当前位置:文档之家› 珠海三维仿真模型数据制作技术手册

珠海三维仿真模型数据制作技术手册

珠海三维仿真模型数据制作技术手册
珠海三维仿真模型数据制作技术手册

附件3

珠海市三维仿真模型数据制作技术手册

珠海市住房和城乡规划建设局

2015年10月

目录

1引言 (1)

1.1编写目的 (1)

1.2编写内容 (1)

1.3制作软件及相关工具 (1)

2三维模型要求 (2)

2.1坐标系与单位要求 (2)

2.2材质设置要求 (2)

2.3纹理设置要求 (2)

2.4贴图要求 (3)

2.5光效要求 (3)

3三维建模总体流程 (4)

3.1总体流程 (4)

3.2建模原则与思路 (5)

3.3数据采集与处理 (6)

3.3.1素材采集 (6)

3.3.2数据预处理 (6)

3.4地形模型制作 (6)

3.4.1内容 (20)

3.4.2制作流程 (20)

3.5建筑类模型制作 (6)

3.5.1内容 (6)

3.5.2制作流程 (7)

3.6植被模型制作 (24)

3.6.1内容 (24)

3.6.2制作流程 (24)

3.7规划控制数据模型制作 (27)

3.7.1内容 (27)

3.7.2制作流程 (28)

3.8其他模型制作 (29)

3.8.1内容 (29)

3.8.2制作流程 (30)

3.9数据输出与转换 (32)

3.9.1数据输出 (32)

3.9.2数据转换 (36)

3.10数据检测 (37)

3.10.1工具使用方法 (37)

II

1引言

1.1编写目的

本建模制作流程编写目的是指导系统开发建模人员和今后扩充或更新该系统模型数据库的技术人员进行建模工作和模型数据规整工作。

适用读者:系统分析人员、系统开发者、建模人员和扩充或更新该系统模型数据库的技术人员。

1.2编写内容

本技术要求主要包括三维仿真模型的建模要求、总体流程、各类模型的制作与输出及相关注意事项。

1.3制作软件及相关工具

三维模型数据制作是一个复杂的过程,根据系统与采集数据的不同,主要有以下几个:

?AutoCAD2007或以上版本(用于原始数据整理);

?3Dmax9.0(用于三维模型数据制作);

?Photoshop(用于贴图纹理制作);

?MakeXPL工具(用于数据打包入库)。

为方便制作管理,还提供以下所用到的max9版本的插件与脚本:

?PandaDXExport.dle转换插件(max的转换插件,用于输出*X格式模型);

?X批量输出脚本(max的批量输出脚本,用于批量输出X文件以及记录物

体名称、XYZ坐标的*TXT文件);

?烘焙后返贴脚本(用于物体烘焙后贴图的批量规范化处理)。

1

2三维模型要求

2.1坐标系与单位要求

场景制作时一般采用珠海市本地83独立坐标系建模,以“米”为单位,所有模型应在统一的坐标系下,模型的坐标位置和高程数据应准确无误。

2.2材质设置要求

每个物体对应一个标准材质球,材质球为英文与数字组合并与贴图名称一一对应,开头为英文字母,不能有中文与异字符,场景内材质球

不能重名;

一般模型的材质不勾选双面。对于带有透明贴图的物体选择双面建模,如栏杆、树木等;

带通道的贴图用TGA格式,名称为*_alpha.tga。不允许设置glossness;透明贴图要在opacity上加;

Ambient: 设置为默认颜色;

Diffuse: 设置为默认颜色。

2.3纹理设置要求

在材质的贴图参数的Coordinates一栏中的参数都禁止改动。用UVW Map修改器调整平铺参数;

不能使用Cropping/placement中的apply选项;

2

3

物体的贴图和uvw 坐标的通道都设为1。

2.4 贴图要求

贴图象素大小为2的n 次方,正方形或长方形均可,如256x512、

128x128、512x256、512 x512、1024x1024等。上限1024x1024,下限

16x16贴图清晰,表现内容真实,有层次;

贴图应与几何模型细节层次相匹配;

贴图格式为JPG 与TGA (带通道的贴图),全部的面都用贴图,即使是

单色的面也不要用RGB 值;

为保证贴图清晰,大的面不要用一张贴图,将大的面拆分。当单栋建

筑单面纹理贴图≥2048才能保证沿街建筑的纹理清晰度,必须对模型

和贴图进行分割处理,同时分割后的建筑单面纹理最大为1024*1024,以保证建筑纹理的清晰度;

贴图做到横平竖直;

贴图干净,不可混有人、车、植物、电线杆、电线等;

为保证贴图表现真实,每张做完的贴图要经过亮度/对比度,色相饱和

度,色阶等调图像调整。

2.5 光效要求

■ 地形模型不需要烘焙

■ 建筑模型需要进行全要素completemap 烘焙

■ 植被模型不需要烘焙

■ 规划控制数据模型不需要烘焙

■ 其他模型按需进行completemap 烘焙

4 模型的灯光方向必须要和系统的大场景保持一致性,灯光参数与数值报建方可根据自身方案特点调整,但不能改变主光源方向与角度。

灯光文件请用“灯光”文件夹下的“珠海灯光.max ”。因为此灯光是通过vary 插件渲染的,附带2.0版本的vary 灯光插件安装,适用于max9的安装。

3 三维建模总体流程

3.1 总体流程

三维模型数据是系统建设的基础,也是各种应用和分析的依据。三维模型数据制作具有严格、规范的数据制作标准,和成熟、完善的数据制作工艺。总体流程如下图:

其中,数据制作是本技术手册重点介绍的内容,其流程主要如下图:

数据采集与处理

cad 与PS 3Dmax 、ps 数据制作 输出与入库

MakeXPL

5

3.2 建模原则与思路

三维模型数据制作的总原则是在保证建模元素基本特征与模型效果的前提下,以尽可能少的三角形面片数量构造建筑物的三维模型。

获取成简化模型与立面纹理

常规三维模型

3.3数据采集与处理

3.3.1素材采集

1.地形图数据采集

地形图包括道路、房屋、水系、绿地、铺地等轮廓线和地形等高线,其中房屋需包含层数属性信息,道路包含道路名称等信息。

2.建筑物规划方案素材采集

建筑物规划设计方案建模,需要采集的资料有:

1)规划设计方案总平面图;

2)各群体、单体建筑方案的平面图、立面图、效果图。

3.3.2数据预处理

1.地形数据预处理

地形图CAD数据道路、绿化带、房屋特征检查是否是闭合线框,处理成闭合线框。把多余标注点与线去掉。

2.规划方案素材预处理

规划方案在效果图满足精度要求的情况下,将效果图处理为规划方案的贴图。

以下将分章节重点介绍三维模型数据的制作过程,根据模型类型与制作的不同,主要分为建筑模型、地形模型、植被模型、规划控制数据模型和其他模型五大类。

3.4建筑类模型制作

3.4.1内容

建筑类模型主要分为体块模型和标准模型两类,其中体块模型包括地块范围内的建筑,标准模型主要包括地块范围内的建筑及其附属设施,如围栏、牌楼等,

6

7 其精度根据需求进行建模。 3.4.2 制作流程

数据采集与处理在前面章节已有叙述,本节不再重复。

3.4.2.1 体块模型

3.4.2.1.1 模型造型

体块模型的基底轮廓线应基于1:500、1:1000、1:2000等比例尺地形图中建筑物的基底轮廓线直接生成,并与地形图保持一致,具体操作如下:

1. 导入cad 建筑轮廓线,CAD 导入时的单位应与3D Max 的系统单位一致(单位为“米”),确保空间坐标准确无误。

2. CAD 导入MAX 之后,坐标离原点(0,0)太远,max 中的捕捉工具无法精准捕捉,所以一般将建筑坐标整体偏移一个大数(一般取整数,并记录下来),最后完成输出时再纠正或导出后编辑xls 坐标文件纠正。

3. 参照建筑CAD 平面勾出建筑外轮廓线,以二维线(如Spline ,line ,arc 等)

数据采集与处理

模型造型

模型烘焙 转换入库

8 为基础,画出建筑外轮廓线,再用Extrude 命令拉伸出建筑实体(建筑高度设置

一般是楼层数 X 3米,高层商业建筑可根据需要进行自行调节,首层和裙房另算)

, 可以通过Extrude 的Cap star 和Cap end 快速控制顶面和底面的显示与增删,再用poly 命令进行立面上细节勾画。以此制作建筑外轮廓概略模型,表现其建筑基本外形。如下图:

3.4.2.1.2 纹理贴图

该步骤主要是对体块模型表面纹理的处理,纹理使用单色表示即可。

1. 纹理制作

利用单色图片作为纹理依据。处理如下图:

1.纹理赋予

1)材质球的设置。点击材质球,打开maps,点击Diffuse的none,双击Bitmap,选择所需图片打开。

2)贴图及处理。将设置好的材质球给予物体,按下便可以在max显示贴图,然后到modifly面板中,用UVW Mapping赋予物体贴图坐标,整理后如下图:

3.4.2.1.3物体命名规范

建筑模型文件命名由模型类别、管理单元编码、模型编号和流水号组成,之间由下划线连接。

xx_xxxxxxxxxxxxx_xx_xx

流水号

模型编号

管理单元编码

模型类别

以报建模型“新城国际”方案1某一栋建筑为例,具体如下:

模型类别:BO

管理单元编码:20150055XCGJ1(20150055为项目编号,XCGJ为方案名称缩写,1表示“方案1”)

模型属性:TK(体块缩写)

9

流水号:01

其max模型里物体(即对应的xpl2名称)的命名如下:

BO_20150055XCGJ1_TK_01

3.4.2.1.4贴图命名规范

烘焙前贴图为英文加数字组合即可,不重名,不能有中文或异字符。

贴图命名: BO_20150055XCGJ1_TK_01_01.jpg…

烘焙后物体的贴图名称是按照烘焙物体的名称自动生成的,这里不需另外改变名称。

3.4.2.1.5模型烘焙

体块模型不需做烘焙处理。

3.4.2.2标准模型

3.4.2.2.1模型造型

建筑及其附属设施三维模型可以使用3dMax来完成,优化效果图模型或根据外轮廓重建,获取建筑最简结构。由于效果图模型来源不一,结构效果不一,均需针对实际数据进行简化分析,在此不能作出统一处理叙述。以下是根据原始cad地形图(或报建)资料,进行的外轮廓建模方法介绍(效果图模型最终的简化结果也可参考此效果),具体操作如下:

1.导入cad建筑轮廓线,确保3D Max的系统单位与场景单位的一致(单位为米)。注意:若建筑坐标离原点(0,0)太远,max中的捕捉工具会出现无法精准捕捉问题,所以一般将建筑坐标整体偏移一个大数,最后完成输出时再纠正或导出后编辑xls坐标文件纠正。

10

11

2.参照照片以及建筑CAD 平面勾出建筑外轮廓线,以二维线(如Spline ,line ,arc 等)为基础,画出建筑外轮廓线,再用Extrude 命令拉伸出建筑实体(建筑高度设置一般是楼层数 X 3米,高层商业建筑可根据需要进行自行调节,首层和裙房另算), 可以通过Extrude 的Cap star 和Cap end 快速控制顶面和底面的显示与增删,再用poly 命令进行立面上细节勾画。以此制作建筑外轮廓概略模型,表现其建筑基本外形,并保持特有结构和丰富的细节。如下图:

注意点:

? cad 、max 单位必须保持一致;

? 物体的面避免重合,交接处不能有裂缝,整个建筑应该是闭合的;

?栏杆或商厦名称等用单片面模型表示,不用效果图的实体建模方法;

?模型中的不能有多余面,如果可以用贴图来表现复杂模型就不用模型;

?将占用大块区域的模型拆减成小模型减轻系统压力。

3.4.2.2.2纹理贴图

该步骤主要是对建筑表面纹理的处理,使其表达建筑外立面效果,包括窗户、阳台、墙面、天面屋顶、玻璃幕墙、裙楼等元素。贴图是最消耗系统资源的,纹理贴图的大小、格式与数量与利用等都是优化的关键因素。

1.纹理制作

利用效果图模型渲染立面或者直接利用立面图作为纹理依据。处理如下图:

2.纹理赋予

1)材质球的设置。点击材质球,打开maps,点击Diffuse的none,双击Bitmap,选择所需图片打开。

2)贴图及处理。将设置好的材质球给予物体,按下便可以在max显示贴图。下图所示。

12

13

然后到modifly 面板中,用UVW Mapping 赋予物体贴图坐标,整理后如下图:

注意点:

? 贴图的名称也只能是数字或拼音字母,不能用中文名称的贴图;

? 贴图格式用JPG 、TGA (带alpha 通道的贴图,如栏杆、树木等); ? 贴图纹理像素大小必须是2的n 次方,如32*32、64*64、512*512。在满足精度的情况下,采用32到512精度的贴图,尽量少采用1024×1024的贴图,若需要用到此像素,可根据需要采取切割贴图方式来优化。

不能勾选此来

控制贴图范围

尽量少用零散的多贴图,因为在系统加载贴图的时候如果贴图过多会增加硬盘的交互。使用一个UV贴图会减少交互。

3.4.2.2.3物体命名规范

建筑模型文件命名由模型类别、管理单元编码、模型编号和流水号组成,之间由下划线连接。

xx_xxxxxxxxxxxxx_xx_xx

流水号

模型编号

管理单元编码

模型类别

以报建模型“新城国际”方案1某一栋建筑为例,具体如下:

模型类别:BO

管理单元编码:20150055XCGJ1

模型编号:01(即模型栋数编号,若总平面图未明确规定,可自定义)

流水号:01

其max模型里物体(即对应的xpl2名称)的命名如下:

BO_20150055XCGJ1_01_01

3.4.2.2.4贴图命名规范

烘焙前贴图为英文加数字组合即可,不重名,不能有中文或异字符。

非透明贴图命名: BO_20150055XCGJ1_01_01_01.jpg…

透明贴图命名: BO_20150055XCGJ1_01_01_01_alp.tga…

烘焙后物体的贴图名称是按照烘焙物体的名称自动生成的,这里不需另外改变名称。

14

3.4.2.2.5模型烘焙

模型烘焙主要是对建筑表面光影纹理的处理,在删除原有灯光的情况下建筑仍然可以有光影的效果。

1.烘焙的前提条件:

1)在MAX中建好模型,模型已赋材质纹理贴图;

2)设置好灯光。(灯光系统是一个复杂的环境设置,且关系到个人的主观看法,在此不展开详细叙述。制作或更新人员可利用原系统模型的同一灯光文件进行烘焙)。

2.烘焙前模型的切分

为保证烘焙的贴图清晰度,需把简模切分为若干个物体(视建筑本身体量关系而定,如一栋占地500平方米面积的18层高的住宅楼,建议切分为50个物体左右再进行烘焙,切分后的模型按物体命名规范命名),如下图:

切分后大概蓝色一

块为一个单独的物

体。(这里简模没有

显示贴图是为方便

15

3.模型烘焙

全选需要烘焙的物体(不包括带ALP通道的物体如栏杆、灯光、cad底图、标注线等),点击Rendering下的Render to Texture,出现以下设置框:

16

1)开始渲染后,会显示烘培进度条;烘培完成后,进度条就会消失,烘培完成后保存文件。

烘焙后效果参考下图(模型已带阴影效果):

17

弹簧阻尼系统动力学模型ams仿真

弹簧阻尼系统动力学模 型a m s仿真 集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

震源车系统动力学模型分析报告一、项目要求 1)独立完成1个应用Adams软件进行机械系统静力、运动、动力学分析问题,并完成一份分析报告。分析报告中要对所计算的问题和建模过程做简要分析,以图表形式分析计算结果。 2)上交分析报告和Adams的命令文件,命令文件要求清楚、简洁。 二、建立模型 1)启动admas,新建模型,设置工作环境。 对于这个模型,网格间距需要设置成更高的精度以满足要求。在ADAMS/View菜单栏中,选择设置(Setting)下拉菜单中的工作网格(WorkingGrid)命令。系统弹出设置工作网格对话框,将网格的尺寸(Size)中的X和Y分别设置成750mm和500mm,间距(Spacing)中的X和Y都设置成50mm。然后点击“OK”确定。如图2-1所表示。 图2-1设置工作网格对话框 2)在ADAMS/View零件库中选择矩形图标,参数选择为“onGround”,长度(Length)选择40cm高度Height为1.0cm,宽度Depth为30.0cm,建立系统的平台,如图2-2所示。以同样的方法,选择参数“NewPart”建立part-2、part-3、part-4,得到图形如2-3所示, 图2-2图2-3创建模型平台 3)施加弹簧拉力阻尼器,选择图标,根据需要输入弹簧的刚度系数K和粘滞阻尼系数C,选择弹簧作用的两个构件即可,施加后的结果如图2-4 图2-4创建弹簧阻尼器

4)添加约束,选择棱柱副图标,根据需要选择要添加约束的构件,添加约束后的模型如2-5所示。 图2-5添加约束 至此模型创建完成 三、模型仿真 1)、在无阻尼状态下,系统仅受重力作用自由振动,将最下层弹簧的刚度系数K设置为10,上层两个弹簧刚度系数均设置为3,小物块的支撑弹簧的刚度系数为4,阻尼均为0,进行仿真,点击图标,设置EndTime为5.0,StepSize为0.01,Steps为50,点击图标,开始仿真对所得数据进行分析。 选择物块的位移、速度、加速度与时间的图像如图3-1、3-2、3-3所示,经过傅里叶变换之后我们可以清楚地看到系统的各阶固有频率。 图3-1位移与时间图像以及FFT变换图像 图3-2速度与时间图像以及FFT变换图像 图3-3加速度与时间图像以及FFT变换图像 通过傅里叶变换,从图中可以看出系统为三阶系统,表现出三阶的固有频率,通过测量得到w1=2.72,w2=4.29,w3=6.15.。 2)为了更进一步验证系统的各阶固有频率,我们给系统施加一定频率的正弦激振力,使系统做受迫振动,观察系统的振动情况, (a)F1=50*sin(2*3.14*w1*time)时,物块振动的速度与时间的图像如3-4所示。 图3-4 F1作用下速度与时间图像以及FFT变换图像

重庆市三维两江四岸三维仿真模型数据标准-090117

重庆市城市规划三维仿真模型数据标准(试行) 1范围 本标准规定了三维仿真模型的术语、基本规定、成果内容及相关要求、建模要求及三维动画制作要求。 本标准适用两江四岸规划区及其他重点控制区域(以下简称规划控制区)的现状三维模型、城市设计三维成果,以及规划控制区内的新建、改造建设项目三维模型成果制作。 2术语 2.1现状三维模型 指真实反映现状地形、基础设施、自然景观以及建筑外观和风格的虚拟现实模型。 2.2城市设计三维模型 指侧重于城市空间形态和环境的整体构思和安排,表达规划编制范畴的城市空间布局、景观形象、地形、基础设施以及建筑设计的虚拟现实模型。 2.3建设项目三维模型 指在行政审批环节中反映的建设项目的建筑体量、建筑外形和风格、外立面及建筑布局的规划方案虚拟现实模型。 3基本规定 3.1基础地形建模要求 1)城市规划区域的数字高程模型必须采用1:500地形图,地表纹理信息根据规划设计方案的景观设计材质库中选取相应的图片。 2)城市建成区域的数字高程模型必须采用1:500地形图,地表纹理信息由实地拍摄的数码照片,拍照应使用500万像素以上的广角照相机。 3)其他区域的数字高程模型可采用用1:2000或1:1万地形图,地表纹理信息由1:2000真彩色正射影像或分辨率不小于1m的彩色卫星影像图片获取。 3.2空间参考系要求 1)大地基准:必须采用重庆市独立坐标系。 2)高程基准:必须采用1956年黄海高程系。 4成果内容及相关要求 4.1成果文件内容 三维模型成果必须经过烘培,能够真实而艺术地反映地形地貌、基础设施、自然景观以及建筑外观和设计风格。三维成果必须包含以下内容: 1)三维渲染整体效果图,图像分辨率不小于2048×2048,图片格式采用*.tif。 2)带材质贴图且经过烘培的三维仿真模型,文件格式为3DS MAX 7.0或以上的*.max,贴图为tif格式。 3)对于建设项目三维模型,必须提交项目总平面、剖面图、立面图、平面图等电子文件,文件格式为AutoCAD2005的*.dwg格式。 4)对于城市设计成果,必须提交相应三维动画(A VI)资料。

立体显示技术简介

立体显示技术简介 陈 曦 (四川长虹电器股份有限公司多媒体产业公司四川绵阳 621000) 【 摘 要 】 传统显示技术只显示二维平面的信息,而立体显示技术显示的是物体的深度信息,它利用人眼的立体视觉特性来复现立体图像。本文将对立体显示技术的发展历程、显示原理、常见立体显示技术以及长虹立体显示产品开发历程进行初步的介绍。 【 关键词 】立体显示、光栅法、分时法、分光法 一、引子 随着显示技术的飞速发展,电视机产品正在进行更新换代,以LCD、PDP为代表的新一代高清数字平板显示设备迅速崛起并快速取代了传统的CRT显示设备。这些新的显示技术的应用推广,虽然让电视画面的清晰度和主观效果得到了大幅度的提高,但显示技术仍停留在二维平面显示阶段。 随着3D标准的制定、HDMI1.4版本的发布以及蓝光碟机对3D的支持,3D产业链正在形成。现代显示技术在继数字化、高清化之后,正开始迎来立体化的新一轮升级大发展。美国、日本、韩国等国家或地区纷纷开播3D电视,尤其是2010CES消费电子展上各厂家纷纷推出3D显示设备,以及电影《阿凡达》的上映,在全球迅速掀起3D热潮,包括长虹在内的各大电视厂家纷纷研发出3D电视并上市销售。本文将对立体显示技术的显示原理、常见立体显示技术以及长虹立体显示产品开发历程进行初步的介绍。 二、立体显示原理 研究人员发现,无论用两只眼睛还是只用一只眼睛观察物体均可以获得立体感觉。总的说来,立体视觉的形成因素包括双眼视觉差异、透视感觉、画面细腻程度的差异、光照造成的阴影深浅变化、物体运动导致其大小及角度的变化等。其中双眼视觉差异是获取立体感觉的主要因素,这是由于人的两只眼睛之间存在约65毫米左右的距离,因此在观察物体时,两只眼睛所获取的图像信息会存在一定的细微差异。正是基于双眼视觉差异产生立体感觉的原理,研究者们绞尽脑汁,设计出了多种不同的方法来重现立体图像。 三、常见立体显示技术 常见的立体显示技术主要有分色法、分光法、分时法、分屏法、光栅法以及全息法等。其中分色法、分光法、分时法、分屏法等均需要佩戴专用的眼镜,而光栅法、全息法属于自由立体显示技术,适用于裸眼观看。 通常在发送端用两台或多台摄像机,从不同方位模拟双眼进行摄像,得到具有视觉差异的图像信号,再通过一定的处理方法融合一路信号传送,电视机接收到上述信号后解码还原成分别供两眼观看的图

利用红蓝分色原理制作三维图片及三维视频

实验二 一、问题描述 根据人眼三维视觉形成的原理,利用红蓝分色原理制作三维图片与三维视频。 二、问题分析 三维图像: 步骤: 1.利用手机/相机等摄像设备,拍摄大小相同的左眼图与右眼图 2.利用OpenCV读入左眼图与右眼图,假设左眼图像第i个像素颜色向量为(R1_i,G1_i,B1_i); 右眼图像第i个像素颜色为(R2_i,G2_i,B2_i),则合成后的立体图像第i个像素为(R1_i,G2_i,B2_i);利用OpenCV显示并保存合成后的图像 3.利用红蓝眼镜观察立体效果是否明显,如果不明显,请重复1~2 难点: 在拍摄左眼图与右眼图时有技巧:由于人的两眼间存在一个不足 5 厘米的间距,因此在盯住同一景物时,两个眼球的角度并不相同。因此我们的拍摄也必须模拟这一原理,对同一景物拍摄两张照片,而且拍摄时需要略微变换一下拍摄角度(这个角度很小,约5~10 度)。其次为了达到更好的合成效果,目标最好选择一些前背景比较分明的景物,如果能用单反拍摄出背景虚化的照片就更好。

三维视频: 利用拍摄图片的方法拍摄左眼视频与右眼视频,然后利用OpenCV读取左眼与右眼视频中的每一帧图像,利用上述方法合成三维图像,并利用OpenCV保存成.avi格式的视频。 难点:如何保持左眼视频与右眼视频在时间上的同步 三、详细设计(从算法到程序) 1.主模块设计 三维图片: #include"iostream" #include"cmath" using namespace std; using namespace cv; int main() { Mat left = imread("211.jpg");//加载图片

3D立体显示技术综述

3D立体显示技术综述 Tuesday, May 24, 2011 09:44 引言 理想的视觉显示与日常经历中的场景对比,在质量、清晰度和范围方面应该是无法区分的,但是当前的技术还不支持这种高真实度的视觉显示。随着2009年底卡梅隆导演的《阿凡达》热映,三维立体(3D Stereo)显示技术成为目前火热的技术之一,通过左右眼信号分离,在显示平台上能够实现的立体图像显示。立体显示是VR虚拟现实的一个实现沉浸交互的方式之一,3D(3 dimensional)立体显示可以把图像的纵深,层次,位置全部展现,观察者更直观的了解图像的现实分布状况,从而更全面了解图像或显示内容的信息。 电影《阿凡达》热映的后时代,全民步入了3D立体的时代,随着技术的发展和对3D技术关注度的剧增,3D显示技术的普及化应用已进入紧锣密鼓的实用阶段。本文旨在介绍目前各种系统或设备对三维立体实现方式,推广三维立体的认知度。 1、3D立体显示原理 3D立体显示的基本原理如图表1所示。图中表示两眼光轴平行的情况,相当于两眼注视远处。内瞳距(IPD)是两眼瞳孔之间的距离。两眼空间位置的不同,是产生立体视觉的原因。F是距离人眼较近的物体B上的一个固定点。右面的两眼的视图说明,F点在视图中的位置不同,这种不同就是立体视差。人眼也可以利用这种视差,判断物体的远近,产生深度感。这就是人类的立体视觉,由此获得环境的三维信息。 人眼的另一种工作方式是注视近处的固定点F。这时两眼的光轴都通过点F。两个光轴的交角就是图中的会聚角。因为两眼的光轴都通过点F,所以F点在两个视图中都在中心点。这时,与F相比距离人眼更远或更近的其他点,会存在视差。人眼也可以利用这种视差,判断物体的远近,产生深度感。

基于双眼视觉的立体显示技术概述

基于双眼视觉的立体显示技术概述 摘要:战场环境是一切军事行动的空间基础,战场环境仿真是目前军事作战模拟领域研究的热点。本文讨论了用于实现战场环境感知仿真的基于双眼视觉的立体显示技术。 运用虚拟现实技术(Virtual Reality,简称VR;又译作灵境、幻真)实现战场环境仿真,其目的就是构成多维的、可感知的、可度量的、逼真的虚拟战场环境,借此提高参训人员对战场环境的认知效率。对于大多数应用而言,营造立体视觉效果是实现“沉浸”的关键,即根据人类的双目立体视觉原理,借助于一定的设备,使观察者在生理水平上对被观察的场景产生强烈的立体感。由于在虚拟现实系统中,场景是由计算机生成的(非实地拍摄),为了达到立体效果,就需要对图像的生成、显示与观察各环节进行适人化的处理,因此该技术也被成为“人造立体视觉技术”。 一立体视觉基本原理 透视效果是观看三维世界时的基本规律,是画面产生立体感的基本要求。 人眼在看真实的圆柱体和看屏幕上显示的圆柱体时,视差角有明显的不同,看屏幕时的视差角实际上和看平板玻璃时是一样的,因此不管屏幕上显示的内容如何变化,立体感始终是一个平面,这也是普通显示器无法实现立体显示的原因。既然如此,首先想到的解决办法自然就是把显示器做成圆柱体形状,这样当然可以完美的显示圆柱体,不过这样的显示器不管显示什么内容时都会机械的制造出中间近、两边远的效果。 那么为了完美显示每一种物体,显示电风扇时就得用电风扇形的显示器,显示飞机又要用飞机形状的显示器,如果要显示宇宙该用什么形状的显示器呢?显

然,这样就走入了一条死胡同,因此必须找到其它的方法。 设法分别向两眼输送两个拍摄角度略有不同的画面,给左眼的画面只让左眼看到,给右眼的只让右眼看到,那么如同前面提到的立体眼镜,调节两幅画面之间的细微差距就相当于调节视差角。 既然可以人为的控制视差角,我们就可以在显示圆柱体时调节视差角产生圆柱体的立体感,显示电风扇、飞机时产生电风扇和飞机的立体感,显示宇宙时产生宇宙中每个星球的立体感等等。按照这个方法不就可以实现完美的立体显示了吗?事实上,当今主流的4种立体显示技术都是基于这个原理的。 实现基于双眼视觉的立体显示需要经过两大步骤,首先,要准备好两套分别供左眼和右眼观看的画面。目前,这种画面的来源有三种途径: 一、双机拍摄。拍摄电影或图片时将两台照像机或摄像机并排放置,两机间的角度和距离都模拟人的双眼。 二、从3D场景中提取。由于3D场景本来就被设计用来可供任何角度观看,所以从中提取两套画面自然不难,提取的两套画面相互间的角度要模拟人的双眼。 三、用软件智能模拟。这是利用计算机根据原始画面重新生成两套画面,可用于将现有的普通视频和图片转换为立体显示的片源,但效果略差。 片源准备好以后,第二个步骤就是将它们输送给双眼,并且要点是给左眼观看的画面只能让左眼看到。在输送时其实并不需要刻意的调节两套画面的差距,只要能将上述途径获得的片源按要求输送给双眼,那么人眼就会自动产生与画面对应的立体感了。为了实现这一步,各种立体显示技术采用了不同的方式,4种

三维立体电影制作流程

1、三维立体电影制作流程 三维立体电影,即我们常说的4D电影,是立体电影和特技影院结合的产物。随着三维软件在国内越来越广泛的应用,4D电影也得到了飞速的发展。运用三维软件制作立体电影有其独特的优势,如三维场景本身就具有立体特性,与立体成像相关的各种参数非常容易在软件环境中调节等。本文具体讲解了三维立体电影制作的原理及常见问题的解决方法,以后我们还会在具体的制作方面继续探讨,希望广大对立体电影感兴趣的朋友不要错过。 4D电影:4D电影是立体电影和特技影院结合的产物。除了立体的视觉画面外,放映现场还能模拟闪电、烟雾、雪花、气味等自然现象,观众的座椅还能产生下坠、震动、喷风、喷水、扫腿等动作。这些现场特技效果和立体画面与剧情紧密结合,在视觉和身体体验上给观众带来全新的娱乐效果,犹如身临其境,紧张刺激。4D影院最早出现在美国,如著名的蜘蛛侠、飞跃加州、T2等项目,都广泛采用了4D电影的形式。近年来,随着三维软件广泛运用于立体电影的制作,4D电影在国内也得到了飞速的发展,画面效果和现场特技的制作水平都有了长足的进步,先后在深圳、北京、上海、大连、成都等地出现了几十家4D影院。这些影院大都出现在各种主题公园(乐园)、科普场所中,深受观众和游客的喜爱。

运用三维软件制作立体电影有其独特的优势,如三维场景本身就具有立体特性,与立体成像相关的各种参数非常容易在软件环境中调节等。所以,计算机三维技术应用于影视行业后,很快就出现了三维立体电影,如大家俗称的3D电影、4D电影。美国迪士尼乐园中的蜘蛛侠(SpiderMan),更是解决了“三维立体跟踪渲染”技术,使画面中的立体场景能够根据游客的运动轨迹自动地转换透视关系,能够适时地保持虚景(三维画面)和实景(现场布景)一致和连续的透视关系,大大提高了画面的真实感。那么,怎样运用三维软件来制作立体电影?制作过程中要注意哪些问题?本文将通过对三维立体电影的制作原理的详细分析,探讨一些常见问题的解决方法。 人眼的立体成像原理 在现实生活中,人们通过眼睛观察的周围环境之所以是立体的,是因为人的两只眼睛所处的空间位置不同,可以从两个不同的视角同时获得两幅不同的场景图像,人的大脑对这两幅图像进行处理后,不仅能分辨出所观察物体的颜色、质感等光学信息,还能根据两幅图像的差异判断出物体

系统动力学模型

第10 章系统动力学模型 系统动力学模型(System Dynamic)是社会、经济、规划、军事等许多领域进行战略研究的重要工具,如同物理实验室、化学实验室一样,也被称之为战略研究实验室,自从问世以来,可以说是硕果累累。 1 系统动力学概述 2 系统动力学的基础知识 3 系统动力学模型 第1 节系统动力学概述 1.1 概念系统动力学是一门分析研究复杂反馈系统动态行为的系统科学方法,它是系统科学的一个分支,也是一门沟通自然科学和社会科学领域的横向学科,实质上就是分析研究复杂反馈大系统的计算仿真方法。 系统动力学模型是指以系统动力学的理论与方法为指导,建立用以研究复杂地理系统动态行为的计算机仿真模型体系,其主要含义如下: 1 系统动力学模型的理论基础是系统动力学的理论和方法; 2 系统动力学模型的研究对象是复杂反馈大系统; 3 系统动力学模型的研究内容是社会经济系统发展的战略与决策问题,故称之为计算机仿真法的“战略与策略实验室” ; 4 系统动力学模型的研究方法是计算机仿真实验法,但要有计算 机仿真语言DYNAMIC勺支持,如:PD PLUS VENSIM等的支持; 5 系统动力学模型的关键任务是建立系统动力学模型体系; 6 系统动力学模型的最终目的是社会经济系统中的战略与策略决策问题计

算机仿真实验结果,即坐标图象和二维报表; 系统动力学模型建立的一般步骤是:明确问题,绘制因果关系图,绘制系统动力学模型流图,建立系统动力学模型,仿真实验,检验或修改模型或参数,战略分析与决策。 地理系统也是一个复杂的动态系统,因此,许多地理学者认为应用系统动力学进行地理研究将有极大潜力,并积极开展了区域发展,城市发展,环境规划等方面的推广应用工作,因此,各类地理系统动力学模型即应运而生。 1.2 发展概况 系统动力学是在20世纪50年代末由美国麻省理工学院史隆管理学院教授福雷斯特(JAY.W.FORRESTERI出来的。目前,风靡全世界,成为社会科学重要实验手段,它已广泛应用于社会经济管理科技和生态灯各个领域。福雷斯特教授及其助手运用系统动力学方法对全球问题,城市发展,企业管理等领域进行了卓有成效的研究,接连发表了《工业动力学》,《城市动力学》,《世界动力学》,《增长的极限》等著作,引起了世界各国政府和科学家的普遍关注。 在我国关于系统动力学方面的研究始于1980 年,后来,陆续做了大量的工作,主要表现如下: 1 )人才培养 自从1980年以来,我国非常重视系统动力学人才的培养,主要采用“走出去,请进来”的办法。请进来就是请国外系统动力学专家来华讲学,走出去就是派留学生,如:首批派出去的复旦大学管理学院的王其藩教授等,另外,还多次举办了全国性的讲习班。 2 )编译编写专著

三维建模与三维动画的仿真技术研究

摘要:随着科学技术的不断进步,在很多工程建筑和很多的媒体技术中,三维建模和三维动画的仿真技术被人们广泛运用,本文就三维建模和三维动画仿真技术的概念特点等进行分别介绍,集体研究。 关键词:三维建模;三维动画;仿真技术 中图分类号:j218.7 文献标识码:a文章编号:1005-5312(2012)17-0043-01 一、关于三维建模 (一)三维模型 所谓的三维模型就是一个物体用三维的多边形表示出来,然后用计算机或者其他的设备用视频的形式进行显示。现实的物体可以使在现实世界里存在的实际物体,也可以是设计者虚构出的,总之就是不管是有的没得,只要是能想出来的都能用三维模型表示出来。 (二)三维建模的应用范围 三维建模在现在这个科技发展迅猛的时代已经被运用在各个领域,其中在视频游戏中,三维建模是作为计算机和视频游戏中的资源被运用,而在医疗行业中,三维建模被使用于器官的制作模型等,在电影电视行业中,他们被用于特技手段和活动的人物制作,在建筑业中,三维建模用来展示所要表达的建筑物和地貌风景等。 (三)三维建模的方法 1、软件建模 现在市场上有很多比较先进的建模软件,比如3dmax、maya、autocad等等,这些软件的共性是用一些较基本的几何体,如长方体、正方体、立方体和球体等,构建一系列的平移、旋转、拉伸和一些较复杂的几何场景来实现的。能够用团建来进行三维建模的主要是屋里建模、几何建模和行为建模等等,而其中尤几何建模的创建和描述是三维建模之间的重点。 2、仪器设备测量建模 三维建模中重要的工具就是三维扫描仪,又被叫做三维数字化仪。这种仪器能够将现实世界中的彩色努力提的信息快速的转换成计算机能够识别和处理的数字信号,并且能够为三维建模实现数字化提供了有效的方法。 3、图像或者视频建模 在现在的计算机图形学的研究领域,用图像或者是视频来进行三维建模是很多学者比较感兴趣的,这种方法同那些比较传统的建模方法相比,具有很多特别的优势,比如,用图像或者视频创建的模型会比别的方法更加真实和自然,并且,运用这种方法创建模型会变得更方便,速度也会大大提升。质量和速度的提高,是图像或视频建模最大的特色。 二、关于三维动画的仿真技术 (一)动画 借用人的视觉暂留原理,一系列的静态图像播出之后,会在人的视网膜上留下动态的效果,而利用计算机设计的动画效果,就是用计算机中比较高效的图像处理的功能,用一连串的关键帧来对物体的关键时刻进行描述,准确的几率物体关键时刻的位置结构和其他的参数,并且自动的形成中间的图像,然后创建出一幅流畅的画面。 (二)三维动画的的仿真应用 三维动画的仿真技术能够将真实的物体模拟成一个虚拟的动画,但是这个动画会产生一定的价值。三维动画的真实和精确,可操作性,三维动画在教育、军事、建筑和医学、娱乐等领域都有很大的发展性。 在影视制作方面,三维动画能够制作出比较有创意的特效和3d动画,还能够制作出精良的后期效果和特效动画,应用这项技术,吸引了越来越多人的眼球,得到很多客户的青睐,剧中的爆炸,烟雾,下雨和光效还有撞车,变形和很绚丽的片头片尾等等的出现,都得益于

三维立体显示技术发展现状与前景分析

三维立体显示技术现状分析与应用前景

目录 引言: (3) 1、三维立体技术概述 (3) 1.1、概念 (3) 1.2、特点 (3) 2、三维立体显示技术研究 (4) 2.1、眼镜式3D (4) 2.1.1、色差式 (4) 2.1.2、互补色 (4) 2.1.3、偏振光 (4) 2.1.4、时分式 (5) 2.2、裸眼式3D (5) 2.2.1、光屏障式 (5) 2.2.2、柱状透镜 (5) 2.2.3、指向光源 (6) 3、三维立体技术应用 (6) 3.1、应用范围 (6) 3.2、目前已存在的 (6) 4、三维立体技术发展存在的问题 (7) 4.1、技术壁垒 (7) 4.2、消费者体验 (7) 5、三维立体技术发展前景 (8) 【参考文献】 (8)

【摘要】本文主要介绍了3D立体技术在商业应用上的发展现状,以及其发展前景。首先介绍了3D立体技术的概念和相关特征,然后简要说明其分类和技术应用,主要介绍了在显示方面的技术,分析了其存在的技术壁垒、发展存在的问题和适用盲区,最后介绍了它的发展前景。 【关键词】3D立体技术显示技术眼睛式裸眼式现状分析发展前景 引言: 随着计算机技术和和网络技术的飞速发展,3D立体的应用研究也越来越受到广泛关注。它已然不止在高科技的商业上层出现,2008年北奥会开幕式的立体卷轴的设计,2010年欧洲出现了第一张3D报纸,同年在国际消费电子展上出现了3D电视,而电影《阿凡达》将全球影视视角提高到三维立体的角度,国内随后也有《龙门飞甲》的3D特效给观众带来了前所未有的体验。日本京都府精华町的东洋纺阪京研究所开发3D电子模特,也将3D技术应用到虚拟服装领域。目前,国内也出现了很多3D特效的商业广告,在昆明就有公交站台广告,一些整形医院也推出了一系列基于三维立体技术的平面广告,满足了消费者对整体或局部立体感的需求。这些都是三维立体技术在生活中的应用。 1、三维立体技术概述 1.1、概念 (1)、三维立体图:是一类能够让人从中感觉到立体效果的平面图像。观察这类图像通常需要采用特殊的方法或借助器材。 (2)、三维立体技术:利用先进的数码合成技术制作神奇三维立体,选择清晰的照片或底片将其扫描到电脑里,直接在电脑里利用专业的三维立体制图软件进行配图和数字处理,用高精度彩喷机打印出来,再用冷裱机装裱即可。 (3)、三维立体显示技术:将三维影像通过一定的手段显示出来,并被观众体验到的技术。 1.2、特点 (1)、视觉上层次分明色彩鲜艳,具有很强的视觉冲击力。 (2)、立体图给人以真实、栩栩如生,人物呼之欲出,有身临其境的感觉,有很高的艺术欣赏价值。 (3)、利用三维立体图像包装企业,使企业形象更加鲜明,突出企业实力和档次,增加影响力

立体显示技术

3D立体显示技术 虚拟现实是一种新兴的、极有应用前景的计算机综合性技术。采用以计算机技术为核心的现代高科技生成逼真的视觉、听觉、触觉一体化的特定范围的虚拟环境。立体显示是虚拟现实的关键技术之一,它使人在虚拟世界里具有更强的沉浸感,立体显示的引入可以使各种模拟器的仿真更加逼真。研究立体成像技术并利用现有的微机平台,结合相应的软硬件系统在平面显示器上显示立体视景。一、立体显示原理 由于人眼有 4 - 6cm的距离,所以实际上我们看物体时两只眼睛中的图象是有差别的。两幅不同的图象输送到大脑后,我们看到的是有景深的图象。这就是计算机和投影系统的立体成像原理。依据这个原理,结合不同的技术水平有不同的立体技术手段。 只要符合常规的观察角度,即产生合适的图象偏移,形成立体图象并不困难。从计算机和投影系统角度看,根本问题是图象的显示刷新率问题,即立体带宽指标问题。如果立体带宽足够,任何计算机、显示器和投影机显示立体图象都没有问题。 二、四种立体显示技术 下面就介绍4种技术如何将片源输送给双眼,其中前三种,分色、分光、分时技术的流程很相似,都是需要经过两次过滤,第一次是在显示器端,第二次是在眼睛端: 1)分色技术: 分色技术的基本原理是让某些颜色的光只进入左眼,另一部分只进入右眼。我们眼睛中的感光细胞共有4种,其中数量最多的是感觉亮度的细胞,另外三种用于感知颜色,分别可以感知红、绿、蓝三种波长的光,感知其它颜色是根据这三种颜色推理出来的,因此红、绿、蓝被称为光的三原色。要注意这和美术上讲的红、黄、蓝三原色是不同的,后者是颜料的调和,而前者是光的调和。 显示器就是通过组合这三元色来显示上亿种颜色的,计算机内的图像资料也大多是用三原色的方式储存的。分色技术在第一次过滤时要把左眼画面中的蓝色、绿色去除,右眼画面中的红色去除,再将处理过的这两套画面叠合起来,但

主动式光学三维成像技术

万方数据

万方数据

万方数据

万方数据

主动式光学三维成像技术 作者:周海波, 任秋实, 李万荣 作者单位:上海交通大学激光与光子生物医学研究所,上海,200030 刊名: 激光与光电子学进展 英文刊名:LASER & OPTOELECTRONICS PROGRESS 年,卷(期):2004,41(10) 被引用次数:6次 参考文献(23条) 1.Noguchi M;Nayar S K Microscopic shape from focus using active illumination[外文会议] 1994(01) 2.Cohen F S;Patel M A A new approach for extracting shape from texture,Intelligent Control,1990 1990 3.Nayar S K;Watanabe M;Noguchi M Real-time focus range sensor[外文期刊] 1996(12) 4.Ghita O;Whelan P F A bin picking system based on depth from defocus[外文期刊] 2003(04) 5.POSDAMER J L;Altschuler M D Surface measurement by space-encoded projected beam systems[外文期刊] 1982(01) 6.WOODHAM R J Photometric method for determining surface orientation from multiple images 1980(01) 7.Miyasaka T;Kuroda K;Hirose M High speed 3-D measurement system using incoherent light source for human performance analysis 2000 8.Carrihill B;Hummel R Experiments with the intensity ratio depth sensor 1985 9.Maruyama M;Abe S Range sensing by projecting multiple slits with random cuts[外文期刊] 1993(06) 10.Caspi D;Kiryati N;Shamir J Range imaging with adaptive color structured light[外文期刊] 1998(05) 11.Horn E;Kiryati N Toward optimal structured light patterns[外文期刊] 1999(02) 12.Rocchini C;Cignoni P;Montani M A low cost 3D scanner based on structured light 2001(03) 13.Inokuchi S;Sato K;Matsuda F Range imaging system for 3-D object recognition 1984 14.Horn B K P;Brooks M Shape from Shading 1989 15.Schubert E Fast 3D object recognition using multiple color coded illumination[外文会议] 1997 16.Pulli K Acquisition and visualization of colored 3D objects[外文会议] 1998 17.Sato K;Inokuchi S Three-dimensional surface measurement by space encoding range imaging 1985(02) 18.Daniel Scharstein;Richard Szeliski High-Accuracy Stereo Depth Maps Using Structured Light[外文会议] 2003 19.Batlle J;Mouaddib E;Salvi J Recent progress in coded structured light as a technique to solve the correspondence problem: a survey[外文期刊] 1998(07) 20.Yoshizawa T The recent trend of moiremetrology 1991(03) 21.Li Zhang;Curless B;Seitz S M Rapid Shape Acquisition Using Color Structured Light and Multi-pass Dynamic Programming[外文会议] 2002 22.Sato T Multispectral pattern projection range finder 1999 23.EL-Hakim S F;Beraldin J A;Blais F A Comparative Evaluation of the Performance of Passive and Active 3-D Vision Systems 1995 本文读者也读过(2条) 1.欧阳俊华.OUYANG Jun-hua近距离三维激光扫描技术[期刊论文]-红外2006,27(3)

铸造工艺模型立体图制作

铸造陈列室是陈列铸造工艺模型的地方,是用来存放铸造课程教学所用模型,并供学生参观学习的场所。 陈列室的模型大概分类,分别为砂箱模型,模底板模型,芯盒模型,铸造工艺模型,芯头模型,浇注系统模型 一.整理陈列室 陈列室很久没有进行清洁了,无论柜子上还是模型上都积攒了许多灰尘.为了之后进行模型制图和新柜子的高计,我们需要将所有模型从柜子里面取出,进行分类整理,同时还要进行清洁。 将模型从柜子里取出后先是凌乱地摆放到桌子和地上,然后一件一件开始清洗。有些形状复杂的模型清洗起来十分困难,而且其中几个木制的模型更是只能用布小心擦拭以防受潮。 将模型清洗完后开始分类,但发现许多模型都已损坏,于是在分类前我们将模型中已经损坏地先堆放到一边,再将完好的模型进行区分。 正式开始分类时才发现有些模型没有名称,有些还好,从外观可以看出其功用和类型,但有些就无法确认了,于是我们将那些没有名字又看不出用途的模型放置一边,将剩下的进行细分。 最后我们将模型分为了以下几类:工装模型(包括砂箱模型和模底板模型)、铸件工艺模型、铸件设计参考模型、金属型铸造系列模型、浇注系统模型、芯盒模型、砂芯模型。还有几个独立的模型不属于上述任何一类。 二.绘制三维立体图

我们的任务主要是绘制三维立体图形,用的是PROE软件,proe 是美国PTC公司旗下的产品Pro/Engineer软件的简称。Pro/E (Pro/Engineer操作软件)是美国参数技术公司(Parametric Technology Corporation,简称PTC)的重要产品。是一款集CAD/CAM/CAE功能一体化的综合性三维软件,在目前的三维造型软件领域中占有着重要地位,并作为当今世界机械CAD/CAE/CAM领域的新标准而得到业界的认可和推广,是现今最成功的CAD/CAM软件之一。 虽然之前学过这个软件,但由于有一段时间没有接触,对这个软件有些生孰了,再次打开这个软件时首先要做的是重新熟悉这个软件的界面和各个命令,以便之后绘图。 PROE的界面有些复杂,有控制坐标轴、坐标面、转动控制的开关,也有常用工具的陈列,还有最基本的文件编辑栏,当然,主要的是绘图框部分,不过只有进入草绘命令时才可以在绘图框内绘图,否帽只能观察图形的立体结构。 PROE最复杂的是一些不常被使用的命令,比如混合和扫描,这些命令甚至不在工具栏里面出现,只有在最上面编辑命令的展开里面才能找到。诸如此类的困难数不胜数,但经过一段时间的实际应用和摸索后,大多数问题都迎刃而解了。

三维建模及运动仿真

三维建模及运动仿真 Pro/Engineer 软件集产品的三维造型设计、加工、分析、仿真及绘图等功能于一体,是一套使用方便、参数化造型精确的软件,其强大的造型功能及仿真分析功能受到众多工程人员的青睐。本节将采用Pro/E 软件,完成少齿数齿轮传动机构中所有零件的参数化建模,并对少齿数齿轮减速器进行虚拟装配,在此基础上,对传动机构进行运动仿真。 3.1 齿轮的参数化建模 3.1.1 零件分析 齿轮建模的操作步骤如下: (1)添加齿轮设计参数 (2)添加齿轮关系式 (3)创建齿轮的齿廓曲线 (4)创建螺旋线方程 (5)实体生成: 1)创建螺旋线线方程 2))拉伸 3))阵列 3.1.2 绘制齿轮 (1)新建文件: 启动PROE Wildfire4.0,单击工具栏新建工具,或单击菜单“文件/新建”。出现如图3.1所示对话框。选择系统默认“零件”,子类型“实体”方式,“名称”栏中输入“canshuhuachilun ”,同时注意关闭“使用缺省模板”。选择公制模板mmns-part-solid ,如图3.2所示,然后单击“确定”。 (2)创建齿轮程序。 选择菜单栏“工具/程序”命令,出现如图3.3所示对话框。单击“编辑设计”, 依次添加齿轮设计参数及初始值,添加完毕单击“确定”。选择工具菜单“工具/程序”命令,出现如图3.4信息窗口,在其中输入程序如下: Y0=(1/4)*PI*MT+XT*MT*TAN(α t) Xc=(HANX+CNX-XN)*MN-ρ

Yc=(1/4)*PI*MT+HANX*MN*TAN(αt)+ρ*COS(αt) (3)添加齿轮四个圆的关系式。 1)选择“插入/模型基准/ 草绘”特征工具,或单击工具栏 草绘命令,出现如图3.5所示对话框。单击“草绘”确认,进入二维草绘模式如图3.6所示。

立体显示工作原理

立体显示技术介绍 一、.什么是立体显示? 立体显示或者称为3D显示,是指采用光学等多种技术手段来模拟实现人眼的立体视觉特性,将空间物体以3D信息再现出来,呈现出具有纵深感的立体图像的一种显示方式。相比于2D显示,3D显示提供给观看者更加强有力的沉浸感和震撼力。 人们之所以能够轻易地判断出物体在空间中的位置及不同物体间的相对位置,是因为人眼具有立体视觉。人们用以感知空间的主要生理机能有焦点调节、两眼集合、双目视差及单眼移动视差等。其中,双目视差担负着立体空间知觉的核心任务。焦点调节是为了把所注视的物体清晰地成像到视网膜上的眼球动作;两眼集合是当人在注视某个物体时左右眼视线往注视点上交汇而产生的眼球动作;双目视差是指由于人的左右眼从不同角度观看物体,从而成像于左右眼视网膜上的图像略有差异;单眼移动视差是指当观看者或被观看物体发生移动时人眼将看到物体的不同侧面。3D显示就是以人眼的立体视觉特性为基础的。 二、立体显示的实现方法 立体显示的实现方法可分为两大类,为助视3D显示和裸眼3D显示。 ?助视3D显示是靠眼睛佩戴助视设备来实现,如大家熟悉的偏光眼镜,这方面技术已成熟,但是也存在一定的缺陷,如亮度低,佩戴舒适度差等。 ?裸眼3D显示是通过光栅、集体成像、体3D和全息技术来实现3D立体成像,人眼无需佩戴任何设备,应用前景广泛,是目前显示研究的重点课题。 1.什么是光栅3D显示? 光栅3D显示器由光栅和2D显示器精密耦合而成。其中,光栅作为分光元件,对光线传播的路径进行一定方式的控制,使观看者的左右眼观看到不同的视差图像。可应用于手机、笔记本电脑显示和电视。如光栅3D显示手机就是采用双摄像头采集图像形成3D效果来实

3D立体成像技术简介

3D立体成像技术简介 3D立体成像技术其实并不是一个新鲜事物。如果从时间上看,3D立体成像 技术早在上个世纪中叶就已经出现,比起现在主流的的液晶、等离子这些平板 显示技术,历史更加悠久。 那么现在的3D电视,到底使用了哪些方式来实现所谓的“全高清无闪烁”的立体影像呢? 色差式3D 历史悠久缺点最多 首先我们看看最早出现的也是最容易实现的一种3D立体成像技术:色差式 3D成像技术。 从技术层面上看色差式3D立体成像是比较简单的一种方法,这种3D成像 只需要通过一副简单的红蓝(或者红绿)眼镜就可实现,硬件成本不过几元钱。显示设备方面也无需额外的升级,现有的任何显示设备都可以直接显示。 色差式3D立体成像技术的原理是将两张不同视角上拍摄的影像分别以两种不同的颜色印制在同一副画面中,如果不戴眼镜,我们只能看到色彩重合的模 糊图像。但是戴上眼镜后,左右眼不同颜色的镜片分别过滤了对应的色彩,只 有红色的影像通过红色镜片蓝色通过蓝色镜片,最终两只眼睛看到的不同影像 在人脑中重叠产生了立体效果。 色差式3D立体成像原理简单,能达到的3D景深效果也还算不错。不过由 于采用的色度分离方式会给观看者带来比较严重的视觉障碍,舒适感始终不能 让人满意,同时画面的色彩还原效果也一直在较低的水准徘徊,这就导致了它 很难成为3D立体显示技术中的主流。 偏光式3D 影院主流家庭不易实现 在3D电视大量出现之前,3D影院其实已经进入我们的生活很长一段时间。而在3D影院之中最为常见的,就是偏光式3D技术。 偏光式3D技术主要利用偏振光分离技术实现3D立体成像。观看者通过佩 戴偏振眼镜,左右眼镜片就分别过滤掉不同偏振方向的光线,从而实现了左右 眼画面的分离。 影院方面在具体实施的时候主要有两种方式:双机3D和单机3D。双机3D 多用在IMAX 3D影院中,通过使用两台投影机,分别透射偏振方向不一样的左 右眼画面。单机3D相对简单,主要通过但抬头迎和快速切换的偏振器来分别高速切换左右眼画面,最终再通过偏振眼镜进行左右眼画面的分离。

工艺技术铸造工艺模型立体图制作

工艺技术铸造工艺模型立体图制 作 铸造陈列室是陈列铸造工艺模型的地方,是用来存放铸造课程教学所用模型,并供学生参 观学习的场所。 陈列室的模型大概分类,分别为砂箱模型,模底板模型,芯盒模型,铸造工艺模型,芯头模型,浇注系统模型 一.整理陈列室 陈列室很久没有进行清洁了,无论柜子上还是模型上都积 攒了许多灰尘.为了之后进行模型制图和新柜子的高计,我们需要将所有模型从柜子里面取ft,进行分类整理,同时还要进行清洁。将模型从柜子里取ft后先是凌乱地摆放到桌子和地上,然后一件一件开始清洗。有些形状复杂的模型清洗起来十分困难,而且 其中几个木制的模型更是只能用布小心擦拭以防受潮。 将模型清洗完后开始分类,但发现许多模型都已损坏,于是在分类前我们将模型中已经损坏地先堆放到一边,再将完好的模型进行区分。 正式开始分类时才发现有些模型没有名称,有些还好,从外观可以看ft其功用和类型,但有些就无法确认了,于是我们将那些没有名字又看不ft用途的模型放置一边,将剩下的进行细分。最后我们将模型分为了以下几类:工装模型(包括砂箱模型和模底板模型)、铸件工艺模型、铸件设计参考模型、金属型铸造系列模型、浇注系统模型、芯盒模型、砂芯模型。还有几个

独立的模型不属于上述任何一类。 二.绘制三维立体图 我们的任务主要是绘制三维立体图形,用的是PROE软件,proe 是美国PTC 公司旗下的产品Pro/Engineer 软件的简称。Pro/E (Pro/Engineer 操作软件)是美国参数技术公司(ParametricTechnologyCorporation,简称PTC)的重要产品。是一款集CAD/CAM/CAE 功能一体化的综合性三维软件,在目前的三维造型软件领域中占有着重要地位,并作为当今世界机械CAD/CAE/CAM 领域的新标准而得到业界的认可和推广,是现今最成功的CAD/CAM 软件之一。 虽然之前学过这个软件,但由于有一段时间没有接触,对这个软件有些生孰了,再次打开这个软件时首先要做的是重新熟悉这个软件的界面和各个命令,以便之后绘图。 PROE的界面有些复杂,有控制坐标轴、坐标面、转动控制 的开关,也有常用工具的陈列,还有最基本的文件编辑栏,当然,主要的是绘图框部分,不过只有进入草绘命令时才可以在绘图框内绘图,否帽只能观察图形的立体结构。 PROE最复杂的是一些不常被使用的命令,比如混合和扫描,这些命令甚至不在工具栏里面ft现,只有在最上面编辑命令的展开里面才能找到。诸如此类的困难数不胜数,但经过一段时间的实际应用和摸索后,大多数问题都迎刃而解了。 图1 该图是一个壳体模型的铸造工艺三维立体图,模型本身已经部分损坏,但在图上还是可以修复完整的。制作该图用了大概三个小

相关主题
文本预览
相关文档 最新文档