k )+g (k =0,1,…) 收敛于方程组的精确解x *的充分必要条件是 (B)<1 。 10. 由下列数据所确定的插值多项式的次数最高是 5 。

相关主题
文本预览
相关文档 最新文档