当前位置:文档之家› 虚链路技术

虚链路技术

虚链路技术

Virtual-link虚链路技术

一、虚链路的介绍

1、使用虚链路可以使非骨干区域之间进行通信

2、可以扩展ABR、但虚拟路径不产生数据

3、虚链路的存在只是暂时的

4、只能在OSPF路由协议中使用

二、虚链路的配置命令

1、OSPF中配置虚链路

①router ospf 100 :进入OSPF进程

②area 1 virtual-link (对方id) :指定对方Route-id生成虚链路

2、虚链路的明文验证命令

①router ospf 100 :进入OSPF进程

②area 1 virtual-link (对方id) authentication :开启明文验证

③area 1 virtual-link (对方id) authentication-key (名字) :为虚链路验证起名字

3、虚链路的密文验证命令

①router ospf 100 :进入OSPF进程

②area 1 virtual-link (对方id) authentication message-digest :开启密文验证

③area 1 virtual-link (对方id) authentication message-digest-key 1 md5 (名字) :为密文虚链路起名字

4、查看虚链路配置

①show running-config |section router ospf :查看OSPF里虚链路配置

OSPF实验4:虚链路

OSPF实验4:虚链路 实验等级:Professional 实验拓扑: 实验分析: 上面这个网络的设计在OSPF中是比较失败的,因为OSPF建议所有的非骨干区域都和骨干区域直连。上面这个网络的设计将会导致Area2的数据和Area0无法通信。为了解决这个问题,一种方法可以在R3和R1上增加一条物理链路。还有一种过渡的方法就是使用虚链路。 实验基本配置: R1: interface Loopback0 ip address 1.1.1.1 255.255.255.0 ip ospf network point-to-point ! interface Serial1/0 ip address 10.1.1.1 255.255.255.0 serial restart-delay 0 ! router ospf 10

router-id 1.1.1.1 log-adjacency-changes network 10.1.1.0 0.0.0.255 area 0 R2: interface Loopback0 ip address 2.2.2.2 255.255.255.0 ! interface Serial1/0 ip address 10.1.1.2 255.255.255.0 serial restart-delay 0 ! interface Serial1/1 ip address 11.1.1.1 255.255.255.0 serial restart-delay 0 ! router ospf 10 router-id 2.2.2.2 log-adjacency-changes network 10.1.1.0 0.0.0.255 area 0 network 11.1.1.0 0.0.0.255 area 1 R3: interface Loopback0 ip address 3.3.3.3 255.255.255.0 ! interface Serial1/0 ip address 11.1.1.2 255.255.255.0 serial restart-delay 0 ! router ospf 10 router-id 3.3.3.3 log-adjacency-changes network 3.3.3.0 0.0.0.255 area 2 network 11.1.1.0 0.0.0.255 area 1 我们在R1上查看路由表,发现没有R3的Loopback接口路由: R1#sho ip rou Codes: C - connected, S - static, R - RIP, M - mobile, B - BGP D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2 E1 - OSPF external type 1, E2 - OSPF external type 2 i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2

H3C常见的OSPF

1. OSPF邻接形成过程? 互发HELLO包,形成双向通信 根据接口网络类型选DR/BDR 发第一个DBD,选主从 进行DBD同步 交互LSR、LSU、LSack进行LSA同步 同步结束后进入FULL 2. OSPF中承载完整的链路状态的包?LSU 3. 链路状态协议和距离矢量协议的比较? (1)路由传递方法不同(2)收敛速度不同(3)度量值不同(4)有环无环 (5)应用环境不同(6)有无跳数限制(7)生成路由的算法不同(8)对设备资源的消耗不同 4. OSPF防环措施? (1)SFP算法无环(2)更新信息中携始发者信息,并且为一手信息(3)多区域时要求非骨干区域,必须连接骨干区域,才能互通路由,防止了始发者信息的丧失,避免了环路。 5. OSPF是纯链路状态的协议吗? (1)单区域时是纯的链路状态协议,而多区域时,区域间路由使用的是距离矢量算法。6. OSPF中DR选举的意义?DR选举时的网络类型?DR和其它路由器的关系? (1)提高LSA同步效率。(2)广播型和NBMA要选DR (3)DR与其它路由器为邻接关系。 7. OSPF的NSSA区域和其它区域的区别? 比普通区域相比:去除了四类五类LSA,增加了七类LSA 和STUB区域相比:他可以单向引入外部路由 8. OSPF的LSA类型,主要由谁生成? 一类路由器LSA 所有路由器本区域描述直连拓扑信息 二类网络LSA DR 本区域描述本网段的掩码和邻居 三类网络汇总LSA ABR 相关区域区域间的路由信息 四类ASBR汇总LSA ABR 相关区域去往ASBR的一条路由信息 五类外部LSA ASBR 整个AS AS外部的路由信息 七类NSSA外部LSA ASBR 本NSSA区域AS外部的路由信息 9. IBGP为什么采用全互联?不采用全互联怎么部署? (1)解决IBGP水平分割问题(2)反射器或联盟 10. 路由反射器的反射原则? (1)客户端的路由反射给所有邻居(2)非客户端的路由反射给客户端(3)只发最优路由(4)两个非客户端路由不能互通(5)反射不改变路由属性 11. OSPF邻居形成过程? 12. OSPF有几类LSA? 13. OSPF的NSSA区域与其它区域的通信方法? 14. PPP协商过程? 15. OSPF没有形成FULL状态的原因? (1)HELLO和失效时间不一致(2)接口网络类型不一致(3)区域不一致(4)MA网络中掩码不一致(5)版本不一致(6)认证不通过(7)ROUTER-ID 相同(8)MA网络中优先级都为0 (9)MTU不一致(10)特殊区域标记不一样(11)底层不通(12)NBMA网络中没有指邻居

实验五 OSPF的基本配置

实验五OSPF的基本配置 实验拓扑图 1.基本配置 R1(config)#interface fastEthernet 0/0 R1(config-if)#ip address 172.16.1.1 255.255.255.0 R1(config-if)#no shutdown R1(config)#interface s2/0 R1(config-if)#ip add 192.168.1.5 255.255.255.252 R1(config-if)#clock rate 64000 R1(config-if)#no shutdown R2(config)#interface s3/0 R2(config-if)#ip add 192.168.1.6 255.255.255.252 R2(config-if)#no shutdown R2(config)#interface fa1/0 R2(config-if)#ip add 10.10.10.1 255.255.255.0 R2(config-if)#no shutdown 2.OSPF的配置 R1(config)#router ospf 1 启动ospf进程,进程ID为1(进程ID取值范围是1-65535中的一个整数),此进程号只是本地的一个标识,具有本地意义,与同一个区域中的OSPF路由器进程号没有关系,进程号不同不影响邻接关系的建立。 R1(config-router)#network 172.16.1.0 0.0.0.255 area 0 宣告网络,即定义参与OSPF进程的接口或网络,并指定其运行的区域(区域0为骨干区域),通配符掩码用来控制要宣告的范围,任何在此地址范围内的接口都运行OSPF协议,发送和接收OSPF报文,0表示精确匹配,将检查匹配地址中对应位,1表示任意匹配,不检查匹配地址中对应位。 R1(config-router)#network 192.168.1.4 0.0.0.3 area 0 R2(config)#router ospf 1 R2(config-router)#network 192.168.1.4 0.0.0.3 area 0 R2(config-router)#network 10.10.10.0 0.0.0.255 area 0 3.查看信息 (1)查看路由表 R1#show ip route 要求对R1路由表截图,说明OSPF路由的含义

OSPF虚链路认证

OSPF域间汇总 实验目的:了解并掌握域间汇总的配置 实验拓扑图: 基本配置 R1(config)#int s2/1 R1(config-if)#ip ad 12.0.0.1 255.255.255.0 R1(config-if)#int lo 0 R1(config-if)#ip ad 1.1.0.1 255.255.255.0 R1(config-if)#int lo 1 R1(config-if)#ip ad 1.1.1.1 255.255.255.0 R1(config-if)#int lo 2 R1(config-if)#ip ad 1.1.2.1 255.255.255.0 R1(config-if)#int lo 3 R1(config-if)#ip ad 1.1.3.1 255.255.255.0 R1(config-if)#int s2/1 R1(config-if)#no sh R1(config-if)# 00:02:54: %LINK-3-UPDOWN: Interface Serial2/1, changed state to up R1(config-if)# 00:02:55: %LINEPROTO-5-UPDOWN: Line protocol on Interface Serial2/1, changed state to up R1(config-if)#router ospf 10 R1(config-router)#net 12.0.0.0 0.0.0.255 a 0 R1(config-router)#no net 12.0.0.0 0.0.0.255 a 0 R1(config-router)#net 12.0.0.0 0.0.0.255 a 1 R1(config-router)#net 1.1.0.0 0.0.0.255 a 1 R1(config-router)#net 1.1.1.0 0.0.0.255 a 1 R1(config-router)#net 1.1.2.0 0.0.0.255 a 1 R1(config-router)#net 1.1.3.0 0.0.0.255 a 1 R2(config)#int s2/1

解决OSPF不连续区域的3种方法

解决OSPF不连续区域的3种方法 网络拓扑图 解决OSPF不连续区域的问题我们有三种解决办法: 1.多进程双向重新分布 2.创建tunnel通道宣告到区域0 3.创建虚链路 以下是3种方法配置的详细命令: 方法1:多进程双向重新分布 (1).重新启动另外一个OSPF进程 (2).在2个OSPF进程中宣告不连续的网段

(3).双向发布OSPF进程: redistribute ospf 进程号 subnets R1 int s0/0 ip add 1.1.1.1 255.255.255.0 no shut router ospf 110 router-id 1.1.1.1 network 1.1.1.0 0.0.0.255 area 0 R2 int s0/0 ip add 1.1.1.2 255.255.255.0 no shut int s0/1 ip add 2.2.2.1 255.255.255.0 no shut

router ospf 110 router-id 2.2.2.2 network 2.2.2.0 0.0.0.255 area 1 network 1.1.1.0 0.0.0.255 area 0 router ospf 120 router-id 2.2.2.5 network R3 int s0/0 ip add 2.2.2.2 255.255.255.0 no shut int s0/1 ip add 3.3.3.1 255.255.255.0 no shut router ospf 110 router-id 3.3.3.3

ospf虚链路的配置实验

ospf虚链路的配置实验 一、目的:Area 2经过Area 1与Area 0之间建立虚链路. 此拓扑中,virtual-link在R4与R2之间建立,从而使得Area 2与Area 0之间进行直接连接,virtual-link配置在R2与R4实施。通过实验,R4就变成一个特别的ABR。virtual-link 上面转发的是LSA – 3。 二、思想:R2与R4路由器互指对方的Router-ID。 三、问题:如何确认虚连接的对端IP地址? 中间连接area 0的过渡area 1上的ABR之间存在lsa-1与lsa-2的传递,确认对端的IP 地址。通过邻居地址指定, R2上的邻接状态: R4上的邻接状态:

四、配置内容: 4.1、R2: sh ip ospf database self-originate 可以看到Summary Net Link States 。 注意R2是个ABR,它的一个接口连接Area 0,另一个接口连接Area 1,所以R2会产生两区域的Summary Net Link States (lsa-3),通过Summary Net Link States (Area 0)中可以看到R2把23.1.1.0与34.1.1.0网段Upward(转发)到Area 0中;把1.1.1.0与12.1.1.0网段Upward(转发)到Area 1中,使得Area 0与Area 1中都有相互之间的路由,从而23.1.1.0、34.1.1.0 、1.1.1.0、12.1.1.0网段之间互通。

4.2、R4: R4为什么说是一个特殊的ABR呢?通过Virtual-Link 后,R4跨了Area 0, Area 1、Area 2三个区域,R4把学习到相关网段进行汇总,然后分发到了不同区域中。 Summary Net Link States (Area 1): R4把源Area 2中的5.5.5.0、45.1.1.0网段Upward到Area 1。 Summary Net Link States (Area 0): 由于R4与R2建立了Virtual-Link,R2的一个口在Area 1中,R4自然也就学习到了源Area 1中的23.1.1.0、34.1.1.0网段,同样也通过Virtual-link,R4把5.5.5.0、45.1.1.0、23.1.1.0、34.1.1.0网段Upward到了Area 0中。在此,有同学要问,那么不是和R2宣告进Area 0中的23.1.1.0、34.1.1.0网段重复了吗?跨了三Area 的特殊性就体现在这里! 同理,通过R2与R4之间的virtual-link,R4把源Area 0与Area 1中的路由信息汇总传递到Area 2中。 五、小结: 由于R4通过Virtual-Link横跨了area 0,area 1,area 2三个区域,那么把Area 0、Area 1区域中的路由信息通过Area 1传递给了Area 2,把Area 1、Area 2 传递给了Area 0,通过配置Virtual-Link,Area 2 就与Area 0进行直连。

思科OSPF实验1:基本的OSPF配置

思科OSPF实验1:基本的OSPF配置 实验步骤: 1.首先在3台路由器上配置物理接口,并且使用ping命令确保物理链路的畅通。 2.在路由器上配置loopback接口: R1(config)#int loopback 0 R1(config-if)#ip add 1.1.1.1 255.255.255.0 R2(config)#int loopback 0 R2(config-if)#ip add 2.2.2.2 255.255.255.0 R3(config)#int loopback 0 R3(config-if)#ip add 3.3.3.3 255.255.255.0 路由器的RID是路由器接口的最高的IP地址,当有环回口存在是,路由器将使用环回口的最高IP地址作为起RID,从而保证RID的稳定。 3.在3台路由器上分别启动ospf进程,并且宣告直连接口的网络。 R1(config)#router ospf 10 R1(config-router)#network 192.168.1.0 0.0.0.255area 0 R1(config-router)#network 1.1.1.0 0.0.0.255 area 0 R1(config-router)#network 192.168.3.0.0.0.255 area 0

ospf的进程号只有本地意义,既在不同路由器上的进程号可以不相同。但是为了日后维护的方便,一般启用相同的进程号。 ospf使用反向掩码。Area 0表示骨干区域,在设计ospf网络时,所有的非骨干区域都需要和骨干区域直连! R2,R3的配置和R1类似,这里省略。不同的是我们在R2和R3上不宣告各自的环回口。 *Aug 13 17:58:51.411: %OSPF-5-ADJCHG: Process 10, Nbr 2.2.2.2 on Serial1/0 from LOADING to FULL, Loading Done 配置结束后,我们可以看到邻居关系已经到达FULL状态。 4. 在R1上查看路由表,可以看到以下信息: R1#show ip route Codes: C - connected, S - static, R - RIP, M - mobile, B - BGP D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2 E1 - OSPF external type 1, E2 - OSPF external type 2 i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2 ia - IS-IS inter area, * - candidate default, U - per-user static route o - ODR, P - periodic downloaded static route Gateway of last resort is not set 1.0.0.0/24 is subnetted, 1 subnets

OSPF各种数据包结构解析

OSPF Packet Header OSPF报头为24字节. Version OSPF的版本号.IPv4为OSPFv2,IPv6为OSPFv3. Type OSPF数据包类型. Packet Length OSPF数据包长度. Router ID 始发OSPF数据包的路由器的Router-ID. Area ID 始发OSPF数据包的路由器接口所在的区域. Checksum OSPF数据包的校验和. AuType OSPF认证类型. Authentication AuType为0,不检查该字段. AuType为1,包含最长为64bit的口令. AuType为2,包含Key-ID,消息摘要和不减小的加密序列号. Authentication Data Length 附加在OSPF数据包尾部的消息摘要长度. Cryptographic Sequence Number 一个不会减小的序列号,用于防重放攻击. OSPF Hello Packet Hello包用于建立和维护邻接关系,也在MA网络中选举DR/BDR. *Network Mask 发送数据包的接口的网络掩码,必须匹配. *Hello Interval 接口上发送Hello包的时间间隔,BMA和P2P网络中默认为10s,NBMA网络中默认为30s. *Options DN MPLS VPN使用. O 用于Opaque LSA. DC按需链路上使用 EA 接收和转发具有外部属性LSA的能力. N/P N为1表明支持NSSA LSA,N为0表明不接收和发送NSSA. P(Propagation)为1执行7类到5类LSA转换,P为0不执行转换. MC MOPSF中使用. E E为1接收5类LSA,E为0不接收5类LSA. MT MT-OSPF使用. Router Priority 接口优先级,用于选举DR/BDR.为0将不参与选举,默认接口优先级为1. *Router Dead Interval 将邻居视为down前等待Hello包的时间间隔,默认为Hello Interval的4倍. Designated Router MA网络中的DR接口的IP地址,如果不存在将设置为 Backup Designated Router MA网络中的BDR接口的IP地址,如果不存在将设置为Neighbor 列出了始发路由器保存的邻居列表. * 必须匹配才可建立OSPF邻接关系. OSPF DBD Packet DBD中包含LSA头部信息,用于选举Master/Slave路由器,同步LSDB. Interface MTU 始发路由器接口可发送的最大IP数据包大小,在虚链路上传送时设置为0x0000. I Initial,发送是第一个DBD包时设置为1,后续DBD包设置为0. M More,发送不是最后一个DBD包时,设置为1,如果是最后一个DBD包设置为0. MS Master/Slave,如果设置为1代表是Master路由器,设置为0代表是Slave路由器. DD Sequence Number DBD包的序列号由Master路由器设置.

OSPF邻居及邻接关系(虚链路)置案例

一、技术概述 OSPF网络中,所有路由信息都在邻居或邻接中传递、交换。通过维持邻居或邻接关系,对整网的稳定性起着重要作用。 本节将重点研究ospf的网络类型及邻居邻接关系。 。 二、网络拓扑: 三、相关知识点总结: 1. 邻居关系和邻接关系有什么区别? 邻居关系和邻接关系是不同的概念。 邻居关系是指,当双方收到对方的hello报文的时候,报文里面的参数(hello time.dead interval , area id.authentication ,mask 等)一致的时候,并且邻居关系为2-way的时候,这个就可以成为是建立了邻居关系,但是还不是邻接关系。 邻接关系是指在建立的邻居关系之后继续发送DD,LSR,LSU等报文,最终双方的LSDB达到同步之后,邻居状态为FULL时,才成为邻接关系。 希望对你希望对你有用。 2. OSPF支持的网络类型有哪些? ospf的网络类型:根据链路层协议判断网络类型 1)、point to point----ppp 2)、广播-----以太网Ethernet 3)、NBMA FR (frame-relay)帧中继物理结构与广播很像,但是该网络默认不传递广播 4)、点到多点,从NBMA修改过来的。(可看作点到点类型网络) 3. 什么是DR和BDR?

选举DR和BDR:DR为指定路由器,BDR为备份路由器。 4. 哪些网络需要进行选举DR、BDR ?为什么要进行DR/BDR选举? 广播和BMA类型的网络都会选举DR和BDR,NBMA为人为指定。 判断该链路上是否有DR(先启动的) 根据接口优先级和route-ID选举。优先级默认为1,范围1---255,先判断优先级,若一致,选route-ID大的,最优的为DR,次之为BDR。每次评选选BDR。如果网络中路由器很多时,那么需要维护的建立的邻接关系就很多,需要发送的报文也很多。而且每台路由器之间都相互发送lsa,这样就造成好多重复的lsa在网络中传递,浪费了太多带宽资源,所以选取dr 和bdr用来节省带宽资源。 5. Router Priority最大的一定是DR吗? 不一定,选择完成后的特性: 终身制: 世袭制: 民主制:优先级培认为置为0,则没有选举权。 所有的路由器包括DR、BDR、DR-other之间的关系:所偶的DR-other和BDR时 及drDR之间会形成full,DR-other之间只能为tow-way。 6. 配置虚连接的时候如何表示对端路由器? 四、项目需求: 1. 如图所示,配置OSPF多区域后,由于area 2 和area 0 没有直接相连,故所以,在area 1里配置虚电路,使得R4可以收到R1的路由信息。 2. 区域零中使r3永远为DR,区域1和区域2中,不进行DR/BDR选举,以加快收敛 3. 所有的互联地址以192.168.255.0/24主类地址进行以/30规划,且在R3上看到去往r4直连网络的路由开销为100,r4到R3的直连网络路由为50. R1: sysname llb-R1 interface GigabitEthernet0/0/0 ip address 192.168.255.1 255.255.255.252 ospf network-type p2p interface LoopBack0 ip address 1.1.1.1 255.255.255.255 # ospf 1 router-id 1.1.1.1 area 0.0.0.0

配置OSPF虚连接

实验报告 实验人:学号:日期:2015/3/29 院(系):专业(班级):网络工程 实验题目:配置OSPF虚连接 一. 实验目的 1. 掌握OSPF的相关理论知识,了解OSPF虚连接的原理; 2. 掌握OSPF虚连接配置的相关命令; 二. 实验原理 虚连接(Virtual-link):由于网络的拓扑结构复杂,有时无法满足每个区域必须和骨干区域直接相连的要求,为解决此问题,OSPF提出了虚链路的概念。 虚连接是设置在两个路由器之间,这两个路由器都有一个端口与同一个非主干区域相连。虚连接被认为是属于主干区域的,在OSPF路由协议看来,虚连接两端的两个路由器被一个点对点的链路连接在一起。在OSPF路由协议中,通过虚连接的路由信息是作为域内路由来看待的。 三. 实验器材 华为模拟器; 四.实验分析与设计 实验拓扑图:

实验配置过程: Router A的配置: #sysname RouterA #router id 1.1.1.1 //Router ID,建议配置为LoopBack0的IP地址#interface GigabitEthernet1/0/0 ip address 192.168.1.2 255.255.255.0 ospf authentication-mode hmac-sha256 #interface GigabitEthernet2/0/0 ip address 192.168.0.2 255.255.255.0 ospf authentication-mode hmac-sha256 #interface LoopBack0 ip address 1.1.1.1 255.255.255.255 #ospf 2 area 0.0.0.0 authentication-mode hmac-sha256 network 192.168.0.0 0.0.0.255 area 0.0.0.1 authentication-mode hmac-sha256

OSPF配置实验

OSPF 讲义 一.实验显示邻居和邻接过程的建立 此实验(lab2)只是启用r1 ,r2 来验证邻接和邻居关系的建立,首先给r1和r2配置 r1>en r1#conf t r1(config)#interface loopback 0//创建环回口 r1(config-if)#ip address 1.1.1.1 255.255.255.0 r1(config-if)#exit r1(config)#int s0/0 r1(config-if)#ip add 12.1.1.1 255.255.255.252//给路由器R1 的S0接口配IP 地址 r1(config-if)#exit r1(config)#router ospf 100 r1(config-router)#router-id 1.1.1.1(1.1.1.1随便写) r1(config-router)#network 1.1.1.0 0.0.0.255 area 0 // 宣告loopback 地址 r1(config-router)#net 12.1.1.0 0.0.0.3 area 0//宣告互联地址 0.0.0.3 反掩码 r1(config-router)#int s 0/0 r1(config-if)#shut 出现: Interface Serial0/0, changed state to administratively down Line protocol on Interface Serial0/0, changed state to down 把s0/0接口先DOWN 了,关闭的目的是让R1和R2之间不能够进行通信,他们之间不能学习。因为我们是要观察OSPF 建立邻接关系的过程,然后再把他们启用起来,让大家看启用过程 下面是对R2路由器的配置 r2>en r2#conf t r2(config)#interface loopback 0//创建环回口 r2(config-if)#ip address 2.2.2.2 255.255.255.0 r2(config-if)#exit r2(config)#int s0/0 r2(config)#no shut r2(config-if)#ip add 12.1.1.2 255.255.255.252//给路由器R1 的S0接口配IP 地址 Loopback0 Loopback 1.1.1.1 1 子网掩码:255.255.255.252

OSPF的安全认证和vritual-link(虚链路)

实验三综合试验1 【实验目的】 点到点多区域OSPF的安全认证和vritual-link(虚链路)的作用及配置 【实验背景】 非主区域必须和主区域(area 0)直接相连才能与其它区域通信。如果不直接相连,则须使用virtual-link实现于其它区域通信,设备端口和区域若分别加上安全验证ip ospf authentication-key password 和area area-id authentication后,安全验证的端口将不与无验证的端口通信。 【实验任务】 1、根据建议的地址配置个设备 2、建立ospf路由,并划分区域 3、测试区域0和区域1是否能够通讯,测试区域0和区域2是否能够通讯 4、通过建立虚链路的方法,实现区域0和区域2能够正常通讯 5、完成实验报告。 路由器分别命名为R1和R2、R4,路由器之间通过串口采用V35 DCE/DTE电缆连接,DCE端连接到R1(R1762)上。 【实验设备】 锐捷RG-S3760交换机1台,锐捷RG-S2126交换机1台;锐捷STAR-R2632路由器1台,锐捷STAR-R1762路由器2台。 【实验拓扑】: 【实验环境】: 设备地址分配如下: S2: F0/12 1.0.0.1 S2: F0/24 1.0.0.2 R2: F1/0 1.0.0.3 PC6 1.0.0.100 R2:F1/1 192.168.1.1 PC2 192.168.1.100 R2:s1/2 2.0.0.1 R1:s1/2 2.0.0.2 R1: F1/1 192.168.2.1 PC1 192.168.2.100 R1:s2/0 3.0.0.1 R4:s1/2 3.0.0.2 R4:F1/1 192.168.3.1 PC4 192.168.3.100 R4: F1/0 4.0.0.3 PC4 4.0.0.100(网关4.0.0.1) S4: F0/12 4.0.0.1 S4: F0/24 4.0.0.2 [试验配置] 步骤1. 根据给定地址配置R1和R2,并建立OSPF路由,划分区域R2632-1#conf t !进入全局配置模式 R2632-1(config)#hostname r1 !命名路由器 r1 (config)#interface s1/2 !进入s1/2接口模式,并配置ip地址 r1 (config-if)#ip address 2.0.0.2 255.255.255.0 r1 (config-if)#clock rate 64000 r1 (config-if)#no sh !开启端口 r1 (config-if)#exit !退回到上一级的操作模式 r1 (config)#interface s2/0 r1 (config-if)#ip address 3.0.0.1 255.255.255.0 r1 (config-if)#clock rate 64000 r1 (config-if)#no sh r1 (config-if)#exit r1 (config)#interface f1/1 r1 (config-if)#ip address 192.168.2.1 255.255.255.0 r1 (config-if)#no sh r1 (config-if)#exit r1 (config)#router ospf !开启OSPF路由协议进程 r1 (config-router)#network 2.0.0.0 0.0.0.255 area 1 !申请直连网段信息,并分配区域号 r1 (config-router)#network 3.0.0.0 0.0.0.255 area 2 r1 (config-router)#network 192.168.2.0 0.0.0.255 area 1 r1 (config-router)#exit R2配置 R1762-1#conf t R1762-1(config)#hostname r2 r2 (config)#interface s1/2 r2 (config-if)#ip address 2.0.0.1 255.255.255.0 r2 (config-if)#no sh r2 (config-if)#exit r2 (config)#interface f1/0 r2 (config-if)#ip address 1.0.0.3 255.255.255.0 r2 (config-if)#no sh

OSPF虚链路(virtual-link)配置实例

OSPF虚链路(virtual-link)配置实例 这个配置将验证一个OSPF虚电路(Virtual-Link)的过程,重点在观察虚链路连接的临时网络与正常区域间路由有何区别。上图中区域4(area 4)没有和area 0直接相连。在R2与R3之间配置了一条虚链路。 // R1 // int lo0 ip ad 1.1.1.1 255.255.255.0 int e0 ip ad 192.1.1.1 255.255.255.0 router os 1 network 192.1.1.0 0.0.0.255 area 0 // R2 //

int lo0 ip ad 2.2.2.2 255.255.255.0 int e0 ip ad 192.1.1.2 255.255.255.0 int e1 ip ad 193.1.1.2 255.255.255.0 router os 1 network 192.1.1.0 0.0.0.255 area 0 network 193.1.1.0 0.0.0.255 area 1 // R3 // int lo0 ip ad 3.3.3.3 255.255.255.0 int e1 ip ad 193.1.1.3 255.255.255.0 int e0 ip ad 194.1.1.3 255.255.255.0 router os 1 network 193.1.1.0 0.0.0.255 area 1 network 194.1.1.0 0.0.0.255 area 4 // R4 // int lo0 ip ad 4.4.4.4 255.255.255.0 int e0 ip ad 194.1.1.4 255.255.255.0 router os 1 network 194.1.1.0 0.0.0.255 area 4 基本配置完成后,我们在每台路由器上分别来验证一下:r1#sh ip os nei

OSPF虚链路(virtual-link)配置实例 + 详细验证过程

OSPF虚链路(virtual-link)配置实例 + 详细验证过程 这个配置将验证一个OSPF虚电路(Virtual-Link)的过程,重点在观察虚链路连接的临时网络与正常区域间路由有何区别。上图中区域4(area 4)没有和area 0直接相连。在R2与R3之间配置了一条虚链路。 // R1 // int lo0 ip ad 1.1.1.1 255.255.255.0 int e0 ip ad 192.1.1.1 255.255.255.0 router os 1 network 192.1.1.0 0.0.0.255 area 0

// R2 // int lo0 ip ad 2.2.2.2 255.255.255.0 int e0 ip ad 192.1.1.2 255.255.255.0 int e1 ip ad 193.1.1.2 255.255.255.0 router os 1 network 192.1.1.0 0.0.0.255 area 0 network 193.1.1.0 0.0.0.255 area 1 // R3 // int lo0 ip ad 3.3.3.3 255.255.255.0 int e1 ip ad 193.1.1.3 255.255.255.0 int e0 ip ad 194.1.1.3 255.255.255.0 router os 1 network 193.1.1.0 0.0.0.255 area 1 network 194.1.1.0 0.0.0.255 area 4 // R4 // int lo0 ip ad 4.4.4.4 255.255.255.0 int e0 ip ad 194.1.1.4 255.255.255.0 router os 1 network 194.1.1.0 0.0.0.255 area 4

OSPF_协议总结(最终版)

OSPF协议总结---By Joe&东东&校长 1、邻居是否自动发现:要有广播的特点 2、DR BDR 选举:要有多点接入 3、否则就要静态指定 O 区域内LSA1. LSA2 O IA 区域间LSA3.LSA4 OE1 都是外部LSA5. LSA 7 OE2 ON1 ON2 外部路由不优先 OSPF O>OIA>OE1>OE2 DR 通告 ABR通告,整个网络泛红LSA 1 和LSA2 只在本区域泛红,其他整个OSPF网泛红。

OSPF的五个包: 1.Hello:9项内容,4个必要 2.DBD:数据库描述数据包(主要描述始发路由器数据库中的一些或者全部LSA信息),主要包括接口的MTU,主从位MS,数据库描述序列号等); 3.LSR:链路状态请求数据包(查看收到的LSA是否在自己的数据库,或是更新的LSA,如果是将向邻居发送请求); 4.LSU:链路状态更新数据包(用于LSA的泛洪扩散和发送LSA去响应链路状态请求数据包); 5.LSACK:链路状态确认数据包(用来进行LSA可靠的泛洪扩散,即对可靠包的确认)。 Hello包作用: 1.发现邻居; 2.建立邻居关系; 3.维持邻居关系; 4.选举DR,BDR 5.确保双向通信。 Hello包所包含的内容: 路由器id Hello&Dead间隔* 区域id * 邻居 DR BDR 优先级 验证* 末节区域* 注:1.“*”部分全部匹配才能建立邻居关系。 2.邻居关系为FULL状态;而邻接关系是处于TWO-WAY状态。 Hello时间间隔: 在点对点网络与广播网络中为10秒; 在NBMA网络与点对多点网络中为30秒。

OSPF实验大集合(IPv4)

OSPF实验大集合(IPv4) 实验目录: 1.OSPF多区域基本配置 2.OSPF创建虚链路 3.OSPF引入外部路由 4.OPPF中的stub区域 5.OSPF中的stub no-summary区域 6.OSPF中的NSSA区域 一.OSPF多区域基本配置 按照上面的拓扑配置ip地址 宣告网络 R1上的lo0和s0/2/0宣告到区域1中。 [R1]ospf [R1-ospf-1]area 1 [R1-ospf-1-area-0.0.0.1]network 192.168.1.0 0.0.0.255 [R1-ospf-1-area-0.0.0.1]network 1.1.1.0 0.0.0.255 [R1-ospf-1-area-0.0.0.1]q R2上的s0/2/0宣告到区域1中。 其他宣告到区域0中 [R2]ospf [R2-ospf-1]area 1 [R2-ospf-1-area-0.0.0.1]network 192.168.1.0 0.0.0.255 [R2-ospf-1-area-0.0.0.1]q [R2-ospf-1]area 0

[R2-ospf-1-area-0.0.0.0]network 192.168.2.0 0.0.0.255 [R2-ospf-1-area-0.0.0.0]network 2.2.2.0 0.0.0.255 [R2-ospf-1-area-0.0.0.0]q [R2-ospf-1]q R3上的s0/2/0宣告到区域0中 S0/2/2和lo0宣告到区域2中 [R3]ospf [R3-ospf-1]area 0 [R3-ospf-1-area-0.0.0.0]net 192.168.2.0 0.0.0.255 [R3-ospf-1]area 2 [R3-ospf-1-area-0.0.0.2]net 192.168.3.0 0.0.0.255 [R3-ospf-1-area-0.0.0.2]net 3.3.3.0 0.0.0.255 [R3-ospf-1-area-0.0.0.2]q [R3-ospf-1]q R4上的s0/2/0宣告到区域2中 Lo0宣告到区域3中 [R4]ospf [R4-ospf-1]area 2 [R4-ospf-1-area-0.0.0.2]net 192.168.3.0 0.0.0.255 [R4-ospf-1-area-0.0.0.2]q [R4-ospf-1]area 3 [R4-ospf-1-area-0.0.0.3]net 4.4.4.0 0.0.0.255 [R4-ospf-1-area-0.0.0.3]q 基本的多区域OSPF已经配置完毕 查看一下R1的路由,是不能学习到区域3的路由的,因为区域3不与主干区域相连![R1]display ip routing-table protocol ospf Public Routing Table : OSPF Summary Count : 6 OSPF Routing table Status : < Active> Summary Count : 4 Destination/Mask Proto Pre Cost NextHop Interface 2.2.2.2/32 OSPF 10 1562 192.168.1.2 S0/2/0 3.3.3.3/32 OSPF 10 3124 192.168.1.2 S0/2/0 192.168.2.0/24 OSPF 10 3124 192.168.1.2 S0/2/0 192.168.3.0/24 OSPF 10 4686 192.168.1.2 S0/2/0

相关主题
文本预览
相关文档 最新文档