当前位置:文档之家› 螺旋动力学_拉格朗日动力学_哈密顿动力学和牛顿动力学的一致性

螺旋动力学_拉格朗日动力学_哈密顿动力学和牛顿动力学的一致性

螺旋动力学_拉格朗日动力学_哈密顿动力学和牛顿动力学的一致性
螺旋动力学_拉格朗日动力学_哈密顿动力学和牛顿动力学的一致性

哈密顿系统一些保结构算法的构造和分析

哈密顿系统一些保结构算法的构造和分析一切真实的,耗散可忽略不计的物理过程都可以用哈密顿系统进行描述.哈密顿系统有两个最重要的性质,一个是辛结构,另一个就是能量守恒.正确计算哈密顿系统非常重要.近年来,能够保持哈密顿系统辛结构或能量的保结构方法已经得到了很大的发展.本文讨论哈密顿系统一些保结构算法的构造和分析,主要研究成果如下:I.近几年,人们构造了等离子物理中洛伦兹力系统的保结构格式,比如保体积格式和保辛格式.然而这些格式都不能保持系统能量.我们把洛伦兹力系统写为一个非典则的哈密顿系统,然后利用Boole离散线积分方法进行求解,得到洛伦兹力系统的一个新的格式.该方法可以保持系统哈密顿能量达到机器精度.II.我们研究如何利用二,三和四阶AVF方法求解哈密顿偏微分方程.对非线性薛定谔方程,空间用Fourier拟谱方法半离散,时间用三个AVF方法进行离散,得到该方程三个不同精度的AVF格式.我们用数值实验验证了这三个格式的精度和保能量守恒特性.III.基于根树和B-级数理论,我们给出了5阶树的带入规则的具体公式.利用新得到的带入规则,我们把二阶AVF方法提高到高阶精度,给出了一个新的AVF方法.我们证明了,新方法具有6阶精度,并且可以保持哈密顿系统能量.我们利用六阶AVF方法求解非线性哈密顿系统,并测试了其精度和能量守恒特性.IV.在哈密顿偏微分方程保结构算法框架下,我们研究了基于系统弱形式的空间离散方法.首先,空间用有限元法或谱元法对偏微分方程进行半离散,把得到的常微分方程组写成一个哈密顿系统.然后,我们用一个保结构方法对这个常微分哈密顿系统进行求解,得到一个全离散保结构格式.我们用这个方法对一维非线性薛定谔(NLS)方程进行求解,其中空间用Legendre谱元法,时间用AVF 方法,得到一个新的保能量方法.同样对一维NLS方程,我们在空间用Galerkin

02-课件:5-4 机器人动力学建模(牛顿-欧拉法)

连杆动力学方程(牛顿-欧拉递推方法) 将机器人的连杆看成刚体,其质心加速度、总质量、角速度、 角加速度、惯性 张量与作用力矩满足如下关系: 牛顿第二定律 (力平衡方程) ()/ci i ci i ci d m dt m ==f v v 欧拉方程 (力矩平衡方程)()()/c c c ci i i i i d dt ==+?i i i n I ωI ω ωI ω

连杆动力学方程(牛顿-欧拉递推方法)

欧拉方程公式推导 v 为质心移动速度(移动时与惯性力相关)坐标系旋转时,惯性张量不是常量()()/c c c ci i i i i d dt ==+?i i i n I ωI ωωI ω ()() =[()] =[] =()c c c ci i i i c c i i i c c i i i c c i i i d d dt dt S ==+++?+?i i i i i i i i i n I ωI ωωI I ωωωI I ωωωI I ωωI ω ()()g d m dt =?+??+N I ωωI ωρ×v

力和力矩平衡方程 i i+1i-1iP i+1i fi i n i i f i+1i n i+1连杆i 在运动情况下,作用在上面 的合力为零,得力平衡方程式 (暂时不考虑重力): (将惯性力作为静力来考虑) 1 11f f R f +++=-i i i i ci i i i

力和力矩平衡方程 作用在连杆i 上的合力矩等于零,得力矩平衡方程式:1111111i i i i i i i i i ci i i i ci ci i i i +++++++=- -?-?n n R n r f P R f 将上式写成从末端连杆向内迭代的形式:111i i i i i i i ci +++=+f R f f 1111111i i i i i i i i i i i i ci ci ci i i i +++++++=++?+?n R n n r f P R f 利用这些公式可以从末端连杆n 开始,顺次向内递推直至到操作臂的基座。

牛顿第二定律的系统表达式及应用一中

牛顿第二定律的系统表达式 一、整体法和隔离法处理加速度相同的连接体问题 1.加速度相同的连接体的动力学方程: F 合 = (m 1 +m 2 +……)a 分量表达式:F x = (m 1 +m 2 +……)a x F y = (m 1 +m 2 +……)a y 2. 应用情境:已知加速度求整体所受外力或者已知整体受力求整体加速度。 例1、如图,在水平面上有一个质量为M的楔形木块A,其斜面倾角为α,一质量为m的木块B放在A的斜面上。现对A施以水平推力F, 恰使B与A不发生相对滑动,忽略一切摩擦,则B对 A的压力大小为( BD ) A 、 mgcosα B、mg/cosα C、FM/(M+m)cosα D、Fm/(M+m)sinα ★题型特点:隔离法与整体法的灵活应用。 ★解法特点:本题最佳方法是先对整体列牛顿第二定律求出整体加速度,再隔离B受力分析得出A、B之间的压力。省去了对木楔受力分析(受力较烦),达到了简化问题的目的。 例2.质量分别为m1、m2、m3、m4的四个物体彼此用轻绳连接,放在光滑的桌面上,拉力F1、F2分别水平地加在m1、m4上,如图所示。求物体系的加速度a和连接m2、m3轻绳的张力F。(F1>F2) 例3、两个物体A和B,质量分别为m1和m2,互相接触放在光滑水平面上,如图所示,对物体A施以水平的推力F,则物体A对B的作用力等于 ( ) A.F F F F 3、B 解析:首先确定研究对象,先选整体,求出A、B共同的加速度,再单独研究B,B 在A施加的弹力作用下加速运动,根据牛顿第二定律列方程求解. 将m1、m2看做一个整体,其合外力为F,由牛顿第二定律知,F=(m1+m2)a,再以m2为研究对象,受力分析如右图所示,由牛顿第二定律可得:F12=m2a,以上两式联立可得:F12= ,B正确. 例4、在粗糙水平面上有一个三角形木块a,在它的两个粗糙斜面上分别放有质量为m1和m2的两个木块b和c,如图1所示,已知m1>m2,三木块均处于静止, 则粗糙地面对于三角形木块( D ) A.有摩擦力作用,摩擦力的方向水平向右。B.有摩擦力作用,摩擦力的方向水平向左。C.有摩擦力作用,组摩擦力的方向不能确定。D.没有摩擦力的作用。 二、对加速度不同的连接体应用牛顿第二定律1.加速度不同的连接体的动力学方程:b c a

哈密顿系统的数学建模与动力学分析.

1 引言 Hamilton动力系统理论有着悠久而丰富的历史,它本身是Lagrange力学的升华与推广,从数学角度看又是一门内容精深的相空间几何学,如辛几何、辛拓扑等都源于此.近几十年来,随着纯数学理论的不断发展与计算机的普遍应用,Hamilton动力系统理论又成为当今非线性科学中极其活跃而富有魅力的研究领域.由于这类系统广泛存在于数理科学、生命科学以及社会科学的各个领域,特别是天体力学、等离子物理、航天科学以及生物工程中的很多模型都以Hamilton系统的形式出现,因此该领域的研究多年来长盛不衰.本文利用Hamilton原理推导出了Hamilton系统的正则方程.最后利用Hamilton正则方程给出一个具体物理实例的数学模型并对其进行动态模拟仿真.

2 预备知识 2.1 状态空间的基本概念 1)状态 任何一个系统在特定时刻都有一个特定的状态,系统在0t 时刻的状态是0t 时刻的一种信息量,它与此后的输入一起惟一地确定系统在0t t ≥时的行为. 2)状态变量 状态变量是一个完全表征系统时间域行为的的最小内部变量组. 3)状态向量 设系统有n 个状态变量,用()()()12,, ,n x t x t x t 表示,而且把这些状态变量看做向量 ()x t 的分量,则向量()x t 称为状态向量,记为 ()()()()12,, ,T n x t x t x t x t =????. 4)状态空间 以状态变量()()()12,,,n x t x t x t 为轴的n 维实向量空间称为状态空间. 5)状态方程 描述系统状态变量与输入变量之间关系的一阶微分方程组(连续时间系统)或一阶差分方程组(离散时间系统)称为系统的状态方程,它表征了输入对内部状态的变换过程,其一般形式为: ()()(),,x t f x t u t t =???? 其中,t 是时间变量,()u t 是输入变量. 6)输出方程 描述系统输出量与系统状态变量和输入变量之间函数关系的代数方程称为输出方程,它表征了系统内部状态变化和输入所引起的系统输出变换,是一个变化过程.输出方程的一

牛顿第二定律教学设计市级一等奖

牛顿第二定律 教学设计 教材分析 牛顿第二定律是动力学部分的核心内容,它具体地、定量地回答了物体运动状态的变化,即加速度与它所受外力的关系,以及加速度与物体自身的惯性——质量的关系;况且此定律是联系运动学与力学的桥梁,它在中学物理教学中的地位和作用不言而喻,所以本节课的教学对力学是至关重要的.本节课是在上节探究结果的基础上加以归纳总结得出牛顿第二定律的内容,关键是通过实例分析强化训练让学生深入理解,全面掌握牛顿第二定律,会应用牛顿第二定律解决有关问题. 学情分析???? 学生学习了第二节实验课:探究加速度与力/质量的关系,?对a?m?F三者关系都有了初步了解,并且总结出了相关规律,所以对本节理论课内容做好了铺垫,对掌握本节内容具有重要作用,? 教学目标: 知识与技能 1、能准确表述牛顿第二定律 2、理解数学表达式中各物理量的意义及相互关系 3、知道在国际单位制中力的单位“牛顿”是怎样定义的 4、能运用牛顿第二定律分析和处理简单的问题 过程与方法 通过对上节课实验结论的归纳,培养学生概括和分析推理能力

情感与态度 1、渗透物理学研究方法的教育——由实验归纳总结物理规律 2、让学生感受到物理学在认识自然上的本质性、深刻性、有效性 教学重点: 牛顿第二定律 教学难点: 1、牛顿第二定律公式的理解 2、理解k=1时,F=ma 教学方法和程序:探讨、归纳、数字化实验、讯飞多媒体辅助互动等。具体步骤是:创设物理情景→回顾与思考→数字化演示实验→总结规律→讯飞多媒体辅助互动。 教学过程:

板书设计: 牛顿第二定律 1.内容:物体的加速度跟所受的合外力成正比,跟物体的质量成反比.加速度的方向跟合外力的方向相同 2.表达式:a =F 合m 或F 合=ma 说明:①a =F m 是加速度的决定式②力是产生加速度的原因③m =F a 中m 与F 、a 无关 1. 3.对牛顿第二定律的理解:①矢量性 ②因果性 ③瞬时性 ④同体性 ⑤独立性 ⑥局限性 4.应用牛顿第二定律解题的一般步骤 备用习题: 1.如图所示,一物体以一定的初速度沿斜面向 上滑动,滑到顶点后又返回斜面底端.试分析在物 体运动的过程中加速度的变化情况. 解析:在物体向上滑动的过程中,物体运动受到重力和斜面的摩擦力作用,其沿斜面的合力平行于斜面向下,所以物体运动的加速度方向是平行斜面向下的,与物体运动的速度方向相反,物体做减速运动,直至速度减为零.在物体向下滑动的过程中, 物体运动也是受到重力和斜面的摩擦力作用,但摩擦力的方向平行斜面向上,其沿斜面的合力仍然是

对数哈密顿方法及其应用

对数哈密顿方法及其应用 天体力学数值方法作为天体力学的重要领域之一在辛算法的提出后得到长足发展,辛算法保持哈密顿系统辛结构且计算过程中系统没有能量和角动量的长期误差累积。辛算法适用于哈密顿系统的长期定性演化研究同时也具有数值精度不高、显辛算法要求固定步长的不足。 通常积分计算天体紧密交汇问题或大偏心率轨道运动都需缩短步长来克服天体受引力过大而剧增的加速度,直接变步长将丢失辛算法保持辛结构的优势,考虑时间变换的思路,原时间变量取变步长而新的时间变量仍为固定步长,则既能调节步长又能保持辛算法固有优势。本文的主要内容为构造针对不同哈密顿系统的对数哈密顿算法及论证其在具有更高的数值精度和保证获得有效的混沌判别结果方面的优势。 针对不同的哈密顿系统结构构造不同形式的时间变换辛算法。对于可分解为分别只含状态量广义动量和广义坐标的动能部分和势能部分的哈密顿函数,可构造取时间变换函数为形式不同但等价的两个函数得到显式对数哈密顿方法,其中时间变换作用于哈密顿函数,本文构造了由三个二阶蛙跳算子构成的显式对数哈密顿Yoshida四阶方法。 对于动能部分具有广义动量和广义坐标的交叉项而势能部分仅含位置变量的系统构造显隐式混合对数哈密顿方法,对于动能部分应用隐式中点法。而对于更一般的系统则构造隐式对数哈密顿方法。 隐式方法具有更广泛的应用但也由于算法构造中包括迭代需耗费更多的计算机时间降低计算效率。本文详细论证了显式对数哈密顿方法在应用于牛顿圆型限制性三体问题及相对论圆型限制性三体问题时较于非时间变换辛算法更具数

值精度优势。 且在前一系统的精度优势独立于轨道偏心率的变化。对于后一系统这一现象未能发生但数值精度也明显优越于常规辛算法。 特别对于高偏心率轨道,非时间变换算法得到的虚假的混沌判别指标,如Lyapunov指标和快速Lyapunov指数(FLI)。而通过对数哈密顿方法则可获得可靠地定性分析结果,彻底地解决后牛顿圆型限制性三体问题的高偏心率轨道Lyapunov指数的过度估计和FLI快速增大的问题。 在得到论证后本文应用对数哈密顿方法讨论了动力学参数两主天体间距离的变化对动力学系统有序和混沌转化的影响。本文通过数值模拟验证了对数哈密顿方法具有更高的数值精度及可得到可靠的定性研究成果的优势。 适用于定性研究和定量计算高偏心率问题,为天体力学研究开拓了新思路。在实际的天体紧密交汇处的动力学演化提供反映动力学实质的积分工具。

耗散动力学系统的广义哈密顿形式及其应用

耗散动力学系统的广义哈密顿形式及其应用经典力学中所研究大部分系统不是保守系统,所以很难将这类系统表示为经典的哈密顿力学形式(偶数维)以及与此等效的拉格朗日力学形形式或最小作用量变分原理形式。由于这几种数学形式是数值计算方法中辛几何算法的的基础和现代物理学的基础,所以极大地限制了辛几何算法在耗散系统的数值模拟领域的应用以及耗散系统的量子化等理论物理领域中的应用。 耗散动力学系统长时间跟踪问题是当前非线性力学研究领域的难点之一。对于低维耗散动力学系统,可以用各种半解析方法(小参数法,摄动法)求解。 即便如此,对于长时间跟踪,也存在所谓久期项问题(由方法本身的误差累积导致)。对于高维耗散动力系统,直接应用解析方法显然是十分困难的。 因此多采用数值方法求解该类问题。但是不同的数值方法求解的结果可能会有较大偏差,甚至相差甚远,而且大部分问题是缺乏判断其算法偏差量的参考标准的。 所以为这类问题挑选或者创立公认可行的数值积分方法,成为一个问题。我国著名学者冯康先生提出并研究了在保守系统领域的这类问题,给出了辛几何算法的思想并系统的表述构造辛差分格式的一般方法,指出了原有差分格式中的适于长时间跟踪的格式。 钟万勰先生发展了这种思想,进一步提出了时间有限元和精细积分的的思想,并对耗散动力学系统引入辛算法作了尝试。本文的最初的目的是在转子稳定性分析等耗散动力学问题中使用辛数值积分方法(或者说利用辛几何算法的思想找到合适的算法)。 为达到此目的研究了耗散系统和保守系统的一种特殊关系,在此基础上用相

应的保守系统的数值解替代原耗散系统,即将辛数值方法应用求解相应的保守系统来得到所要研究系统的数值解。在这种关系的基础上,借鉴流体力学的广义哈密顿方程和最小作用量变分原理,将耗散系统表示成一种无穷维广义哈密顿系统,相应地带来一种新型的最小作用量变分原理。 可以将冯康文献中广义哈密顿系统辛算法的思想应用于求解这个特殊的无穷维哈密顿系统。上述最小作用量变分原理,可以和路径积分量子力学形式结合,应用于量子力学领域。 以上工作的主要创新点可以归纳如下:1.发现了耗散力学系统和某一保守力学系统相曲线重合原理:对于一个耗散力学系统和它一个初始条件,对应于不同时间区段一定存在一族保守力学系统,这族保守力学系统和耗散力学系统有且仅有一条共同的相曲线;这族保守系统的哈密顿量就是前述耗散力学系统的总能。对于非保守的振动问题来说,这个保守系统就是一个非线性保守力学系统,其中的保守力在某一初始条件下和非保守振子系统的阻尼力和恢复力之和相等,那么其在相空间运动轨迹必然相同。 在此基础上,引入了无穷维广义哈密顿格式来表示耗散力学系统,在其中定义了一个新的哈密顿量,并且引入了新的泊松括号,这个格式类似于表示等离子问题和理想流体的广义哈密顿格式。在这里把耗散力学系统看作是相空间内一种特殊流体(内部无压力),初始条件看作是物质坐标,上述轨迹重合的保守力学系统的哈密顿量看作是哈密顿量密度。 对应于经典的哈密顿变分原理,这个广义哈密顿格式等效于一个新的变分原理。在这个变分原理中作用量为相空间的某一区域中所有微元的作用量之和。 2.从创新点1出发本文研究了有阻尼振动问题的中心差分格式,发现中心差

牛顿第二定律两类动力学问题及答案解析

牛顿第二定律两类动力学问题 知识点、两类动力学问题 1.动力学的两类基本问题 第一类:已知受力情况求物体的运动情况。 第二类:已知运动情况求物体的受力情况。 2.解决两类基本问题的方法 以加速度为“桥梁”,由运动学公式和牛顿第二定律列方程求解,具体逻辑关系如图: 对牛顿第二定律的理解 1.牛顿第二定律的“五个性质”

2.合力、加速度、速度的关系 (1)物体的加速度由所受合力决定,与速度无必然联系。 (2)合力与速度夹角为锐角,物体加速;合力与速度夹角为钝角,物体减速。 (3)a=Δv Δt 是加速度的定义式,a与v、Δv无直接关系;a= F m 是加速度的决定式。 3.[应用牛顿第二定律定性分析]如图1所示,弹簧左端固定,右端自由伸长到O点并系住质量为m的物体,现将弹簧压缩到A点,然后释放,物体可以一直运动到B点。如果物体受到的阻力恒定,则( ) 图1 A.物体从A到O先加速后减速 B.物体从A到O做加速运动,从O到B做减速运动 C.物体运动到O点时,所受合力为零 D.物体从A到O的过程中,加速度逐渐减小 解析物体从A到O,初始阶段受到的向右的弹力大于阻力,合力向右。随着物体向右运动,弹力逐渐减小,合力逐渐减小,由牛顿第二定律可知,加速度向右且逐渐减小,由于加速度与速度同向,物体的速度逐渐增大。当物体向右运动至AO间某点(设为点O′)时,弹力减小到与阻力相等,物体所受合力为零,加速度为零,速度达到最大。此后,随着物体继续向右运动,弹力继续减小,阻力大于弹力,合力方向变为向左。至O点时弹力减为零,此后弹力向左且逐渐增大。所以物体越过O′点后,合力(加速度)方向向左且逐渐增大,由于加速度与速度反

大学物理题库第二章牛顿运动定律.doc

第二章牛顿运动定律 一、填空题(本大题共16小题,总计48分) 1.(3分)如图所示,一个小物体A靠在一辆小车的竖直前壁上,A和车壁间静摩擦系数是丛,若要使物体A不致掉下来,小车的加速度的最小值应为1=. J A i 疽 3.(3分)如果一个箱子与货车底板之间的静摩擦系数为〃,当这货车爬一与水平方向 成。角的平缓山坡时,若不使箱了在车底板上滑动,车的最大加速度%域=. 4.(3分)质量m = 40kg的箱子放在卡车的车厢底板上,巳知箱子与底板之间的静摩擦系数为从=0.40,滑动摩擦系数为角=0.25,试分别写出在下列情况下,作用在箱了上的摩擦力的大小和方向. (1)卡车以。=2m/s2的加速度行驶,/ =,方向. (2)卡车以a = -5m/s2的加速度急刹车,/ =,方向? 5.(3分)一圆锥摆摆长为/、摆锤质量为在水平面上作匀速圆周运动,摆线与铅直线夹角。,则 (1)摆线的张力§= 2 (3分)质量相等的两物体A和B,分别固定在弹簧的两端,竖直放在光滑水平支持面C 上,如图所示.弹簧的质量与物体A、B的质量相比,M以忽略不计.若把支持面C迅速移走,则在移开的一瞬间,A的加速度大小心= ,B的加速度的大小% = .

⑵ 摆锤的速率V= I 6.(3分)质量为m的小球,用轻绳AB. BC连接,如图,其中AB水平.剪断绳AB前后的瞬间,绳BC中的张力比F T:E;=. 7.(3分)有两个弹簧,质量忽略不计,原长都是10 cm,第一个弹簧上端固定,下挂一个质量为m的物体后,长为11 cm,而第二个弹簧上端固定,下挂一质量为m的物体后,R为13 cm,现将两弹簧串联,上端固定,下面仍挂一质量为〃,的物体,则两弹簧的总长为 . 8.(3分)如图,在光滑水平桌面上,有两个物体A和B紧靠在一起.它们的质量分别为 = 2kg , = 1kg .今用一水平力F = 3N推物体B,则B推A的力等于.如 用同样大小的水平力从右边推A,则A推B的力等于? 9.(3分)一物体质量为M,置于光滑水平地板上.今用一水平力斤通过一质量为m的绳拉动物体前进,贝U物体的加速度但=,绳作用于物体上的力. 10.(3分)倾角为30°的一个斜而体放置在水平桌面上.一个质量为2 kg的物体沿斜面下滑, 下滑的加速度为3.0m/s2.若此时斜面体静止在桌面上不动,则斜面体与桌面间的静摩擦力

哈密顿原理

§7-4 哈密顿原理 人们为了追求自然规律的统一、 和谐, 按照科学的审美观点, 总是力图用尽可能少的原理(即公理)去概括尽可能多的规律. 牛顿提出的三个定律, 是力学的基本原理. 由这些基本原理出发, 经过严格的逻辑推理和数学演绎, 可以获得经典力学的整个理论框架. 哈密顿原理是分析力学的基本原理, 它潜藏着经典力学的全部内容并把这门学科的所有命题统一起来. 也就是说, 由它出发, 亦可得到经典力学的整个框架. 哈密顿原理是力学中的积分变分原理. 变分原理提供了一个准则, 使我们能从约束许可条件下的一切可能运动中, 将力学系统的真实运动挑选出来. 变分原理的这一思想, 不仅在力学中, 而且在物理学科的其他领域中, 都具有重要意义. 一、变分法简介 1. 函数的变分. 自变量为x 的函数表示为)(x y y =. 函数的微分x y y d d ′=是由自变量x 的变化引起的函数的变化. 函数的变分也是函数的微变量, 但它不是因为自变量x 的变化, 而是由于函数形式的变化引起

的. 这种由于函数形式变化造成的函数的变更称为函数的变分, 记作y δ. 与函数y 邻近但形式与y 不同的函数有许多, 这些函数可以表示如下: )()0,(),(* x x y x y εηε+= 其中ε是任意小的参数, ()x η是任意给定的可微函数. 因0=ε时()()x y x y =0,, 所以函数形式的变化决定于上式的第二项. 因此, 函数的变分写成 ()()()x x y x y y εηε=?=0,,δ* 在自由度为1的力学系统中讨论变分的概念. 设广义坐标为q , )(t q q =. 建立以t q ,为轴的二维时空坐标系(又称事件空间), 曲线I 是)(t q q =的函数曲线, 代表了系统的真实运动. q t d d →函数的微分. 在曲线I 附近, 存在 着许多相邻曲线, 这些曲 线都满足力学系统的约束 条件, 称为可能运动曲线, 它们的方程表示为 ()()()t t q t q εηε+=0,,* 在t 不变的情况下, 函数形式的改变也能引起函数的变化, 这种变化纯粹是由函数形式变化引起的, 它就是函数的变分q δ, ()()()t t q t q q εηεδ=?=0,,*

牛顿第二定律 两类动力学问题

课时跟踪检测(九) 牛顿第二定律 两类动力学问题 对点训练:牛顿第二定律的理解 1.若战机从“辽宁号”航母上起飞前滑行的距离相同,牵引力相同,则( ) A .携带弹药越多,加速度越大 B .加速度相同,与携带弹药的多少无关 C .携带弹药越多,获得的起飞速度越大 D .携带弹药越多,滑行时间越长 2.(多选)如图所示,一木块在光滑水平面上受一恒力F 作用,前方固定一足够长的水平轻弹簧,则当木块接触弹簧后,下列判断正确的是( ) A .木块立即做减速运动 B .木块在一段时间内速度仍增大 C .当F 等于弹簧弹力时,木块速度最大 D .弹簧压缩量最大时,木块速度为零但加速度不为零 3.如图所示,在倾角为θ=30°的光滑斜面上,物块A 、B 质量分别为m 和2m 。物块A 静止在轻弹簧上面,物块B 用细线与斜面顶端相连,A 、B 紧挨在一起但A 、B 之间无弹力。已知重力加速度为g ,某时刻把细线剪断,当细线剪断瞬间,下列说法正 确的是( ) A .物块A 的加速度为0 B .物块A 的加速度为g 3 C .物块B 的加速度为0 D .物块B 的加速度为g 2 4.(多选)如图所示,在动摩擦因数μ=0.2的水平面上有一个质量m =1 kg 的小球,小球与水平轻弹簧及与竖直方向成θ=45°角的不可伸长的轻绳一端相连,此时小球处于静止状态,且水平面对小球的弹力恰好为零。在剪断轻绳的瞬间(g 取10 m/s 2),下列说法中正确的是( ) A .小球受力个数不变 B .小球立即向左运动,且a =8 m/s 2 C .小球立即向左运动,且a =10 m/s 2 D .若剪断的是弹簧,则剪断瞬间小球加速度为零 5.如图所示,两根长度分别为L 1和L 2的光滑杆AB 和BC 在B 点垂直焊接,当按图示方式固定在竖直平面内时,将一滑环从B 点由静止释放,分别沿BA 和BC 滑到杆的底端经历的时间相同,则这段时间为( ) A. 2L 1L 2g B. 2L 1L 2g

约束Hamilton系统的稳定性研究

约束Hamilton 系统的稳定性研究 郑明亮1) 傅景礼 2) 1)(浙江理工大学 机械设计与控制学院 杭州 310018) 2)(浙江理工大学 理学院 杭州 310018) 摘要:本文给出了一种约束Hamilton 系统的稳定性判断方法。首先,提出将因系统奇异性导致的内在限制方程看作是非完整约束方程,采用Routh 方法导出了约束Hamilton 系统的运动正则方程。其次,将约束Hamilton 系统转化成力学梯度系统,给出转化微分方程表示的条件和表达形式;接着,根据梯度系统的性质结合李雅普诺夫的一次近似理论直接来判定约束Hamilton 系统的平衡位置稳定性。最后,举例说明结果的应用。 关键词:约束Hamilton 系统;梯度系统;李雅普诺夫;稳定性 PACS:45.10.Hj,02.30.Hq 1引言 力学系统的运动稳定性在数学、力学、航空、航海、航天、新技术和高技术中得到广泛应用,发挥了越来越大的作用[1]。关于稳定性的问题Lyapunov 首先给出了稳定性的严格数学定义,并提出一种研究运动稳定性的直接方法。Bottema [2]研究了在·ГAO Ⅱ?意义下,各种力学系统平衡位置的稳定性判断方法。Risito [3]和 Laloy [4]总结了保守系统和耗散系统的平衡和运动稳定性,得到线性、齐次、定常非完整系统平衡位置稳定与不稳定的一些更特殊的结果。我国著名力学专家梅凤翔[5]系统地论述了约束力学系统的运动稳定性问题。朱海平 [6]研究了非完整系统的稳定性。傅景礼等[7-8]研究了相对论性和转动相对论性Birkhoff 系统的平衡稳定性。Zhang [9]利用Noether 守恒量构造了Lyapunov 函数,研究了广义Birkhoff 系统的运动稳定性。姜文安等[10]研究了广义Hamilton 系统的运动稳定性。Cheng [11]研究了系统参数对带附加广义力项的约束力学系统运动稳定性的影响。 在Legendre 变换下,奇异Lagrange 系统在过渡到相空间用Hamilton 正则变量描述时,其正则变量之间存在固有约束,称之为约束Hamilton 系统[12]。机械工程和数学物理上许多重要的动力系统是约束Hamilton 系统,如非树形多体机器人系统动力学模型一般为微分/代数方程组形式[13]、光的横移现象和量子电动力学[14]等。但是,关于约束Hamilton 系统的稳定性研究一直鲜有报道。如果一个力学系统能够成为梯度系统,那么就可用梯度系统的特性来研究力学系统的性质, 特别是运动稳定性质[15]。本文研究仅含第二类约束的约束Hamilton 系统的稳定性,将其转化成梯度系统,直接利用Lyapunov 定理来研究其平衡稳定性。 2约束Hamilton 系统的正则方程 设力学系统的位形由n 个广义坐标),...,1(n s q s =来确定,系统的Lagrange 函数为 ),,(q q t L ,广义动量为),...,1(n s q L p s s =??= ,设L 的Hess 矩阵?? ???????k s q q L 2的秩为n r <。 引入系统的Hamilton 函数为),(1q p,t L q p H n i i i -=∑= ,将奇异Lagrange 系统描述过渡到Hamilton 系统描述时,在相空间中正则变量之间存在代数约束方程: ),...,1(,0),(r n j t j -==Φq p, (1)

牛顿第二定律 两类动力学问题

第四章牛顿第二定律 编写人:侯振坚审核人:高二物理使用时间:2018-6 【学习目标】 1. 掌握牛顿运动定律应用的两种基本类型. 2. 掌握瞬时加速度的求解方法。 【课前预习】 知识归纳: 知识点三单位制 .单位制 单位和单位一起组成了单位制. .基本单位 基本物理量的单位.力学中的基本物理量有三个,它们分别是、和 自主检测 1.关于力和运动的关系,下列说法正确的是() A.物体的速度不断增大,表示物体必受力的作用 B.物体的位移不断增大,表示物体必受力的作用 C.若物体的位移与时间的平方成正比,表示物体必受力的作用 D .物体的速率不变,则其所受合力必为 2.在牛顿第二定律公式F = kma中,比例系数k的数值() A.在任何情况下都等于1 B.是由质量m、加速度a和力F三者的大小所决定的 C.是由质量m、加速度a和力F三者的单位所决定的 D.在国际单位制中一定等于1 课堂探究 〖探究1〗牛顿第二定律的理解和应用 【例1】如图,用橡皮筋将一小球悬挂在小车的架子上,系统处于平衡状态.现使小车从静止开始向左加速,加速度从零开始逐渐增大到某一值,然后保持此值,小球稳定地偏离竖直方向某一角度(橡皮筋在弹性限度内).与稳定在竖直位置时相比,小球的高度() A.一定升高 B.一定降低 C.保持不变 D.升高或降低由橡皮筋的劲度系数决定 【变式1】如图所示,细线的一端系一质量为m的小球,另一端固定在倾角为θ的光滑斜面体顶端,细线与斜面平行.在斜面体以加速度a水平向右做匀加速直线运动的过程中,小球始终静止在斜面上,小球受到细线的拉力T和斜面的支持力F N分别为(重力加速度为g)() A.T=m(g sinθ+a cosθ)F N=m(g cosθ-a sinθ) B.T=m(g cosθ+a sinθ)F N=m(g sinθ-a cosθ) C.T=m(a cosθ-g sinθ)F N=m(g cosθ+a sinθ) D.T=m(a sinθ-g cosθ)F N=m(g sinθ+a cosθ) 〖探究2〗用牛顿第二定律求瞬时加速度 【例2】如图所示,两个质量相同的小球A和B,甲图中两球用不可伸长的细绳连接,乙图中两球用轻弹簧相连,然后用细绳悬挂起来.问 (1)对于甲图,在剪断悬挂线OA的瞬间,A球和B球的加速度分别为多少? (2)对于乙图,在剪断细绳OA的瞬间,A球与B球的加速度分别是多少?

大学物理牛顿运动定律及其应用习题及答案

大学物理牛顿运动定律及其应用习题及答 案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第2章 牛顿运动定律及其应用 习题解答 1.质量为10kg 的质点在xOy 平面内运动,其运动规律为: 543x con t =+(m),5sin 45y t =-(m).求t 时刻质点所受的力. 解:本题属于第一类问题 543 20sin 480cos 4x x x x con t dx v t dt dv a t dt =+==-==- 5sin 45 20cos 480sin 4y y y t v t a t =-==- 1 2 800cos 4() 800sin 4()()800()x x y y x y F ma t N F ma t N F F F N ==-==-=+= 2.质量为m 的质点沿x 轴正向运动,设质点通过坐标x 位置时其速率为kx (k 为比例系数),求: (1)此时作用于质点的力; (2)质点由1x x =处出发,运动到2x x =处所需要的时间。 解:(1) 2()dv dx F m mk mk x N dt dt === (2) 22112111ln ln x x x x x dx dx v kx t x dt kx k k x ==?===? 3.质量为m 的质点在合力0F F kt(N )=-(0F ,k 均为常量)的作用下作直线运动,求: (1)质点的加速度; (2)质点的速度和位置(设质点开始静止于坐标原点处).

解:由牛顿第二运动定律 200201000 232000012111262v t x t F kt dv m F kt a (ms )dt m F t kt F kt dv dt v (ms )m m F t kt F t kt dx dt x (m )m m ---=-?=--=?=??--=?=?? 4.质量为m 的质点最初静止在0x 处,在力2F k /x =-(N)(k 是常量)的作用下沿X 轴运动,求质点在x 处的速度。 解: 由牛顿第二运动定律 02120v x x dv dv dx dv F k /x m m mv dt dx dt dx k vdv dx v ms )mx -=-====-?=?? 5.已知一质量为m 的质点在x 轴上运动,质点只受到指向原点的引力的作用,引力大小与质点离原点的距离x 的平方成反比,即2/x k f -=(N),k 是比例常数.设质点在 x =A 时的速度为零,求质点在x =A /4处的速度的大小. 解: 由牛顿第二运动定律 02120v x x dv dv dx dv F k /x m m mv dt dx dt dx k vdv dx v ms )mx -=-====-?===?? 6.质点在流体中作直线运动,受与速度成正比的阻力kv (k 为常数)作用,t =0时质点的速度为0v ,证明 (1) t 时刻的速度为v =t m k e v )(0-; (2) 由0到t 的时间内经过的距离为x =(k mv 0)[1-t m k e )(-]; (3)停止运动前经过的距离为)(0k m v ; (4)当k m t =时速度减至0v 的e 1,式中m 为质点的质量.

第2讲牛顿第二定律两类动力学问题

第2讲牛顿第二定律两类动力学问题 一、单项选择题 1.(2014·盐城调研)2013年6月20日,在“天宫一号”测出指令长聂海胜的质量.聂海胜受到恒定作用力F从静止开始运动,经时间t时,测速仪测出他运动的速率为v,则聂海胜的质量为() A. B. C. D. 2.如图所示,三个物块A、B、C的质量满足m A=2m B=3m C,A与天花板之间、B与C之间均用轻弹簧相连,A与 B之间用细绳相连.当系统静止后,突然剪断A、B间的细绳,则此瞬间A、B、C的加速度分别为(取向下为正方向)() A. -g、2g、0 B. -2g、2g、0 C. -g、g、0 D. -2g、g、g 3.(2017·扬州中学)如图所示,一根轻弹簧竖直直立在水平地面上,下端固定,在弹簧的正上方有一个物块,物块从高处自由下落到弹簧上端O,将弹簧压缩,弹簧被压缩了x0时,物块的速度变为零.从物块与弹簧接触开始,物块的加速度的大小随下降的位移x变化的图象可能是下图中的() A B C D 4.(2015·重庆卷)若货物随升降机运动的图象如图所示(竖直向上为正),则货物受到升降机的支持力与时间关系的图象可能是()

A B C D 5.(2015·山西四校联考)如图所示,在倾角为α=30°的光滑固定斜面上,有两个质量均为m的小球A、B,它们用劲度系数为k的轻弹簧连接,现对A施加一水平向右的恒力,使A、B均静止在斜面上,此时弹簧的长度为L,下列说法中正确的是() A.弹簧的原长为L+ B.水平恒力大小为mg C.撤掉恒力的瞬间小球A的加速度为g D.撤掉恒力的瞬间小球B的加速度为g 二、多项选择题 6.如图所示,总质量为460kg的热气球从地面刚开始竖直 上升时的加速度为0.5m/s2,当热气球上升到180m时,以5m/s的速度向上匀速运动.若离开地面后热气球所受浮力保持不变,上升过程中热气球总质量不变,重力加速度取g=10m/s2.关于热气球,下列说法中正确的是() A. 所受浮力大小为4830N B. 加速上升过程中所受空气阻力保持不变 C. 从地面开始上升10s后的速度大小为5m/s D. 以5m/s匀速上升时所受空气阻力大小为230N 7.(2017·木渎中学)物体原来静止在水平地面上,用一水平力F拉物体,在F从0开始逐渐增大的过程中,物体先静止后又做变加速运动,其加速度a随外力F变化的图象如图所示.设最大静摩擦力与滑动摩擦力相等.根据题目提供的信息,下列说法中正确的是() A. 物体的质量m=2 kg B. 物体与水平面间的动摩擦因数μ=0.6 C. 物体与水平面的最大静摩擦力f max=12 N D. 在F为10 N时,物体的加速度a=2.0 m/s 8.(2016·江苏卷)如图所示,一只猫在桌边猛地将桌布从鱼缸下拉出,鱼缸最终没有滑出桌面.若鱼缸、桌布、桌面两两之间的动摩擦因数均相等,则在上述过程中()

哈密顿原理

牛顿质点动力学 1 牛顿第二定律 dt d p f 从三个方面来应用: 全局性研究:对称性、守恒律、稳定性; 局部研究:平均值、动量定理、动能定理; 瞬时研究:极限求导、奇异性、突变性; 2 重点研究非惯性、矢量性、连续性、相对性的问题; 3 从动力学观点上升到能量的观点。 哈密顿原理、保守力及其势 4 五大类典型模型 概括: 一个原理:哈密顿原理(稳定性与对称性原理); 二种建模方法:动力学方法、能量法; 三类研究方法:对称性方法(全局)、平均值方法(局部) 求极限、求导、突变及奇异性研究方法(瞬时); 四大重点问题:矢量性(矢量空间法)、连续性(微元动力学法)、相对性(相对速度公式法)、非惯性(等效性法); 五项典型模型:准粒子模型、碰撞模型、势模型、相空间模型、简谐振动与波模型。(科学计算技术与研究式的学习模

式) 哈密顿原理、对称性和稳定性 1.拉格朗日函数和哈密顿量 拉格朗日函数L 对于一个物理系统,可用一个称为拉格朗日函数的量),,(t q q L i i 来描述,其中i q 是广义坐标,=i q dt dq i /是广义速度;广义坐标与通常所说的坐标区别在于,广义坐标是针对系统的自由度确定的,譬如一个质点限制在半径R 的球面上运动,其坐标显然有x 、y 、z 三个,但广义坐标只有φθ,两个,其中?θcos sin R x =,θ?θcos ,sin sin R z b R y ==;一般由于运动受到约束,坐标与广义坐标的数量是不相等的,仅在无约束条件下,坐标与广义坐标的数目才是一样的,与坐标一样广义坐标的选取也不是唯一的。 在保守力作用下,系统的拉格朗日量L 定义为动能与势能之差;U T L -= 哈密顿量H 物理系统还可以用一个称之为哈密顿量的函数描述,在保守力作用下,哈密顿量定义为系统的动能与势能之和 ),,(t p q H i i =U T +(i=1,2…s ) 其中)(/i i q L p ??=是广义动量,哈密顿量是广义坐标和广义动量的函数,在直角坐标下对于质点运动的广义动量可

《大学物理(一)》实验报告(速度、加速度的测定和牛顿运动定律的验证)

中国石油大学(华东)现代远程教育 实验报告 课程名称:大学物理(一) 实验名称: 实验形式:在线模拟+现场实践 提交形式:在线提交实验报告 学生姓名:学号:184********** 年级专业层次: 学习中心:山东济南明仁学习中心 提交时间:2019年月日

二、实验原理 1.速度的测量 一个作直线运动的物体,如果在t~t+Δt时间内通过的位移为Δx(x~x+Δx),则该物体在Δt时间 内的平均速度为,Δt越小,平均速度就越接近于t时刻的实际速度。当Δt→0时,平均速度的极限值就是t时刻(或x位置)的瞬时速度 ???????????????????????????????????(1) 实际测量中,计时装置不可能记下Δt→0的时间来,因而直接用式(1)测量某点的速度就难以实现。但在一定误差范围内,只要取很小的位移Δx,测量对应时间间隔Δt,就可以用平均速度近似代替t时刻到达x点的瞬时速度。本实验中取Δx为定值(约10mm),用光电计时系统测出通过Δx所需的极短时间Δt,较好地解决了瞬时速度的测量问题。 2.加速度的测量 在气垫导轨上相距一定距离S的两个位置处各放置一个光电门,分别测出滑块经过这两个位置时的速度v1和v2。对于匀加速直线运动问题,通过加速度、速度、位移及运动时间之间的关系,就可以实现加速度a的测量。 (1)由测量加速度 在气垫导轨上滑块运动经过相隔一定距离的两个光电门时的速度分别为v1和v2,经过两个光电门之间的时间为t21,则加速度a为 ?????????????????????????????????????(2) 根据式(2)即可计算出滑块的加速度。 (2)由测量加速度 设v1和v2为滑块经过两个光电门的速度,S是两个光电门之间距离,则加速度a为 ????????????????????????????????????(3)

封面、绪论及第一章 牛顿动力学方程

理论力学教案 课程名称理论力学 任课教师曾奇军 所在系(院)物理电子工程学院 任课班级物理学本科 信阳师范学院

《理论力学》课程基本信息 (一)课程名称:理论力学 (二)学时学分:每周4学时,学分4 (三)予修课程:力学、高等数学 (四)使用教材:金尚年、马永力编著《理论力学》,第二版.,北京:高等教育出版社,2002年7月,面向21世纪课程教材。 (五)教学参考书: 1.周衍柏《理论力学教程》(第二版),北京:高等教育出版社,1986年。 2.郭士望《理论力学》上、下册,北京:高等教育出版社,1982。 3.梁昆森《力学》上、下册,北京:人民教育出版社,1979。 (六)教学方法:课堂讲授,启发式教学 (七)教学手段:传统讲授与多媒体教学相结合 (八)考核方式:闭卷考试占总成绩70%,平时作业成绩占30% (九)学生创新精神与实践能力的培养方法:在课程讲授过程中注意采用启发式教学手段,将基本的概念和规律讲清、讲透,而将一些具有推广性的问题留给学生思考,以此来提高学生分析问题、解决问题的能力。并且在课堂讲授时多联系实际的力学问题,以此来提高学生解决实际问题的能力。 (十)其他要求:每堂课后布置适量的课后作业并定期批改、检查和给出成绩,这部分成绩将占期末总成绩的30%。

绪论 一:《理论力学》课程的内容:该课程是以牛顿力学和分析力学为主要内容的力学理论,是理论物理的第一门课程。是从物理学的基本经验规律出发,借助于微积分等数学工具,推导出关于物体机械运动时所满足的整体规律的一门课程。 二:《理论力学》与《力学》的区别和联系 1.内容:《理论力学》包括牛顿力学和分析力学,是《力学》课程的深入和提高;而《力学》课程仅讲授牛顿力学,且研究的深度不及《理论力学》。 2.研究手段:《力学》是从物理现象出发,通过归纳总结出物质运动的规律。 《理论力学》是从经验规律出发,借助于数学工具,推导出物质运动所满足的规律,并通过实践来检验该规律的真伪,着重培养学生理性思维的能力。 三:本教材的特点:将牛顿力学和分析力学穿插在一起讲解,可对比二者在处理力学问题时各自的优缺点,并适当增加了分析力学在这门课中的比重。

相关主题
文本预览
相关文档 最新文档