当前位置:文档之家› 常见材料盐浴碳氮共渗的硬度

常见材料盐浴碳氮共渗的硬度

常见材料盐浴碳氮共渗的硬度

常见材料盐浴碳氮共渗的硬度,渗层对照表

常见材料盐浴碳氮共渗的硬度,渗层对照表

材料牌号工艺表面硬度

(HV0.1)

相当于

(HRC)

化合物层厚

(μm)

总渗层厚

(mm)

08F 08Al A3(Q235) 10# 15# 570℃×90' 500-600 50-56 25-30μm>0.5mm 35# 40# 45# 40Cr 45Cr 570℃×90' 600-700 56-61 15-20μm0.3-0.5mm 35CrMo 42CrMo 50Mn 65Mn 570℃×90' 700-800 61-56 12-15μm0.3-0.4mm 38CrMoAL 570℃×90' 900-1000 67以上10-12μm0.15-0.2mm 1Cr13 2Cr13 3Cr13 1Cr17 1Cr18Ni9Ti

W18Cr4V 6-5-4-2

570℃×90' 1000-1200 70以上8-12μm0.15-0.2mm H13 3Cr Cr12MoV 3Cr2W8V 570℃×90' 1000以上70以上8-12μm0.2-0.3mm QT50 QT70 QT120 灰口铸铁570℃×90' 600-700 56-61 12-15μm0.15-0.2mm 粉末冶金570℃×90' 500-600 50-56 15-20μm0.3-0.5mm 4Cr9si2 21-4N 4Cr10Si2Mo 570℃×20' 950以上67以上5-10μm0.02-0.05mm

各种氮化工艺的比较

盐浴硫碳氮共渗盐浴碳氮共渗气体软氮化气体硬氮化离子氮化耐磨性***** *** *** ***** ***

耐腐性***** **** ** ** ** 疲劳强度***** **** *** *** *** 处理时间很短短长很长长工件变形很小很小很大大一般环保性能***** *** * * **** 处理范围很广很广一般很小广性能价格比高较高一般一般一般

碳氮共渗

钢的碳氮共渗(第一讲) 碳氮共渗是碳氮原子同时渗入工件表面的一种化学热处理工艺。最早,碳氮共渗是在含氰根的盐浴中进行的,故此又称氰化。渗碳与渗氮相结合的的工艺,具有如下特点: 1.氮的渗入降低了钢的临界点。氮是扩大γ相区的合金元素, 降低了渗层的相变温度A1与A3,碳氮共渗可以在比较低的温度进行,温度不易过热,便于直接淬火,淬火变形小,热处理设备的寿命长。 2.氮的渗入增加了共渗层过冷奥氏体的稳定性,降低了临界淬 火速度。采用比渗碳淬火缓和的冷却方式就足以形成马氏体,减少了变形开裂的倾向,淬透性差的钢制成的零件也能得到足够的淬火硬度。 3.碳氮同时渗入,加大了它的扩散系数。840~860℃共渗时,碳在奥氏体中的扩散速度几乎等于或大于930℃渗碳时的扩散速度。 共渗层比渗碳具有较高的耐磨性、耐腐蚀性和疲劳强度;比渗氮零件具有较高的抗压强度和较低的表面脆性。 按使用介质不同,碳氮共渗分为固体、液体、气体三种。固体碳氮共渗与固体渗碳相似,经常采用30~40%黄血盐,10%碳酸铵和 50~60%木炭为渗剂。这种方法的生产效率低,劳动条件差,目前很 少使用。液体碳氮共渗以氰盐为原料,历史悠久,质量容易控制,但氰盐有剧毒,且价格昂贵,使用受到限制。气体碳氮共渗的发展最快。 按共渗温度,碳氮共渗一般分为低温(500~560℃)、中温(780~850℃)和高温~880~950℃)三种。前者以渗氮为主,现在已定义为氮碳共渗,后两者以渗碳为主。习惯上所说的碳氮共渗,主要指中温气体氮碳共渗。 碳氮共渗零件的机械性能同渗层表面的碳氮浓度、渗层深度与浓度梯度有关。 共渗层的碳氮浓度必须严格控制,含量过低,不能获得高的强度、硬度与理想的残余应力,影响耐磨性与疲劳强度。反之,则不仅表层出现大量不均匀的块状碳氮化合物,脆性增加;而且会使淬火后残余奥氏体量剧增,影响表面硬度和疲劳强度。 一般推荐最佳的碳、氮浓度分别为0.70~0.95%C和0.25~0.40%N。对于少数在高接触应力下工作的合金钢零件,当要求表面具有较多均匀分布的碳氮化合物颗粒时,表面含碳量可达1.20~1.50%,甚至2~3%,含氮量仍在0.50%以下。 共渗层的深度应该与工件服役条件和钢材成分相适应。心部的含碳量较高或工件的承载能力较低时,如纺织机钢令圈、40Cr钢制汽车

QPQ液体氮化盐浴

【默认分类】 QPQ液体氮化盐 (2010-3-11 15:06:42) LT(无污染硫氮碳共渗及氮碳共渗)与LTC系列复合处理工艺用 基盐、再生盐、氧化盐 执行JB/T9198-2008 标准 一、概述: LT(无污染硫氮碳共渗及氮碳共渗)新工艺及LTC复合化学热处理工艺,荣获1987年度国家科技进步三等奖和“六五”国家级重点科技攻关纪念证书,被列为国家“八五”重点推广项目。LTC复合热处理(包括LTC-1、LTC-2、LTC-3三项共六种新工艺)在部级鉴定会上被评为达到或接近国际先进水平,经联机检索,LTC-2及LTC-3未发现国内外先例。LTC系列新工艺的实质将在下文介绍。上述九种达到或接近国家先进水平的新工艺都已做到工艺、工艺材料、设备和控制方法四配套,皆列为国家重点推广项目。LT与LTC系列工艺配套,能处理因粘着磨损、非重载疲劳断裂、除酸以外的各种介质中腐蚀失效的各种零件、刀具和模具,技术覆盖面为100%牌号的需经热处理的钢铁牌号。 采用上述新工艺处理的工件表层具有耐磨、减摩、抗擦伤、抗咬死、抗疲劳、耐蚀和自润滑性能。 我公司生产的基盐J—1、J—1A、J—1U;J—2、J—2A、J—2U(A型盐为补加用盐,CNO-含量为42—45%;正常使用中补加A型盐可节省3—6%的再生盐;U型为新配工作盐浴用盐,CNO-含量为36—38%开始使用 不需空载陈化),再生盐Z—1、Z—2和氧化盐Y—1盐品分别达到代表国际先进水平的法国CR 4、CR 2 、 SL—1以及西德TF—1、AB1、REG—1的水平。购买我公司上列盐品的单位已有三十二个省市的四千余家企业、大专院校与研究所。上列盐品与国外产品有如下对应关系: J—1(A、U)=CR 4;J—2(A、U)=TF—1;Z—1、Z—2=CR 2 并具有REC—1相同的功能;Y—1=AB1=SL—1。 按议价外汇的优惠价计算,我公司生产的盐的价格分别为国外同类产品的40—70%(因原材料价格而异)。 二、硫氮碳共渗新工艺的主要特点 1、能使被处理工件获得减摩、抗擦伤、抗咬死、耐磨、抗疲劳和一定的耐蚀性(仅不锈钢件的耐蚀性略有下降)。可处理95%左右牌号的钢铁材质的工件,显著提高其使用寿命。该工艺应用面很广,经济效益巨大。 2、通过定量添加再生盐可稳定熔盐成份,从而保证了处理质量的稳定性(重现性)。 3、熔盐中氰根含量低于0.8%。通常低于0.5%。经环保部门测定,作业点的空气和工作清洗水(酌加少许NACIO)中有害成分含量均低于国家规定的排放标准,实现了无污染作业,因而获得国家环保局颁发成果证书。 4、处理温度低于580℃,工件的尺寸变化小。 5、设备简单,操作方便,易于推广。即便于采用简单设备,以周期作业方式投产;也便于建立微机控制的自动化生产线。 6、节能、处理成本低(基盐在不超温情况下可无限期使用)。 三、氮碳共渗(软氮化)新工艺的特点 除以基盐J—2(A、U)取代J—1(A、U),盐浴中不含硫且CN–允许≤3%(通过Y—1浴氧化或等温

化学热处理技术

化学热处理技术应用和发展 摘要:浅谈化学热处理原理、反应机理,以及化学热处理分类、应用和发展前景、技术特点 关键词:化学热处理;碳渗;氮渗;稀土化学 前言 化学热处理是一种通过改变金属和合金工件表层的化学成分、组织和性能的金属热处理。它的工艺过程一般是:将工件置于含有特定介质的容器中,加热到适当温度后保温,使容器中的介质(渗剂)分解或电离,产生的能渗入元素的活性原子或离子,在保温过程中不断地被工件表面吸附,并向工件内部扩散渗入,以改变工件表层的化学成分。通常,在工件表层获得高硬度、耐磨损和高强度的同时,心部仍保持良好的韧性,使被处理工件具有抗冲击载荷的能力。 一、化学热处理原理 化学热处理是将工件置于一定温度的活性介质中保温,使活性物质的原子渗入工件的表层中,改变其表层的化学成分、组织和性能的热处理工艺,是表面合金化与热处理相结合的一项工艺技术。 二、化学热处理的过程 化学热处理包括三个基本过程,即①化学渗剂分解为活性原子或离子的分解过程;②活性原子或离子被金属表面吸收和固溶的吸收过程;③被渗元素原子不断向内部扩散的扩散过程。 (1) 分解过程 渗剂通过一定温度下的化学反应或蒸发作用,形成含有渗入元素的活性介质,然后通过活性原子在渗剂中的扩散运动而到达工件的表面。 (2) 吸收过程 渗入元素的活性原子吸附于工件表面并发生相界面反应,即活性物质与金属表面发生吸附—解吸过程。

(3) 扩散过程 吸附的活性原子从工件的表面向内部扩散,并与金属基体形成固溶体或化合物。 三、化学热处理的分类 1.按渗入元素的数量分类 (1)单元渗:渗碳,渗氮,渗硫,渗硼,渗铝,渗硅,渗锌,渗铬,渗钒等。 (2)二元渗:碳氮共渗,氮碳共渗,氧氮共渗,硫氮共渗,硼铝共渗,硼硅共渗,硼碳共渗,铬铝共渗,铬硅共渗,铬钒共渗,铬氮共渗,铝稀土共渗,铝镍共渗等。 (3)多元渗:氧氮碳共渗,碳氮硼共渗,硫氮碳共渗,氧硫氮共渗,碳氮钒共渗,铬铝硅共渗,碳氮氧硫硼共渗等。 2.按渗剂的物理形态分类 (1) 固体法:颗粒法,粉末法,涂渗法(膏剂法、熔渗法),电镀、电泳或喷涂后扩散处理法。 (2) 液体法:熔盐法(熔盐渗、熔盐浸渍、熔盐电解),热浸法(加扩散处理〕,电镀法(加扩散处理),水溶液电解法。 (3) 气体法:有机液体滴注法,气体直接通人法,真空处理法,流态床处理法。 (4) 辉光离子法:离子渗碳或碳氮共渗,离子渗氮或氮碳共渗.离子渗硫,离子渗金属。 3.按钢铁基体材料在进行化学热处理时的组织状态分类 (1) 奥氏体状态:渗碳,碳氮共渗,渗硼及其共渗,渗铬及其共渗。渗铝及其共渗,渗钒、渗钦、渗错等。 (2) 铁素体状态:渗氮,氮碳共渗,氧氮共渗及氧氮碳共渗,渗硫,硫氮共渗及硫氮碳共渗,氮碳硼共渗,渗锌。 4.按渗入元素种类分类 (1) 渗非金属元素:渗碳,渗氮,渗硫,渗硼,渗硅。 (2) 渗金属元素:渗铝,渗铬,渗锌,渗钒。

碳氮共渗层的组织与性能(4)

碳氮共渗层的组织与性能(4) 1.共渗层的组织和性能共渗层的组织决定于碳氮浓度及其分布情况。退火状态的组织与渗碳相似。直接淬火后表面金相组织为含碳氮的马氏体和残余奥氏体,有时还有少量的碳氮化合物。心部组织决定于钢的成分与淬透性,具有低碳或中碳马氏体及贝氏体等组织。 碳氮共渗中化合物的相结构与共渗温度有关,800℃以上,基本上是含氮的渗碳体Fe3(C、N);800℃以下由含氮渗碳体Fe3(C、N)、含碳ε相Fe2~3(C、N)及γ/相组成。化合物的数量与分布决定于碳氮浓度及钢材成分。 共渗淬火钢的硬度取决于共渗层组织。马氏体与碳氮化合物的硬度高,残余奥氏体的硬度低。氮增加了固溶强化的效果,共渗层的最高硬度值比渗碳高。但是,共渗层的表面硬度却稍低于次层。这是由于碳氮元素的综合作用而使Ms点显著下降,残余奥氏体增多。 碳氮共渗还可以显著提高零件的弯曲疲劳强度,提高幅度高于渗碳。这是由于当残余奥氏体量相同时,含氮马氏体的比容大于不含氮的马氏体,共渗层的压应力大于渗碳层。还有人认为,由于细小的马氏体与奥氏体均匀混合,使得硬化层的微观变形均匀化,可以有效防止疲劳裂纹的形成与扩展。 2.共渗层的组织缺陷 (1)一般缺陷共渗淬火后的汽车齿轮等零件也要检查硬度、渗层深度和显微组织(碳氮化合物等级、马氏体与残余奥氏体等级、心部组织),并按相关标准评级。碳氮共渗的组织缺陷与渗碳类似,例如残余奥氏体量过多、形成大量碳氮化合物,以致出现壳状组织等。 过量的残余奥氏体会影响表面硬度、耐磨性与疲劳强度。为此,应严格控制表面碳氮浓度,也可在淬火后继之以冷处理,在淬火之前先经高温回火。 如果共渗层中碳氮化合物过量并集中与表层壳状,则脆性过大,几乎不能承受冲击,再喷丸及碰撞时就可能剥落。产生这种缺陷的主要原因在于共渗温度偏低,氨的供应量过大,过早地形成化合物,碳氮元素难以向内层扩散。这是必须防止的缺陷。不错,碳氮共渗控制碳势的高低,也要控制氨气的通入量,有机的结合才能达到合格的组织 碳氮共渗最难解决的组织缺陷还是“三黑”问题;即“黑网、黑洞、黑带”。这也是中温碳氮共渗工艺与渗碳相比最大缺点之一。 (2)“三黑缺陷”使中温碳氮共渗工艺应用受到了很大的限制。 3 本质: 3.1 黑色组织:类似于渗碳淬火的晶界内氧化和非马问题,形成机理也基本一样。但较渗碳工艺更容出现黑网,深度也较深。 3.2 黑洞:是光学显微镜下观察到的“黑洞”,本质上是空洞,空洞内可能光滑干净也可能有少量氧化

氮碳共渗与碳氮共渗的区别

氮碳共渗:又称软氮化或低温碳氮共渗,即在铁-氮共析转变温度以下,使工件表面在主要渗入氮的同时也渗入碳。碳渗入后形成的微细碳化物能促进氮的扩散,加快高氮化合物的形成。这些高氮化合物反过来又能提高碳的溶解度。碳氮原子相互促进便加快了渗入速度。此外,碳在氮化物中还能降低脆性。氮碳共渗后得到的化合物层韧性好,硬度高,耐磨,耐蚀,抗咬合。常用的氮碳共渗方法有液体法和气体法。处理温度530~570℃,保温时间1~3小时。早期的液体盐浴用氰盐,以后又出现多种盐浴配方。常用的有两种:中性盐通氨气和以尿素加碳酸盐为主的盐,但这些反应产物仍有毒。气体介质主要有:吸热式或放热式气体(见可控气氛)加氨气;尿素热分解气;滴注含碳、氮的有机溶剂,如甲酰胺、三乙醇胺等。氮碳共渗不仅能提高工件的疲劳寿命、耐磨性、抗腐蚀和抗咬合能力,而且使用设备简单,投资少,易操作,时间短和工件畸变小,有时还能给工件以美观的外表。 碳氮共渗:以渗碳为主同时渗入氮的化学热处理工艺。它在一定程度上克服了渗氮层硬度虽高但渗层较浅,而渗碳层虽硬化深度大,但表面硬度较低的缺点。应用较广泛的只有气体法和盐浴法。气体碳氮共渗介质是渗碳剂和渗氮剂的混合气,例如滴煤油(或乙醇、丙酮)、通氨;吸热或放热型气体中酌加高碳势富化气并通氨;三乙醇胺或溶入尿素的醇连续滴注。 [C]、[N]原子的产生机制除与渗碳、渗氮相同外,还有共渗剂之间的合成和分解: CO+NH3?HCN+H2O CH4+NH3?HCN+3H2 2HCN?2[C]+2[N]+H2 碳氮共渗并淬火、回火后的组织为含氮马氏体、碳氮化合物和残余奥氏体。深0.6~1.0mm 的碳氮共渗层的强度、耐磨性与深1.0~1.5mm的渗碳层相当。为减少变形,中等载荷齿轮等可用低于870℃的碳氮共渗代替930℃进行的渗碳。

碳氮共渗缺陷

碳氮共渗质量缺陷 1 渗层不均: 产生原因:炉温不均,工件表面局部有炭黑或结焦。排气不充分,工件表面不清洁,气体炉内循环不畅。 危害:表面硬度低,性能不均匀,工件淬回火易变形和开裂。 防止办法:补渗 2 渗层过浅: 产生原因:炉温偏低,共渗时间不足。渗剂供给量不足,炉气碳势低及排气不畅。 危害:硬度、强度、抗疲劳性下降。 防止办法:补渗 3网状或堆积状碳化物: 产生原因:炉气碳势过高,或预冷温度过低。 危害:表面应力大,脆性大,易开裂。 防止办法:减少渗剂供给量,延长扩散时间和提高预冷温度。 4渗层残余奥氏体过多: 产生原因:炉气碳势过高,预冷温度高。 危害:降低表面硬度易变形和开裂。 防止办法:减少渗剂供给量,延长扩散时间和降低预冷温度。重新加热淬火或深冷处理。 5 心部铁素体过多: 产生原因:预冷温度过低,或一次淬火加热温度远低于心部的临界点。

危害:心部硬度不够,强度降低,使心部不能支持受力大的表面。防止办法:提高预冷和淬火温度。 6 黑色组织:钢中的合金元素发生内氧化,而导致淬透性下降,且氧化物质点又可作为相变的核心,使过冷奥氏体不稳定而发生分解生成黑色组织屈氏体、贝氏体等。 危害:降低表面的硬度、耐磨性和疲劳强度。 防止办法:减少炉内氧化性气氛(O2、CO2、H2O) 改善炉子的密封性,排气充分,提高淬火冷却速度,采用对内氧化敏感度小的钢(如含M o、W、Ni的钢) 喷丸处理。 7 黑色孔洞:(只在碳氮共渗和氮碳共渗中出现) 产生原因:氮介质的供给量较高,共渗温度过低。 危害:降低表面硬度和耐磨性 防止办法:控制共渗层的氮含量,使其小于0.5%. 8 畸变: 产生原因:热应力。变形随表面碳氮浓度的增加和渗层深度的增加而变严重。 危害:增加校正工序,畸变严重时,工件报废。 防止办法:装料方法要合理。所用的渗碳吊具、料盘的形状、结构等应避免工件因加热和冷却不均而引起畸变;重新加热淬火的渗碳件应降低淬火加热温度;采用热油淬火;金属锻造流线要与渗碳工件外轮廓相似,严格控制正火后的带状组织和魏氏组织;采用压床淬火(大

QPQ盐浴氮化处理

QPQ盐浴氮化处理_提供芜湖地区42CrMo产品QPQ盐浴氮化处理加工业务 一、工艺简介 二、QPQ技术将热处理与防腐蚀处理一次完成,处理温度低,时间短,能同时提高零件表面硬度、 耐磨性和抗蚀性,减少摩擦系数,变形小,无公害。具有优化加工工序,缩短生产周期,降低生产成本的优点。 QPQ技术在工艺上它是热处理技术与防腐蚀技术的结合,在性能上它是高耐磨性和高抗蚀性的结合,在渗层上是由多种化合物组成的复合渗层。因此国外认为这是金属表面强化技术领域内的巨大进展,把它称之为一种新的冶金方法。 QPQ盐浴复合处理技术在上世纪70年代由德国公司发明,经过几十年的不断地发展改进,应用范围越来越广,因此在国外被认为是金属表面强化技术领域内的巨大进展,把它称之为一种新的冶金方法。目前,QPQ 盐浴复合处理技术在国内也得到大量推广应用,尤其在汽车、摩托车、轴类产品、电子零件、纺机、机床、电器开关、工模具上使用效果非常突出。 二、技术特点: 1、良好的耐磨性 QPQ工艺中,金属材料在570±10℃的工作温度下与盐浴液体发生反应,可以在金属表面形成一层品质优良的致密的化合物层。该化合物完全由ε氮化铁组成,能够高效地提高金属表面的硬度、致密性、从而使金属表面拥有良好的耐磨性能。处理后金属材料表面硬度值的高低主要取决于钢中的合金元素,合金元素含量越高,则其渗层硬度越高。按渗层硬度的高低,可以把常用材料分成以下几大类: (1)碳钢、低台金钢 代表钢号:20、45、T iO、20Cr、40Cr等。渗层表面硬度:500—700HV (2)合金钢

代表钢号:3CrW8V、Crl2MoV、38CrMoA l、1Crl3—4Cr13等。渗层表面硬度:850—1000HV (3)高速钢、奥氏体不锈钢 代表钢号:淬火的Wl8C r4V、W6Mo5C r4V2及1Crl8Ni9Ti等渗层表面硬度:1000—1250HV (4)铸铁 渗层表面硬度:>500HV 下图是40Cr材料的工件经过不同处理方式后所做的滑动磨损试验数据,以QPQ的磨损值0.22mg为基准,QPQ工艺的耐磨性是镀硬铬2.1倍,离子氮化的2.8倍,高频淬火的23.7倍以及常规淬火的29.4倍。 2、良好的耐腐蚀性 下图为45#钢经过QPQ盐浴复合工艺、镀装饰铬、镀硬铬和普通发黑处理后与1Cr18Ni9Ti不锈钢以及1Cr13材料的中性盐雾试验对比。可以看出45#钢经过QPQ处理耐腐蚀性是1Cr18Ni9Ti不锈钢的5倍,是镀硬铬的70倍,更是普通发黑的280倍。其他材料经过QPQ工艺处理后,中性盐雾测试能达到100-300小时。 3、良好的耐疲劳性 经过QPQ盐浴复合工艺处理后的金属表面引入和产生了很高的残余压应力,其结果导致了大大提高各种类型的抗疲劳强度,经过试验证明可提高抗疲劳强度100%左右,减缓点蚀、锈蚀等表面缺陷的产生。 4、极小的变形 QPQ盐浴复合处理技术由于工艺温度低,在钢的相变点以下,不会发生组织转变,因此,与产生巨大组织应力的淬火、高频淬火、渗碳淬火和碳氮共渗等硬化工艺相比,处理后工件的变形要小得多。同时由于在570—580℃氮化以后,工件要在350—400℃保温15—20min,这会大大减少工件冷却时产生的热应力,因此QPQ盐浴复合工艺处理后工件几乎不变形,是变形最小的硬化技术,可以有效的解决常规热处理方法难以解决的硬化变形难题。 5、低碳环保

(完整版)集美大学模具材料及热处理复习思考题

模具材料及热处理复习思考题 1、名词解释题:预硬型塑料模具钢、时效硬化型塑料模具钢、奥氏体、铁素体、马氏体、贝氏体、珠光体、正火、退火、淬火、临界冷却速度、热稳定性、淬透性、淬硬性、热疲劳、热抗熔蚀。 预硬型塑料模具钢:钢厂供货时已预先对模具钢进行了热处理,使之达到了模具使用时的硬度,可以把模具加工成形不再进行热处理而直接使用,从而保证了模具的制造精度。时效硬化型塑料模具钢:模具零件在淬火(固溶)后变软,便于切削加工成形,然后再进行时效硬化,获得所需的综合力学性能。既保持模具的加工精度,又使模具具有较高硬度。奥氏体:碳溶于γ-Fe中形成的间隙固溶体,为面心立方晶格,常用符号A表示。 铁素体:碳溶于α-Fe中形成的间隙固溶体,为体心立方晶格,常用符号F表示。 马氏体:碳在α-Fe中的过饱和固溶体。 贝氏体:含碳过饱和的铁素体和碳化物组成的机械混合物。 珠光体:铁素体和渗碳体两相组成的机械混合物。 正火:正火是将钢加热到A c3和A ccm以上30-50℃,保温一定时间,使之完全奥氏体化,然后在空气中冷却到室温,以得到珠光体类型组织的热处理工艺。 退火:退火是将组织偏离平衡状态的钢加热到适当温度,经保温后随炉冷却下来,以获得接近平衡状态组织的热处理工艺。 淬火:淬火是将钢加热到临界温度以上,保温后以大于临界冷却速度的速度冷却,使奥氏体转变为马氏体的热处理工艺。 临界冷却速度:保证过冷奥氏体在连续冷却过程中不发生分解而全部过冷到M s线以下转变为马氏体的最小冷却速度。 热稳定性:指钢材在高温下可长时间保持其常温力学性能的能力 淬透性:指钢在淬火时获得马氏体的能力,它是钢材固有的一种属性。其大小用钢在一定条件下淬火所获得的淬透层深度和硬度来表示。 淬硬性:指钢在正常淬火的条件下所能达到的最高硬度。 热疲劳:(工件反复受热受冷,一时受热膨胀,一时又冷却收缩)在反复热应力作用下,模具表面会产生网状裂纹,这种现象称为热疲劳。 抗热熔蚀:防止金属在热冲击与挤压力的作用下与金属液体粘结,而损失材料的能力。

(完整word版)热处理试题

1.何谓钢的球化退火,其目的是什么? 主要适用于哪些钢材? 是使钢中碳化物球状化而进行的退火 目的:降低硬度、改善切削加工性,为以后淬火做准备,减小工件淬火畸变和开裂;主要用于共析钢、过共析钢的锻轧件及结构钢的冷挤压件等。 2.简述淬火冷却方法(至少说出五种)。 1)水冷:用于形状简单的碳钢工件,主要是调质件;2)油冷:合金钢、合金工具钢工件。3)延时淬火:工件在浸入冷却剂之前先在空气中降温以减少热应力;4)双介质淬火:工件一般先浸入水中冷却,待冷到马氏体开始转变点附近,然后立即转入油中缓冷;5)马氏体分级淬火:钢材或工件加热奥氏体化,随之浸入稍高或稍低于钢的上马氏体点的液态介质(盐浴或碱浴)中,保持适当时间,待钢件的内、外层都达到介质温度后取出空冷,以获得马氏体组织的淬火工艺。用于合金工具钢及小截面碳素工具钢,可减少变形与开裂;6)热浴淬火:工件只浸入150-180℃的硝烟或碱浴中冷却,停留时间等于总加热时间的1/3-1/2,最后取出在空气中冷却;7)贝氏体等温淬火:钢材或工件加热奥氏体化,随之快冷到贝氏体转变温度区域(260-400℃)等温保持,使奥氏体转变为贝氏体的淬火工艺。用于要求变形小、韧性高的合金钢工件 3.简述淬透性概念及其影响因素。 钢在淬火时能够获得马氏体的能力即钢被淬透的深度大小称为淬透性。其影响因素有:1. 亚共析钢含碳量↑,C曲线右移,过共析钢含碳量↑,C曲线左移;2.合金元素(除Co外)使C 曲线右移;3.奥氏体化温度越高、保温时间越长,碳化物溶解越完全,奥氏体晶粒越粗大,使C 曲线右移;4.原始组织越细,使C曲线右移,Ms点下降;5.拉应力加速奥氏体的转变,塑性变形也加速奥氏体的转变。 4.钢的回火分哪几类?说出低温回火的适用性(目的)。 (1)低温:150-250℃,用于工模具、轴承、齿轮等。(2)中温:250-500℃,用于中等硬度的零件、弹簧等。(3)高温:500-700℃,用于各种轴累、连杆、螺栓等。 低温回火的适用性(目的):消除淬火应力、稳定尺寸、减少变形和开裂,一定程度上减少残余奥氏体量。 5.什么是碳氮共渗中的黑色组织?它的危害性是什么?防止措施是什么 黑色组织是指碳氮共渗表层中出现的黑点、黑带和黑网。它会使工件弯曲疲劳强度、接触疲劳强度降低,耐磨性下降。为防止黑色组织的出现,渗层中氮含量不宜过高,也不宜过低。通过提高淬火温度或增强冷却能力抑制屈氏体网的出现。 6.简述零件感应加热淬火的基本原理。 是利用通入交流电的加热感应器在工件中产生一定频率的感应电流,感应电流的集肤效应使工件表面层被快速加热到奥氏体区后,立即喷水冷却,工件表层获得一定深度的淬硬层。 7.什么叫喷丸强化?对材料表面形貌与性能有什么影响? 利用高速喷射的细小弹丸在室温下撞击受喷工件的表面,使受层材料在再结晶温度下产生弹、塑性变形,并呈现较大的残余压应力,从而提高工件表面强度、疲劳强度和抗应力腐蚀能力的表面工程技术。8.为什么亚共析钢经正火后,可获得比退火高的强度与硬度? 由于正火的冷却速度比退火的冷却速度快,因而可以抑制铁素体的析出,增加珠光体量,且得到的珠光体组织更细小,所以可获得比退火高的强度与硬度。 9.高速钢刀具深冷处理为什么能提高刀具使用寿命? 高速钢刀具深冷处理后获得4%左右(体积分数)稳定残留奥氏体,稳定残留奥氏体中存在大量内部位错缠结而使其自身强化;深冷处理过程中转变的片状不完全孪晶马氏体,含碳及合金元素量较高,于是强化了α固溶体;深冷处理并回火后能析出比常规热处理尺寸小而多的片状MC型碳化物,使高速钢抗回火性、塑韧性和耐磨性提高。 10.简述激光热处理的原理,与感应加热淬火相比优点是什么?

氮碳共渗表面改性技术

译者的话 本文原刊于英国“Heat treatment of Metals”杂志,题目为“氮碳共渗及其对汽车零部件设计的影响” (Nitrocarburising and its Influence on Design in the Automative Sector)但文章所叙述的内容实际上是德国迪高沙(Degussa)盐浴氮碳共渗加氧化的处理基本相同,作者对该技术使用的商业名称为“Nitrotec”,但实际上和我们所开发的“氮碳(氧)共渗表面改性技术”异曲同工,在产品的应用上效果完全相当,因此本文介绍该技术在汽车上的应用及其对汽车设计的影响,对国内推广和应用“氮碳(氧)共渗表面改性技术”很有参考价值,为此特将此文翻译出来,供有关人员参考。本文只供同行参考,翻译谬误之处在所难免,敬请鉴谅。 氮碳共渗及其对汽车设计的影响

C.DAWES Nitrotec服务有限公司 (部分选择内部参考) [ 摘要 ] 作者回顾了氮碳共渗的发展,这是一种黑色金属材料的化学热处理方法,由于有富氮的化合层形成,因而具有耐磨性和抗腐蚀性,而氮扩散层则提高材料的屈服强度和疲劳强度,特别对细薄件效果显著。该工艺赋予零件以极高的抗蚀性和漂亮的外观,使氮碳共渗向镀铬提出了挑战。80年代在汽车工业得到广泛和成功的应用,产品从轮轴轴承到保险杠,使用该工艺可以获得独特的综合性能并能降低成本和减轻重量,由于采用先进的设备和工艺材料可以极大地减少对环境的污染。 一、前言 在表面热处理家族中,氮碳共渗独树一帜,这不仅由于它能提供独特的性能结合,而且有着许多的名称和专利,在过去40年里一直引人注目。 该工艺起源于法国的盐浴铁素体处理并于1947年传人英国,当时的贸易名称为“Sulfinuz”,随后经多年探索发现亚硫酸纳能活化氰化物生成氰酸盐,从而导致引入强制通气法并命名为“Tufftride”和“活性氮化”。这些仅局限于氰化物,采用空气搅拌,将氰化物氧化成氰酸盐,以产生所需要的氮势,而不象“sulfinuz”法那样有表面沉积形成,还需增加一道后处理的清洁工序,另一种易使人混淆的原因是一种被人称之为“液体氮化”的盐浴处理的存在,这种方法是用以氰化物为基盐的盐所产生低含量的氰酸根,用来处理工具钢在表面形成硬的合金氮化物,这种类型的盐浴因其氮势太低,故对非合金钢不起作用。 在50年代后期引入密封淬火炉,由于具有生产效率高的优点,从而导致气

氮化处理

氮化处理 氮化处理是指一种在一定温度下一定介质中使氮原子渗入工件表层的化学热处理工艺。经氮化处理的制品具有优异的耐磨性、耐疲劳性、耐蚀性及耐高温的特性。 目录 1简介 2技术流程 1. 2.1 渗氮前的零件表面清洗 2. 2.2 渗氮炉的排除空气 3. 2.3 氨的分解率 4. 2.4 冷却 3气体氮化 4液体氮化 5离子氮化 6相关标准 1简介 传统的合金钢料中之铝、铬、钒及钼元素对渗氮甚有帮助。这些元素在渗氮温度中,与初生态的氮原子接触时,就生成安定的氮化物。尤其是钼元素,不仅作为生成氮化物元素,亦作为降低在渗氮温度时所发生的脆性。其他合金钢中的元素,如镍、铜、硅、锰等,对渗氮特性并无多大的帮助。一般而言,如果钢料中含有一种或多种的氮化物生成元素,氮化后的效果比较良好。其中铝是最强的氮化物元素,含有0.85~1.5%铝的渗氮结果最佳。在含铬的铬钢而言,如果有足够的含量,亦可得到很好的效果。但没有含合金的碳钢,因其生成的渗氮层很脆,容易剥落,不适合作为渗氮钢。 一般常用的渗氮钢有六种如下: (1)含铝元素的低合金钢(标准渗氮钢) (2)含铬元素的中碳低合金钢SAE 4100,4300,5100,6100,8600,8700,9800系。 (3)热作模具钢(含约5%之铬)SAE H11 (SKD – 61)H12,H13 (4)铁素体及马氏体系不锈钢SAE 400系 (5)奥氏体系不锈钢SAE 300系

(6)析出硬化型不锈钢17 - 4PH,17 – 7PH,A – 286等 含铝的标准渗氮钢,在氮化后虽可得到很高的硬度及高耐磨的表层,但其硬化层亦很脆。相反的,含铬的低合金钢硬度较低,但硬化层即比较有韧性,其表面亦有相当的耐磨性及耐束心性。因此选用材料时,宜注意材料之特征,充分利用其优点,俾符合零件之功能。至于工具钢如H11(SKD61)D2(SKD – 11),即有高表面硬度及高心部强度。 2技术流程 渗氮前的零件表面清洗 大部分零件,可以使用气体去油法去油后立刻渗氮。部分零件也需要用汽油清洗比较好,但在渗氮前之最后加工方法若采用抛光、研磨、磨光等,即可能产生阻碍渗氮的表面层,致使渗氮后,氮化层不均匀或发生弯曲等缺陷。此时宜采用下列二种方法之一去除表面层。第一种方法在渗氮前首先以气体去油。然后使用氧化铝粉将表面作abrasive cleaning 。第二种方法即将表面加以磷酸皮膜处理(phosphate coating)。 渗氮炉的排除空气 将被处理零件置于渗氮炉中,并将炉盖密封后即可加热,但加热至150℃以前须作炉内排除空气工作。 排除炉内的主要功用是防止氨气分解时与空气接触而发生爆炸性气体,及防止被处理物及支架的表面氧化。其所使用的气体即有氨气及氮气二种。 排除炉内空气的要领如下: ①被处理零件装妥后将炉盖封好,开始通无水氨气,其流量尽量可能多。 ②将加热炉之自动温度控制设定在150℃并开始加热(注意炉温不能高于150℃)。 ③炉中之空气排除至10%以下,或排出之气体含90%以上之NH3时,再将炉温升高至渗氮温度。 氨的分解率 渗氮是铺及其他合金元素与初生态的氮接触而进行,但初生态氮的产生,即因氨气与加热中的钢料接触时钢料本身成为触媒而促进氨之分解。 虽然在各种分解率的氨气下,皆可渗氮,但一般皆采用15~30%的分解率,并按渗氮所需厚度至少保持4~10小时,处理温度即保持在520℃左右。

很全面,渗碳+渗氮+碳氮共渗表面处理工艺

很全面,渗碳+渗氮+碳氮共渗表面处理工艺 渗碳与渗氮一般是指钢的表面化学热处理 渗碳必须用低碳钢或低碳合金钢。可分为固体、液体、气体渗碳三种。应用较广泛的气体渗碳,加热温度900-950摄氏度。渗碳深度主要取决于保温时间,一般按每小时0.2-0.25毫米估算。表面含碳量可达0.85%-1.05%。渗碳后必须热处理,常用淬火后低温回火。得到表面高硬度心部高韧性的耐磨抗冲击零件。 渗氮应用最广泛的气体渗氮,加热温度500-600摄氏度。氮原子与钢的表面中的铝、铬、钼形成氮化物,一般深度为0.1-0.6毫米,氮化层不用淬火即可得到很高的硬度,这种性能可维持到600-650摄氏度。工件变形小,可防止水、蒸气、碱性溶液的腐蚀。但生产周期长,成本高,氮化层薄而脆,不宜承受集中的重载荷。主要用来处理重要和复杂的精密零件。 涂层、镀膜、是物理的方法。“渗”是化学变化,本质不同。 钢的渗碳——就是将低碳钢在富碳的介质中加热到高温(一般为900-950C),使活性碳原子渗入钢的表面,以获得高碳的渗层组织。随后经淬火和低温回火,使表面具有高的硬度、耐磨性及疲劳抗力,而心部仍保持足够的强度和韧性。

渗碳钢的化学成分特点 (1)渗碳钢的含碳量一般都在0.15%-0.25%范围内,对于重载的渗碳体,可以提高到0.25%-0.30%,以使心部在淬火及低温回火后仍具有足够的塑性和韧性。但含碳量不能太低,,否则就不能保证一定的强度。 (2)合金元素在渗碳钢中的作用是提高淬透性,细化晶粒,强化固溶体,影响渗层中的含碳量、渗层厚度及组织。在渗碳钢中通常加入的合金元素有锰、铬、镍、钼、钨、钒、硼等。 常用渗碳钢可以分碳素渗碳钢和合金渗碳钢两大类 (1)碳素渗碳钢中,用得最多的是15和20钢,它们经渗碳和热处理后表面硬度可达56-62HRC。但由于淬透性较低,只适用于心部强度要求不高、受力小、承受磨损的小型零件,如轴套、链条等。 (2)低合金渗碳钢如20Cr、20Cr2MnVB、20Mn2TiB等,其渗透性和心部强度均较碳素渗碳钢高,可用于制造一般机械中的较为重要的渗碳件,如汽车、拖拉机中的齿轮、活塞销等。 (3)中合金渗碳钢如20Cr2Ni4、18Cr2N4W、15Si3MoWV等,由于具有很高的淬透性和较高的强度及韧性,主要用以制造截面较大、承

渗碳渗氮的作用及氮碳共渗和碳氮共渗的区别

渗碳:是对金属表面处理的一种,采用渗碳的多为低碳钢或低合金钢,具体方法是将工件置入具有活性渗碳介质中,加热到900--950摄氏度的单相奥氏体区,保温足够时间后,使渗碳介质中分解出的活性碳原子渗入钢件表层,从而获得表层高碳,心部仍保持原有成分. 相似的还有低温渗氮处理。这是金属材料常见的一种热处理工艺,它可以使渗过碳的工件表面获得很高的硬度,提高其耐磨程度。 渗碳是指使碳原子渗入到钢表面层的过程。也是使低碳钢的工件具有高碳钢的表面层,再经过淬火和低温回火,使工件的表面层具有高硬度和耐磨性,而工件的中心部分仍然保持着低碳钢的韧性和塑性。 渗碳工件的材料一般为低碳钢或低碳合金钢(含碳量小于0.25%)。渗碳后﹐钢件表面的化学成分可接近高碳钢。工件渗碳后还要经过淬火﹐以得到高的表面硬度﹑高的耐磨性和疲劳强度﹐并保持心部有低碳钢淬火后的强韧性﹐使工件能承受冲击载荷。渗碳工艺广泛用于飞机﹑汽车和拖拉机等的机械零件﹐如齿轮﹑轴﹑凸轮轴等。 渗碳零件的材料一般选用低碳钢或低碳合金钢(含碳量小於0.25%)。渗碳后必须进行淬火才能充分发挥渗碳的有利作用。工件渗碳淬火后的表层显微组织主要为高硬度的马氏体加上残余奥氏体和少量碳化物﹐心部组织为韧性好的低碳马氏体或含有非马氏体的组织﹐但应避免出现铁素体。一般渗碳层深度范围为0.8~1.2毫米﹐深度渗碳时可达2毫米或更深。表面硬度可达HRC58~63﹐心部硬度为HRC30~42。渗碳淬火后﹐工件表面产生压缩内应力﹐对提高工件的疲劳强度有利。因此渗碳被广泛用以提高零件强度﹑冲击韧性和耐磨性﹐借以延长零件的使用寿命。 按含碳介质的不同﹐渗碳可分为固体渗碳﹑液体渗碳﹑气体渗碳和碳氮共渗; 渗氮,是在一定温度下一定介质中使氮原子渗入工件表层的化学热处理工艺。常见有液体渗氮、气体渗氮、离子渗氮。传统的气体渗氮是把工件放入密封容器中,通以流动的氨气并加热,保温较长时间后,氨气热分解产生活性氮原子,不断吸附到工件表面,并扩散渗入工件表层内,从而改变表层的化学成分和组织,获得优良的表面性能。如果在渗氮过程中同时渗入碳以促进氮的扩散,则称为氮碳共渗。常用的是气体渗氮和离子渗氮。 渗入钢中的氮一方面由表及里与铁形成不同含氮量的氮化铁,一方面与钢中的合金元素结合形成各种合金氮化物,特别是氮化铝、氮化铬。这些氮化物具有很高的硬度、热稳定性和很高的弥散度,因而可使渗氮后的钢件得到高的表面硬度、耐磨性、疲劳强度、抗咬合性、抗大气和过热蒸汽腐蚀能力、抗回火软化能力,并降低缺口敏感性。与渗碳工艺相比,渗氮温度比较低,因而畸变小,但由于心部硬度较低,渗层也较浅,一般只能满足承受轻、中等载荷的耐磨、耐疲劳要求,或有一定耐热、耐腐蚀要求的机器零件,以及各种切削刀具、冷作和热作模具等。渗氮有多种方法,常用的是气体渗氮和离子渗氮。 气体渗氮一般以提高金属的耐磨性为主要目的,因此需要获得高的表面硬度。它适用于38CrMoAl等渗氮钢。渗氮后工件表面硬度可达HV850~1200。渗氮温度低,工件畸变小,可用于精度要求高、又有耐磨要求的零件,如镗床镗杆和主轴、磨床主轴、气缸套筒等。但由于渗氮层较薄,不适于承受重载的耐磨零件。 气体参氮可采用一般渗氮法(即等温渗氮)或多段(二段、三段)渗氮法。前者是在整个渗氮过程中渗氮温度和氨气分解率保持不变。温度一般在480~520℃之间,氨气分解率为15~30%,保温时间近80小时。这种工艺适用于渗层浅、畸变要求严、硬度要求高的零件,但处理时间过长。多段渗氮是在整个渗氮过程中按不同阶段分别采用不同

钢的渗碳和碳氮共渗、淬火、回火工艺剖析

钢的渗碳和碳氮共渗、淬火、回火工艺 1、主题内容和适用范围 本工艺规定了渗碳钢的气体渗碳氮共渗淬火回火处理的工序 准备、工艺规范、操作规程、质量检验和安全环保等方面要求。 2、引用标准 JB3999—85 钢的渗碳和碳氮共渗淬火回火处理 GB85839—87 齿轮材料及热处理质量检验一般规定 ZBJ17022—88 齿轮碳氮共渗工艺及质量控制 ZBT04001—88 汽车渗碳齿轮金相检验 JB/ZQ4038—88 重载齿轮渗碳质量检验 GB9450—88 钢件渗碳淬火有效硬化层深度的测定和校核 GB15735—1995 金属热处理生产过程安全卫生要求 3、工艺准备 3.1 工件准备 3.1.1 对照图纸了解被处理工件的材料牌号(或化学成份),予处理情况和质量要求,磨削留量,必要时检查齿轮(轴齿轮)的加工精度。 3.1.2工件表面不得有氧化皮、碰伤和裂纹,用清洗剂洗净油污后烘干。 3.1.3 工件表面不需要渗碳或碳氮共渗的部位,又无留余量,没安排剥碳层的加工工序,就要用防渗涂料保护,防渗涂料的厚度应大于0.3mm,涂层应致密,防渗涂料应符合ZB451—014的规定。 3.2 工装准备

3.3 开炉准备选用的工装应具有足够的热处理强度和刚度。 3.3.1检查热处理设备的机械和电气部分是否正常,炉子是否漏气。检查炉子需润滑油的部位,使其不断润滑。 3.3.2检查测温仪表,热电隅是否正常,要定期进行校验。 3.3.3定期清理气体渗碳炉炉罐中的碳黑和灰烬。 3.4工件的表卡和试样 3.4.1 根据工件的形状和要求,选用适当的吊具和夹具。 3.4.2 工件间要有5~10mm的间隙。 3.4.3 应随炉放置与装炉工件材质和予处理相同和符合GB8539—87“齿轮材料及热处理质量检验的一般规定”规定的样式,并放置在有代表性的位置,以备炉前操作抽样检查。 4、渗碳和碳氮共渗淬火回火处理的工艺规范和操作规程 4.1渗碳、碳氮共渗处理 4.1.1 装炉 4.1.1.1工件装炉前应把炉温升到渗碳或共渗温度,连续生产时可干上一炉出炉后立即装炉。 4.1.1.2 工件应装在炉子的有效加热区内,加热区的炉温不得超过±15℃。 4.1.1.3 每炉装载量不大于设备的装载量。 4.1.2 气体渗碳工艺规范和操作规程 4.1.2.1 气体渗碳工艺规范参照图1,低碳合金渗碳钢的渗碳温度取上限。

第六章 钢的热处理参考答案

第六章钢的热处理 习题参考答案 一、解释下列名词 答: 1、奥氏体:碳在γ-Fe中形成的间隙固溶体。 过冷奥氏体:处于临界点A1以下的不稳定的将要发生分解的奥氏体称为过冷奥氏体。 残余奥氏体:M转变结束后剩余的奥氏体。 2、珠光体:铁素体和渗碳体的机械混合物。 索氏体:在650~600℃温度范围内形成层片较细的珠光体。 屈氏体:在600~550℃温度范围内形成片层极细的珠光体。 贝氏体:过饱和的铁素体和渗碳体组成的混合物。 马氏体:碳在α-Fe中的过饱和固溶体。 3、临界冷却速度V K:淬火时获得全部马氏体组织的最小冷却速度。 4、退火:将工件加热到临界点以上或在临界点以下某一温度保温一定时间后,以十分缓慢的冷却速度(炉冷、坑冷、灰冷)进行冷却的一种操作。 正火:将工件加热到A c3或A ccm以上30~80℃,保温后从炉中取出在空气中冷却。 淬火:将钢件加热到Ac3或Ac1以上30~50℃,保温一定时间,然后快速冷却(一般为油冷或水冷),从而得马氏体的一种操作。 回火:将淬火钢重新加热到A1点以下的某一温度,保温一定时间后,冷却到室温的一种操作。 冷处理:把冷到室温的淬火钢继续放到深冷剂中冷却,以减少残余奥氏体的操作。 时效处理:为使二次淬火层的组织稳定,在110~150℃经过6~36小时的人工时效处理,以使组织稳定。 5、调质处理:淬火后再进行的高温回火或淬火加高温回火 6、淬透性:钢在淬火后获得淬硬层深度大小的能力。 淬硬性:钢在淬火后获得马氏体的最高硬度。 7、回火马氏体:过饱和的α固溶体(铁素体)和与其晶格相联系的ε碳化物组成的混合物。 回火索氏体:在F基体上有粒状均匀分布的渗碳体。 回火屈氏体:F和细小的碳化物所组成的混合物。 8、第一类回火脆性:淬火钢在250℃~400℃间回火时出现的回火脆性。 第二类回火脆性:淬火钢在450℃~650℃间回火时出现的回火脆性。 10、表面淬火:采用快速加热的方法,将工件表层A化后,淬硬到一定深度,而心部仍保持未淬火状态的一种局部淬火法。

常见材料盐浴碳氮共渗的硬度

常见材料盐浴碳氮共渗的硬度,渗层对照表 常见材料盐浴碳氮共渗的硬度,渗层对照表 材料牌号工艺表面硬度 (HV0.1) 相当于 (HRC) 化合物层厚 (μm) 总渗层厚 (mm) 08F 08Al A3(Q235) 10# 15# 570℃×90' 500-600 50-56 25-30μm>0.5mm 35# 40# 45# 40Cr 45Cr 570℃×90' 600-700 56-61 15-20μm0.3-0.5mm 35CrMo 42CrMo 50Mn 65Mn 570℃×90' 700-800 61-56 12-15μm0.3-0.4mm 38CrMoAL 570℃×90' 900-1000 67以上10-12μm0.15-0.2mm 1Cr13 2Cr13 3Cr13 1Cr17 1Cr18Ni9Ti W18Cr4V 6-5-4-2 570℃×90' 1000-1200 70以上8-12μm0.15-0.2mm H13 3Cr Cr12MoV 3Cr2W8V 570℃×90' 1000以上70以上8-12μm0.2-0.3mm QT50 QT70 QT120 灰口铸铁570℃×90' 600-700 56-61 12-15μm0.15-0.2mm 粉末冶金570℃×90' 500-600 50-56 15-20μm0.3-0.5mm 4Cr9si2 21-4N 4Cr10Si2Mo 570℃×20' 950以上67以上5-10μm0.02-0.05mm 各种氮化工艺的比较 盐浴硫碳氮共渗盐浴碳氮共渗气体软氮化气体硬氮化离子氮化耐磨性***** *** *** ***** *** 耐腐性***** **** ** ** ** 疲劳强度***** **** *** *** *** 处理时间很短短长很长长工件变形很小很小很大大一般环保性能***** *** * * **** 处理范围很广很广一般很小广性能价格比高较高一般一般一般

渗氮及碳氮共渗常见问题与解决的方法

渗氮及碳氮共渗常见问题与解决的方法 氮化工件表面硬度或深度不够 (1)可能是所选材料不适合作氮化处理。 (2)可能是氮化处理前的组织状态较差。 (3)可能是氮化温度选择不当。 (4)炉中之温度或流气不均匀。 (5)氨量不恰当。 (6)渗氮的时间不够。 (7)氮化前工件表面有脏物。 氮化工件弯曲变形 (1)氮化前的弛力退火处理没有做好。 (2)工件几何曲线设计不良,例如不对称、厚薄变化太大等因素。 (3)氮化中被处理的工件放置方法不对。 (4)被处理工件表面性质不均匀,例如清洗不均或表面温度不均等因素。氮化工件发生龟裂现象 (1)氨的分解率不正常。 (2)渗氮处理前工件表面存在脱碳层。 (3)工件设计有明显的锐角存在。 (4)白亮层太厚时。 氮化工件的白层过厚 (1)渗氮处理的温度不当。 (2)氨的分解率低,可能发生此现象。 氮化处理时氨分解率不稳定 (1)分解率测定器管路漏气。 (2)渗氮处理时装入炉内的工件太少。 (3)炉中压力变化导致氨气流量改变。 (4)触媒作用不当 机械加工件前处理如何防止渗碳? (1)镀铜法,镀上厚度0.20mm左右。 (2)涂敷涂剂后乾燥。 (3)涂敷防渗碳涂敷剂后乾燥,如硼砂和有机溶剂為主。 (4)氧化铁和黏土混合物涂敷法。 (5)利用套筒或套螺丝。 渗碳(碳氮共渗)后工件硬度不足 (1)冷却速度不足,可利用喷水冷却或盐水冷却。 (2)渗碳不足,可使用强力渗碳剂。 (3)淬火温度不足。 (4)淬火时加热发生脱碳,可使用盐浴炉直接淬火 渗层剥离现象 (1)含碳量的浓度坡度太大,应进行一次退火。 (2)不存在过度层,应缓和渗速。 (3)过渗现象,可考虑研磨前次之渗层 (4)反覆渗碳(碳氮共渗)亦可能產生渗层剥离的现象

相关主题
文本预览
相关文档 最新文档