当前位置:文档之家› 用介值定理证明原函数的存在性

用介值定理证明原函数的存在性

用介值定理证明原函数的存在性

用介值定理直接证明?=χ

a x f dt t f )(]')([ 证明??+=-?+x

x x dt t f x F x x F )()()(,因为f(t)在[a,b]上连续,从而M x f m ≤≤)(,

M x x F x x F m ≤?-?+≤

)()(,从而存在x x x ?+≤≤ξ,使得x

x F x x F ?-?+)()(=)(ξf (介值定理)。x x F x x F x ?-?+→?)()(lim 0=f(x) 所以F ’(x)=f(x)

中值定理证明

中值定理 首先我们来瞧瞧几大定理: 1、 介值定理:设函数f(x)在闭区间[a,b]上连续,且在该区间的端点取不同的函数值f(a)=A 及 f(b)=B,那么对于A 与B 之间的任意一个数C,在开区间(a,b)内至少有一点ξ使得f(ξ)=C(a<ξ

隐函数存在性的探讨

隐函数存在性的探讨 摘要隐函数存在唯一性定理是一个充分不必要条件。本文把定理中第四个条件要求的改为时,对隐函数存在性作探讨。本文引入了拐点,解决了本文提出的问题。 关键词隐函数存在性 一、引言 应用课本学习过的知识,判断一个较为复杂方程是否存在隐函数时,主要判断其是否满足隐函数存在唯一性定理的条件。通过实际例子知道,这个定理只是一个充分不必要条件。那么在什么情况下方程存在隐函数呢?本文专门研究了这个问题,并取得了一些小小的进展。 二、拐点法证明隐函数的存在性 (一)分析在定理中的作用。 回顾定理的证明过程,第(4)个条件中的,主要是为了说明对于每个固定的,作为的一元函数,必定在上严格单调。而当的时,出现的情况是,在内,作为的一元函数下,可能不具有单调性。而单调性又是在证明隐函数存在唯一性定理中不可缺少的一个条件,所以当,如果再加一个或几个条件,使对于每个固定的,即令,作为的一元函数,也在上严格单调。那么就可满足要求。此时根据隐函数存在唯一性定理,便能证明在该点邻域内能确定隐函数,问题也就解决了。 (二)单调性分析及证明。 在曲面中,如果我们把区域中的每个的值固定,即令,曲面与平面的交线就是以为自变量的一个函数,如果这个函数在点的邻域内具有单调性,那么问题即可解决.其实可以证明如果点为拐点,则在其邻域内具有单调性。 证明:因为点为拐点,拐点即为凸函数和凹函数的分界点。不妨假设在内是凸函数(若在内是凹函数,则可讨论),在上是凹函数。根据数学分析上册定理6.13的等价论断10及论断20,即如果为上的凸函数,则为上的增函数;如果为上的凹函数,则为上的减函数。 假设为的导数,则在上为增函数,因为,所以;在上为减函数。又因为,所以。即在上都有。所以在上单调递增。故有,。问题得证。 问题转化为:如何验证点为函数的拐点?

闭区间上连续函数介值定理解题方法小结一

闭区间上连续函数介值定理解题方法小结(一) 来源:文都教育 在高等数学的考试中,离不开考查函数的相关性质,而闭区间上的连续函数的性质显然是重中之重. 同学们都知道闭区间上的连续函数有最值定理、有界性定理、介值定理,其中介值定理常常会与积分中值定理等证明题有着“千丝万缕”的联系,因此在考试中出现的频率较高,下面就以闭区间上连续函数介值定理为线索来总结这类题目的类型和解题方法. 介值定理 如果函数()f x 在[,]a b 上连续,且()f x 在[,]a b 上的最大值与最小值分别为M 和m ,对介于m 和M 之间的任何实数C (m 利用闭区间上连续函数的性质,证明存在一点[,]a b ξ∈,使得()()d ()()d b b a a f x g x x f g x x ξ=? ?. 证明 从题目待证等式 ()()d ()()d b b a a f x g x x f g x x ξ=??,可以整理出()f x 在处所取得的函数值为 ()()()()b a b a f x g x dx f k g x dx ξ==??. 下面证位于()f x 在[,]a b 上的最大值M 与最小值m 之间. 由()m f x M ≤≤及()0g x >,得到 ()()()()mg x f x g x Mg x ≤≤,()d ()()d ()d b b b a a a mg x x f x g x x Mg x x ≤≤???. 因为()d 0b a g x x >?,故()().() b a b a f x g x dx m k M g x dx ≤=≤??

闭区间上连续函数的有界性定理证明的新方法-模板

闭区间上连续函数的有界性定理证明的新方法 一、引言 函数是描述客观世界变化规律的重要数学模型,连续函数又是数学分析中非常重要的一类函数。在数学中,连续是函数的一种属性。而在直观上来说,连续的函数就是当输入值的变化足够小的时候,输出的变化也会随之足够小的函数。函数极限的存在性、可微性,以及中值定理、积分等问题,都是与函数的连续性有着一定的,而闭区间上连续函数的性质也显得非常重要。在闭区间上连续函数的性质中,有界性定理又是最值定理和介值定理等的基础。 在极限绪论中,我们知道闭区间上连续函数具有5个性质,即:有界性定理、最大值最小值定理、介值定理、零点定理和一致连续定理,零点定理是介值定理的一个重要推论。而闭区间上连续函数的有界性定理的证明,在很多数学教材中,所采用的方法大致相同,一般都是用致密性定理和有限覆盖定理来加以证明的。并且在文献中作者也分别利用闭区间套定理、确界定理、单调有界定理和柯西收敛准则证明了此定理。但是我们知道,分析数学上所列举的实数完备性的7个基本定理是相互等价的,因而从原则上讲,任何一个都可以证明该定理,只不过是有繁简之分,笔者考虑如何能用最简单的方法将闭区间上连续函数的有界性定理证明出来,上述文献中已经用其他6个基本定理证明了闭区间连续函数的有界性定理,下面本文用实数完备性定理中的聚点原则和构造数列的办法给出了该定理的新证明方法。 二、一种新的证明方法 (一)预备知识 (二)有界性定理的新证法下面将给出实数完备性定理中的聚点原则对闭区间连续函数的有界性定理的证明。 三、有界性定理在数学建模中的应用 本文以一道数学建模的问题为例,介绍闭区间上连续函数的有界性定理如何应用于实际问题。 在20XX年“深圳杯”数学建模夏令营D题中,根据题意所述:农业灾害保险是政府为保障国家农业生产的发展,基于商业保险的原理并给予政策扶持的一类保险产品。农业灾害保险也是针对自然灾害,保障农业生产的重要措施之一,是现代农业金融服务的重要组成部分。农业灾害保险险种是一种准公共产品,基

香农采样定理

香农采样定理 采样定理,又称香农采样定理,奈奎斯特采样定理,是信息论,特别是通讯与信号处理学科中的一个重要基本结论.E. T. Whittaker(1915年发表的统计理论),克劳德·香农与Harry Nyquist都对它作出了重要贡献。另外,V. A. Kotelnikov 也对这个定理做了重要贡献。 采样是将一个信号(即时间或空间上的连续函数)转换成一个数值序列(即时间或空间上的离散函数)。采样定理指出, 如果信号是带限的,并且采样频率高于信号带宽的一倍,那么,原来的连续信号可以从采样样本中完全重建出来。 带限信号变换的快慢受到它的最高频率分量的限制,也就是说它的离散时刻采样表现信号细节的能力是有限的。采样定理是指,如果信号带宽小于奈奎斯特频率(即采样频率的二分之一),那么此时这些离散的采样点能够完全表示原信号。高于或处于奈奎斯特频率的频率分量会导致混叠现象。大多数应用都要求避免混叠,混叠问题的严重程度与这些混叠频率分量的相对强度有关。 采样简介 从信号处理的角度来看,此采样定理描述了两个过程:其一是采样,这一过程将连续时间信号转换为离散时间信号;其二是信号的重建,这一过程离散信号还原成连续信号。 连续信号在时间(或空间)上以某种方式变化着,而采样过程则是在时间(或空间)上,以T为单位间隔来测量连续信号的值。T称为采样间隔。在实际中,如果信号是时间的函数,通常他们的采样间隔都很小,一般在毫秒、微秒的量级。采样过程产生一系列的数字,称为样本。样本代表了原来地信号。每一个样本都对应着测量这一样本的特定时间点,而采样间隔的倒数,1/T即为采样频率,fs,其单位为样本/秒,即赫兹(hertz)。 信号的重建是对样本进行插值的过程,即,从离散的样本x[n]中,用数学的方法确定连续信号x(t)。 从采样定理中,我们可以得出以下结论: 如果已知信号的最高频率f H,采样定理给出了保证完全重建信号的最低采样频率。这一最低采样频率称为临界频率或奈奎斯特频率,通常表

(整理)函数、极限、连续重要概念公式定理

一、函数、极限、连续重要概念公式定理 (一)数列极限的定义与收敛数列的性质 数列极限的定义:给定数列{}n x ,如果存在常数A ,对任给0ε>,存在正整数N ,使当n N >时,恒有 n x A ε-<,则称A 是数列{}n x 的当n 趋于无穷时的极限,或称数列{}n x 收敛于A ,记为lim n n x A →∞ =.若 {}n x 的极限不存在,则称数列{}n x 发散. 收敛数列的性质: (1)唯一性:若数列{}n x 收敛,即lim n n x A →∞ =,则极限是唯一的. (2)有界性:若lim n n x A →∞ =,则数列{}n x 有界,即存在0M >,使得对n ?均有n x M ≤. (3)局部保号性:设lim n n x A →∞ =,且()00A A ><或,则存在正整数N ,当n N >时,有()00n n x x ><或. (4)若数列收敛于A ,则它的任何子列也收敛于极限A . (二)函数极限的定义 (三)函数极限存在判别法 (了解记忆) 1.海涅定理:()0 lim x x f x A →=?对任意一串0n x x →()0,1,2, n x x n ≠=,都有 ()l i m n n f x A →∞ = . 2.充要条件:(1)()()0 lim ()lim lim x x x x x x f x A f x f x A +- →→→=?==; (2)lim ()lim ()lim ()x x x f x A f x f x A →∞ →+∞ →-∞ =?==.

3.柯西准则:()0 lim x x f x A →=?对任意给定的0ε>,存在0δ>,当 100x x δ<-<,200x x δ<-<时,有()()12f x f x ε-<. 4.夹逼准则:若存在0δ>,当00x x δ<-<时,有)()()x f x x ?φ≤≤(,且0 lim ()lim (),x x x x x x A ?φ→→==则 lim ()x x f x A →=. 5.单调有界准则:若对于任意两个充分大的1212,,x x x x <,有()()12f x f x <(或()()12f x f x >),且存在 常数M ,使()f x M <(或()f x M >),则()lim x f x →+∞ 存在. (四)无穷小量的比较 (重点记忆) 1.无穷小量阶的定义,设lim ()0,lim ()0x x αβ==. (1)若() lim 0() x x αβ=,则称()x α是比)x β(高阶的无穷小量. (2)() lim ,())() x x x x ααββ=∞若则是比(低阶的无穷小量. (3)() lim (0),())() x c c x x x ααββ=≠若则称与(是同阶无穷小量. (4)() lim 1,())() x x x x ααββ=若则称与(是等价的无穷小量,记为()()x x αβ~. (5)() lim (0),0,())() k x c c k x x k x ααββ=≠>若则称是(的阶无穷小量 2.常用的等价无穷小量 (命题重点,历年必考) 当0x →时, sin arcsin tan ~,arctan ln(1)e 1x x x x x x x ? ?? ?? ? ? ? +? -?? () 2 11c o s ~2(1)1~x x x x ααα-+- 是实常数 (五)重要定理 (必记内容,理解掌握) 定理1 0 00lim ()()()x x f x A f x f x A -+→=?==. 定理2 0 lim ()()(),lim ()0x x x x f x A f x A a x a x →→=?=+=其中. 定理3 (保号定理):0 lim (),0(0),0x x f x A A A δ→=>设又或则一个,当 000(,),()0(()0)x x x x x f x f x δδ∈-+≠><且时,或. 定理4 单调有界准则:单调增加有上界数列必有极限;单调减少有下界数列必有极限. 定理5 (夹逼定理):设在0x 的领域内,恒有)()()x f x x ?φ≤≤(,且 lim ()lim (),x x x x x x A ?φ→→==则0 lim ()x x f x A →=.

根的存在性证明(零点定理)

根的存在性定理:如果)(x f 在闭区间[a,b]上连续 0)(,,0)()(=∈<ξξf b a b f a f )使得(则存在。 证明 利用构造法的思想,将)(x f 的零点范围逐步缩小。先将[a,b]二等分为],2[],2, [b b a b a a ++,如果0)2 (=+b a f 。则定理获证。如果0)2(≠+b a f ,则f(a)和f(b)中必然有一个与)2 (b a f +异号,记这个小区间为[11,b a ],它满足2-0)()(1111a b a b b f a f -=<且区间的长度。又将[11,b a ]二等分,考虑中点的函数值,要么为零,要么不为零。如果中点的函数值为零,则定理获证。如果中点的函数值不为零,那么必然可以选出一个小区间,使得f(x)在这个区间的端点值异号,记这个小区间为 ],[22b a ,它满足[a,b]?[11,b a ]],[22b a ?,0)()(2222 22<-=-a f b f a b a b 且。采用这样的方法一直进行下去,或者到有限步时,某个区间的中点的函数值为零,这样定理的结论成立。或者所有区间的中点的函数值不为零,那么我们就会得到一个无穷的区间序列{],[n n b a },它满足:① [a,b]?[11,b a ]?????],[22b a ;②n n n a b a b 2-=-;③0)()(δ,使得f(x)在],[),(b a ?+-δξδξ上与)(ξf 同号。根据所构造的区间的性质②,存在正整数N ,当n>N 时, ],[),(],[b a b a n n ?+-?δξδξ。根据区间的性质③,0)()(

抽样定理的理论证明与实际应用分析

信号与线性系统分析综合练习题目:抽样定理的理论证明与实际应用

一、抽样和抽样定理 数字信号处理技术的优势和快速发展使得数字设备和数字媒体广泛应用,如手机、MP3、CD 和DVD 等。抽样定理是通信理论中的一个重要定理,是模拟信号数字化的理论依据,包括时域抽样定理和频域抽样定理两部分,又称取样定理、采样定理,是由奈奎斯特(Nyquist)和香农(Shannon)分别于1928年和1949年提出的,故又称为奈奎斯特抽样定理或香农抽样定理。 “抽样”就是利用周期抽样脉冲p(t)从连续信号f(t)中抽取离散样值的过程,得到的离散信号为抽样信号,也称为抽样信号,以?s (t )表示。抽样过程的数学模型就是连续信号与抽样脉冲序列相乘。 抽样过程所应遵循的规律,称抽样定理。抽样定理说明抽样频率与信号频谱之间的关系,是连续信号离散化的基本依据。在进行模A/D 转换过程中,当抽样频率f s.max 大于信号中最高频率f max 的2倍时(f s.max >2f max ),抽样之后的数字信号完整地保留了原始信号中的信息,一般实际应用中保证抽样频率为信号最高频率的5~10倍。 抽样定理描述了在一定条件下,一个连续的信号完全可以用该信号在等时间间隔上的瞬时样本值表示,这些样本值包含了该连续时间信号的全部信息,利用这些样本值可以恢复原来的连续信号。也就是说,抽样定理将连续信号与离散信号之间紧密的联系起来,为连续信号与离散信号的相互转换提供了依据。通过观察抽样信号的频谱,发现它只是原信号频谱的线性重复搬移,只要给它乘以一个门函数,就可以在频域恢复原信号的频谱,然后再利用频域时域的对称关系,就能在时域上恢复原信号。 二、时域抽样定理的理论证明 时域抽样定理的完整描述是这样:一个频谱在区间(-ωm ,ωm )以外为零的频带有限信号?(t),可唯一地由其在均匀间隔T s (T s<1/2?m )上的样点值?s (t )=?(nT s )确定。以下为理论证明过程: 根据傅里叶变换和离散傅里叶变换定义,有 ΩΩ=Ω∞∞-?d e j X t x t j a a )(21)(π (1) ωπωππ ωd e e X n x n j j ?-=)(21)( (2) 将抽样过程的时域关系x (n )=x a (nT )带入(1)式,有 ΩΩ=Ω∞∞ -?d e j X n x nt j a )(21)(π (3) 比较(2)(3)式,可以得到 ωωπ πωd e e X d e j X n j j nT j a ??-Ω∞ ∞-=ΩΩ)()( 将模拟角频率Ω和数字角频率ω的关系ω=ΩT 带入上式,得

关于高等数学常见中值定理证明及应用

中值定理 首先我们来看看几大定理: 1、介值定理:设函数f(x)在闭区间[a,b]上连续,且在该区间的端点取不同的函数值 f(a)=A及f(b)=B,那么对于A与B之间的任意一个数C,在开区间(a,b)内至少有一点ξ使得f(ξ)=C(a<ξ

连续函数性质

§ 连续函数的性质 ? 连续函数的局部性质 若函数f 在点0x 连续,则f 在点0x 有极限,且极限值等于函数值0()f x 。从而,根据函数极限的性质能推断出函数f 在0()U x 的性态。 定理1(局部有界性) 若函数f 在点0x 连续,,则f 在某0()U x 内有界。 定理2(局部保号性) 若函数f 在点0x 连续,且0()0f x >(或0<),则对任何正数0()r f x < (或0()r f x <-),存在某0()U x ,使得对一切 0()x U x ∈有()f x r >(或()f x r <-)。 注: 在具体应用局部保号性时,常取01 ()2 r f x =, 则当0()0f x >时,存在某0()U x ,使在其内有01 ()()2 f x f x > 。 定理3(四则运算) 若函数f 和g 在点0x 连续,则,, f f g f g g ±?(这里0()0g x ≠)也都在点0x 连续。 关于复合函数的连续性,有如下定理: 定理4 若函数f 在点0x 连续,g 在点0u 连续,00()u f x =,则复合 函数g f 在点0x 连续。 证明:由于g 在点0u 连续,10,0εδ?>?>,使得当01||u u δ-<时有 0|()()|g u g u ε-<。 (1)

又由00()u f x =及()u f x =f 在点0x 连续,故对上述1δ,存在0δ>, 使得当0||x x δ-<时有001|||()()|u u f x f x δ-=-<,联系(1)式得:对任 给的0ε>,存在0δ>,使得当0||x x δ-<时有 0|(())(())|g f x g f x ε -<。 这就证明了g f 在点0x 连续。 注:根据连续必的定义,上述定理的结论可表为 0lim (())(lim ())(())x x x x g f x g f x g f x →→== 定理 5 ()x f x x 0 lim →存在的充要条件是()() 0lim 00 0+=+→x f x f x x 与 ()()0lim 00 0-=-→x f x f x x 存在并且相等. 证明:必要性显然,仅须证充分性.设()A x f x x =+→0 0lim ()x f x x 00 lim -→=,从 而对任给的0>ε,存在01>δ和02 >δ,当 100δ<-=δδδ 时,当δ<-<00x x 时,则 δ <-<00x x 和 00<-<-x x δ 二者必居其一,从而满足①或②,所以 ()ε<-A x f . 定理 6 函数()x f 在0x 点连续的充要条件是()x f 左连续且右连续. 证明:()x f 在0x 点连续即为()()00 lim x f x f x x =→.注意左连续即为()()000x f x f =-,右连续即为()()000x f x f =+,用定理5即可证. 此外,在讨论函数的极限时往往必须把连续变量离散化,下面我们来讨论这方面的问题.

介值定理的一些应用

介值定理的一些应用 摘要:介值定理是连续函数的一个很重要的定理。本文主要讨论利用介值定理证明方程根的问题。介值定理不但可以证明方程根的存在性,而且可以判断方程根的个数,还能判断方程根的范围。文章还讨论利用介值定理处理不等式问题。最后举例说明介值定理在生活中的应用。 关键词:介值定理 方程 不等式 应用 介值定理是一个简单的定理,但是我们在学习数学分析的过程中会经常遇到很多依靠这个定理来解决的题目。此外,我们还会见到利用这个定理证明微积分中的一些定理。介值定理是闭区间上连续函数的基本性质之一,了解这个定理并能够灵活运用这个定理来解决一些问题是十分有必要的。 介值性定理:设函数()f x 在闭区间[]b a ,上连续。并且函数()f a 与函数()f b 不相等。如果μ是介于()f a 和()f b 之间的任何实数() f a <μ<() f b 或() f a >μ >()f b ,则至少存在一点0x (),a b ∈使得().0f x =μ. 推论:根的存在定理 如果函数()f x 在闭区间[],a b 上连续,并且()f a 和 ()f b 满足()f a ()f b <0,那么至少存在一点0x ,使得().0f x =0. 即是方程()f x =0在(),a b 内至少有一个根。 1.介值定理在方程根的问题上的应用 利用介值性定理或是根的存在性定理解决方程的根的问题是一类广泛存在的题目。可以利用此定理来解决方程根是否存在,根的个数和根的范围等的问题。 1.1介值定理证明方程根存在性 证明类似方程()f x =()g x 在区间至少存在一个根的问题总是可以转化为连续函数()F x =()f x -()g x 的零点问题,一般可以利用根的存在定理来解决这类的问题。 例1 证明:函数()f x 在区间[]a 2,0上连续并且函数()0f =()2f a 。那么方

连续函数的性质1

§2连续函数的性质 Ⅰ. 教学目的与要求 1.理解连续函数的局部有界性、局部保号性、保不等式性. 2.掌握连续函数的四则运算法则、连续函数的复合函数及反函数的连续性,会利用其讨 论函数的连续性. 3.掌握闭区间上连续函数的性质,会利用其讨论相关命题. 4.理解函数一致连续性的概念. Ⅱ. 教学重点与难点: 重点: 闭区间上连续函数的性质. 难点:. 闭区间上连续函数的性质,函数一致连续性的概念. Ⅲ. 讲授内容 一 连续函数的局部性质 若函数f 在点0x 连续,则f 在点0x 有极限,且极限值等于函数值()0x f .从而,根据 函数极限的性质能推断出函数f 在()0x U 的性态. 定理4.2(局部有界性) 若函数f 在点0x 连续,则f 在某()0x U 内有界. 定理4.3(局部保号性) 若函数f 在点0x 连续,且()0x f 0> (或0<),则对任何正 数()0x f r < (或()0x f r -<),存在某()0x U ,使得对一切∈x ()0x U 有 ()r x f >,()r x f -<或(). 注 在具体应用局部保号性时,常取()021x f r = 则(当()0x f 0>时)存在某()0x U 使在其内有()>x f ()02 1x f . 定理4.4(四则运算) 若函数f 和g 在点0x 连续,则g f g f g f ,,?±(这里 ()00≠x g )也都在点0x 连续. 以上三个定理的证明,都可从函数极限的有关定理直接推得. 对常量函数c y =和函数x y =反复应用定理4.4,能推出多项式函数 ()n n n n a x a x a x a x P +++=--1110 和有理函数()()() x Q x P x R =(Q P ,为多项式)在其定义域的每一点都是连续的. 同样,由x sin 和x cos 在R 上的连续性,可推出x tan 与x cot 在其定义域的每一点 都连续. 关于复合函数的连续性,有如下定理: 定理4.5 若函数f 在点0x 连续,g 在点0u 连续,()00x f u =,则复合函数f g 在点

取样定理的证明及其应用

取样定理及其应用 测控五班穆可汗 学号:3013-202-136 引言: 取样定理论述了在一定条件下,一个连续信号完全可以用离散样本值表示、这些样本值包含了该连续信号的全部信息,利用这些样本值可以恢复原信号、可以说,取样定理在连续信号与离散信号之间架起了一座桥梁、为其互为转换提供了理论依据。 所谓“取样”就是利用取样脉冲序列s(t)从连续信号f(t)中“抽取”一系列离散样本值的过程、这样得到的离散信号称为取样信号fs(t) 、它是对信号进行数字处理的第一个环节。 一、定理证明: 设的频谱为离散信号x(n)的频谱为,由连续信号傅立叶变换和序列傅立叶变换可知: 在(1)式中令t=nT (T为时域取样周期,取样频率fs=1/T),可得: 对(3)式作变量代换,令,可得:

令对(4)整理可得, 对比(2)式和(5)式可得 上式给出了连续信号频谱与离散信号频谱的关系式从中可以看出,由连续信号的频谱可以通过以下两步得到离散信号的频谱:第一步,对连续信号的频谱进行换元、水平轴上的尺度展缩,信号的最高角频率由变化到;第二步,对频谱图以2π的整数倍为间隔进行平移,然后进行叠加,其幅值变为原来的1/T。由以上过程可知,只要,即原连续信号的最高频率,则频谱平移叠加后不会发生频谱的混叠,可以无失真地换原出原连续信号,取样定理得证。 二、取样定理的应用:基于带通取样定理的高速数据采集系统的硬件电路设计 数据采集是获得信息的一种基本手段。随着信息科学技术的迅速发展,它已经成为信息领域中不可缺少的部分。随着科技的不断进步,人们对数据采集系统的要求也越来越高,不仅要求取样的精度高,数据转换速度快,还要求具有抗干扰能力。

隐函数定理及其应用.

S F 01(数) Ch 18 隐函数定理及其应用计划课时: 6 时 P 231 — 236 2002. 09.20 .

231 Ch 18 隐函数定理及其应用 ( 6 时 ) § 1 隐函数 ( 2 时 ) 一. 隐函数概念:隐函数是表达函数的又一种方法. 1. 隐函数及其几何意义: 以0),(=y x F 为例作介绍. 2. 隐函数的两个问题: ⅰ> 隐函数的存在性; ⅱ> 隐函数的解析性质. 二. 隐函数存在条件的直观意义: 三. 隐函数定理: Th 1 ( 隐函数存在唯一性定理 ) 若满足下列条件: ⅰ> 函数),(y x F 在以),(000y x P 为内点的某一区域D 2 R ?上连续 ; ⅱ> ),(00y x F 0=; ( 通常称这一条件为初始条件 ) ⅲ> 在D 内存在连续的偏导数),(y x F y ; ⅳ> ),(00y x F y 0=/. 则在点0P 的某邻域 (0P )?D 内 , 方程0),(=y x F 唯一地确定一个定义在某区间 ) , (00αα+-x x 内的隐函数)(x f y =, 使得 ⑴ )(00y x f =,∈x ) , (00αα+-x x 时()∈)( , x f x (0P )且()0)( , ≡x f x F . ⑵ 函数)(x f 在区间) , (00αα+-x x 内连续 . ( 证 ) 四. 隐函数可微性定理: Th 2 设函数),(y x F 满足隐函数存在唯一性定理的条件 , 又设在D 内),(y x F x 存在且连续 . 则隐函数)(x f y =在区间) , (00αα+-x x 内可导 , 且

带通采样定理证明

带通信号的采样与重建 一、带通采样定理的理论基础 基带采样定理只讨论了其频谱分布在(0,H f )的基带信号的采样问题。作为接收机的模数转换来说:接收信号大多为已调制的射频信号。射频信号相应的频率上限远高于基带信号的频率上限。这时如果想采用基带采样就需要非常高的采样速率!这是现实中的A/D 难以实现的。这时,低通采样定理已经不能满足实际中的使用要求。 带通采样定理是适用于这样的带通信号的采样理论基础,下面给出定理。 带通采样定理:设一个频率带限信号()x t 其频带限制在(,)L H f f 内,如果其采样速率s f 满足式: s f = 2()21L H f f n ++ (2-1) 式中, n 取能满足2()s H L f f f ≥-的最大整数(0,1,2…),则用s f 进行等间隔采样所得到的信号采样值()s x nT 能准确的确定原信号()x t 。 带通采样定理使用的前提条件是:只允许在其中一个频带上存在信号,而不允许在不同的频带同时存在信号,否则将会引起信号混叠[1]。如图所示,为满足这一条件的一种方案,采用跟踪滤波器的办法来解决,即在采样前先进行滤波[1] ,也就是当需要对位于某一个中心频率的带通信号进行采样时,就先把跟踪滤波器调到与之对应的中心频率0n f 上,滤出所感兴趣的带通信号()n x t ,然后再进行采样,以防止信号混叠。这样的跟踪滤波器称之为抗混叠滤波器。 图 带通信号采样

式(2-1)用带通信号的中心频率0f 和频带宽度B 也可用式(2-2)表示: 0214s n f f += (2-2) 式中,()0L H f f f =+,n 取能满足2s f B ≥(B 为频带宽度)的最大正 整数。 当频带宽带B 一定时,为了能用最低采样速率即两倍频带宽度的采样速率(2s f B =),带通信号的中心频率必须满足0212 n f B +=。也即信号的最高或最低频率是信号的整数倍。 带通采样理论的应用大大降低了所需的射频采样频率,为后面的实时处理奠定了基础。但是从软件无线电的要求来看,带通采样的带宽应是越宽越好,这样对不同基带带宽的信号会有更好的适应性,在相同的工作频率范围内所需要的“盲区”采样频率数量减少,有利于简化系统设计。另外,当对于一个频率很高的射频信号采样时,如果采样频率设的太低,对提高采样量化的信噪比是不利的。所以在可能的情况下,带通采样频率应该尽可能选的高一些,使瞬时采样带宽尽可能宽。但是随着采样速率的提高带来的一个问题是采样后的数据流速率很高。因此一个实际的无线电通信带宽一般为几千赫兹到几百赫兹。实际对单信号采样时采样率是不高的。所以对这种窄带信号的采样数据流降速是完全可能的。多速率信号处理技术为这种降速处理实现提供了理论依据。 二、带通采样过程 待采样信号为中频是100MHz ,带宽为2MHz 的带通信号: fc0=100e6; //中频频率 fc1=99e6; //信号一的频率

【2018-2019】介值定理的证明-范文模板 (9页)

本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除! == 本文为word格式,下载后可方便编辑和修改! == 介值定理的证明 篇一:用介值定理证明原函数的存在性 用介值定理直接证明[?f(t)dt]'?f(x) a? 证明F(x??x)?F(x)??x??x xf(t)dt,因为f(t)在[a,b]上连续,从而m?f(x)?M, F(x??x)?F(x)F(x??x)?F(x)?M,从而存在x???x??x,使得=f(?)(介?x?x F(x??x)?F(x)值定理)。lim=f(x) 所以F’(x)=f(x) ?x?0?xm? 篇二:介值定理的一些应用 介值定理的一些应用 摘要:介值定理是连续函数的一个很重要的定理。本文主要讨论利用介值定理证明方程根的问题。介值定理不但可以证明方程根的存在性,而且可以判断方程根的个数,还能判断方程根的范围。文章还讨论利用介值定理处理不等式问题。最后举例说明介值定理在生活中的应用。关键词:介值定理方程不等式应用 介值定理是一个简单的定理,但是我们在学习数学分析的过程中会经常遇到很多依靠这个定理来解决的题目。此外,我们还会见到利用这个定理证明微积分中的一些定理。介值定理是闭区间上连续函数的基本性质之一,了解这个定理并能够灵活运用这个定理来解决一些问题是十分有必要的。 介值性定理:设函数f(x)在闭区 间?a,b?上连续。并且函数f?a?与函数f?b?不相等。如果?是介于f?a?和f?b?之间的任何实数f?a? ?f?b?,则至少存在一点x0??a,b?使得f ???f?b?

或f?a? ?? ?x.0???. 推论:根的存在定理如果函数f(x)在闭区间?a,b?上连续,并且f?a?和 f?b?满足f?a?f?b??0,那么至少存在一点x0,使得f?x.0??0. 即是方程f?x?=0在?a,b?内至少有一个根。 1.介值定理在方程根的问题上的应用 利用介值性定理或是根的存在性定理解决方程的根的问题是一类广泛存在的题目。可以利用此定理来解决方程根是否存在,根的个数和根的范围等的问题。1.1介值定理证明方程根存在性 证明类似方程f?x?=g?x?在区间至少存在一个根的问题总是可以转化为连续函 数F?x?=f?x??g?x?的零点问题,一般可以利用根的存在定理来解决这类的问题。 例1 证明:函数f?x?在区间?0,2a?上连续并且函数f?0?=f?2a?。那么方 程f?x?=f?x?a?在?0,a?内至少有一个根。证明:设 F?x?=f ?x??f?x?a?, 函数F?x?在区间?0,a?上面连续,并且 F?0?=f?0??f?a?, F?a??f?a??f?2a?=f?a??f?0?, 如果f?0??f?a?=0,那么x=0就是方程f?x?=f?x?a?的一个根;如果 f?0??f?a??0,那么F?0?F?a??0。根据根的存在定理可以得到,在 ?a,b?内至少存在一点c,使得 c?a?0,F?c??f??c??f? 所以方程f?x?=f?x?a?在?0,a?至少存在一个根。 例2 证明:任一实系数奇次方程至少有一个实根。证明:设

闭区间上连续函数的有界性定理证明的新方法_1

闭区间上连续函数的有界性定理证明的新方法连续函数是数学分析中非常重要的一类函数,下面是小编搜集整理的一篇探究闭区间上连续函数的有界性定理证明的论文范文,欢迎阅读参考。 一、引言 函数是描述客观世界变化规律的重要数学模型,连续函数又是数学分析中非常重要的一类函数。在数学中,连续是函数的一种属性。而在直观上来说,连续的函数就是当输入值的变化足够小的时候,输出的变化也会随之足够小的函数。函数极限的存在性、可微性,以及中值定理、积分等问题,都是与函数的连续性有着一定联系的,而闭区间上连续函数的性质也显得非常重要。在闭区间上连续函数的性质中,有界性定理又是最值定理和介值定理等的基础。 在极限绪论中,我们知道闭区间上连续函数具有5个性质,即:有界性定理、最大值最小值定理、介值定理、零点定理和一致连续定理,零点定理是介值定理的一个重要推论。而闭区间上连续函数的有界性定理的证明,在很多数学教材中,所采用的方法大致相同,一般都是用致密性定理和有限覆盖定理来加以证明的。并且在文献中作者也分别利用闭区间套定理、确界定理、单调有界定理和柯西收敛准则证明了此定理。但是我们知道,分析数学上所列举的实数完备性的7个基本定理是相互等价的,因而从原则上讲,任何一个都可以证明该定理,只不过是有繁简之分,笔者考虑如何能用最简单的方法将闭区间上连续函数的有界性定理证明出来,上述文献中已经用其他6个基

本定理证明了闭区间连续函数的有界性定理,下面本文用实数完备性定理中的聚点原则和构造数列的办法给出了该定理的新证明方法。 二、一种新的证明方法 (一)预备知识 (二)有界性定理的新证法下面将给出实数完备性定理中的聚点原则对闭区间连续函数的有界性定理的证明。 三、有界性定理在数学建模中的应用 本文以一道数学建模的问题为例,介绍闭区间上连续函数的有界性定理如何应用于实际问题。 在2013年“深圳杯”数学建模夏令营D题中,根据题意所述:农业灾害保险是政府为保障国家农业生产的发展,基于商业保险的原理并给予政策扶持的一类保险产品。农业灾害保险也是针对自然灾害,保障农业生产的重要措施之一,是现代农业金融服务的重要组成部分。农业灾害保险险种是一种准公共产品,基于投保人、保险公司和政府三方面的利益,按照公平合理的定价原则设计,由保险公司经营的保险产品,三方各承担不同的责任、义务和风险。根据题目中附件所给的P省的具体情况,可以将有界性定理灵活的用在自然灾害保险的风险评估和费率拟定上。假设时间是一个连续状态,则以时间t为自变量,根据题中所给数据,以日最高最低气温为例,很明显它与时间t是呈周期性变化的,以一年为一个周期,故只考虑在某一年内的变化规律,即. 将日最高最低气温拟合成一个关于时间的函数f(t),则由于自变量

隐函数的存在性

第十一章 隐函数 §5.3已给出隐函数的概念和隐函数的求导法则.本章将在一个二元方程所确定的隐函数的基础上,进一步推广到方程组所确定的隐函数,并证明隐函数的存在性、连续性、可微性.讨论方程组所确定的隐函数要用到多元函数微分学中的一个重要工具——函数行列式.我们将给出函数行列式的性质及其简单的应用. §11.1 隐函数的存在性 一、隐函数的概念 在§5.3中,已经给出有二元方程0),(=y x F 所确定的隐函数. 例1 二元方程0753),(2 =--+=y x xy y x F .)5(≠∈?x R x ,通过方程对应唯一一 个y ,即x x y --=57 32.显然,有 0)573,(2≡--x x x F 由隐函数定义,x x y --=5732是方程0753),(2 =--+=y x xy y x F 所确定的隐函数. 它的几何意义是,平面曲线x x y --=5732是空间曲面7532 --+=y x xy z 与0 =z (xy 平面)的单值交线. 例2 二元方程0),(2 2 2 =-+=a y x y x F )0(>a ,),(a a x -∈?,通过方程对应两个y .如果限定y 的变化范围+∞<

关于高等数学常见中值定理证明及应用

关于高等数学常见中值定理证明及应用 集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]

中值定理 首先我们来看看几大定理: 1、介值定理:设函数f(x)在闭区间[a,b]上连续,且在该区间的端点取不同的函数值 f(a)=A及f(b)=B,那么对于A与B之间的任意一个数C,在开区间(a,b)内至少有一点ξ使得f(ξ)=C(a<ξ

相关主题
文本预览
相关文档 最新文档