当前位置:文档之家› 数学专业外文翻译---幂级数的展开及其应用

数学专业外文翻译---幂级数的展开及其应用

数学专业外文翻译---幂级数的展开及其应用
数学专业外文翻译---幂级数的展开及其应用

Power Series Expansion and Its Applications

In the previous section, we discuss the convergence of power series, in its convergence region, the power series always converges to a function. For the simple power series, but also with itemized derivative, or quadrature methods, find this and function. This section will discuss another issue, for an arbitrary function ()f x , can be expanded in a power series, and launched into.

Whether the power series ()f x as and function? The following discussion will address this issue. 1 Maclaurin (Maclaurin) formula

Polynomial power series can be seen as an extension of reality, so consider the function ()f x can expand into power series, you can from the function ()f x and polynomials start to solve this problem. To this end, to give here without proof the following formula.

Taylor (Taylor) formula, if the function ()f x at 0x x = in a neighborhood that until the derivative of order 1n +, then in the neighborhood of the following formula :

20000()()()()()()n n f x f x x x x x x x r x =+-+-++-+… (9-5-1)

Among

10()()n n r x x x +=-

That ()n r x for the Lagrangian remainder. That (9-5-1)-type formula for the Taylor.

If so 00x =, get

2()(0)()n n f x f x x x r x

=+++++…, (9-5-2) At this point,

(1)(1)11

1()()()(1)!(1)!

n n n n n f f x r x x x n n ξθ+++++==++ (01θ<<).

That (9-5-2) type formula for the Maclaurin.

Formula shows that any function ()f x as long as until the 1n +derivative, n can be equal to a polynomial and a remainder.

We call the following power series

()2(0)(0)()(0)(0)2!!

n n

f f f x f f x x x n '''=+++++…… (9-5-3) For the Maclaurin series.

So, is it to ()f x for the Sum functions? If the order Maclaurin series (9-5-3) the first 1n + items

and for 1()n S x +, which

()21(0)(0)()(0)(0)2!!

n n

n f f S x f f x x x n +'''=++++…

Then, the series (9-5-3) converges to the function ()f x the conditions

1lim ()()n n s x f x +→∞

=.

Noting Maclaurin formula (9-5-2) and the Maclaurin series (9-5-3) the relationship between the

known

1()()()n n f x S x r x +=+

Thus, when

()0n r x =

There,

1()()n f x S x +=

Vice versa. That if

1lim ()()n n s x f x +→∞

=,

Units must

()0n r x =.

This indicates that the Maclaurin series (9-5-3) to ()f x and function as the Maclaurin formula (9-5-2) of the remainder term ()0n r x → (when n →∞).

In this way, we get a function ()f x the power series expansion:

()()0

(0)(0)()(0)(0)!!

n n n n

n f f f x x f f x x n n ∞

='==++++∑

……. (9-5-4) It is the function ()f x the power series expression, if, the function of the power series expansion is unique. In fact, assuming the function f (x ) can be expressed as power series

20120

()n n n n n f x a x a a x a x a x ∞

===+++++∑……, (9-5-5)

Well, according to the convergence of power series can be itemized within the nature of derivation,

and then make 0x = (power series apparently converges in the 0x = point), it is easy to get

()2012(0)(0)(0),(0),,,,,2!!

n n

n f f a f a f x a x a x n '''====…….

Substituting them into (9-5-5) type, income and ()f x the Maclaurin expansion of (9-5-4) identical. In summary, if the function f (x ) contains zero in a range of arbitrary order derivative, and in this range of Maclaurin formula in the remain der to zero as the limit (when n → ∞,), then , the function f (x ) can start forming as (9-5-4) type of power series.

Power Series

()2

0000000()()()()()()()()1!2!!

n n f x f x f x f x f x x x x x x x n '''=+-+-++-……,

Known as the Taylor series.

Second, primary function of power series expansion

Maclaurin formula using the function ()f x expanded in power series method, called the direct expansion method.

Example 1

Test the function ()x f x e =expanded in power series of x . Solution because

()()n x f x e =,(1,2,3,)n =…

Therefore

()(0)(0)(0)(0)1n f f f f '''====…,

So we get the power series

211

12!!

n x x x n ++

+++……, (9-5-6) Obviously, (9-5-6)type convergence interval (,)-∞+∞, As (9-5-6)whether type ()x f x e = is Sum function, that is, whether it converges to ()x

f x e = , but also examine remainder ()n r x . Because

1e ()(1)!

x

n n r x x n θ+=+ (01θ<<),且x x x θθ≤≤,

Therefore

11

e e ()(1)!(1)!

x

x n n n r x x x n n θ++=<++,

Noting the value of any set x ,x

e is a fixed constant, while the series (9-5-6) is absolutely convergent, so the general when the item when n →∞, 1

0(1)!

n x

n +→+ , so when n → ∞,

there

1

0(1)!

n x

x

e

n +→+,

From this

lim ()0n n r x →∞

=

This indicates that the series (9-5-6) does converge to ()x f x e =, therefore

211

12!!

x n e x x x n =++

+++…… (x -∞<<+∞). Such use of Maclaurin formula are expanded in power series method, although the procedure is clear,

but operators are often too Cumbersome, so it is generally more convenient to use the following power series expansion method.

Prior to this, we have been a function

x

-11, x

e and sin x power series expansion, the use o

f these known expansion by power series of operations, we can achieve many functions of power series expansion. This demand function of power series expansion method is called indirect expansion .

Example 2

Find the function ()cos f x x =,0x =,Department in the power series expansion. Solution because

(sin )cos x x '=,

And

3521111sin (1)3!5!(21)!

n n x x x x x n +=-

+-+-++……,(x -∞<<+∞)

Therefore, the power series can be itemized according to the rules of derivation can be

342111cos 1(1)2!4!(2)!

n n

x x x x n =-

+-+-+……,(x -∞<<+∞) Third, the function power series expansion of the application example

The application of power series expansion is extensive, for example, can use it to set some numerical or other approximate calculation of integral value.

Example 3 Using the expansion to estimate arctan x the value of π.

Solution because πarctan14

= Because of

357

arctan 357

x x x x x =-+-+…, (11x -≤≤),

So there

1114arctan14(1)357

π==-+-+…

Available right end of the first n items of the series and as an approximation of π. However, the convergence is very slow progression to get enough items to get more accurate estimates of πvalue.

此外文文献选自于:

Walter.Rudin.数学分析原理(英文版)[M].北京:机械工业出版社.

幂级数的展开及其应用

在上一节中,我们讨论了幂级数的收敛性,在其收敛域内,幂级数总是收敛于一个和函数.对于一些简单的幂级数,还可以借助逐项求导或求积分的方法,求出这个和函数.本节将要讨论另外一个问题,对于任意一个函数()f x ,能否将其展开成一个幂级数,以及展开成的幂级数是否以()f x 为和函数?下面的讨论将解决这一问题.

一、 马克劳林(Maclaurin)公式

幂级数实际上可以视为多项式的延伸,因此在考虑函数()f x 能否展开成幂级数时,可以从函数

()f x 与多项式的关系入手来解决这个问题.为此,这里不加证明地给出如下的公式.

泰勒(Taylor)公式 如果函数()f x 在0x x =的某一邻域内,有直到1n +阶的导数,则在这个邻域内有如下公式:

()2

0000000()()()()()()()()()2!!

n n n f x f x f x f x f x x x x x x x r x n '''=+-+-++-+…,(9-5-1)

其中

(1)10()

()()(1)!

n n n f r x x x n ξ++=-+.

称()n r x 为拉格朗日型余项.称(9-5-1)式为泰勒公式. 如果令00x =,就得到

2()(0)()n n f x f x x x r x =+++++…, (9-5-2)

此时,

(1)(1)11

1()()()(1)!(1)!

n n n n n f f x r x x x n n ξθ+++++==++, (01θ<<).

称(9-5-2)式为马克劳林公式.

公式说明,任一函数()f x 只要有直到1n +阶导数,就可等于某个n 次多项式与一个余项的和. 我们称下列幂级数

()2(0)(0)()(0)(0)2!!

n n

f f f x f f x x x n '''=+++++…… (9-5-3)

为马克劳林级数.那么,它是否以()f x 为和函数呢?若令马克劳林级数(9-5-3)的前1n +项和为

1()n S x +,即

()21(0)(0)()(0)(0)2!!

n n

n f f S x f f x x x n +'''=++++…,

那么,级数(9-5-3)收敛于函数()f x 的条件为

1lim ()()n n s x f x +→∞

=.

注意到马克劳林公式(9-5-2)与马克劳林级数(9-5-3)的关系,可知

1()()()n n f x S x r x +=+.

于是,当

()0n r x =

时,有

1()()n f x S x +=.

反之亦然.即若

1lim ()()n n s x f x +→∞

=

则必有

()0n r x =.

这表明,马克劳林级数(9-5-3)以()f x 为和函数?马克劳林公式(9-5-2)中的余项()0n r x → (当n →∞时).

这样,我们就得到了函数()f x 的幂级数展开式:

()()20

(0)(0)(0)()(0)(0)!2!!

n n n n

n f f f f x x f f x x x n n ∞

='''==+++++∑

……(9-5-4) 它就是函数()f x 的幂级数表达式,也就是说,函数的幂级数展开式是唯一的.事实上,假设函数()f x 可以表示为幂级数

20120

()n n n n n f x a x a a x a x a x ∞

===+++++∑……, (9-5-5)

那么,根据幂级数在收敛域内可逐项求导的性质,再令0x =(幂级数显然在0x =点收敛),就容易得到

()2012(0)(0)(0),(0),,,,,2!!

n n

n f f a f a f x a x a x n '''====…….

将它们代入(9-5-5)式,所得与()f x 的马克劳林展开式(9-5-4)完全相同.

综上所述,如果函数()f x 在包含零的某区间内有任意阶导数,且在此区间内的马克劳林公式中的余项以零为极限(当n →∞时),那么,函数()f x 就可展开成形如(9-5-4)式的幂级数.

幂级数

()00000()()

()()()()1!!

n n f x f x f x f x x x x x n '=+-++-……,

称为泰勒级数.

二、 初等函数的幂级数展开式

利用马克劳林公式将函数()f x 展开成幂级数的方法,称为直接展开法. 例1 试将函数()x f x e =展开成x 的幂级数. 解 因为

()()n x f x e =, (1,2,3,)n =…

所以

()(0)(0)(0)(0)1n f f f f '''====…,

于是我们得到幂级数

211

12!!

n x x x n ++

+++……, (9-5-6) 显然,(9-5-6)式的收敛区间为(,)-∞+∞,至于(9-5-6)式是否以()x f x e =为和函数,即它是否收敛于()x

f x e =,还要考察余项()n r x .

因为

1e ()(1)!

x

n n r x x n θ+=+ (01θ<<), 且x x x θθ≤≤,

所以

11

e e ()(1)!(1)!

x

x n n n r x x x n n θ++=<++.

注意到对任一确定的x 值,x

e 是一个确定的常数,而级数(9-5-6)是绝对收敛的,因此其一般项当n →∞时,

1

0(1)!n x

n +→+,所以当n →∞时,有 1

0(1)!

n x

x

e

n +→+,

由此可知

lim ()0n n r x →∞

=.

这表明级数(9-5-6)确实收敛于()x f x e =,因此有

211

12!!

x n e x x x n =++

+++…… (x -∞<<+∞). 这种运用马克劳林公式将函数展开成幂级数的方法,虽然程序明确,但是运算往往过于繁琐,

因此人们普遍采用下面的比较简便的幂级数展开法.

在此之前,我们已经得到了函数

x

-11,x

e 及sin x 的幂级数展开式,运用这几个已知的展开式,通过幂级数的运算,可以求得许多函数的幂级数展开式.这种求函数的幂级数展开式的方法称为间接展开法.

例2 试求函数()cos f x x =在0x =处的幂级数展开式. 解 因为

(sin )cos x x '=,

3521111sin (1)3!5!(21)!

n n x x x x x n +=-

+-+-++……,(x -∞<<+∞), 所以根据幂级数可逐项求导的法则,可得

342111cos 1(1)2!4!(2)!

n n

x x x x n =-

+-+-+……,(x -∞<<+∞). 三、 函数幂级数展开的应用举例

幂级数展开式的应用很广泛,例如可利用它来对某些数值或定积分值等进行近似计算. 例3 利用arctan x 的展开式估计π的值. 解 由于πarctan14

=,

又因

357

arctan 357

x x x x x =-+-+…, (11x -≤≤),

所以有

1114arctan14(1)357

π==-+-+….

可用右端级数的前n 项之和作为π的近似值.但由于级数收敛的速度非常慢,要取足够多的项才能得到π的较精确的估计值.

此外文文献选自于:

Walter.Rudin.数学分析原理(英文版)[M].北京:机械工业出版社.

用幂级数展开式求极限Word版

用幂级数展开式求极限 极限理论是微积分理论的基础,极限是一个非常重要的概念,它是深入研究一些实际问题的重要工具.求函数极限的方法很多,幂级数法是其中之一. 例1 求极限21 lim[ln(1)]x x x x →∞-+. 解 因为 212111111 ln(1)(1)()23n n x x x x n x ---+=-?+???+-??+???, 所以 22111111 ln(1)(1)()23n n x x x x n x --+=-?+???+-??+???, 因此 21 lim[ln(1)]x x x x →∞-+ 211111 lim[(1)()]23n n x x n x -→∞=-?++-??+ 2 1=. 例2 利用幂级数展开式,求极限30sin lim tan x x x x →-. 解 由于x sin 在0=x 处的幂级数展开式为 3521sin (1)3!5!(21)! n n x x x x x n +=-+-???+-+???+,x -∞<<+∞ 又当0→x 时,tan ~x x ,因此 35 33 00()sin 1 3!5!lim lim 6 tan x x x x x x x x x x →→--+- -== . 例3 求极限2242lim()333 n n n →∞++???+. 解 设 2242333 n n n S = ++???+, 作幂级数1 23n n n n x ∞ =∑ ,设其和函数为()S x ,即 12()3 n n n n S x x ∞ ==∑ ,

由 12 1 1 (1) n n nx x ∞ -== -∑,1x < 得 11 1)3(3232)(-∞=∞ =∑∑==n n n n n x n x x n x S 221 3(1)3 x x =-,13x < 由此可得 23 )3 11(1323 2)1(2 1=-==∑ ∞ =n n n S , 因此 22423 lim()33 32 n n n →∞+++ =.

幂级数展开的多种方法

幂级数展开的多种方法 摘要:本文通过举例论证的说明方法,系统地对幂级数展开的多种解法进行了详细地概括、分类及总结 关键词:幂级数;泰勒展式;洛朗展式;展开 在复变函数的学习过程中,我们涉及了对解析函数幂级数展开的学习.由课本的知识知道,任意一个具有非零收敛半径的幂级数在其收敛圆内收敛于一个解析函数.这个性质是很重要的,但在解析函数的研究上,幂级数之所以重要,还在于这个性质的逆命题也是成立的.即有下面的泰勒定理和洛朗定理: 定理 1(泰勒定理)设()z f 在区域D 内解析,D a ∈,只要圆R a z K <-:含于D ,则()z f 在K 内能展成幂级数()()∑∞ =-= n n n a z c z f ,其中系数 () () () () ! 21 1n a f d a f i c n n n = -= ?Γ+ζζζ π.(ρ=-Γa z : R <<ρ0 n=0,1,2 )且展式唯 一. 定理2(洛朗定理)在圆环R a z r H <-<: (0≥r +∞≤R )内解析的函数 ()z f 必可展成双边幂级数()() ∑ ∞ -∞ =-= n n n a z c z f ,其中系数() () ζζζ πd a f i c n n ?Γ+-= 121 ( 2,1,0±±=n ρ=-Γa z : R r <<ρ) 且展式唯一. 这两个定理的存在,使得在函数解析的范围内,我们可以通过幂级数展开的方法来更好的研究解析函数的性质.而这两个定理,也是我们后面研究幂级数展开的基础和前提. 接下来,我们将着重开始讨论幂级数展开问题的多种解法: 1、直接法. 即按照泰勒定理和洛朗定理中所给的幂级数展开的公式,直接将函数展开. 例1 求()z z f tan =在4 0π =z 点处的泰勒展开式. 解:用公式 () () ! 0n z f c n n = 求n c :;14tan 0==π c ()2 ,24 sec | tan 12 4 ==='= c z z π π ;

函数的幂级数展开

教案 函 数 的 幂 级 数 展 开 复 旦 大 学 陈纪修 金路 1. 教学内容 函数的幂级数(Taylor 级数)展开是数学分析课程中最重要的内容之一,也是整个分析学中最有力的工具之一。通过讲解将函数展开成幂级数的各种方法,比较它们的优缺点,使学生在充分认识函数的幂级数展开的重要性的基础上,掌握如何针对不同的函数选择最简单快捷的方法来展开幂级数,提高学生的计算与运算能力。 2.指导思想 (1)函数的幂级数(Taylor 级数)展开作为一个强有力的数学工具,在分析学中占有举足轻重的地位。通常的数学分析教科书往往注重于讲解幂级数的理论,而忽视了讲解将函数展开成幂级数的方法,这样容易造成学生虽然掌握了幂级数的基本理论,但在实际计算中,即使对于一个很简单的函数,在求它的幂级数展开时也会感到很困难,这种状况必须加以改变。 (2)求函数的幂级数展开是每个数学工作者时时会碰到的问题,虽然我们有函数的幂级数展开公式(见下面的(*)式),但一般来说,直接利用(*)式来求函数的幂级数展开往往很不方便,因此有必要向学生介绍一些方便而实用的幂级数展开方法,提高学生的实际计算能力,这也是我们在数学分析课程中推行素质教育的一个不可忽视的环节。 3. 教学安排 首先回顾在讲述幂级数理论时已学过的相关内容:设函数f (x )在 x 0 的某个邻域O (x 0, r )中能展开幂级数,则它的幂级数展开就是f (x ) 在x 0 的Taylor 级数: (*) ).,(,)(!) ()(00 00)(r x O x x x n x f x f n n n ∈-=∑∞ = 另外我们已得到了以下一些基本的幂级数展开式: (1) f (x ) = e x = ∑∞ =0! n n n x !!3!2132n x x x x n +++ +=+ …, x ∈(-∞, +∞)。 (2) f (x ) = sin x = ∑∞ =++-01 2! )12()1(n n n x n )! 12() 1(!5!31253+-+-+-=+n x x x x n n + …, x ∈(-∞, + ∞)。

常用函数的幂级数展开式

目录 上页 下页 返回 结束 内容小结 1. 函数的幂级数展开法 (1) 直接展开法—利用泰勒公式; (2) 间接展开法—利用幂级数的性质及已知展开 2. 常用函数的幂级数展开式 x e ?1=) ,(∞+-∞∈x )1(ln x +?x =] 1,1(+-∈x x +2!21x +, ! 1 ΛΛ+++n x n 221x -331x +Λ+-441x 11 )1(++-+n n x n Λ+式的函数. 目录 上页 下页 返回 结束 Λ++-++! )12()1(1 2n x n n x sin ?x =!33x -!55x +Λ+-!77x x cos ?1=!22x - !44x +Λ+-!66x Λ+-+! )2()1(2n x n n m x )1(+?1=x m +2 ! 2)1(x m m -+Λ +ΛΛ++--+n x n n m m m ! )1()1(当m = –1 时x +11 ,)1(132ΛΛ+-++-+-=n n x x x x ) ,(∞+-∞∈x ) ,(∞+-∞∈x ) 1,1(-∈x )1,1(-∈x

目录上页下页返回结束 四、物体的转动惯量 设物体占有空间区域Ω, 有连续分布的密度函数.),, (z y x ρ该物体位于(x , y , z ) 处的微元v z y x y x d ),,()(2 2ρ+因此物体对z 轴的转动惯量: ???+=Ω ρz y x z y x y x I z d d d ),,()(2 2=z I d O x y z Ω对z 轴的转动惯量为 因质点系的转动惯量等于各质点的转动惯量之和, 故连续体的转动惯量可用积分计算. 目录上页下页返回结束 类似可得:???=Ω ρz y x z y x I x d d d ),,( ???=Ω ρz y x z y x I y d d d ),,( ???=Ω ρz y x z y x I O d d d ),,( )(22z y +)(22z x +)(222z y x ++对x 轴的转动惯量 对y 轴的转动惯量 对原点的转动惯量

幂级数的展开

函数的幂级数展开研究 摘要:本文主要讨论函数项级数中的幂级数的展开。我们把按照泰勒定理及相关定理展开函数的幂级数的方法叫直接法。一般情况下,只有少数简单的函数能利用直接法得到其幂级数展开式。更多的函数是通过间接法得到。间接法就是根据唯一性定理,利用已知函数的展开式,通过线性运算、变量代换、恒等变形、逐项求导或逐项积分等方法间接地求得幕级数的展开式的方法。同时幂级数在近似计算、数值逼近、微分方程的解等许多数学方面具有重要作用,但前提是正确展开一个函数的幂级数。因此,我们的目的是通过实例总结和研究高等数学中函数的幂级数展开的常用方法和实际问题中的应用。 关键词:函数;幂级数;展开式 Abstract: This paper centers on the expansion of power series in function series. We define the method of expanding power series according to Taylor’s theorem and relative theorems the Direct Method. Normally, only a few simple functions can get their expansion of power series through the Direct Method while most of functions through the Indirect Method. The Indirect Method is a method of getting the power series of functions indirectly through linear operation, variable substitution, identical deformation, derivation or integration term by term, based on the Uniqueness Theorem and the expansion of known functions. Meanwhile, power series plays an significant role in many aspects of mathematics such as approximation, numerical approximation, the solution of differential equation on condition that the power series is expanded correctly. Therefore, our purpose is to study different methods of the expansion of power series in Higher Mathematics and their application in practical problems by summarizing demonstrating examples. Keywords: Function; power series; expansion. 级数是高等数学体系的重要组成部分,它是在生产实践和科学实验推动下逐步形成和发展起来的。中国魏晋时期的数学家刘徽早在公元263年创立了“割圆术”,其要旨是用圆内接正多边形去逐步逼近圆,从而求得圆的面积。这种“割

相关主题
文本预览
相关文档 最新文档