当前位置:文档之家› 电磁波的波动方程

电磁波的波动方程

电磁波的波动方程
电磁波的波动方程

电磁波的波动方程

电磁波的方程:

设在真空中无电荷与电流,电磁场方程为:

对第三式取旋度: ,

因为:,即:

而且:

令:

所以:。

同样地求出磁场的方程:

这就是电磁场的场量所满足的波动方程,c 是真空中电磁波的波速。这样,麦克斯韦电磁场理论预言了电磁波的存在,真空中电磁波的波速精确地与真空中的光速一致,由此麦克斯韦进一步断定光是一种电磁波,从而揭示了光的电磁本质。

1888年赫兹用实验证实了这个预言。赫兹的发现导致了无线电的诞生,开辟了电子技术的新纪元。

2电磁场基本方程

第2章 电磁场基本方程 2.1 / 2.1-1设空气中有一半径为a 的电子云,其中均匀充满着密度为ρv 的电荷。试求球内 (ra )任意点处的电通密度D 和电场强度E 及D ??和E ??。 [解] 应用高斯定理,取半径为r 的同心球面为高斯面. dv r r D s d D s v v ? ?= ?=?ρ π2 4? 1) ra: 3 3 4 a dv v v v πρρ? = 2 032 3 3?,3?r a r E r a r D v v ερρ==∴ 0,0313 2 =??=??? ? ? ????=??E a r r D v ρ 2.2 / 2.1-2设空气中内半径a 、外半径b 的球壳区域内均分布着体密度为ρv 的电荷。试求 以下三个区域的电场强度E E ??、及E ??:(a)rb. [解] 应用高斯定理,取半径为r 的同心球面为高斯面. dv r r D s d D s v v ? ?= ?=?ρ π2 4? (a) r

第四章电磁波的传播

第四章 电磁波的传播 §4.1 平面电磁波 1、电磁场的波动方程 (1)真空中 在0=ρ,0=J 的自由空间中,电磁强度E 和磁场强度H 满足波动方程 012222=??-?t E c E (4.1.1) 012 222=??-?t H c H (4.1.2) 式中 80 010997925.21 ?== μεc 米/秒 (4.1.3) 是光在真空中的速度。 (2)介质中 当电磁波在介质内传播时,介质的介电常数ε和磁导率μ一般地都随电磁波 的频率变化,这种现象叫色散。这时没有E 和H 的一般波动方程,仅在单色波 (频率为ω)的情况下才有 012222=??-?t E v E (4.1.4) 012 222=??-?t H v H (4.1.5) 式中

()()() ωμωεω1 = v (4.1.6) 是频率ω的函数。 2、亥姆霍兹方程 在各向同性的均匀介质内,假设0=ρ,0=J ,则对于单色波有 ()()t i e r E t r E ω-= , (4.1.7) ()()t i e r H t r H ω-= , (4.1.8) 这时麦克斯韦方程组可化为 () εμω ==+?k E k E , 02 2 (4.1.9) 0=??E (4.1.10) E i H ??-=μω (4.1.11) (4.1.9)式称为亥姆霍兹方程。由于导出该方程时用到了0=??E 的条件,因此,亥姆霍兹方程的解只有满足0=??E 时,才是麦克斯韦方程的解。 3、单色平面波 亥姆霍兹方程的最简单解是单色平面波 ()()t r k i e E t r E ω-?= 0, (4.1.12) ()()t r k i e H t r H ω-?= 0, (4.1.13) 式中k 为波矢量,其值为 λ π εμω2= =k (4.1.14) 平面波在介质中的相速度为 εμ ω 1 = = k v P (4.1.15) 式中ε和μ一般是频率ω的函数。

第六章 平面电磁波的传播

第六章 平面电磁波的传播 习题6.1 已知自由空间中均匀平面电磁波的电场: y e x t E )210cos(37.738 ππ-?=V/m ,求 (1)电磁波的频率,速度,波长,相位常数,以及传播方向。 (2)该电磁波的磁场表达式。 (3)该电磁波的坡印廷矢量和坡印廷矢量的平均值。 题意分析: 已知均匀平面电磁波的一个场量求解另一个场量,以及相关的参数,这是均匀平面波问题中经常遇到的问题。求解问题的关键在于牢记均匀平面电磁波场量表达形式的基本特点,场矢量方向和波的传播方向之间的关系以及相关公式。 解: (1)求电磁波的频率,速度,波长,相位常数,以及传播方向 沿x 轴正方向传播的电磁波的电场强度瞬时表达式为: y y y e x t E E )c o s (2φβω+-= 电场表达式的特点有: 电磁波角频率 8103?=πω (rad/s ) 由f πω2=,可以得到 电磁波的频率为: 8 10 5.12?==π ω f (Hz ) 电磁波在自由空间的传播速度 8103?==c v (m/s ) 电磁波的波长λ满足式 f v vT = =λ 210 5.110 38 8=??= = ∴f v λ(m ) 相位常数: πβ2= (rad/m ) 分析电磁波的传播方向: 方法一:直接判断法 比较均匀平面电磁波的电场表达式可以看出,均匀平面电磁波的电场表达式中x π2项前面的符号为“-”,该电磁波是沿x 轴正方向传播的电磁波。

方法二:分析法 电场表达式是时间t 和坐标x 的函数,若要使E 为不变的常矢量,就应使组合变量(x t ππ21038-?)在t 和x 变化时为一定值。即,当时间变量t 变为t t ?+,位置变量x 变为x x ?+时,有下式成立: )(2)(10321038 8x x t t x t ?+-?+?=-?ππππ 由上式可得: t x ??= ?π π21038 这说明在电磁波的传播过程中,随着时间的增加(0>?t ),使电场保持定值的点的坐标也在增加(0>?x ),所以电磁波的传播方向是由近及远,沿x 轴正方向逐步远离原点。 (2)求该电磁波的磁场表达式 电磁波的传播方向为x 轴正方向,电场分量为y 轴方向,根据坡印廷矢量的 定义:H E S ?=,电场,磁场以及电磁波的传播方向应遵循右手螺旋定律,所 以本题中磁场的方向应为z 轴方向,三者的方向关系下如图所示。 z 在自由空间中,正弦均匀平面电磁波的电场和磁场分量的比值为固定值,是 空间的波阻抗:Ω=3770Z ,所以磁场分量H 的表达式为: z z z e x t e x t e Z E H )210cos(31.0)210cos(3377 7.738 80ππππ-?=-?== (A/m ) (3)求该电磁波的坡印廷矢量表达式和坡印廷矢量的平均值 根据坡印廷矢量的定义:H E S ?=,得 ])210cos(31.0[])210cos(37.73[8 8z y e x t e x t H E S ππππ-??-?=?= x e x t )210(3cos 773.8 2ππ-?= (W/m 2) 坡印廷矢量的平均值:

电动力学复习总结第四章 电磁波的传播2012答案

第四章 电磁波的传播 一、 填空题 1、 色散现象是指介质的( )是频率的函数. 答案:,εμ 2、 平面电磁波能流密度s 和能量密度w 的关系为( )。答案:S wv = 3、 平面电磁波在导体中传播时,其振幅为( )。答案:0x E e α-? 4、 电磁波只所以能够在空间传播,依靠的是( )。 答案:变化的电场和磁场相互激发 5、 满足条件( )导体可看作良导体,此时其内部体电荷密度等于( ) 答案: 1>>ωε σ , 0, 6、 波导管尺寸为0.7cm ×0.4cm ,频率为30×109HZ 的微波在该波导中能以 ( )波模传播。答案: 10TE 波 7、 线性介质中平面电磁波的电磁场的能量密度(用电场E 表示)为 ( ),它对时间的平均值为( )。答案:2E ε, 202 1E ε 8、 平面电磁波的磁场与电场振幅关系为( )。它们的相位( )。 答案:E vB =,相等 9、 在研究导体中的电磁波传播时,引入复介电常数='ε( ),其中虚部 是( )的贡献。导体中平面电磁波的解析表达式为( )。 答案: ω σεεi +=',传导电流,)(0),(t x i x e e E t x E ωβα-??-= , 10、 矩形波导中,能够传播的电磁波的截止频率= n m c ,,ω( ),当电磁 波的频率ω满足( )时,该波不能在其中传播。若b >a ,则最低截止频率为( ),该波的模式为( )。 答案: 22,,)()(b n a m n m c += μεπω,ω<n m c ,,ω,με πb ,01TE

11、 全反射现象发生时,折射波沿( )方向传播.答案:平行于界面 12、 自然光从介质1(11με,)入射至介质2(22με,),当入射角等于( ) 时,反射波是完全偏振波.答案:2 01 n i arctg n = 13、 迅变电磁场中导体中的体电荷密度的变化规律是( ). 答案:0t e σε ρρ-= 二、 选择题 1、 电磁波波动方程22222222110,0E B E B c t c t ???-=?-=?? ,只有在下列那种情况下 成立( ) A .均匀介质 B.真空中 C.导体内 D. 等离子体中 答案: A 2、 电磁波在金属中的穿透深度( ) A .电磁波频率越高,穿透深度越深 B.导体导电性能越好, 穿透深度越深 C. 电磁波频率越高,穿透深度越浅 D. 穿透深度与频率无关 答案: C 3、 能够在理想波导中传播的电磁波具有下列特征( ) A .有一个由波导尺寸决定的最低频率,且频率具有不连续性 B. 频率是连续的 C. 最终会衰减为零 D. 低于截至频率的波才能通过. 答案:A 4、 绝缘介质中,平面电磁波电场与磁场的位相差为( ) A .4π B.π C.0 D. 2π 答案:C 5、 下列那种波不能在矩形波导中存在( ) A . 10TE B. 11TM C. mn TEM D. 01TE 答案:C 6、 平面电磁波E 、B 、k 三个矢量的方向关系是( ) A . B E ?沿矢量k 方向 B. E B ?沿矢量k 方向 C.B E ?的方向垂直于k D. k E ?的方向沿矢量B 的方向 答案:A 7、 矩形波导管尺寸为b a ? ,若b a >,则最低截止频率为( )

7-2平面简谐波的波动方程

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 7-2平面简谐波的波动方程 §7-2 平面简谐波的表达式___波动的表达式波动方程 1/ 28

一平面简谐波的波动方程介质中任一质点(同一波线上,坐标为)介质中任一质点(同一波线上坐标为 x)相对其平衡位置的位移(平衡位置的位移(坐标为 y)随时间的变化关系,)随时间的变化关系,称为波动方程. 即 y ( x, t ) 称为波动方程y = y ( x, t )各质点相对平衡位置的位移衡位置的位移波线上各质点平衡位置平衡位置简谐波:在均匀的、无吸收的介质中,简谐波:在均匀的、无吸收的介质中,波源和介质中各质点都作简谐运动时,在介质中所形成的波. 各质点都作简谐运动时,在介质中所形成的波平面简谐波:波面为平面的简谐波平面简谐波:波面为平面的简谐波. 其特点是在均匀的、无吸收的介质中各质点是在均匀的、无吸收的介质中各质点振幅相同均匀的任何复杂的波都可以看成若干个简谐波叠加而成。 任何复杂的波都可以看成若干个简谐波叠加而成。

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 设有一以速度设有一以速度u 沿以速度 x 轴正向传播的平面令原点O 简谐波 . 令原点的初相为零,的初相为零,其振动方程波动方程的推导设x = 0,0 = 0时间推迟方法yO = AcosωtyO = Acosωt点O 的振动状态t-x/u时刻点的运动状态时刻点O 时刻点点P 振动方程x yP = Acosω(t ) u=x t = u点Pt 时刻点 P 的运动状态 3/ 28

电磁波动方程和平面电磁波

电磁波动方程和平面电磁波 电工基础教研室周学

本节的研究目的 掌握无源空间线性各向同性均匀介质中波动方程的推导; 掌握等相面,平面波,均匀平面波概念;掌握均匀平面电磁波的基本特征。 本节的研究内容 一、电磁波动方程 二、均匀平面电磁波

波动是电磁场的基本属性当时,电场和磁场相耦合,相互为源,可以脱离电荷、电流,以波的形式存在于空间中。 0/≠??t 0≠??t B 0≠??t E E B 电磁波 ???????=??-?=??-?010******* 22t E c E t H c H

电磁波的波段划分及其应用名称频率范围波长范围典型业务 甚低频VLF[超长波] 3~30KHz100~10km导航,声纳低频LF[长波,LW] 30~300KHz10~1km导航,频标中频MF[中波, MW] 300~3000KHz1km~100m AM, 海上通信高频HF[短波, SW] 3~30MHz100m~10m AM, 通信 甚高频VHF[超短波] 30~300MHz10~1m TV, FM, MC 特高频UHF[微波] 300~3000MHz100~10cm TV, MC, GPS 超高频SHF[微波] 3~30GHz10~1cm通信,雷达 极高频EHF[微波] 30~300GHz10~1mm通信, 雷达 光频[光波] 1~50THz300~0.006 m光纤通信

研究电磁波在空间的传播规律和特性,就是讨论由电磁场基本方程组导出的电磁波动方程在给定条件下的解。

00E H E t H E t H E γεμ????=+???????=-?????=????=?D E B H J E εμγ?=?=??=?在无源空间中,假设媒质是各向同性、线性、均匀的,则 2 2222200H H H t t E E E t t μγμεμγμε????--=?????????--=????无源空间的电磁波动方程,研究电磁波问题的基础

平面电磁波知识讲座

平面电磁波 1 时变电磁场以电磁波的形式存在于时间和空间这个统一的物理世界。 2 研究某一具体情况下电磁波的激发和传播规律,从数学上讲就是求解在这具体条件下Maxwell equations 或wave equations 的解。 3 在某些特定条件下,Maxwell equations 或wave equations 可以简化,从而导出简化的模型,如传输线模型、集中参数等效电路模型等等。 4 最简单的电磁波是平面波。等相面(波阵面)为无限大平面电磁波称为平面波。如果平面波等相面上场强的幅度均匀不变,则称为均匀平面波。 5 许多复杂的电磁波,如柱面波、球面波,可以分解为许多均匀平面波的叠加;反之亦然。故均匀平面波是最简单最基本的电磁波模式,因此我们从均匀平面波开始电磁波的学习。 § 6.1 波动方程 1 电场波动方程:ερμμε?+??=??-?t J t E E 222 磁场波动方程 J t H H ?-?=??-?2 22 με 2 如果媒质导电(意味着损耗),有E J σ=代入上面,则波动方程变为 ερμεμσ?=??-??-?222t E t E E 02 22=??-??-?t H t H H μεμσ 如果是时谐电磁场,用场量用复矢量表示,则 ε ρ μεωωμσ ?= +-?E E j E 22 02 2 =+-?H H j H μεωωμσ 采用复介电常数,ε μωωε σ μεωωμσμεω 222 )1(=-=-j j ,上面也可写成 3 在线性、均匀、各向同性非导电媒质的无源区域,波动方程成为齐次方程。 0222=??-?t E E με 02 22=??-?t H H με 4在线性、均匀、各向同性、导电媒质的无源区域,波动方程成为齐次方程。 0222=??-??-?t E t E E μεμσ

大学物理平面简谐波波动方程

§4-2平面简谐波的波动方程 振动与波动 最简单而又最基本的波动是简谐波! 简谐波:波源以及介质中各质点的振动都是简谐振动。任何复杂的波都可看成是若干个简谐波的叠加。 对平面简谐波,各质点都在各自的平衡位置附近作简谐振动,但同一时刻各质点的振动状态不同。需要定量地描述出每个质点的振动状态。 波线是一组垂直于波面的平行射线,可选用其中一根波线为代表来研究平面简谐波的传播规律。 一、平面简谐波的波动方程 设平面简谐波在介质中沿 x 轴正向传播,在此波线上任取一参考点为坐标原点 参考点原点的振动方程为 区别 联系 振动研究一个质点的运动。 波动研究大量有联系的质点振动的集体表现。 振动是波动的根源。 波动是振动的传播。 x y O P x u

()00cos y A t ω?=+ 任取一点 P ,其坐标为 x ,P 点如何振动? A 和 ω 与原点的振动相同,相位呢? 沿着波的传播方向,各质点的相位依次落后,波每向前传播 λ 的距离,相位落后 2π 现在,O 点的振动要传到 P 点,需要向前传播的距离为 x ,因而 P 点的相位比 O 点落后 22x x π πλ λ = P 点的振动方程为 02cos P y A t x πω?λ? ?=+- ?? ? 由于 P 点的任意性,上式给出了任意时刻任意位置的质点的振动情况,将下标去掉 02cos y A t x πω?λ? ?=+- ?? ? 就是沿 x 轴正向传播的平面简谐波的波动方程。 如果波沿 x 轴的负向传播,P 点的相位将比 O 点的振动相位超前2x π λ 沿 x 轴负向传播的波动方程为 x y O P x u

电动力学复习总结第四章 电磁波的传播2012答案

电动力学复习总结第四章电磁波的传播2012答案 第四章电磁波的传播 一、填空题 1、色散现象是指介质的( )是频率的函数. 答案:?,? ???s2、平面电磁波能流密度和能量密度w的关系为( )。答案:S?wv ???3、平面电磁波在导体中传播时,其振幅为( )。答案:E0e???x 4、电磁波只所以能够在空间传播,依靠的是( )。 答案:变化的电场和磁场相互激发 5、满足条件( )导体可看作良导体,此时其内部体电荷密度等于( ) 答案:???1, 0, ?? 6、波导管尺寸为0.7cm×0.4cm,频率为30×109HZ的微波在 该波导中能以 ( )波模传播。答案:TE10波 ?E7、线性介质中平面电磁波的电磁场的能量密度(用电场表示)为 ( ),它对时间的平均值为( )。答案:?E2, 12?E0 2 8、平面电磁波的磁场与电场振幅关系为( )。它们的相位( )。答案:E?vB,相等 9、在研究导体中的电磁波传播时,引入复介电常数???( ),

其中虚部 是( )的贡献。导体中平面电磁波的解析表达式为( )。 ???????????xi(??x??t)答案:?????i,传导电流,E(x,t)?E0ee, ? ??10、矩形波导中,能够传播的电磁波的截止频率 c,m,n( ),当电磁 波的频率?满足( )时,该波不能在其中传播。若b>a,则最低截止频率为( ),该波的模式为( )。 答案:?c,m,n?? ??mn?()2?()2,?<?c,m,n,,TE01 abb?? 1 11、全反射现象发生时,折射波沿( )方向传播.答案:平行于界面 12、自然光从介质1(?1,?1)入射至介质2(?2,?2),当入射角等于( ) 时,反射波是完全偏振波.答案:i0?arctgn2 n1 13、迅变电磁场中导体中的体电荷密度的变化规律是( ). 答案:???0e?t? ? 二、选择题 ??22??1?E1?B1、电磁波波动方程?2E?22?0,?2B?22?0,只有在下列那种情况下c?tc?t

习题答案第2章 电磁场基本方程

第2章电磁场基本方程 2.1/2.1-1设空气中有一半径为a 的电子云,其中均匀充满着密度为ρv 的电荷。试求球内(ra )任 意点处的电通密度D 和电场强度E 及D ??和E ??。1) ra:2 03 233?,3?r a r E r a r D v v ερρ==∴0,03132 =×?=??? ????????=??E a r r D v ρ2.2/ 2.1-2设空气中内半径a 、外半径b 的球壳区域内均分布着体密度为ρv 的电荷。试求以下三个区域的电场强 度E E ??、及E ×?:(a)rb. [解] 应用高斯定理,取半径为r 的同心球面为高斯面. dv r r D s d D s v v ∫∫=?=?ρπ2 4?(a)rb: ()()3 32 03323?,3?a b r r E a b r r D v v ?=?=∴ερρ0 ,0=×?=??E E 2.3/2.1-3一半径等于3cm 的导体球,处于相对介电常数εr =2.5的电介质中,已知离球心r=2m 处的电场强度 E=1mv/m ,求导体球所带电量Q 。[解] 由高斯定理知,Q r E =?2 4πεC E r Q 123921011.1105.210361 444???×=×××× ×==∴π πεπ2.4/2.1-4一硬同轴线内导体半径为a ,外导体内外半径分别为b 、c ,中间 介质为空气(题图2-1)。当内外导体分别通过直流I 和-I 时,求:(a)内导体

平面电磁波

平面电磁波 1.在z >0半空间中充满202εε=的电介质,z <0半空间中是空气10εε=,在介质表面无自由电荷分布。若空气中的静电场为 128x z E e e =+,则电介质中的静电场和电位移矢量分别为( ). 2. 波数k 指单位距离上的相位变化 3. 波阻抗指与传播方向垂直的横平面上电场与磁场的振幅之比 4. 均匀平面波是( )波。即 , 5. 行波因子 或 反映了波的传播( )和传播速度。 6. 均匀平面波的场、磁场和传播方向两两( ),且满足右手定则 7.均匀平面波的电场和磁场相位相同,( )为纯电阻性 8.均匀平面波在等相位面上电场和磁场均( ),且任一时刻,任一处能量密度相等 9.( )是在垂直于传播方向的平面内,场的矢端在一个周期内所画出的轨迹 10.极化的分类:根据场的矢端轨迹,分为( )极化、( )极化、椭圆极化三类 11.线极化波可分解为两个振幅相同、旋向相反的( )极化波 12.圆极化波可分解为两个振幅相同、相差 、空间正交的( )极化波。 13.椭圆极化波可分解为两个振幅不同、旋向相反的( )极化波。

14.媒质的分类:理想导体良导体( )导体,介质:良介质( )介质 15.导电媒质指除( )介质以外的其他介质 16.导电媒质中平面波的特点:是TEM波,是衰减波,频率越( ),电导率越大,衰减越快。 17.导电媒质中平面波的特点:电场和磁场( )相,即波阻抗为复数 18.导电媒质中平面波的特点:波的传播速度与频率有关,是( )波。 19.导电媒质中平面波的特点:磁场能量密度( )于电场能量密度。 20.良介质是指( )的材料,它属于低损耗材料 21.为了评价介质的优劣,通常良介质应给出( )参量 22.与成( )比,越大,电磁波的传播速度越( )。 23.在理想导体表面上,垂直入射波发生( )现象。 24.合成波特点:电场和磁场均为( )波,但分布规律不同,在时间上相差, 在空间上相差。 25.合成波特点:磁场的波节和波腹与电场错开( )波长 26.合成波特点电场和磁场的相位沿传播方向( )。 27.两种不同的理想介质分界面上的垂直入射情况。当垂直入射波到达分界面时,由于两种介质的( )不同,将有一部分入射功率被反射回去,另一部分则透过分界面进入介质2继续传播。 28.( )系数R:分界面处反射波与入射波的切向场之比 29.( )系数T:分界面处折射波与入射波的切向场之比。

电动力学_郭芳侠_电磁波的传播 (1)

第四章 电磁波的传播 1. 真空中的波动方程,均匀介质中的定态波动方程和亥姆霍兹方程所描述的物 理过程是什么?从形式到内容上试述它们之间的区别和联系。 解:真空中的波动方程:22210E E c t →??- =?,2 22 10B B c t → ??-=?。 表明:①在0=ρ,0=→ J 的自由空间,电场与磁场相互激发形成电磁波, 电磁波可以脱离场源而存在。 ②真空中一切电磁波都以光速c 传播。 ③适用于任何频率的电磁波,无色散. 均匀介质中定态波动方程:22 222 22210 10E E v t B B v t ??-?=???-?=?,其中()v ω=。 当电磁场在介质内传播时,其ε与μ一般随ω变化,存在色散,在单色波情况下才有此波动方程。 亥姆霍兹方程:(2 2 0,0E k E k E i B E ωω??+==?? ??=???=-??? 表示以一定频率按正弦规律变化的单色电磁波的基本方程,其每个解都代表一种可能存在的波模。 2. 什么是定态电磁波、平面电磁波、平面单色波?分别写出它们的电场表示式。从形式到内容上试述它们之间的区别和联系。 解:(1)定态电磁波:以一定频率作正弦振荡的波称为定态电磁波,即单色简谐 波。(,)()i t E x t E x e ω-= (2)平面电磁波:等相位面与波传播方向垂直且沿波矢量→ K 传播的电磁波。 0()ik r E x E e ?=

(3)平面单色波:以一定频率作正弦振荡的平面波称为平面单色波。 ()0(,)i k r t E x t E e ω?-= 3. 在0ω≠的定态电磁波情形麦氏方程组的形式如何?为什么说它不是独立的,怎样证明?不是独立的,是否等于说有的方程是多余的呢?试解释之。 解:定态电磁波情形麦氏方程组的形式为: 00E i B B i E E B ωωμε???=? ??=-?? ??=????=? ......(1) (2) ……(3)……(4) 对(1)和(2)取散度可得(3)(4)两式,所以它不独立。不独立不表示方程多余,定态电磁波只是一种特殊情形,在更普遍的情况下,麦氏方程组四个方程分别描述了场的不同方面。 4. 设有一电磁波其电场强度可以表示为 ())(t i t x E E 00exp ,ω-= 。试问它是否是平面时谐波(平面单色波)?为什么? 答;不是。因为E 做傅立叶展开后,可以看成是无数个平面单色波的叠加。如令 )2()2(0000000002 1 2)2cos(),(t x k i t x k i x ik e e E t e E t x E ωωω-++== 则 )(0)3(0000022t x k i t x k i e E e E E ωω-++= 是两个单色波的叠加。 5.试述平面单色波在均匀介质中具有哪些传播特性?并且一一加以证明。 解:特性: ①是横波,且E B ,,k 有右手螺旋关系 证:()0(,)i k r t E x t E e ω?-= 0B ,B ,E i i 1 B E ik E k E k E k E ik E k E ω ω ω ??=?=⊥? ?⊥⊥⊥?=- ??=- ?= ?? 即即电波为横波,得证。 ②()p B v c E 与同相位,振幅比为真空中为 ()() ()i k x t o i k x t o p E x,t E e 1 1B k E n E e V ωωω?-?-==?=?

电动力学复习总结第四章电磁波的传播答案

电动力学复习总结第四章电 磁波的传播答案 -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

第四章 电磁波的传播 一、 填空题 1、 色散现象是指介质的( )是频率的函数. 答案:,εμ 2、 平面电磁波能流密度s 和能量密度w 的关系为( )。答案:S wv = 3、 平面电磁波在导体中传播时,其振幅为( )。答案:0x E e α-? 4、 电磁波只所以能够在空间传播,依靠的是( )。 答案:变化的电场和磁场相互激发 5、 满足条件( )导体可看作良导体,此时其内部体电荷密度等于( ) 答案: 1>>ωε σ , 0, 6、 波导管尺寸为0.7cm ×0.4cm ,频率为30×109HZ 的微波在该波导中能以 ( )波模传播。答案: 10TE 波 7、 线性介质中平面电磁波的电磁场的能量密度(用电场E 表示)为( ), 它对时间的平均值为( )。答案:2E ε, 202 1 E ε 8、 平面电磁波的磁场与电场振幅关系为( )。它们的相位( )。 答案:E vB =,相等 9、 在研究导体中的电磁波传播时,引入复介电常数='ε( ),其中虚部是 ( )的贡献。导体中平面电磁波的解析表达式为( )。 答案: ω σεεi +=',传导电流,) (0),(t x i x e e E t x E ωβα-??-= , 10、 矩形波导中,能够传播的电磁波的截止频率= n m c ,,ω( ),当电磁波的 频率ω满足( )时,该波不能在其中传播。若b >a ,则最低截止频率为( ),该波的模式为( )。 答案: 22,,)()(b n a m n m c += μεπω,ω<n m c ,,ω, με π b ,01TE

电磁波在不同介质中的传播

摘 要 电磁波在不同介质中传播特性不同。本文从麦克斯韦方程组出发,求解了平面电磁波在线性介质中的波动方程及其解。对于线性介质,D 与E 、B 与H 成线性关系,求解了平面电磁波在线性介质中的波动方程及其解;对于非线性介质, D 与 E 、B 与H 成非线性关系,所求出的波动方程与线性介质中的波动方程完 全不同。对于电磁波在介质面上的传播,从电磁场边值关系出发分析反射和折射的规律,结果表明:(1)入、反、折三波同频共面,即ωωω''='=;(2).入射角等于反射角,即θθ'=;(3).入射角与反射角的关系为: 1 1222 1sin sin εμεμθθ= =' 'v v 。 关 键 词:电磁波,线性介质,非线性介质,铁磁介质,非铁磁介质,介质面,反射,折射

abstract Electromagnetic wave transmission characteristic in different medium is different . Starting from maxwell's equations, solve wave equation and solutions of Plane Electromagnetic Wave in linear medium . For the linear medium, D and E is a linear relationship .The same to the relationship of B and H .And then solve wave equation and solutions of Plane Electromagnetic Wave in linear medium ; For the nonlinear medium, D and E is a nonlinear relationship . The same to the relationship of B and H .Therefore , the wave equation in nonlinear medium and in linear medium is completely different . For the transmission of Electromagnetic wave in medium surface ,starting from electromagnetic field boundary value relations analyse reflection and refraction law and conclude that (1) The incident wave 、reflex wave and refraction wave are the same frequency and coplanar, namely ωωω''='=;(2) the incident angle equals to the reflection angle,namely θθ'=;(3)the relations of the incident angle and the reflection angle is 1 1222 1sin sin εμεμθθ= =' 'v v . Key words: electromagnetic wave, linear medium, nonlinear medium, ferromagnetic, nonferromagnetic ,Medium surface ,reflection,reflaction

海水中电磁波传播特性的研究

海水中电磁波传播特性的研究 摘要:利用电磁场传播所满足的Maxwell 方程组,计算和分析出电磁波在导电媒质中传播时的特征;并以海水为例,得出一些有意义的结论,为海水中通信、信号探测、引信研究等方面工作提供理论依据。 关键词:导电媒质;电磁波;传播 一 .前言 对海水中一般性的电磁问题已进行过初步的讨论分析,尽管只有低频电磁波在海水中能传播可观的距离,但电磁波在其中传播时所呈现出来的性质和在普通绝缘媒质中有很大的区别。正是这些特异性质引起了广泛的关注,并且已开始在众多应用中得到体现。以电磁场传播所满足的Maxwell 方程组为出发点,计算和分析了电磁波在导 电媒质中传播 时的一些特征,并以海水这种导电媒质为例,分析了电磁波在其中传播时的特征,得到一些有意义的结论。 二. 主体 1 电磁波传播时导电媒质中电荷的分布特征 对于均匀的导电媒质,根据以下方程: 电流连续方程 91610()N σε -≈?Ωg 欧姆定律的微分形式 j E σ= 介质中的高斯定理 E ρε ?=g 其中:j 为电流密度矢量;ρ为电荷分布体密度;ε为介质的电容率。可得出导电媒质中的电荷分布体密度满足微分方程: t ρρσε?=-? 从而解得任意时刻的电荷体密度为: 0()0()t t t e σ ερρ--= 可见:电磁波经过时,导电媒质中的电荷分布的体密度随时间呈指数衰减,若初始时电荷体密度为0,则以后保持为0,与有无电磁波在其中传播无关。由各种导电媒质的σ、ε可以计算ρ的衰减快慢。例如海水,取14.4()m σ-=Ωg ,

90.710/N m ε-=?,可以计算91610()N σε -≈?Ωg ,可见其衰减是很快的,也就是说,在均匀导电媒质中不可能有净的自由电荷出现。衰减的电荷实际上是在定向运动,必将在导电媒质表面和非均匀处重新出现。 2 电磁波在导电媒质中的传播特征 电磁波在导电媒质中传播时,振幅不断衰减,电场和磁场强度矢量不再同相,存在色散现象;同时磁场强度比电场强度大得多,电磁波能量中以磁场能量为主,且传播时存在返流现象,这是电磁波在导电媒质中传播时出现的特殊性质。 由麦克斯韦方程组,可得H 、E 和均匀非损耗媒质中的一样,仍然满足亥姆霍兹方程: 22()()0E H k E H ?+= 其中:22k i μωεμωσ=-。 (1)方程的解仍然可为平面单色波形式0exp(())E E i k r t ω=-g ,0exp(())H H i k r t ω=-g ,但波矢量为一复数矢量。为简单起见,可设波矢量沿某单一方向,此时其实部与虚部均为单一方向的矢量,波矢量可表示为: 1122001111()22k i k i k αβ??????=+=+???????????? 其中:0k 为波传播方向的单位方向矢量;12 112α?=??? ;12 112β?=???。 将它们代入平面波表达式中,可见此时的平面波为阻尼横波 000exp()exp(())E k r i k r w t βα--g g g ,其振幅有衰减,这是因为自由电子在入射电场的驱动下形成电流,部分电磁场的能量转变成焦耳热. (2)此时电磁波的等相面的速度可由0k r t const αω-=g ,两边求导得到:v ρωα =,可见即使媒质的电磁性质σ、ε、μ和频率无关,色散现象仍然存在。 (3)将E 、H 的表达式代入麦克斯韦方程组中,即可以得到两者的关系式为:

矩形波导中电磁波截止波长的计算(1)(1)

矩形波导中电磁波截止波长的计算 周和伟 物理与电子信息工程学院 07物理学 07234030 [摘要]:本文从麦克斯韦方程组出发,从理论上推导了电磁场遵循的波动方程和时谐电磁波遵循的波动方程;根据边值关系从理论上求出了时谐电磁波在矩形波导中的解,并对矩形波导管中传播的电磁波波解进行了讨论;计算了不同尺寸的矩形波导管的截止波长,截止波长大多属于厘米量级,说明波导管只适用于传播微波。 [关键词]:矩形波导电磁波截止波长 1 绪言 波导是一种用来约束或引导电磁波传输的装置,矩形波导是指横截面是矩形的波导,一般是中空的金属管。也有其他形式的波导装置,如介质棒或由导电材料和介质材料组成的混合构件[1]。因此,在广义的定义下,波导不仅是指矩形中空金属管,同时也包括其他波导形式如矩形介质波导等,还包括双导线、同轴线、带状线、微带和镜像线、单根表面波传输线等。根据波导横截面的形状不同还有其他形状波导,如圆波导等。尽管已存在很多不同波导形式,且新的形式还不断出现,但直到目前,在实际应用中矩形波导是一种最主要的波导形式。由于无线信号传输媒介,具有传输频带宽、传输损耗小、可靠性高、抗干扰能力强等特点,因此波导技术在电子技术领域运用非常广泛,主要用于铁氧体结环形器,窄壁缝隙天线阵[2],速调管矩形波导窗,高精度矩形弯铜波导管加工研究【3】等器件设备的制造生产,以及在地铁信号系统中的应用都很广泛。为了加深对波导传输特性的理解,本文从麦克斯韦方程组出发,推导了电磁场遵循的波动方程和时谐电磁波遵循的波动方程;根据边值关系从理论上求出了时谐电磁波在矩形波导中的解,并对矩形波导管中传播的电磁波波解进行了讨论;计算了不同尺寸的矩形波导管的截止波长,发现其截止波长都在厘米量级,说明波导管只适用于传播微波。 2 电磁波基本原理 2.1建立麦克斯韦方程组的历史背景 麦克斯韦首先从论述力线着手,初步建立起电与磁之间的基本关系。1855年,他发表了第一篇电磁学论文《论法拉第的力线》。在这篇论文中,用数学语言表述了法拉第

7.1 电磁波动方程和平面电磁波

7 平面电磁波的传播 从基本方程的微分形式可以看出它们包含了产生电磁场的全部场源信息。在电磁波中,变化的电场产生变化的磁场,变化的磁场又产生变化的电场,伴随着电场和磁场的传播是能量的传输。 本章从电磁场的基本方程出发,首先介绍电磁波动方程,然后介绍了电磁波中最简单的形态--均匀平面电磁波在理想介质和导电媒质中的情况。 7.1电磁波动方程和平面电磁波 变化的电场和变化的磁场之间存在着耦合,这种耦合是以波动的形式存在于空间中。这种变化的电磁场以波动的存在通常称为电磁波。电磁波的存在,意味着在空间中有电磁场的变化和电磁能量的传播。光波、无线电波等都是电磁波,它们在空间不需借助任何媒质就能传播。 7.1.1 一般电磁波动方程 设空间为各向同性、线性、均匀媒质,考虑 0=f ρ,0=f J 。则电磁场基本方程组可写为 t ??+=??E E H εγ (7.1.1) t ??-=??H E μ (7.1.2) 0=??H (7.1.3) 0=??E (7.1.4) 对(7.1.1)式两端求旋度 ()H H H 2 ?-???=???? ()22t t t t ??-??-=????+??=??? ? ???+??H H E E E E μεγμεγεγ

利用(7.1.3)有 0222=??-??-?t t H H H μεγμ (7.1.5) 同理由对(7.1.2)两边取旋度,再代入(7.1.3)、(7.1.2)式等,可推得 0222 =??-??-?t t E E E μεγμ (7.1.6) 称上面两式为电磁波动方程(它们是一般性的波动方程)。我们就是在各向同性、线性、均匀媒质中研究电磁波的基础问题。 H 和E 满足的方程在数学上属同一类方程。对于电场E 或磁场H 的分量,若用统一的标量符号()t r ,ψ来表示,就可以将原问题转化成标量方程的求解问题 0222 =??-??-?t t ψγεψγμψ (7.1.7) 7.1.2 平面电磁波及基本性质 对于电磁波传播过程中的某一时刻t ,空间电磁场中E 或H 具有相同相位的点构成的面称为等相面,又称为波阵面。 如果电磁波的等相面(波阵面)为平面,称这种电磁波为平面电磁波。 如果在平面电磁波等相面(波阵面)上的每一点处,电场E 均相同,磁场H 也相同,这样的平面电磁波称为均匀平面电磁波。 在很多情况下,许多实际存在的复杂电磁波都可分解成均匀平面电磁波来处理。这就是说我们应当着重分析、研究均匀平面 电磁波。 在一空间设定直角坐标系,均匀平面电 磁波的波阵面平行于yoz 平面,如图所示。 由均匀平面电磁波的定义可知,在其波 阵面上,场强E (或H )值处处相等,与坐 标y 和z 无关。因此,场强E (或H )仅是 时间t 和坐标x 的函数,即E = E (x , t ) 和 向x 方向传播的均匀平面波

电动力学第四章电磁波的传播

第四章 电磁波的传播 讨论电磁场产生后在空间传播的情形和特性。 分三类情形讨论: 一:平面电磁波在无界空间的传播问题 二. 平面电磁波在分界面上的反射与透射问题; 三.在有界空间传播-导行电磁波 第一部分 平面电磁波在无界空间的传播问题 讨论一般均匀平面电磁波和时谐电磁波在无界空间的传播问题 1 时变电磁场以电磁波的形式存在于时间和空间这个统一的物理世界。 2 研究某一具体情况下电磁波的激发和传播规律,从数学上讲就是求解在这具体条件下Maxwell equations 或wave equations 的解。 3 在某些特定条件下,Maxwell equations 或wave equations 可以简化,从而导出简化的模型,如传输线模型、集中参数等效电路模型等等。 4 最简单的电磁波是平面波。等相面(波阵面)为无限大平面电磁波称为平面波。如果平面波等相面上场强的幅度均匀不变,则称为均匀平面波。 5 许多复杂的电磁波,如柱面波、球面波,可以分解为许多均匀平面波的叠加;反之亦然。故均匀平面波是最简单最基本的电磁波模式,因此我们从均匀平面波开始电磁波的学习。 § 4.1 波动方程 ................................................................................................................................................. 1 § 4.2 无界空间理想介质中的均匀平面电磁波 ............................................................................................. 4 § 4.3正弦均匀平面波在无限大均匀媒质中的传播 ...................................................................................... 7 4.1-4.3总结 .................................................................................................................................................... 13 § 4.4电磁波的极化 ........................................................................................................................................ 14 § 4.5电磁波的色散与波速 ............................................................................................................................ 16 4.4-4.5总结 . (18) § 4.1 波动方程 本节主要内容:研究各种介质情形下的电磁波波动方程。 学习要求:1.明确介质分类;2.理解和掌握波动方程推到思路3.分清楚、记清楚无界无源区理想介 质和导电介质区波动方程和时谐场情形下理想介质和导电介质区波动方程 电磁波在介质中传播,所以其波动方程一定要知道介质的电磁性质方程。一般情况下,皆知的电磁性质方程很复杂,因为反应介质电磁性质的介电参数是张量。研究中常把介质分成几类研究: 介质分类:理想介质:μεσ、,0=都是实常数; 理想导体:∞→σ,内电场和磁场都为0; 导电介质:关。是复数,而且和频率有、μεσ,0> 各向同性线性均匀介质:?? ?==H B με

相关主题
文本预览
相关文档 最新文档