当前位置:文档之家› 电机的寿命和可靠性修订稿

电机的寿命和可靠性修订稿

电机的寿命和可靠性修订稿
电机的寿命和可靠性修订稿

电机的寿命和可靠性 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

电机的寿命和可靠性

绝缘——影响寿命和可靠性的关键因素

在国民经济和社会生活领域里,电机已经得到了越来越广泛的应用,电机的寿命及使用可靠性也越来越被人们所关注。在正常使用的条件下,电机的寿命一般定义为10——15年。传统的观念认为,影响电机寿命的主要因素是绝缘的老化,因此绝缘结构的确定、绝缘材料的选用,就成为电机设计制造的首要任务之一。

绝缘系统的选择主要取决于电机的电压等级和耐温要求,而同一等级使用哪一种绝缘材料,则要综合考虑其耐温要求,机械性能,电气性能及使用工艺性能等因素后最终选定。

电机对地绝缘(亦称主绝缘)的等级决定了电机的绝缘等级,一台电机上可以按不同部位的发热状况和使用要求,来选用不同等级的绝缘材料,而不必规定一台电机上所有的部位必须选用同一等级的绝缘材料。

微电机常用电气绝缘材料的耐热等级和允许的极限使用温度见下表:

表1

电机各导电部件由于电位不同,因此须用绝缘材料将其分隔开。按使用部位及功能的不同,常分为以下几种:

1、对地绝缘:指电机带电部位与接地部位(如铁芯、机壳、轴等)之间隔开所用的绝缘,为环氧粉沫涂敷,DMD纤维纸,聚酯薄膜纸,尼龙一体成型槽绝缘等。

2、匝间绝缘:指一个多匝绕成的线圈,电位不同相邻匝间的绝缘,微电机中一般是漆包线本身的外包漆作为匝间绝缘。

3、层间绝缘:指电枢线圈在槽内或端部上下层之间分隔开所用的绝缘,微电机中常用漆包线本身的外包漆作为层间绝缘。

4、相间绝缘:指放置于同一部位的电位不等的几种线圈之间隔离所用的绝缘,如交流电机不同相(A、B、C相)之间,不同激磁方式直流电机的激磁绕组(串激、复激、他激)及不同转速档(高速、中速、低速)各激磁线圈之间所用的绝缘。

二、合理设计——电机寿命和可靠性的先天保证

电机设计是产品质量链中的第一环节,如果设计不合理,甚至不正确,那么后道再完善的工艺及再精心的制作都将变成无效,最终不可能做出适用性好的、客户满意的产品。我们常听说这电机先天不足,意即设计不好造成的。

电机设计的主要任务是按客户对产品的设计输入要求,外形安装要求,电机使用场合,负荷大小,工作环境条件,工作制长短等,通过电路、磁路计算选取合理的发热和磁路参数,决定电机各主要零部件的关键尺寸,并通过这些

主要条件进行机械强度计算,最终绘制电机主要零部件的工作图及总装图,设计时必须同时考虑到制作时良好的工艺性及制造成本的经济合理性。

下面列出一些直流微电机中常用的电磁计算公式及应控制的电磁设计参数。

1、P N =

其中:P N ——额定功率(瓦) T N ——额定转矩(牛·米) n N ——额定转速(转/分)

2、N

n N P aE N N ???=Φ8

1060

其中:N Φ——每极额定磁通(高斯) N E ——额定功况下的反电势(伏) p ——磁极对数 N ——电枢总导体数 3、Da

N

I A N π?=

其中:A ——电枢的线负荷(安/厘米)

N I ——电枢额定支路电流(安) Da ——电枢直径(厘米)

4、310975

-?=N

n I U T N N N η

其中: T N ——额定转矩(公斤·米) η——电机额定效率

N U ——额定电压(伏)

5、P l =U N I N

其中:P l ——电机输入功率(瓦)

6、l

P P ∑-=1η

其中:∑P ——电机总损耗(瓦)

电机的主要发热和磁路参数有定子电流密度,转子电流密度,电枢线负

载,电枢发热因素,每极磁通量,气隙磁通密度,电枢齿部磁通密度等。

7、32

1016.0-?=a a

i N l D AB T δα 其中 i α——电机计算极弧系数 δB ——气隙磁通密度(高斯) a l ——电枢铁心长度(厘米)

a a

l D 2

——电机有效体积,表征电机体积的大小 由上式可见,当选取较高的电磁发热参数(i α、A 、δB )时,电机的额定转矩也相应增大,或可缩小电机的体积来达到相同的转矩,但电机的制造难度及要求也相应提高。另外由上式也可见,电机体积的大小与其额定转矩成正比,而与其功率没有直接的关系。

三、精心制作—电机寿命和可靠性的主要保证

各种电机使用实践表明,电机损坏大多不是由于绝缘材料的自然老化,而是由于电机零部件制作过程中工艺不当,制造粗陋,留下隐患,而电机在运用过程中,绕组等部件受发热、磁场、机械外力、潮湿、化学、油污等各种因素的侵蚀,使其丧失使用功能而提前夭折的。因此精心制作,减少隐患,是提高电机寿命和使用可靠性的主要保证。对微型直流电动机,关键工序有换向器精

车、电枢线与换向器之间的点压焊接、电枢动平衡,环氧粉末涂敷,绝缘处理,定子与转子的绕线等。

1、换向器精车:换向器是一个高速运转的部件,其工作面与电刷滑动接触并传送电能,因此要求其工作面必须是一个稳定的圆柱体,径向跳动小于等于,不得有凹片和凸片,表面光洁度要达到以下(相当于原87~??)

换向器精车必须使用高精度的车床,床身和传动机构牢固、可靠、且应避免默默振动的影响。切屑量、切屑速度和走刀量要选取合理。金刚石车刀由于硬度高、耐热性好,可以提高切削效率且避免粘刀现象,从而减小切削毛刺。提高了换向器表面的光洁度。

控制圆度是对换向器工作面检测评价的一项先进和实用的手段,比用百分表测径向跳动的宏观手段更精确,更深透,向微观检测迈出了关键的一步。

2、电枢导体与换向器钩之间的点压焊接(FUSING )

这是目前微型直流电机中最关键,最不稳定也是最难以控制的工序,它直接影响着电机的寿命和可靠性。

点压焊较锡铅合金钎焊及钨极惰性气体TIG 保护焊有着明显的优点,非常适合带钩的微型电机换向器与电枢导体的焊接,它是通过电阻焊时产生的高温高热,加热铜导体和钩子,熔化掉漆膜排挤掉接触面处的空气,推压并将它们粘附在一起。因此我们认为,通过点压焊接应使铜导体与换向片钩部之间有适度的粘附和熔焊,是本工序的关键要害所在,如果只达到熔化掉漆包线的漆膜,铜线与钩公有表面的接触,没有粘熔的状态,则该处的焊接电阻将是不稳定的,一旦该连接处的状态有所变化(如外力移位及漆液渗入),焊接电阻将逐步变大,发热加剧,直到该连接点脱开而不能正常使用。

目前公司所有电机电枢的焊接电阻控制值均为0.3mΩ,如果点压焊良好,则达到0.3mΩ以下不是问题,但各电机的情况是不平衡的。以BZY17为最差,首次检的不合格率为1/3,经三次点焊后仍不过关而报废的还有10%,还有一些电机较差如BZR14、16及BZR01,而以BZR11、13为最好。

在点压焊机中,现用的DNH焊机具有一系列的优点,如温度监控器控制焊点的温度,稳定的恒流控制系统等。并且有宽广的调节范围,供我们不同大小电枢点压焊时选用。对于目前焊接电阻不太稳定的电枢,可以再做焊接参数变动的试验,以寻求不同大小电枢的各自最佳焊接参数,以达到稳定的焊接电阻保证值。

四、提高电机寿命和可靠性的途径:

1、影响电机安全作用的四个极限条件

发热强度极限:绝缘结构的热芯化,使其绝缘性能变坏而失去绝缘性能,对微型电机,由于负荷电流较小。因此一般不必考虑和担心电机发热强度极限的影响,除非像BZY20A,BZY21的寿命试验时要求那么严酷的发热条件。

电气强度极限:对直流微电机而言,电压都非常低,均在100伏以下,除非电机制造中存在大的缺陷和隐患(如果匝间和层间绝缘损伤),电气强极限也要不必考虑。

换向强度极限:对直流微电机,设计的换向参数如电抗电势最大片间电压等都非常低,因此理论上讲都应有良好的换向,但往往由于使用环境条件的恶劣及剧烈的振动等原因,使换向器工作表面很难形成一层氧化膜,电刷及换向器上磨损很快,表面烧蚀及炭化严重,使电刷与换向器表面无法正常良好接触,导致电机失效。

机械强度极限:常见的是电枢线甩出卡定子(槽内及两端部),平衡泥甩出,轴承超速损坏等。

2、直流微型电机提高寿命及可靠性的措施:详见下表

电机按工作时间的长短,分连续工作制(S1)、短时工作制(S2)及断续工作制(S3)三种,以边疆工作制对电机寿命的要求最高,特别是很多客户要求寿命达5000~1000小时,对电机的设计和制造带来很高的要求。

电机的寿命和可靠性

电机的寿命和可靠性标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

电机的寿命和可靠性 绝缘——影响寿命和可靠性的关键因素 在国民经济和社会生活领域里,电机已经得到了越来越广泛的应用,电机的寿命及使用可靠性也越来越被人们所关注。在正常使用的条件下,电机的寿命一般定义为10——15年。传统的观念认为,影响电机寿命的主要因素是绝缘的老化,因此绝缘结构的确定、绝缘材料的选用,就成为电机设计制造的首要任务之一。 绝缘系统的选择主要取决于电机的电压等级和耐温要求,而同一等级使用哪一种绝缘材料,则要综合考虑其耐温要求,机械性能,电气性能及使用工艺性能等因素后最终选定。 电机对地绝缘(亦称主绝缘)的等级决定了电机的绝缘等级,一台电机上可以按不同部位的发热状况和使用要求,来选用不同等级的绝缘材料,而不必规定一台电机上所有的部位必须选用同一等级的绝缘材料。 微电机常用电气绝缘材料的耐热等级和允许的极限使用温度见下表: 表1

电机各导电部件由于电位不同,因此须用绝缘材料将其分隔开。按使用部位及功能的不同,常分为以下几种: 1、对地绝缘:指电机带电部位与接地部位(如铁芯、机壳、轴等)之间隔开所用的绝缘,为环氧粉沫涂敷,DMD纤维纸,聚酯薄膜纸,尼龙一体成型槽绝缘等。 2、匝间绝缘:指一个多匝绕成的线圈,电位不同相邻匝间的绝缘,微电机中一般是漆包线本身的外包漆作为匝间绝缘。 3、层间绝缘:指电枢线圈在槽内或端部上下层之间分隔开所用的绝缘,微电机中常用漆包线本身的外包漆作为层间绝缘。 4、相间绝缘:指放置于同一部位的电位不等的几种线圈之间隔离所用的绝缘,如交流电机不同相(A、B、C相)之间,不同激磁方式直流电机的激磁绕组(串激、复激、他激)及不同转速档(高速、中速、低速)各激磁线圈之间所用的绝缘。

电机的寿命和可靠性

精心整理 电机的寿命和可靠性 绝缘——影响寿命和可靠性的关键因素 在国民经济和社会生活领域里,电机已经得到了越来越广泛的应用,电机的寿

电机各导电部件由于电位不同,因此须用绝缘材料将其分隔开。按使用部位及功能的不同,常分为以下几种: 1、对地绝缘:指电机带电部位与接地部位(如铁芯、机壳、轴等)之间隔开所 2 3 4 场合,负荷大小,工作环境条件,工作制长短等,通过电路、磁路计算选取合理的发热和磁路参数,决定电机各主要零部件的关键尺寸,并通过这些主要条件进行机械强度计算,最终绘制电机主要零部件的工作图及总装图,设计时必须同时考虑到制作时良好的工艺性及制造成本的经济合理性。 下面列出一些直流微电机中常用的电磁计算公式及应控制的电磁设计参数。

1、 P N =0.1047n N T N 其中:P N ——额定功率(瓦) T N ——额定转矩(牛·米) n N ——额定转速(转/分) 2、N n N P aE N N ???=Φ81060 3、4 5、P l =U N I N 其中:P l ——电机输入功率(瓦) 6、l P P ∑-=1η 其中:∑P ——电机总损耗(瓦)

电机的主要发热和磁路参数有定子电流密度,转子电流密度,电枢线负载,电枢发热因素,每极磁通量,气隙磁通密度,电枢齿部磁通密度等。 7、321016.0-?=a a i N l D AB T δα 其中 i α——电机计算极弧系数 δB ——气隙磁通密度(高斯) l D 1、换向器精车:换向器是一个高速运转的部件,其工作面与电刷滑动接触并传送电能,因此要求其工作面必须是一个稳定的圆柱体,径向跳动小于等于0.01,不得有凹片和凸片,表面光洁度要达到Ra0.8以下(相当于原87~??) 换向器精车必须使用高精度的车床,床身和传动机构牢固、可靠、且应避免默默振动的影响。切屑量、切屑速度和走刀量要选取合理。金刚石车刀由于硬度高、耐

电动机试验报告

设备名称;#3炉一次风机试验性质预试试验日期:2009 年03月11 日铭牌:气温:12 ℃ 一、直流电阻测州量:(单位:mΩ) 二、绝缘电阻及吸收比测量:(单位:MΩ) 结论:合格 审批:审核:整理:刘霞 试验人员:刘霞、李爱云、张剑荣、朱文凡、任国东

设备名称;#3炉二次风机试验性质预试试验日期:2009 年03月11 日铭牌:气温:12 ℃ 一、直流电阻测州量:(单位:mΩ) 二、绝缘电阻及吸收比测量:(单位:MΩ) 四、交流耐压: 结论:合格 审批:审核:整理:刘霞 试验人员:刘霞、李爱云、张剑荣、朱文凡、任国东

设备名称;#3炉引风机A试验性质预试试验日期:2009 年03月11 日铭牌:气温:12 ℃ 一、直流电阻测州量:(单位:mΩ) 二、绝缘电阻及吸收比测量:(单位:MΩ) 结论:合格 审批:审核:整理:刘霞 试验人员:刘霞、李爱云、张剑荣、朱文凡、任国东

设备名称;#3炉引风机B试验性质预试试验日期:2009 年03月11 日铭牌:气温:12 ℃ 一、直流电阻测州量:(单位:mΩ) 二、绝缘电阻及吸收比测量:(单位:MΩ) 结论:合格 审批:审核:整理:刘霞 试验人员:刘霞、李爱云、张剑荣、朱文凡、任国东

设备名称;#1机电动给水泵A试验性质预试试验日期:2009 年04月14 日铭牌:气温:12 ℃ 一、直流电阻测州量:(单位:mΩ) 二、绝缘电阻及吸收比测量:(单位:GΩ) 结论:合格 审批:审核:整理:刘霞 试验人员:刘霞、李爱云、任国东

设备名称;#1机电动给水泵B试验性质预试试验日期:2009 年04月14 日铭牌:气温:12 ℃ 一、直流电阻测州量:(单位:mΩ) 二、绝缘电阻及吸收比测量:(单位:GΩ) 结论:合格 审批:审核:整理:刘霞 试验人员:刘霞、李爱云、任国东

电机行业国内外研究现状与发展趋势

WORD格式 电机行业国内外研究现状及发展趋势 1、现状 国外公司注重新产品开发,在电机的安全、噪声、电磁兼容等方面很重视。国外的先进水平主要体现在电机的可靠性高,寿命长,通用化程度高,电机效率不断提高,噪声低,重量轻,电机外形美观,绝缘等级采用F级和H级,而且也考虑电机制造成本的降低等国内虽有部分产品已达90年代初的国际水平,但相当部分的产品可靠性差,重量重,体积大和噪声大,综合水平只相当于80年代初期国际水平,其主要原因是制造工艺落后,关键材料的质量和品种不能满足要求,科研和设计工作没有跟上,科研投入少,新产品开发资金匮乏,企业技术创新能力较弱。 2、电机行业发展趋势 新型、特种电机仍将是与新原理;新结构;新材料;新工艺;新方法联系最密切;发展最活跃;也最富想象力的学科分支,并将进一步深入渗透到人类生产和生活的所有领域之中。随着人类生活品质的不断提升,绿色电机的概念已经提出并被人们所接受。虽然这个概念目前还是抽象的,但从环保角度看,低震动;低噪声;无电磁干扰;有再生利用能力以及高效率;高可靠性是一些最起码的要求,这对电机的设计制造和运行控制,尤其是原理;结构;材料;工艺等,无疑是一种新的挑战。此外,随着工业自动化的不断发展,智能化电机或智能化电力传动的概念也被越来越多的人们所认可。这种智能化包含两个方面的内容:其一是系统所具有的控制能力和学习能力,另一方面就是电机的容错运行能力,既要求研制所谓容错型电机。容错型电机的定义还不太确切,其基本要求就是以安全为前提,允许电机在故障和误操作情况下的容错运行,直至故障消除或系统自动控制恢复。这对于传统的电机运行观念,无疑也是一个严峻的挑战。 需要特别强调的是,近代科学技术,特别是计算机技术对电机学科的影响是巨大的,意义是深远的。电机的传统内涵已经发生着极大的变化,研究内容拓宽了,研究方法改进了,研究手段也丰富了。新的观念在形成,新的交叉学科在产生,老学科确实重新焕发了出了生机和魅力。近年来,围绕带电机以及其系统的各类控制设备和计算机应用软件的研制方兴未艾,并已构成电机学科新的发展方向。电机与电力电子技术的结合使得现代电力传动系统的分析必须将电机与系统以及电力电子装置揉成一个整体,由此可形成所谓的“电子电机学”。传统电机学以路(电路;磁路;热路;风路);集中参数;均质等温体,刚体等概念分析处理电机,视电机为系统中的一个元件,若可将之称为“宏观电机学”的话,那么,从综合物理场的角度;用计算 机手段分析处理电机的理论和方法体系就可以称之为“微观电机学”。此外,在我国,“电力电子与电力传动”已经发展称为一门学科。 专业资料整理

电机的寿命和可靠性

电机的寿命和可靠性 绝缘——影响寿命和可靠性的关键因素 在国民经济和社会生活领域里,电机已经得到了越来越广泛的应用,电机的寿命及使用可靠性也越来越被人们所关注。在正常使用的条件下,电机的寿命一般定义为10——15年。传统的观念认为,影响电机寿命的主要因素是绝缘的老化,因此绝缘结构的确定、绝缘材料的选用,就成为电机设计制造的首要任务之一。 绝缘系统的选择主要取决于电机的电压等级和耐温要求,而同一等级使用哪一种绝缘材料,则要综合考虑其耐温要求,机械性能,电气性能及使用工艺性能等因素后最终选定。 电机对地绝缘(亦称主绝缘)的等级决定了电机的绝缘等级,一台电机上可以按不同部位的发热状况和使用要求,来选用不同等级的绝缘材料,而不必规定一台电机上所有的部位必须选用同一等级的绝缘材料。 微电机常用电气绝缘材料的耐热等级和允许的极限使用温度见下表: 表1

电机各导电部件由于电位不同,因此须用绝缘材料将其分隔开。按使用部位及功能的不同,常分为以下几种: 1、对地绝缘:指电机带电部位与接地部位(如铁芯、机壳、轴等)之间隔开所用的绝缘,为环氧粉沫涂敷,DMD纤维纸,聚酯薄膜纸,尼龙一体成型槽绝缘等。 2、匝间绝缘:指一个多匝绕成的线圈,电位不同相邻匝间的绝缘,微电机中一般是漆包线本身的外包漆作为匝间绝缘。 3、层间绝缘:指电枢线圈在槽内或端部上下层之间分隔开所用的绝缘,微电机中常用漆包线本身的外包漆作为层间绝缘。 4、相间绝缘:指放置于同一部位的电位不等的几种线圈之间隔离所用的绝缘,如交流电机不同相(A、B、C相)之间,不同激磁方式直流电机的激磁绕组(串激、复激、他激)及不同转速档(高速、中速、低速)各激磁线圈之间所用的绝缘。 二、合理设计——电机寿命和可靠性的先天保证 电机设计是产品质量链中的第一环节,如果设计不合理,甚至不

温度应力以电动机可靠性及寿命的影响

温度应力对电动机可靠性及寿命的影响(浙大陈敏祥) (2012-07-23 20:28:32) 转载▼ 分类:电机技术 标签: 电机 可靠性 失效 1.1 温度对电机绝缘的影响 电机在整个寿命期内,通常可分为3个阶段:第一阶段为磨合阶段。即早期失效阶段,失效率随时间迅速下降,这一阶段通常在出厂前的试验中被剔除;第二阶段为偶然失效期,失效率基本不变,是最重要的阶段,这一阶段的可靠性是电机制造商和用户最关心的;第三阶段,电机使用到一定程度后,由于轴承磨损、绝缘和电子元件的老化,其失效率随时间迅速上升。温度对电机绝缘寿命有显著影响,高温将加快绝缘材料的物理变化和化学反应速度,促进绝缘老化,温度对绝缘寿命的影响很大。通过大量的研究,曾经得出了A级绝缘的8度规律,B级绝缘的10度规律,H级绝缘的18度规律,即对于A、B、H级绝缘,温度每升高8、

10、18度,绝缘的寿命将降低一半 1.2 温度对轴承寿命的影响 俄罗斯专家认为轴承径向力增加一倍,寿命降低10倍,而精度降低一级,寿命降低一倍。有关轴承手册也给出了轴承寿命计算公式:

上式只考虑了轴承的疲劳寿命,事实上,轴承寿命还与温度密切相关。温度升高将使轴承性能恶化,油脂流失,振动和噪音增大,加速了轴承磨损和材料退化,轴承寿命明显缩短。因此,在设计电机时,应根据电机工作的环境温度、用户对电机寿命的要求,选用合适的轴承,限制轴承的极限运行温度。对于一些重要场合,需安装轴承温升检测装置,以保证轴承长期可靠工作。 结束语 绕组绝缘、轴承和驱动控制元件的失效是电动机的主要失效模式,温度是影响电动机可靠性和寿命的主要因素。了解温度对绕组绝缘、轴承和驱动控制元件可靠性及寿命的影响,是制定电动机可靠性及加速寿命试验方案的基础,也是电动机可靠性设计的依据,具有重要的意义。 电机的寿命一般在 15 年 至 20 年,电机的寿命长短 大体上取决于使用者的保养 ,使用环境的好坏,及电机在使用中受到的电,磁,热,振动等因素. 具体的电机应具体的分析 , 例如,像通用有刷小功率类微特电机,其寿命就主要取决于换向器, 轴承 ,电刷的长短,它们的 寿命终结后 ,无法更换; 对直流电机,永磁直流电机等中小功率的电机(大功率除外,不谈),它们的寿民就取决于整流 子和绕组的绝缘寿命 ,轴承的损坏和电刷磨光可以更换,甚至于永磁材料退磁后可进行再冲磁, 这就延长了电机的寿命 ,比买新电机要便宜多了; 对单多相的异步 ,同步电机的寿命,主要取决于电机在使用中所受到电,磁,热,振动,环境条

电机公司检验报告

报 告 编 号:WNY10-034.2 Reference №: 检验报告 Test Report 产品名称: Name of products : 型 号: Type : 委托方: Client : 检验类别 Kind of test 上海电机系统节能工程技术研究中心 三相异步电动机 YE2-200L1-6 18.5kW 上海电器科学研究所(集团)有限公司

批准审核编制

检验报告 上海电机系统节能工程技术研究中心 检验报告

声明 STATEMENT 1.本报告(包括复制件)未加盖印章一律无效。 The test report (including its copy) without the seal shall be considered as invalid. 2.本报告未经本实验室书面批准,不得部分复制,除非全部复制。 The test report shall not be reproduced except in full, without written approval of the laboratory. 3.本报告无编制、审核、批准人签字无效。 The test report without the signature of the preparing person, review person and approval person shall be considered as invalid. 4.本报告涂改无效。 Any corrections made on any parts of this test report shall be considered as invalid. 5.检测结果只与委托检测的委托方送样样品有关。 This result is only related to the samples delivered. 检验单位:上海电机系统节能工程技术研究中心 地址:上海武宁路505号 邮编:200063 电话: 传真: 银行开户名:招商银行上海分行曹家渡支行 银行帐号: 1.0 目的规范电机检验作业,确保电机各项性能以质量达到标准要求,杜绝不 合格产品进仓、出厂。 1.1 总装好的电动机要进行试验,主要验证电动机性能是否符合有关标准和技术条 件的要求;设计和制造上是否存在影响运行的各种缺陷;另外,通过对试验结 果的分析,从中找出改进设计和工艺、提高产品质量的途径。 2.0 范围适用于公司的电机检验作业。 3.0 定义/参考 3.1 《过程和产品的测量和控制程序》 3.2 《不合格品控制程序》 4.0 作业流程

浅谈可靠性加速寿命试验

浅谈可靠性加速寿命试验 加速寿命试验是可靠性试验中的一项重要的试验方法。采取加速寿命试验的作用在于加快试验进程,为预测系统或设备的可靠度提供重要的依据。 可靠性试验的方法和试验的规模由试验的对象及要求来决定。对于系统、设备及元器件,各自采用的试验方法是不同的。对于整机,通过试验剔除对系统有影响的不可靠元器件;对于机械零部件侧重于疲劳寿命试验;而对于电子元器件则主要进行寿命试验。 产品或系统的可靠度,应该按最终使用条件评价。所以,寿命试验应该按实际的使用条件与实际的环境条件(应力)来进行。但由于时间上,经济上的考虑,总希望以较少的试验费用,早一些取得满意的结果。为此,所采用的手段之一,是通过提高环境应力(如温度)与工作应力(施加给产品的电压、负荷等),来加快试验进程,缩短产品或系统的寿命试验时间。这种为缩短试验时间而按严苛条件(应力)进行的加速寿命试验与强制老化试验,实际上大同小异。都是以严苛的条件,加速产品质量特性的老化、促进产品寿命缩短的试验。例如,开关与继电器之类的产品,是按工作次数来计测寿命的,为加速试验,可用更高速度进行接通与断开试验,以检测产品的可靠性寿命。 加速寿命试验与产品例行试验(例如,一般强度和变形的性能测定)是不同的。例行试验的目的,只是保证产品进出厂验收前,其各种性能参数是否符合一定的标准,而没有测定产品在规定时间内的失效率。从而不能对产品的可靠性提出任何保证。而加速寿命试验,是对产品在规定的使用时间内符合一定的可靠性指标提出保证。同时,加速寿命试验也是产品可靠性预测和检验的基础。 加速寿命试验比产品的例行试验时间要长。因为,时间短促难以取得足以说明可靠度水平的数据。在试验数据的处理上,例行试验由于它仅是性能的通过试验,所以数据处理简单,而加速寿命因为它要对某一批产品的可靠性进行推断,所以要采用严格的数据统计方法,以便得出较为可靠的结论。 采取加速寿命试验的作用在于:通过严苛条件试验,可以确定产品、零部件的安全裕度,剔除与筛选可靠度低的零件;在严苛条件下观察到的寿命值(或故障率),同正常条件下的寿命值之间,有一定的规律性,利用此种规律性,可以预测正常条件下的寿命值。 因为加速寿命试验是选择严苛条件下的试验,与系统或设备的正常使用条件有很大的差异,因此,在进行加速寿命试验时,应注意如下几个方面的要求,以便对系统或设备做出正确的评价。 (1)所选条件与正常条件比,加速试验不应改变故障的基本模式与机理,或者改变它们的相对优势。 根据系统和设备的最终用途来确定和选定加速寿命试验的规模、时间、条件,并根据加速寿命试验的目的和要求确定试验参数。如试验时间、故障率λ(t)、平

电机温升测试

电机温升试验 电机中绝缘材料的寿命与运行温度有密切的关系,为保证电机安全、合理的使用,需要监视与测量电机绕组、铁心等其他部分的温度。按国家标准规定,不通绝缘等级的电机绕组有不同的允许温升,如下表所示 若超过规定值,如对B级绝缘的电机,温升每增加10度,电机的寿命将降低一半。因此电机的温升试验,准确的测取个部件的温度,对改进电机的设计和制造工艺,提高电机的质量是非常重要的对电机绕组和其他各部分的温度测量,目前虽已采用不少先进技术,仍可归纳为电阻法、温度计法、埋置检温计法三种基本方法。 一、电阻法 在一定的温度范围内,电机绕组的电阻值将随着温度的上升而相应的增加,而且其阻值与温度之间存在着一定的函数关系。根据这一原理,可以通过测定电机绕组的电阻来确定其温度,故称电阻测量法。 当绕组温度在-50~150度范围时,其温升有下式确定

Δθ=(R f-R0)(k+θ0)/R0+θ0-θf 式中R0、θ0分别为绕组的实际冷态电阻和环境温度;R f、θf分别为绕组热态式电阻和环境温度;k为常数,对铜绕组为235,对铝绕组225 如果不能采用带电测量装置,可采用较先进的快捷、准确、数字显示的各种毫欧表或微欧计等直流电阻测量仪。其基本工作原理是采用高准确度、高稳定度的恒流电源所产生的直流电流通到被测电阻上,则电阻两端的电压降将严格的按照电阻值变化 二、温度计法 对电机中不能采用电阻法测量的部位,如定子铁心,轴承及冷却介质等,可采用温度计法来测量。 温度计法是用温度计贴附在可接触的表面来测量温度,所测得的温度是被测点的表面温度。为了减小误差,从被测点到温度计的热传导尽可能的良好,将温度计球面部分用绝热材料覆盖,以免周围冷却介质的影响。温度计除包括水银、酒精等膨胀式温度计外,也包括半导体温度计及非埋置的热电耦或电阻温度计。在电机中存在交变磁场的部分,不可采用水银温度计,因为交变磁场在水银中产生涡流会发热,以致影响测量的准确性。 三、埋置检温计法 埋置检温计法是讲电阻检温计、热电耦或半导体热敏元件埋植于电机内部不能触及的部位,如定子绕组的槽部和铁心内等,经连接导线引到电机外的二次仪表,从而测定温度值。在测量时应控制测量

可靠性试卷

可靠性试题及答案 1. 某型号电视机有1000个焊点,工作1000小时后,检查100台电视机发现2点脱焊,试问 焊点的失效率多少? 解:100台电视机的总焊点有 1001000105 ?= 一个焊点相当一个产品,若取 ?t =1000 小时,按定义: λ∧ =-()[()]t n t N n t ?? λ∧=-=?()[]02 10001002105 8/小时=20 菲特 2. 比较二个相同部件组成的系统在任务时间24小时的可靠性,已知部件的/.010=λ小时 ①并联系统. ②串联系统. 解:单个部件在任务时间24小时的可靠性: 786602424010.)(.===?--e e R t λ ① 并联系统:954407866011241124221.).())(()(=--=--=R R ② 串联系统:61870786602424222..)()(===R R 3. 一种设备的寿命服从参数为λ的指数分布,假如其平均寿命为3700小时,试求其连续工 作300小时的可靠度和要达到R *=0.9的可靠寿命是多少? 解: 92210300081103700 300.)(.===--e e R 83893700 11054 090./.ln * .== -= λ R T 4. 抽五个产品进行定时截尾的可靠性寿命试验,截尾时间定为100小时,已知在试验期间 产品试验结果如下:t 150=小时,和t 270=小时产品失效,t 330=小时有一产品停止试验,计算该产品的点平均寿命值?. 解:总试验时间 350100)35(307050=?-+++=n T 小时 点平均寿命 MTTF= 1752 350 =小时 5. 试计算指数分布时,工作时间为平均寿命的1/5、1/10、1/20以及平均寿命时的可靠度, 解:设t=MTTF,1/5MTTF,1/10MTTF,1/20MTTF R(1/5MTTF)=2.05/1-- =e e MTTF MTTF =82% R(1/10MTTF)=90% R(1/20MTTF)=95%

直流马达寿命测试规程

1 目的 1.1 直流马达寿命测试的目的就是通过直流马达在模拟工作条件下的正常寿 命,来判断其是否达到设计或改进的预期效果,以完成设计或改进之验 证和确认的目的。 2 范围 2.1 此标准仅适用于低伏直流马达。 2.2 本标准是依据马达的实际应用情况制定。 3 定义 3.1 额定电压:客家指定或设计指定的、可使马达正常工作的电压。一般是 指马达两端的电压。(单位:V或 mV) 3.2 额定电流:额定电压下的电流值或在最低的额定电压范围,在电器用品 上所注明之实际用电流。(单位:A 或 mA) 3.3 额定转速:客家指定或设计指定的、马达工作在额定电压和额定负载下 的转速。(单位:rpm) 3.4 额定负载:客家指定或设计指定的、作为马达承受的负荷(单位:g-cm或 N –cm)。负载力矩=砝码重量(g或N)×力矩轮半径即力臂(cm)。 3.5 马达转向:从输出端看,顺时针方向旋转为CW,逆时针方向旋转为 CCW。 4 仪器清单 4.1 电源供应器(MEILI 牌 MCH-305DB )给马达提供工作电压(精确度: 0.01V)。 4.2 微电机寿命测试仪(欧捷电子)控制马达运转时间和停止时间及转动方向 (精确度:1S)。 4.3 力矩轮和吊线砝码作为马达的模拟负载(精确度:0.01g-cm)。 4.4 专用的夹具。 4.5 万用表(EZ牌DM-341T和VICTOR牌VC-9806+)使测量数据更为准 确(精确度:0.01V&0.01A)。 4.6 示波器(OSCILLOSCOPE牌V-212)使马达的真实性能反映的更为准 确。

5 准备工作 5.1 环境条件 除非有特殊注明之外,所有测试要在室温为15℃—35℃,相对湿 度在45%—75%的条件下进行. 5.2 夹具: 夹具一定要达到将马达固定的作用,避免在测试的过程中影响其 真实性能. 5.3 负载点: 根据性能测试实验的基本要求,测试的负载点要选性能曲线图中 最高效率的负载点 6 测试程序 6.1仔细阅读《马达测试工作单》,认真检查测试发起人所提供被测试之马 达是否与工作单一致,注意其它测试要求,并将《马达测试工作单》在 明显位置悬挂。 6.2挑选合适的负载(力矩轮,砝码) 6.1.1 力矩轮和砝码是提供标准负载的设备,为达到满足测试要 求的目的,一般情况下,砝码的选用请参照下列“表格一”中的 数据进行。 附表一

电机行业国内外研究现状及发展趋势

1、现状 国外公司注重新产品开发,在电机的安全、噪声、电磁兼容等方面很重视。国外的先进水平主要体现在电机的可靠性高,寿命长,通用化程度高,电机效率不断提高,噪声低,重量轻,电机外形美观,绝缘等级采用F级和H级,而且也考虑电机制造成本的降低等国内虽有部分产品已达90年代初的国际水平,但相当部分的产品可靠性差,重量重,体积大和噪声大,综合水平只相当于80年代初期国际水平,其主要原因是制造工艺落后,关键材料的质量和品种不能满足要求,科研和设计工作没有跟上,科研投入少,新产品开发资金匮乏,企业技术创新能力较弱。 2、电机行业发展趋势 新型、特种电机仍将是与新原理;新结构;新材料;新工艺;新方法联系最密切;发展最活跃;也最富想象力的学科分支,并将进一步深入渗透到人类生产和生活的所有领域之中。随着人类生活品质的不断提升,绿色电机的概念已经提出并被人们所接受。虽然这个概念目前还是抽象的,但从环保角度看,低震动;低噪声;无电磁干扰;有再生利用能力以及高效率;高可靠性是一些最起码的要求,这对电机的设计制造和运行控制,尤其是原理;结构;材料;工艺等,无疑是一种新的挑战。此外,随着工业自动化的不断发展,智能化电机或智能化电力传动的概念也被越来越多的人们所认可。这种智能化包含两个方面的内容:其一是系统所具有的控制能力和学习能力,另一方面就是电机的容错运行能力,既要求研制所谓容错型电机。容错型电机的定义还不太确切,其基本要求就是以安全为前提,允许电机在故障和误操作情况下的容错运行,直至故障消除或系统自动控制恢复。这对于传统的电机运行观念,无疑也是一个严峻的挑战。 需要特别强调的是,近代科学技术,特别是计算机技术对电机学科的影响是巨大的,意义是深远的。电机的传统内涵已经发生着极大的变化,研究内容拓宽了,研究方法改进了,研究手段也丰富了。新的观念在形成,新的交叉学科在产生,老学科确实重新焕发了出了生机和魅力。近年来,围绕带电机以及其系统的各类控制设备和计算机应用软件的研制方兴未艾,并已构成电机学科新的发展方向。电机与电力电子技术的结合使得现代电力传动系统的分析必须将电机与系统以及电力电子装置揉

电机的寿命和可靠性

电机的寿命和可靠性 影响寿命和可靠性的关键因素 在国民经济和社会生活领域里,电机已经得到了越来越广泛的应用,电机的寿命及使用可靠性也越来越被人们所关注。在正常使用的条件下,电机的寿命一般定义为10―― 15年。传统的观念认为,影响电机寿命的主要因素是绝缘的老化,因此绝缘结构的确定、绝缘材料的选用,就成为电机设计制造的首要任务之一。 绝缘系统的选择主要取决于电机的电压等级和耐温要求,而同一等级使用哪一种绝缘材料,则要综合考虑其耐温要求,机械性能,电气性能及使用工艺性能等因素后最终选定。 电机对地绝缘(亦称主绝缘)的等级决定了电机的绝缘等级, 台电机上可以按不同部位的发热状况和使用要求,来选用不同等级的绝缘材料,而不必规定一台电机上所有的部位必须选用同一等级的绝缘材料。 微电机常用电气绝缘材料的耐热等级和允许的极限使用温度见 表1

电机各导电部件由于电位不同,因此须用绝缘材料将其分隔开。 按使用部位及功能的不同,常分为以下几种: 1、 对地绝缘:指电机带电部位与接地部位(如铁芯、机壳、轴等)之间隔开所用的绝缘,为环氧粉沫涂敷,DM[纤维纸,聚酯薄膜纸, 尼龙一体成型槽绝缘等。 2、匝间绝缘:指一个多匝绕成的线圈,电位不同相邻匝间的绝缘,微电机中一般是漆包线本身的外包漆作为匝间绝缘。 3、层间绝缘:指电枢线圈在槽内或端部上下层之间分隔开所用的绝缘,微电机中常用漆包线本身的外包漆作为层间绝缘。 4、相间绝缘:指放置于同一部位的电位不等的几种线圈之间隔离所用的绝缘,如交流电机不同相(A、B、C相)之间,不同激磁方式直流电机的激磁绕组(串激、复激、他激)及不同转速档(高速、中速、低速)各激磁线圈之间所用的绝缘。 二、合理设计一一电机寿命和可靠性的先天保证 电机设计是产品质量链中的第一环节,如果设计不合理,甚至不

电机的寿命和可靠性修订稿

电机的寿命和可靠性 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

电机的寿命和可靠性 绝缘——影响寿命和可靠性的关键因素 在国民经济和社会生活领域里,电机已经得到了越来越广泛的应用,电机的寿命及使用可靠性也越来越被人们所关注。在正常使用的条件下,电机的寿命一般定义为10——15年。传统的观念认为,影响电机寿命的主要因素是绝缘的老化,因此绝缘结构的确定、绝缘材料的选用,就成为电机设计制造的首要任务之一。 绝缘系统的选择主要取决于电机的电压等级和耐温要求,而同一等级使用哪一种绝缘材料,则要综合考虑其耐温要求,机械性能,电气性能及使用工艺性能等因素后最终选定。 电机对地绝缘(亦称主绝缘)的等级决定了电机的绝缘等级,一台电机上可以按不同部位的发热状况和使用要求,来选用不同等级的绝缘材料,而不必规定一台电机上所有的部位必须选用同一等级的绝缘材料。 微电机常用电气绝缘材料的耐热等级和允许的极限使用温度见下表: 表1

电机各导电部件由于电位不同,因此须用绝缘材料将其分隔开。按使用部位及功能的不同,常分为以下几种: 1、对地绝缘:指电机带电部位与接地部位(如铁芯、机壳、轴等)之间隔开所用的绝缘,为环氧粉沫涂敷,DMD纤维纸,聚酯薄膜纸,尼龙一体成型槽绝缘等。 2、匝间绝缘:指一个多匝绕成的线圈,电位不同相邻匝间的绝缘,微电机中一般是漆包线本身的外包漆作为匝间绝缘。 3、层间绝缘:指电枢线圈在槽内或端部上下层之间分隔开所用的绝缘,微电机中常用漆包线本身的外包漆作为层间绝缘。 4、相间绝缘:指放置于同一部位的电位不等的几种线圈之间隔离所用的绝缘,如交流电机不同相(A、B、C相)之间,不同激磁方式直流电机的激磁绕组(串激、复激、他激)及不同转速档(高速、中速、低速)各激磁线圈之间所用的绝缘。 二、合理设计——电机寿命和可靠性的先天保证 电机设计是产品质量链中的第一环节,如果设计不合理,甚至不正确,那么后道再完善的工艺及再精心的制作都将变成无效,最终不可能做出适用性好的、客户满意的产品。我们常听说这电机先天不足,意即设计不好造成的。 电机设计的主要任务是按客户对产品的设计输入要求,外形安装要求,电机使用场合,负荷大小,工作环境条件,工作制长短等,通过电路、磁路计算选取合理的发热和磁路参数,决定电机各主要零部件的关键尺寸,并通过这些

10kv电机保护试验报告模板

xx10kV微机高压电动机保护检验报告 单位:xx有限公司装设位置:B111柜1#除尘器2#电机 一、外观及绝缘检查 1.开关柜外观检查: (1)符合图纸要求值 (2)各插件及其元器件的外观质量、焊接良好,芯片插接及位置良好 (3)各部件及切换开关、按钮、电源开关等固定良好、清洁、操作灵活 2.二次回路绝缘检查(用1000V摇表) 试验项目保护装置二次回路电缆 交流回路对地120MΩ105MΩ 直流回路对地120MΩ105MΩ 交直流回路间120MΩ105MΩ结论:合格二、保护装置采样 1.电流采样: 电流值(A)Ia Ib Ic MIa MIb MIc 1 1.00 1.00 1.00 1.00 0.99 1.00 2 2.00 2.00 2.00 2.00 2.00 2.00 3 3.00 2.99 3.00 3.00 3.00 3.00 4 4.00 4.00 4.00 4.00 4.00 4.00 5 5.00 5.00 5.00 5.00 5.00 5.00 2.电压采样: 电压值(V)Uab Ubc Uca MUab MUbc MUca 20 20.0 20.0 20.0 20.0 19.9 20.0 40 40.0 40.0 40.0 40.0 40.1 40.0 60 60.0 59.9 60.0 60.0 60.0 60.0 80 80.0 80.0 80.0 80.0 80.1 80.0 100 100.0 100.0 99.9 100.0 100.0 100.0 结论:合格

三、保护装置校验 1.定值输入及失电保护功能: 按照保护校验规程方法,输入定值,断电1-2分钟后,定值保持写入正确。2.作回路检验: 光电信号保护正常。 3.测量精度调整: 依次加入I A、IB.I C、U AB、U BC、U AC、U0 交流额定值,查看显示值与输入值相符。4.开关量输入检查: 进入开关量菜单,显示跳位、合位、复位按钮、控制回路断线状态,保护启动、手合、手跳,闭锁重合状态,改变以上开关量状态,相对应显示正确。 5.保护校验: (1.1)启动内速断:定值I:46A t:0S″ 0.95I 1.00I 1.05I A 43.70A可靠不动作46.00A可靠动作48.30A可靠动作 C 43.70A可靠不动作46.00A可靠动作48.30A可靠动作 (1.2)启动后速断:定值I:10.2A t:0S″ 0.95I 1.00I 1.05I A 9.69A可靠不动作10.20A可靠动作10.71A可靠动作 C 9.69A可靠不动作10.20A可靠动作10.71A可靠动作(2)过流保护:定值I:5.1A t:10″ 0.95I 1.00I 1.05I A 4.84A可靠不动作 5.10A可靠动作 5.35A可靠动作 C 4.84A可靠不动作 5.10A可靠动作 5.35A可靠动作 (3)负序电流定时限:定值I:3.2A t:0.3S″ 0.95I 1.00I 1.05I

电机保护试验报告

***电动机保护装置检验报告 被保护设备名称:检验性质:检验日期:互感器变比:装置额定值:整定单编号:制造厂家:出厂编号:出厂日期:一、外观及绝缘检查 1.保护装置外观检查: (1)符合图纸要求 (2)各元器件的外观质量、焊接良好,芯片插接及位置良好 (3)各部件及切换开关、按钮、电源开关等固定良好、清洁、操作灵活 2.二次回路绝缘检查(用1000V摇表) 试验项目保护装置 交流回路对地 直流回路对地 交直流回路间 二、保护装置采样 1.电流采样: 电流值(A)IA IB IC 1 3 5 2.电压采样: 电压值(V)UA UB UC UAB UBC UCA 20 40 60 80 100 三、保护装置校验 1.定值输入: 按照保护校验规程方法,输入定值,断电1-2分钟后,定值保持写入正确。

2.测量精度调整: 依次加入I A、I B.I C、U AB、U BC、U AC、U0 交流额定值,查看显示值与输入值相符。 4.压板输入检查: 5.保护校验: (1)差动保护校验: 1.1启动电流测试: 通道名称机端中性点 IA IB IC IA IB IC 整定值ICD ICD= 测试电流(A) 动作时间(s) 1.2比率制动测试:高低压侧各加>Iq单相测试电流(相位相差180度),减小一侧电流至动作值。 通道名称机端中性点 IA IB IC IA IB IC 整定值ICD Kz= Iq= 测试电流(A)1 1 1 2 2 2 3 3 3 1.3速断测试:增加制动定值,分相加测试电流。试验完毕制动定值改为原定值。 通道名称IA IB IC IA IB IC 整定值ICD ICD= 测试电流 动作时间 (2)速断:定值I:t: 0.95I 1.00I 1.05I

电动机技术试验报告..

电动机在线检测软件的技术试验报告 软件部 杨艳 1.本项目的应用范围和主要功能 1.1 应用范围:电力、煤炭、化工、钢铁、水泥等系统的大型鼠笼式异步电动机。在工业现场,对 不同功率大小的交流电动机处理方式是完全不相同的。对于小功率电机,如几百千 瓦以下的,一般只作为一个元件,一般不搞在线监测,也很少进行离线测试,有故 障就更换,有备用机。对于大型电动机,如发电厂的吸风机、球磨机,功率为2000Kw , 或更大,才有价值进行在线监测和离线监测,这种电机也有备用机,监测的程度远 不如发电机。 1.2 主要功能:对连续运行的异步电动机进行实时监测,对运行工况进行实时分析,在故障发生之 前进行异常预警,避免发生事故及事故的扩大化,同时能够识别故障的性质,并提 出相应的措施,对于异步电动机的维修提出了指导性的建议。在非连续运行情况下, 根据对启动过程的分析,可出具试验报告。 在发生真正故障时,还能够启动故障 滤波,对故障时候的电气量进行记录,作故障后分析,出具分析报告。 2.本项目的主要技术条件 2.1 在线检测可判定的故障类型、判断原理 2.1.1 转子断条故障 危害:笼型异步电动机转子断条故障将导致电机出力下降、运行性能恶化。加之转子断条故障发生 概率高达10%,因此必须对其进行检测,特别是进行早期检测。早期检测系统可以在故障发展初期及时告警,有助于现场组织、安排维修,避免事故停机,具有显著经济效益。 判断原理:笼型异步电动机发生转子断条故障后,在其定子电流中将出现)3,2,1( , )21(1=±=k f ks f 频率 的附加电流分量(s 为转差率,1f 为供电频率)。由于定子电流信号易于采集,可以对定 子电流信号进行频谱分析,提取故障频率分量幅值与基频分量幅值,以两者之比作为故障 特征,设定检测阈值(一般设定为1-2%),超过此阈值则认为存在转子断条故障。 2.1.2 气隙偏心故障 危害:转子和定子由于装配、运行时振动和非平衡的径向此拉力,将会导致电动机的气隙偏心。气 隙偏心,将会使气隙磁通畸变,振动增大。 判断原理:当气隙存在偏心时,气隙磁导沿圆周方向出现不均匀,从而在定子电流中感应出谐波分 量。理论分析和试验表明,这些特征谐波分量的频率为:]/)1)([(1w d n p s n R f f ±-±=,其 中1f 为外加电源的频率;R 为鼠笼式异步电动机的转子导条数;p 为电机的极对数;s 为 转差率;静态偏心时,0=d n ;动态偏心时,1=d n ;...5,3,1=w n 。当转子齿数较大时,这 些特征谐波频率较高,从而对数据采集及处理系统的采样频率、运算速度和内存要求较 高。实际上,另有一低频分量对动态偏心的检测非常有效,其频率为:r f f f ±=1,其中 r f 为旋转频率,其大小为p s f /)1(1-。同样,对定子电流信号进行频谱分析,将正常时候 的频谱与故障时候的频谱进行比较,观察特征频率处的频谱幅值以确定是否存在偏心故 障。 2.1.3 定子绕组对称电气故障

电机性能测试报告

电机性能测试报告 测试目的 测试电机性能。 测试方法 使用示波器测量电机空转时编码器输出脉冲的频率。 使用万用表测量电机的直流电阻。 测试结果 电机空转时编码器输出脉冲的频率: 电机编号 电池电压(V) 空载时编码器脉冲频率(kHz) 第1次 第2次 第3次 第4次 平均值 C11 8.05 45.4548.7345.4446.28 46.475 C1 8 45.4345.6845.543.55 45.04 C13 8.018 44.8743.3545.3645.46 44.76 C10 8.047 42.1647.1344.0543.84 44.295 C14 8.003 43.7642.3845.3145.4 44.2125 C4 8.017 45.3143.0143.4344.86 44.1525 C8 8.037 43.8743.6744.6644.35 44.1375 C6 8.014 44.4441.8845.5244.64 44.12 C5 8.009 44.3941.8845.5244.64 44.1075 C9 8.04 43.1842.9641.947.52 43.89 C7 8.011 45.0542.1243.2342.58 43.245 C12 8.05 41.5944.5443.0141.01 42.5375电机的直流电阻: 电机编号 直流电阻(欧姆) 第1 次 第2 次 第3 次 第4 次 第5 次 第6 次 第7 次 第8 次 第9 次 第10 次 平均 值 C11 1.8 1.5 1.5 1.9 1.8 1.8 1.8 1.5 1.8 1.8 1.72 C10 2.1 2.1 1.9 1.9 1.9 1.9 1.7 1.9 1.9 1.9 1.92 C5 2 2 1.5 1.92 2.2 1.9 1.9 1.9 1.9 1.92 C8 2.2 2 1.9 1.9 1.9 1.9 1.92 1.8 2 1.95 C6 2 2 2 1.92 1.9 1.9 1.9 1.9 2 1.95

电机试验报告1

电机实验报告 实验一电路控制(一) 姓名:学号:0801 专业:自动化时间:2014/3/20

一、 实验目的 1、 了解交流电路的原理与结构 2、 了解电力系统的构成 3、 掌握安全用电的相关知识 4、 了解接触器铭牌上的标识的意义 二、 实验原理 (一)交流电路 1、三相交流电 三相交流电一般是由三相交流发电机产生的。在发电机中有 3 个相同的绕阻(即线圈)。3 个绕组的始端分别用A 、B 、C 表示, 末端分别用X 、Y 、Z 表示。这AX 、BY 和CZ 3 个绕组分别称为A 相、B 相和C 相绕组。由于电机结构的原因, 这三相绕组所发出的三相电动势幅值相等, 频率相同, 彼此之间相位相差120°。可将其表示为 或用相量形式来表示 其波形图和相量图如图2-46所示。 三相交流电在相位上的先后次序称为相序。 如上述的三相电动势E A 、E B 、E C 依次滞后120°, 其相序为A→B→C 。 通常把发电机三相绕组的末端X 、 Y 、Z 联接成一点。 而把始端A 、 B 、 作为与外电路相联接的端点。 这种联接方式称为电源的星形联接, 如图 2 - 47所示。 )120sin()240sin()120sin(sin ?+=?-=-==?t E t E e t E e t E e m m c m B m A ωωωω?+∠=?-∠=?-∠=?∠=1202401200. . . E E E E E E E C B A (a )(b )波形图E C ·E A ·E ·图2-46 三相对称电动势的波形图与相量图相量图

N 点称为中点或零点, 从中点引出的导线称为中线或零线, 有时将中线接地, 故又称为地线。 从始端(A 、B 、C )引出的 3 根导线称为端线或相线, 俗称火线。 它们可用不同颜色(黄、 绿、 红)标记。 由 3 根相线和一根中线构成的供电系统称为三相四线制供电系统。 通常低压供电网采用三相四线制。 日常生活中见到的只有两根导线的单相供电线路只是其中的一相, 是由一根相线和一根中线组成的。 三相四线制供电系统可输送两种电压, 一种是相线与中线之间的电压U A 、U B 、U C , 称为相电压; 另一种是相线与相线之间的电压U AB 、U BC 、U CA , 称为线电压。 通常规定各相电动势的参考方向从绕组的末端指向始端, 相电压的参考方向从始端指向末端(从相线指向中线), 线电压的参考方向, 例如U AB , 则是由A 端指向B 端, 由图2- 47 可知各线电压与相电压之间的关系为 由于三相电动势是对称的, 所以相电压也是对称的。在作相量图时, 可先作出相量 UA 、UB 、UC 然后根据上式分别作出 。由图 2 - 48可见, 线电压也是对称的, 在相位上比相应的相电压超前30° 。线电压的有效值用U l 表示, 相电压的有效值用U p 表示。 由相量图可知它们的关系为 (2.40) A (黄)N B C (黑)(绿)(红)A C CA C B B C B A AB U U U U U U U U U .... .....-=-=-=CA BC AB U U U .....P U U 31=

相关主题
文本预览
相关文档 最新文档