当前位置:文档之家› 耳机的工作原理

耳机的工作原理

耳机的工作原理

2011-11-29 23:03

1 耳机工作原理:耳机是左右两磁芯分别绕上线圈,再配上两块小铁片,铁片会随着磁性强弱而振动,因此产生声音。由于线圈是联接到音频输出接口上,因此耳机中的电流强弱决定了磁性强弱同时决定了声音的大小。

2 因为一根线断了线圈中就没有电流经过,也就听不见声音了。

3 收音机一般为超外差式,其中的天线线圈是用来接收无线电波的,由于无线电波很弱,需要一根几十厘米的天线与它相接,天线越长,效果越好。插入耳机中的连线正好充当了天线的作用。

4 耳机的灵敏度非常高,线圈中只要通过很小的电流就能发声,袖珍收音机的音频输出电流比较弱,使用耳机恰到好处。

交换机工作原理文档

EPA交换机原理文档 1. EPA交换机总体电路设计 EPA交换机的硬件部分主要有四大模块:CPU控制模块,以太网控制器模块,冗余电源模块、总线供电模块。图1为EPA交换机硬件设计框图。其中,CPU控制模块的主要功能是实现特定网络接口功能及执行相关控制信息;以太网MAC 层控制器与以太网PHY层控制器模块主要用来担负以太网现场设备的数据信息传输;冗余电源模块完成EPA交换机的供电功能;总线供电模块即RJ45接口提供数据通信的同时还为现场设备提供总线供电。结合CPU的特性,以太网MAC 层控制器采用总线连接的方式,由CPU的片选信号实现对以太网MAC层控制器的选通,控制网络通道。 图1 EPA交换机硬件设计框图 2 EPA交换机各模块电路设计 2.1 微处理器电路设计 本设计中微处理器选用美国ATMEL公司的AT91R40008,它是集成了ARM7TDMI核的32位微处理器,片内用大量的分组寄存器和8个优先级向量中断控制器来实时快速的处理中断。芯片集成了丰富的资源,片内的外围部件有可编程外部总线接口EBI、先进中断控制器AIC、并行I/O口控制器PIO、2个通

用同步/异步收发器USART、定时器/计数器TC和看门狗定时器WD、高级电源管理控制器PS、片内外围数据控制器PDC、A/D转换器和D/A转换器等。ARM7内核通过两条主要总线与片内资源进行互连:先进系统总线ASB(Advanced System Bus)和先进外围总线APB(Advanced Peripheral Bus)。内核通过ASB 总线实现与片内存储器、外部总线接口EBI以及AMBA桥的互联,其中AMBA 桥驱动APB总线用来访问片内外围部件。图2为微处理器体系结构图。 图2 微处理器体系结构 AT91R40008微控制器的片内外围器件可以分为通用外围部件和专用外围部件,通用外围部件主要包括外部总线接口EBI、先进中断控制器AIC、并行I/O 口控制器PIO、通用同步/异步收发器USART、定时器/计数器TC和看门狗定时器WD等。专用外围部件主要包括高级电源管理控制器PS、实时时钟RTC、片内外围数据控制器PDC和多处理接口MPI等。 AT91R40008的主要特点如下: ●高性能32位RISC体系结构和高代码密度的16位Thumb指令集; ●支持三态模式和在线电路仿真IDE; ●32位数据总线宽度,单时钟访问周期的片内SRAM;

igbt工作原理及应用

igbt工作原理及应用 绝缘栅双极型晶体管(IGBT)的保护 引言 绝缘栅双极型晶体管IGBT是由MOSFET和双极型晶体管复合而成的一种器件,其输入极为MOSFET,输出极为PNP晶体管,因此,可以把其看作是MOS输入的达林顿管。它融和了这两种器件的优点,既具有MOSFET器件驱动简单和快速的优点,又具有双极型器件容量大的优点,因而,在现代电力电子技术中得到了越来越广泛的应用。在中大功率的开关电源装置中,IGBT由于其控制驱动电路简单、工作频率较高、容量较大的特点,已逐步取代晶闸管或GTO。但是在开关电源装置中,由于它工作在高频与高电压、大电流的条件下,使得它容易损坏,另外,电源作为系统的前级,由于受电网波动、雷击等原因的影响使得它所承受的应力更大,故IGBT的可靠性直接关系到电源的可靠性。因而,在选择IGBT时除了要作降额考虑外,对IGBT的保护设计也是电源设计时需要重点考虑的一个环节。 1 IGBT的工作原理 IGBT的等效电路如图1所示。由图1可知,若在IGBT的栅极和发射极之间加上驱动正电压,则MOSFET导通,这样PNP晶体管的集电极与基极之间成低阻状态而使得晶体管导通;若IGBT的栅极和发射极之间电压为0V,则MOSFET截止,切断PNP晶体管基极电流的供给,使得晶体管截止 由此可知,IGBT的安全可靠与否主要由以下因素决定:

——IGBT栅极与发射极之间的电压; ——IGBT集电极与发射极之间的电压; ——流过IGBT集电极-发射极的电流; ——IGBT的结温。 如果IGBT栅极与发射极之间的电压,即驱动电压过低,则IGBT不能稳定正常地工作,如果过高超过栅极-发射极之间的耐压则IGBT可能永久性损坏;同样,如果加在IGBT集电极与发射极允许的电压超过集电极-发射极之间的耐压,流过IGBT集电极-发射极的电流超过集电极-发射极允许的最大电流,IGBT的结温超过其结温的允许值,IGBT都可能会永久性损坏。 2 保护措施 在进行电路设计时,应针对影响IGBT可靠性的因素,有的放矢地采取相应的保护措施。 2.1 IGBT栅极的保护 IGBT的栅极-发射极驱动电压VGE的保证值为±20V,如果在它的栅极与发射极之间加上超出保证值的电压,则可能会损坏IGBT,因此,在IGBT的驱动电路中应当设置栅压限幅电路。另外,若IGBT的栅极与发射极间开路,而在其集电极与发射极之间加上电压,则随着集电极电位的变化,由于栅极与集电极和发射极之间寄生电容的存在,使得栅极电位升高,集电极-发射极有电流流过。这时若集电极和发射极间处于高压状态时,可能会使IGBT发热甚至损坏。如果设备在运输或振动过程中使得栅极回路断开,在不被察觉的情况下给主电路加上

自动门的系统配置及自动门的工作原理

自动门的系统配置及自动门的工作原理 一、自动控制系统 1. 主控单元及BEDIS 主控制单元系32位微机控制单元,它与接口的BEDIS(双线通 讯控制器)一起保证自动弧形门灵巧而可靠地进行人--机对话,充 分展示出智能型自动弧形门的魅力。 2、开门信号 自动门的开门信号是触点信号,微波雷达和红外传感器是常用的两 种信号源:微波雷达是对物体的位移反应,因而反应速度快,适用 于行走速度正常的人员通过的场所,它的特点是一旦在门附近的人 员不想出门而静止不动后,雷达便不再反应,自动门就会关闭,对 门机有一定的保护作用。 红外传感器对物体存在进行反应,不管人员移动与否,只要处于传 感器的扫描范围内,它都会反应即传出触点信号。缺点是红外传感 器的反应速度较慢,适用于有行动迟缓的人员出入的场所。 另外,如果自动门的系统配置接受触点信号时间过长,控制器会认 为信号输入系统出现障碍。而且自动平移门如果保持开启时间过长,也会对电气部件产生损害。由于微波雷达和红外传感器并不了解接 近自动门的人是否真要进门,所以有些场合更愿意使用按键开关。 按键开关可以是一个触点式的按钮,更方便的是所谓肘触开关。肘 触开关很耐用,特别是它可以用胳膊肘来操作。避免了手的接触。 还有脚踏开关,功能一样,但对防水的要求较高,而且脚踏的力量

很大,容易使脚踏开关失效。还有一种带触点开关的拉手,当拉手 被推(或在反方向拉)到位时,向门机提供触点信号。 现在的楼宇自控有时会提出特殊的要求,例如使用电话的某一分线 控制开门。要达到这个要求,只要保证信号是无源的触点信号即可。有些情况下,人们会提出天线遥控的要求。用一个无线接受器与自 动门进行触点式连接,再配一个无线发射器,就可以达到要求。不过,现在的无线电波源太多,容易导致偶然开门是一个麻烦的问题。定时器可以自动控制门的状态,其原理是将时钟与特定的开关电路 相连,可预设定时间将自动门处于自动开启或锁门状态 门禁系统与非公共区域的自动门 2. 驱动单元 弧形门主传动采用模块驱动电路控制的无刷直流电动机。注入高 科技的驱动单元具有优异的运行和控制特性,其功能指标非常高, 而且噪音低,运转平稳,免维护。 3. 传感器 移动检测传感器,如:雷达; 存在传感器,如:主动或被动式光电传感器; 4. 任选项--附加控制单元模块(可与主控单元直接接口) 电子锁控制 交流供电电源故障备用电源控制 5. 机械结构 主体结构 自动弧形门主体采用成型铝材的积木式拼装装配结构。成型铝材 的技术要求满足VDE0700T.238标准规定。严格的材料标准和施工规范确保自动平滑门结构上对强度和稳定性的要求,使之长期可靠 地运行。

激光打印机硒鼓的工作原理及过程讲解

激光打印机硒鼓的工作原理及过程 硒鼓是激光打印机定影成像系统的重要核心部件,主要由感光鼓、充电辊、显影装置、粉仓和清洁装置构成。位于硒鼓中的一些易损耗、退化的零部件需要我们不断补充更新,从而构成我们今天所说的硒鼓再生,所以了解其工作原理及过程具有重要意义和实用价值。我们先着重介绍它的一些重要的零部件:感光鼓、充电辊和磁辊。 感光鼓的示意图如下,主要由铝芯和感光层构成。 充电辊由三层组成,由里到外分别为铁芯、绝缘层和导电橡胶层。其中OEM的绝缘层一般较有弹性,是为便于给感光鼓充分的充电,而一般的非OEM产品的弹性就会差些。最易磨损是导电橡胶层,而这层也是最重要的。磁辊是显影装置中最重要的部件,一般由磁芯、铝套和一些塑料件组成,其中铝套较易受损,也需常更换。 本文档为网上收集,若侵犯了您的利益,请联系(QQ:253169161),我将立即核对删除。

定影成像工作一般需七个步骤:清洁、充电、曝光、显影、转印、分离和定影,而其中前6步骤都需硒鼓的运转来完成。其大致流程图如下: 下面我们以HP6L硒鼓为例,着重介绍其工作过程。我们先看一下硒鼓的主要零部件的侧面示意图: 1.清洁清洁工作主要有刮板来完成。刮板紧贴在感光鼓表面,随时都可以把感光鼓表面残余的碳粉剔掉,并收集在废粉仓里。当打印机在马达旋转的时侯,硒鼓的相关部件也开始转动,这时硒鼓的清洁工作便完成了。硒鼓一般有两块刮板,一块用来剔除感光鼓表面残余的碳粉,另一块用来剔除磁辊表面过多的碳粉。因此,刮板的好坏会直接影响打印本文档为网上收集,若侵犯了您的利益,请联系(QQ:253169161),我将立即核对删除。

效果和感光鼓、磁辊的使用寿命。一般情况下,当我们目测到刮板上的橡胶有点发黄时,我们就应该更换,因为这时的橡胶已开始老化。用这种老化的刮板势必会减短感光鼓和磁辊的寿命。

DHPLC系统工作原理及其应用

?综述与专论? 生物技术通报 B I O TECHNOLO G Y BULL ET I N 2006年增刊 D HP LC 系统工作原理及其应用 李莉 王翀 陈瑶生 (华南农业大学动物科学学院,五山 510642) 摘 要: 变性高效液相色谱(DHP LC )是一种高通量筛选DNA 序列变异的新技术,从该仪器设备的组成、工作原理、基本操作方法、主要技术特点等作一综述,并对其在基因组领域的应用如S NP 分析、双链DNA 片段分析、微卫星分析、mRNA 定量分析、引物纯度检测等方面及在医学、遗传学方面的应用作了较详细的综述。 关键词: DHP LC 原理 应用 W orki n g Pr i n c i ples and Appli cati on of DHP LC Syste m L i L i W ang Chong Chen Yaosheng (College of A ni m al Science,South China A gricultural U niversity,Guangzhou 510642) Ab s tra c t: Denaturing H igh Perf or mance L iquid Chr omat ography (DHP LC )is a kind of high thr oughout ne w tech 2 nique t o detect the mutati on of the DNA sequence .The structure of the instru ment,working Princi p les,basic mani pulating method and main technical characteristic were revie wed .The app licati ons in the medicine,genetics and genome domain such as analysis of S NP,the frag ment of double strains,m icr osatellite,the quantitative mRNA,the pure detecti on of the p ri m e,et al were revie wed in detail . Key wo rd s: DHP LC Princi p le App licati on 基金项目:国家自然科学基金资助(30300249) 作者简介:李莉(19822),女,硕士研究生,专业方向:动物遗传育种与繁殖,电话:020********* 通讯作者:王翀(19682),女,博士,副教授,主要研究方向:分子遗传学,电话:020*********,E 2mail:betty@scau .edu .cn 变性高效液相色谱(denaturing high perf or mance liquid chr omat ography,DHP LC )是一种新的高通量筛选DNA 序列变异的新技术,这一技术最先由美国Stanf ord 大学Oefner 及Underhill 等于1995年报道, 美国Transgenom ic 公司采用该原理制造专利化仪器,专利产品为WAVE μ DNA 片段分析系统 (WAVE μDNA frag ment analysis syste m )。1.1 仪器主要组成部分 硬件部分:变性高效液相色谱仪(WAVE μ 3500HT ):WAVE μ L 27100型四元梯度溶液注入系 统(含四元梯度泵),WAVE μ L 27250型Peltier 可冷 却、加热自动进样器,WAVE μ L 27300p lus 型高精度Peltier 柱箱,WAVE μ L 27400型紫外/可见光检测 器,WAVE μ L 2700在线去气装置:四通道,样品池(可容纳4个96孔PCR 板,以便进行大规模分析筛 查),WAVE μ Maker 数据工作站系统(硬件)等。 软件部分:M icr os oft W indows μ NT 操作系统,HS MD 27000数据工作站控制接口软件,WAVE μ Maker 核苷酸片段分析系统专用软件包。1.2 DHP LC 基本原理及其应用 用离子对反向高效液相色谱法:①在不变性的温度条件下,检测并分离分子量不同的双链DNA 分子或分析具有长度多态性的片段,类似RF LP 分析,也可进行定量RT 2PCR 及微卫星不稳定性测定 (MSI );②在充分变性温度条件下,可以区分单链DNA 或RNA 分子,适用于寡核苷酸探针合成纯度 分析和质量控制;③在部分变性的温度条件下,变异型和野生型的PCR 产物经过变性复性过程,不仅分别形成同源双链,同时也错配形成异源双链,根据柱子保留时间的不同将同源双链和异源双链分离,

硒鼓的工作过程及其重要性和各组成部分的作用

硒鼓的工作过程及其重要性和各组成部分的作用 一、激光打印机的工作原理及过程 激光打印机的工作过程大约可分为:充电→写入→显影→转印→定影→清洁→消电;需要感光鼓参与的就有六个主要过程,如下图示: 1.充电:将负电荷充至感光鼓的表面。 2.写数据(激光扫描曝光):将图象的数据信号转换为光信号(激光发射), 次一行的方式照射到OPC Drum,从而对感光鼓的表面进行曝光,形成静电 潜像。 3.显影(Developing Block):将带磁辊上的负电荷墨粉转移到感光鼓有图 像区域表面的过程,从而形成影像。 4.转印:将感光鼓表面的墨粉图像转印至纸上的过程。 5.定影(Fuser Block):通过加热、加压,将墨粉图像定影在纸张上。 6.清洁(Drum Cleaning Block):从鼓上刮去残余的墨粉的过程。经过转 印的后,感光鼓表面上的碳粉并不会完全转移到纸上,所以必须把残留的碳 粉用刮板刮除干净。 7.消电:将感光鼓表面的残余电荷消除的过程。感光鼓经过一连串的步骤后, 还会有残余的电荷,若不将这些电荷完全去除,下次再有新的影像时,便会 发生重影的现象 从上面的工作过程中我们可以看到硒鼓是激光打印机的重要组成部分之一。它的好坏直接决定的打印件的品质。 二、惠普打印机硒鼓的组成部分及作用:

很多零部件组成了HP激光打印机的硒鼓,其中以下七个主要零件,对于打印品质的影响最大。 1 磁辊(Magnetic Developer Roller、光管) 主要作用是:控制磁力的方向及大小,带出适量的碳粉,并磨擦磁辊刮板(Doctor Blade)和碳粉,以提升碳粉的带电量。 2 磁辊刮板(Doctor Blade、控制片) 主要控制碳粉盒(粉仓)供应到磁辊上的碳粉数量和让碳粉能均匀分布在磁辊上(Magnetic Developer Roller)。 3 磁辊密封档片(Magnetic Roller Sealing Blade、光管密封片) 防止碳粉由碳粉槽内漏出 4 鼓芯(OPC Drum、感光鼓) 接受镭射光的导电写入,并且显像,然后转写至纸上,为一个最容易磨损的零件 5 鼓刮板(Wiper Blade、刮粉片、清洁刮板) 刮除OPC Drum上残留的碳粉,主要用来清洁OPC Drum

自动门的系统配置及自动门的工作原理

自动门的系统配置及自动门 的工作原理 -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

自动门的系统配置及自动门的工作原理 集中控制 集中控制的概念,包括集中监视自动门运行状态和集中操作多个自动门两层含义,集中监视自动门开门关门状态可以通过位置信号输出电路来实现,可以采用接触式开关,当门到达一定位置(如开启位置)时,触动开关而给出触点信号。也可以采用感应式信号发生装置,当感应器探测到门处于某一位置时发出信号。在中控室设置相应的指示灯,就可以显示自动门的状态,而集中操作通常指同时将多个门打开或锁住,这取决于自动门控制器上有无相应的接线端子。自动门的系统配置是指根据使用要求而配备的,与自动门控制器相连的外围辅助控制装置,如开门信号源、门禁系统、安全装置、集中控制等。必须根据建筑物的使用特点。通过人员的组成,楼宇自控的系统要求等合理配备辅助控制装置。 当门扇要完成一次开门与关门,其工作流程如下:感应探测器探测到有人进入时,将脉冲信号传给主控器,主控器判断后通知马达运行,同时监控马达转数,以便通知马达在一定时候加力和进入慢行运行。马达得到一定运行电流后做正向运行,将动力传给同步带,再由同步带将动力传给吊具系统使门扇开启;门扇开启

后由控制器作出判断,如需关门,通知马达作反向运动,关闭门扇。 一、自动控制系统 1. 主控单元及BEDIS 主控制单元系32位微机控制单元,它与接口的BEDIS(双线通讯控制器)一起保证自动弧形门灵巧而可靠地进行人--机对话,充分展示出智能型自动弧形门的魅力。 2. 驱动单元 弧形门主传动采用模块驱动电路控制的无刷直流电动机。注入高科技的驱动单元具有优异的运行和控制特性,其功能指标非常高,而且噪音低,运转平稳,免维护。 3. 传感器 移动检测传感器,如:雷达; 存在传感器,如:主动或被动式光电传感器; 4. 任选项--附加控制单元模块(可与主控单元直接接口) 电子锁控制 交流供电电源故障备用电源控制 5. 机械结构 主体结构

比较器工作原理及应用

电压比较器(以下简称比较器)就是一种常用得集成电路。它可用于报警器电路、自动控制电路、测量技术,也可用于V/F变换电路、A /D变换电路、高速采样电路、电源电压监测电路、振荡器及压控振荡器电路、过零检测电路等。本文主要介绍其基本概念、工作原理及典型工作电路,并介绍一些常用得电压比较器。 什么就是电压比较器 简单地说,电压比较器就是对两个模拟电压比较其大小(也有两个数字电压比较得,这里不介绍),并判断出其中哪一个电压高,如图1所示。图1(a)就是比较器,它有两个输入端:同相输入端(“+”端) 及反相输入端(“—”端),有一个输出端Vout(输出电平信号)。另外有电源V+及地(这就是个单电源比较器),同相端输入电压VA,反相端输入VB。VA与VB得变化如图1(b)所示。在时间0~t1时,VA〉VB;在t1~t2时,VB〉VA;在t2~t3时,V A〉VB。在这种情况下,Vout得输出如图1(c)所示:VA>VB 时,Vout输出高电平(饱与输出);VB>VA时,Vout输出低电平。根据输出电平得高低便可知道哪个电压大.

如果把VA输入到反相端,VB输入到同相端,VA及VB得电压变化仍然如图1(b)所示,则Vout输出如图1(d)所示.与图1(c)比较,其输出电平倒了一下。输出电平变化与VA、VB得输入端有关。 图2(a)就是双电源(正负电源)供电得比较器.如果它得VA、VB输入电压如图1(b)那样,它得输出特性如图2(b)所示。VB〉VA时,Vout输出饱与负电压。

如果输入电压VA与某一个固定不变得电压VB相比较,如图3(a)所示。此VB称为参考电压、基准电压或阈值电压.如果这参考电压就是0V(地电平),如图3(b)所示,它一般用作过零检测。 比较器得工作原理 比较器就是由运算放大器发展而来得,比较器电路可以瞧作就是运算放大器得一种应用电路。由于比较器电路应用较为广泛,所以开发出了专门得比较器集成电路。 图4(a)由运算放大器组成得差分放大器电路,输入电压VA经分压器R2、R3分压后接在同相端,VB通过输入电阻R1接在反相端,RF为反馈电阻,若不考虑输入失调电压,则其输出电压Vout与V A、VB及4个电阻得关系式为:Vout=(1+RF/R1)·R3/(R2+R3)VA—(RF/R1)VB。若R1=R2,R3=RF,则Vout=RF/R1(VA—VB),RF/R1为放大器得增益.当R1=R2=0(相当于R1、R2短路),

蓝牙耳机的工作原理

蓝牙耳机的工作原理 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT

蓝牙及蓝牙耳机工作原理 1.蓝牙技术的特点 蓝牙协议体系结构 整个蓝牙协议体系结构可分为底层硬件模块、中间协议层和高端应用层三大部分。 链路管理层(LMP)、基带层(BBP)和蓝牙无线电信道构成蓝牙的底层模块。 BBP层负责跳频和蓝牙数据及信息帧的传输。LMP层负责连接的建立和拆除以及链路的安全和控制,它们为上层软件模块提供了不同的访问入口,但是两个模块接口之间的消息和数据传递必须通过蓝牙主机控制器接口的解释才能进行。 也就是说,中间协议层包括逻辑链路控制与适配协议(L2CAP)、服务发现协议(SDP)、串口仿真协议(RFCOMM)和电话控制协议规范(TCS)。L2CAP完成数据拆装、服务质量控制、协议复用和组提取等功能,是其他上层协议实现的基础,因此也是蓝牙协议栈的核心部分。SDP为上层应用程序提供一种机制来发现网络中可用的服务及其特性。 在蓝牙协议栈的最上部是高端应用层,它对应于各种应用模型的剖面,是剖面的一部分。 目前定义了13种剖面。 蓝牙底层模块 蓝牙的底层模块是蓝牙技术的核心,是任何蓝牙设备都必须包括的部分。 蓝牙工作在的ISM频段。采用了蓝牙结构的设备能够提供高达720kbit/s的数据交换速率。 蓝牙支持电路交换和分组交换两种技术,分别定义了两种链路类型,即面向连接的同步链路(SCO)和面向无连接的异步链路(ACL)。 为了在很低的功率状态下也能使蓝牙设备处于连接状态,蓝牙规定了三种节能状态,即停等(Park)状态、保持(Hold)状态和呼吸(Sniff)状态。这几种工作模式按照节能效率以升序排依次是:Sniff模式、Hold模式、Park模式。 蓝牙采用三种纠错方案:1/3前向纠错(FEC)、2/3前向纠错和自动重发(ARQ)。前向纠错的目的是减少重发的可能性,但同时也增加了额外开销。然而在一个合理的无错误率环境中,多余的投标会减少输出,故分组定义本身也保持灵活的方式,因此,在软件中可定义是否采用FEC。 一般而言,在信道的噪声干扰比较大时,蓝牙系统会使用前向纠错方案,以保证通信质量:对于SCO链路,使用1/3前向纠错(FEC);对于ACL链路,使用2/3前向纠错。在无编号的自动请求重发方案中,一个时隙传送的数据必须在下一个时隙得到收到的确认。只有数据在收端通过了报头错误检测和循环冗余校验(CRC)后认为无错时,才向发端发回确认消息,否则返回一个错误消息。 蓝牙系统的移动性和开放性使得安全问题变得及其重要。虽然蓝牙系统所采用的调频技术就已经提供了一定的安全保障,但是蓝牙系统仍然需要链路层和应用层的安全管理。在链路层中,蓝牙系统提供了认证、加密和密匙管理等功能。每个用户都有一个个人标识码(PIN),它会被译成128bit的链路密匙(LinkKey)来进行单双向认证。一旦认证完毕,链路就会以不同长度的密码(EncryphonKey)来加密(此密码已shit为单位增减,最大的长度为128bit)链路层安全机制提供了大量的认证方案和一个灵活的加密方案(即允许协商密码的长度)。当来自不同国家的设备互相通信时,这种机制是及其重要的,因为某些国家会指定最大密码长度。蓝牙系统会选取微微网中各个设备的最小的最大允许密码长度。例如,美

交换机原理及作用-1

交换机原理及作用 什么是交换机?交换switching 是按照通信两端传输信息的需要,用人工或设备自动完成的方法,把要传输的信息送到符合要求的相应路由上的技术统称。广义的交换机switch就是一种在通信系统中完成信息交换功能的设备。 交换和交换机最早起源于电话通讯系统(PSTN),我们现在还能在老电影中看到这样的场面:首长(主叫用户)拿起话筒来一阵猛摇,局端是一排插满线头的机器,戴着耳麦的话务小姐接到连接要求后,把线头插在相应的出口,为两个用户端建立起连接,直到通话结束。这个过程就是通过人工方式建立起来的交换。当然现在我们早已普及了程控交换机,交换的过程都是自动完成。 在计算机网络系统中,交换概念的提出是对于共享工作模式的改进。我们以前介绍过的HUB集线器就是一种共享设备,HUB本身不能识别目的地址,当同一局域网内的A主机给B主机传输数据时,数据包在以HUB为架构的网络上是以广播方式传输的,由每一台终端通过验证数据包头的地址信息来确定是否接收。也就是说,在这种工作方式下,同一时刻网络上只能传输一组数据帧的通讯,如果发生碰撞还得重试。这种方式就是共享网络带宽。 交换机拥有一条很高带宽的背部总线和内部交换矩阵。交换机的所有的端口都挂接在这条背部总线上,控制电路收到数据包以后,处理端口会查找内存中的地址对照表以确定目的MAC(网卡的硬件地址)的NIC(网卡)挂接在哪个端口上,通过内部交换矩阵迅速将数据包传送到目的端口,目的MAC若不存在才广播到所有的端口,接收端口回应后交换机会“学习”新的地址,并把它添加入内部地址表中。 使用交换机也可以把网络“分段”,通过对照地址表,交换机只允许必要的网络流量通过交换机。通过交换机的过滤和转发,可以有效的隔离广播风暴,减少误包和错包的出现,避免共享冲突。 交换机在同一时刻可进行多个端口对之间的数据传输。每一端口都可视为独立的网段,连接在其上的网络设备独自享有全部的带宽,无须同其他设备竞争使用。当节点A向节点D发送数据时,节点B可同时向节点C发送数据,而且这两个传输都享有网络的全部带宽,都有着自己的虚拟连接。假使这里使用的是10Mbps的以太网交换机,那么该交换机这时的总流通量就等于2×10Mbps=20Mbps,而使用10Mbps的共享式HUB时,一个HUB的总流通量也不会超出10Mbps。 总之,交换机是一种基于MAC地址识别,能完成封装转发数据包功能的网络设备。交换机可以“学习”MAC地址,并把其存放在内部地址表中,通过在数据帧的始发者和目标接收者之间建立临时的交换路径,使数据帧直接由源地址到达目的地址。 交换机的应用 作为局域网的主要连接设备,以太网交换机成为应用普及最快的网络设备之一。随着交换技术的不断发展,以太网交换机的价格急剧下降,交换到桌面已是大势所趋。 如果你的以太网络上拥有大量的用户、繁忙的应用程序和各式各样的服务器,而且你还未对网络结构做出任何调整,那么整个网络的性能可能会非常低。解决方法之一是在以太网上添加一个10/100Mbps的交换机,它不仅可以处理10Mbps的常规以太网数据流,而且还可以支持100Mbps的快速以太网连接。

比较器工作原理及应用

电压比较器(以下简称比较器)就是一种常用得集成电路。它可用于报警器电路、自动控制电路、测量技术,也可用于V/F 变换电路、 A /D 变换电路、高速采样电路、电源电压监测电路、振荡器及压控振荡器电路、过零检测电路等。本文主要介绍其基本概念、工作原理及典型工作电路,并介绍一些常用得电压比较器。 什么就是电压比较器 简单地说,电压比较器就是对两个模拟电压比较其大小(也有两个数字电压比较得,这里不介绍),并判断出其中哪一个电压高,如图1所示。图1(a)就是比较器,它有两个输入端:同相输入端(“ + ” 端)及反相输入端(“一”端),有一个输出端Vou t (输出电平信号)。另外有电源V+ 及地(这就是个单电源比较器),同相端输入电压VA,反相端输入VB。V A与VB得变化如图1(b )所示。在时间0~ t 1时,V A > V B ;在上1?t 2时,V B > VA ;在上2~t3时,V A> VB。在这种情况下,Vo u t得输出如图1 (c)所示:V A>VB 时,Vou t输出高电平(饱与输出);V B >V A时,V o u t输出低电平。根据输出电平得高低便可知道哪个电压大.

如果把V A 输入到反相端,V E 输入到同相端,VA 及V B 得电压变化仍然如图1(b)所示则Vout 输出如图1(d )所示.与图 1 (c )比较,其输出电平倒了一下。输出电平变化与 VA 、VE 得输入 端有关。 图2⑻就是双电源(正负电源)供电得比较器?如果它得 VA 、VB 输入电压如图1 (b )那样,它得输出特性如图2(b)所示。VB > V A 时,Vou t 输出饱与负电压。 国1 ■KT \ I V 咚庄

自动门的系统配置及自动门的工作原理

自动门的系统配置及自动门的工作原理 集中控制 集中控制的概念,包括集中监视自动门运行状态和集中操作多个自 动门两层含义,集中监视自动门开门关门状态可以通过位置信号输 出电路来实现,可以采用接触式开关,当门到达一定位置(如开启位置)时,触动开关而给出触点信号。也可以采用感应式信号发生装置,当感应器探测到门处于某一位置时发出信号。在中控室设置相应的 指示灯,就可以显示自动门的状态,而集中操作通常指同时将多个 门打开或锁住,这取决于自动门控制器上有无相应的接线端子。自 动门的系统配置是指根据使用要求而配备的,与自动门控制器相连 的外围辅助控制装置,如开门信号源、门禁系统、安全装置、集中 控制等。必须根据建筑物的使用特点。通过人员的组成,楼宇自控 的系统要求等合理配备辅助控制装置。 当门扇要完成一次开门与关门,其工作流程如下:感应探测器探 测到有人进入时,将脉冲信号传给主控器,主控器判断后通知马 达运行,同时监控马达转数,以便通知马达在一定时候加力和进 入慢行运行。马达得到一定运行电流后做正向运行,将动力传给 同步带,再由同步带将动力传给吊具系统使门扇开启;门扇开启 后由控制器作出判断,如需关门,通知马达作反向运动,关闭门扇。 一、自动控制系统 1. 主控单元及BEDIS 主控制单元系32位微机控制单元,它与接口的BEDIS(双线通 讯控制器)一起保证自动弧形门灵巧而可靠地进行人--机对话,充 分展示出智能型自动弧形门的魅力。

2. 驱动单元 弧形门主传动采用模块驱动电路控制的无刷直流电动机。注入高科技的驱动单元具有优异的运行和控制特性,其功能指标非常高,而且噪音低,运转平稳,免维护。 3. 传感器 移动检测传感器,如:雷达; 存在传感器,如:主动或被动式光电传感器; 4. 任选项--附加控制单元模块(可与主控单元直接接口) 电子锁控制 交流供电电源故障备用电源控制 5. 机械结构 主体结构 自动弧形门主体采用成型铝材的积木式拼装装配结构。成型铝材的技术要求满足VDE0700T.238标准规定。严格的材料标准和施工规范确保自动平滑门结构上对强度和稳定性的要求,使之长期可靠地运行。 二、BEDIS控制器 BEDIS是与主控制器总线直接接口的双线数据通讯专用远程控制器,小巧精美、安装快捷、使用方便,可在50米范围内实现:功能转换 运行参数的整定 功能状态的选择 故障自诊断显示 1. 控制功能 自动门诸可供选者的通道状态已被主控制器程序化,可用BEDIS 极其方便地进行功能转换。下述功能用户可任意选定:手动--动门翼静止时,可以用手推动; 常开--动门翼打开,并保持在打开位置;

耳机喇叭的结构设计

龙源期刊网 https://www.doczj.com/doc/f614620109.html, 耳机喇叭的结构设计 作者:周磊 来源:《信息技术时代·下旬刊》2018年第01期 摘要:随着科学技术的进步,耳机的设计制造得到了长足的发展。然而耳机知名品牌都是国外品牌,如德国的Beyerdynamic(拜亚动力)和Sennheiser(森海塞尔),美国的Beats (节拍)和Bose(博士),奥地利的AKG(爱科技);中国的耳机制造企业还处于萌芽发展阶段,如Merry(美特科技)和欧仕达(AST),相信不久的将来,它们也会像华为一样发展壮大,走出国门,走向世界。 关键词:耳机;喇叭;结构设计 随着中国城市化进程的加快,越来越多的人们选择通过户外运动方式来缓解面临的各种压力,各种各样的运动耳机也越来越被人们所使用。下文讲解运动耳机中最重要的部件-喇叭,以及和喇叭相配合机构件的设计。 一、耳机的分类 耳机根据其换能方式分类,主要有:动圈方式、动铁方式、静电式。 1. 动圈式耳机是最普通、最常见的耳机,它的驱动单元基本上就是一只小型的动圈扬声器,由处于永磁场中的音圈驱动与之相连的振膜振动。动圈式耳机效率比较高,大多可为音响上的耳机输出驱动,且可靠耐用。通常而言驱动单元的直径越大,耳机的性能越出色,目前在消费级耳机中驱动单元最大直径为70mm,一般为旗舰级耳罩式耳机。 2.动铁式耳机是通过一个结构精密的连接棒传导到一个微型振膜的中心点,从而产生振动并发声的耳机。动铁式耳机由于单元体积小得多,所以可以轻易的放入耳道。这样的做法有效地降低了入耳部分的面积可以放入更深的耳道部分 3.静电耳机有轻而薄的振膜,由高直流电压极化,极化所需的电能由交流电转化,也有电池供电的。振膜悬挂在由两块固定的金属板(定子)形成的静电场中,静电耳机必须使用特殊的放大器将音频信号转化为数百伏的电压信号,驱动,所能到达的声压级也没有动圈式耳机大,但它的反应速度快,能够重放各种微小的细节,失真极低。 二、喇叭的工作原理及结构 喇叭的工作原理:是由磁铁构成的磁间隙内的音圈在电流流动时,产生上下方向的推动力使振动体(振动膜)振动,从而振动空气,使声音传播出去,完成了电-声转换。喇叭实际上是一个电声换能器。

交换机工作原理

交换机工作原理 一、交换机的工作原理 1.交换机根据收到数据帧中的源MAC地址建立该地址同交换机端口的映射,并将其写入MAC地址表中。 2.交换机将数据帧中的目的MAC地址同已建立的MAC地址表进行比较,以决定由哪个端口进行转发。 3.如数据帧中的目的MAC地址不在MAC地址表中,则向所有端口转发。这一过程称为泛洪(flood)。 4.广播帧和组播帧向所有的端口转发。 二、交换机的三个主要功能 学习:以太网交换机了解每一端口相连设备的MAC地址,并将地址同相应的端口映射起来存放在交换机缓存中的MAC地址表中。 转发/过滤:当一个数据帧的目的地址在MAC地址表中有映射时,它被转发到连接目的节点的端口而不是所有端口(如该数据帧为广播/组播帧则转发至所有端口)。 消除回路:当交换机包括一个冗余回路时,以太网交换机通过生成树协议避免回路的产生,同时允许存在后备路径。 三、交换机的工作特性 1.交换机的每一个端口所连接的网段都是一个独立的冲突域。 2.交换机所连接的设备仍然在同一个广播域内,也就是说,交换机不隔绝广播(惟一的例外是在配有VLAN的环境中)。 3.交换机依据帧头的信息进行转发,因此说交换机是工作在数据链路层的网络设备(此处所述交换机仅指传统的二层交换设备)。 四、交换机的分类 依照交换机处理帧时不同的操作模式,主要可分为两类: 存储转发:交换机在转发之前必须接收整个帧,并进行错误校检,如无错误再将这一帧发往目的地址。帧通过交换机的转发时延随帧长度的不同而变化。 直通式:交换机只要检查到帧头中所包含的目的地址就立即转发该帧,而无需等待帧全部的被接收,也不进行错误校验。由于以太网帧头的长度总是固定的,因此帧通过交换机的转发时延也保持不变。 五、二、三、四层交换机? 多种理解的说法: 1. 二层交换(也称为桥接)是基于硬件的桥接。基于每个末端站点的唯一MAC地址转发数据包。二层交换的高性能可以产生增加各子网主机数量的网络设计。其仍然有桥接所具有的特性和限制。 三层交换是基于硬件的路由选择。路由器和第三层交换机对数据包交换操作的主要区别在于物理上的实施。 四层交换的简单定义是:不仅基于MAC(第二层桥接)或源/目的地IP地址(第三层路由选择),同时也基于TCP/UDP 应用端口来做出转发决定的能力。其使网络在决定路由时能够区分应用。能够基于具体应用对数据流进行优先级划分。它为基于策略的服务质量技术提供了更加细化的解决方案。提供了一种可以区分应用类型的方法。 2. 二层交换机基于MAC地址 三层交换机具有VLAN功能有交换和路由///基于IP,就是网络 四层交换机基于端口,就是应用 3. 二层交换技术从网桥发展到VLAN(虚拟局域网),在局域网建设和改造中得到了广泛的应用。第二层交换技术是工作在OSI七层网络模型中的第二层,即数据链路层。它按照所接收到数据包的目的MAC地址来进行转发,对于网络层或者高层协议来说是透明的。它不处理网络层的IP地址,不处理高层协议的诸如TCP、UDP的端口地址,它只需要数据包的物理地址即MAC地址,数据交换是靠硬件来实现的,其速度相当快,这是二层交换的一个显著的优点。但是,它不能处理不同IP子网之间的数据交换。传统的路由器可以处理大量的跨越IP子网的数据包,但是它的转发效率比二层低,因此要想利用二层转发效率高这一优点,又要处理三层IP数据包,三层交换技术就诞生了。 三层交换技术的工作原理 第三层交换工作在OSI七层网络模型中的第三层即网络层,是利用第三层协议中的IP包的包头信息来对后续数据业

耳机构造讲解

一只耳机主要由四个部分组成:头带、左右发声单元、耳罩和引线。 头带的功能是固定左右发声单元,将其置于头的两侧,它的结构和它与单元的连接方式决定了头带和耳罩对头部的压力,影响着耳机佩带的舒适性。 耳罩是头部与发声单元接触的部件,它对于动圈式耳机是至关重要的,其功能是将低频反射回来,保证低频的重放。耳罩一般有两种样式,一种压在耳朵上,叫压耳式耳罩(Supra-aural),另一种耳罩呈杯状,环绕着耳朵,叫绕耳式耳罩(Circumnaural)。耳罩要尽量的柔软舒适,其内部一般填充海绵,外面蒙上皮革或绒布。耳罩使用的材料对中频和高频有吸收作用,它使耳朵与振膜形成一段距离,并在耳机和头部间形成一个腔室。大型的绕耳式耳罩内部空间大,声音可以作用于耳廓,形成较好的空间感。一只设计良好的耳机已经充分考虑了耳罩的作用,所以中高档耳机的耳罩是不可以损坏或随意更换的。 耳机的引线是耳机放大电路输出端与耳机音圈的连接线,优质耳机线常采用多支线芯的无氧铜(OFC)线,经过严格的绝缘和屏蔽处理,杜绝铜内杂质对信号传输的影响和外界杂波的干扰。耳机线的末端是插头,有两种规格:6.35mm和3.5mm,即平时所说的大小插头,6.35mm插头用于专业音频和民用音频设备,3.5mm插头用于便携设备。一般高保真耳机会提供插头转换器,保证耳机在各种设备上的使用。中高档耳机的插头是镀金的,这不是为了漂亮,主要是为了防止插头氧化影响声音,由于金光滑柔软,还可以提供尽量大的接触面积。低档耳机常采用镀镍插头,这样虽然也可以防止氧化,对声音却有一定的负面影响。

耳机的发声单元是耳机设计最复杂、技术含量最高的部分。动圈耳机的工作原理与动圈扬声器相同,音频信号输入音圈后,音圈产生的电磁场随信号的变化发生变化,变化的电磁场与磁路相互作用推动音圈和振膜的运动,振膜推动空气发声。动圈耳机发声单元主要由三个部分组成:磁路系统、振动系统、腔体和孔等声学结构。 磁路系统由恒磁体、极板和极靴组成,对耳机的性能和可靠性有直接的影响,恒磁体的一面是平板型的极板,另一面是呈“T”形的极靴,极板和极靴间形成一个尺寸较小的环形磁间隙,振动系统的音圈就悬挂在这个间隙内。通常高保真耳机使用的恒磁体为性能优良的钕铁磁体,较早的耳机型号有采用昂贵的钐钴磁体的,低档耳机一般采用铁氧磁体。磁路系统的设计比较复杂,象SENNHEISER HD580、HD600这样的高档耳机其磁路采用了计算机辅助设计。磁路的生产工艺也是影响其性能的一个方面。设计和制造优良的磁路系统能对振动系统进行有效的控制,得到较高的灵敏度、较小的失真、良好的瞬态和低频。 振动系统由音圈和振膜组成。振膜是声辐射元件,推动空气振动发声,直接影响频率响应和灵敏度。它的性能主要取决于制造材料、形状和制造工艺。制造振膜的材料要求单位面积质量尽量小、机械强度高、内阻尼大。机械强度越高、质量越轻有效的频率范围越宽广、输出声压级越高;内阻尼大,在大信号下失真小。现在振膜多使用易于热成型、质量轻、刚性好的聚酯薄膜,一些公司开发出了用于振膜的新材料,比如SONY公司用从醋酸杆菌中分离得到的纤维素制造的“生

交换机基本原理和转发流程总结解析

交换机基本原理和转发流程总结 关键词: 以太网集线器Ethernet HUB 交换机Switch 虚拟局域网VLAN 路由器Router 路由表Route Table 地址解析协议ARP ARP表ARP Table MAC表FIB Table 三层硬件转发表IP fdb Table 计算机网络往往由许多种不同类型的网络互连连接而成。如果几个计算机网络只是在物理上连接在一起,它们之间并不能进行通信,那么这种“互连”并没有什么实际意义。因此通常在谈到“互连”时,就已经暗示这些相互连接的计算机是可以进行通信的,也就是说,从功能上和逻辑上看,这些计算机网络已经组成了一个大型的计算机网络,或称为互联网络,也可简称为互联网、互连网。下面将从互联网的渐进历程逐一阐述各种设备的工作原理:1、Ethernet HUB Ethernet HUB的中文名称叫做以太网集线器,其基本工作原理是广播技术(broadcast),也就是HUB从任何一个端口收到一个以太网数据帧后,它都将此以太网数据帧广播到其它所有端口,HUB不记忆哪一个MAC地址挂在哪一个端口——这里所说的广播是指HUB将该以太网数据帧发送到所有其它端口,并不是指HUB将该报文改变为广播报文。 以太网数据帧中含有源MAC地址和目的MAC地址,对于与数据帧中目的MAC 地址相同的计算机执行该报文中所要求的动作;对于目的MAC地址不存在或没有响应等情况,HUB既不知道也不处理,只负责转发。HUB工作原理: ① HUB从某一端口A收到的报文将发送到所有端口; ②报文为非广播报文时,仅与报文的目的MAC地址相同的端口响应用户A; ③报文为广播报文时,所有用户都响应用户A。 随着网络应用不断丰富,网络结构日渐复杂,导致传统的以太网连接设备HUB已经越来越不能满足网络规划和系统集成的需要,它的缺陷主要表现在以下两个方面: ①冲突严重——HUB对所连接的局域网只作信号的中继,所有物理设备构成了一个冲突域; ②广播泛滥。 2、二层交换技术

相关主题
文本预览
相关文档 最新文档