当前位置:文档之家› 浅析平面四杆机构死点位置及应用

浅析平面四杆机构死点位置及应用

浅析平面四杆机构死点位置及应用
浅析平面四杆机构死点位置及应用

平面四杆机构的运动仿真模型分析

平面四杆机构的运动仿真模型分析 1前言 平面四杆机构是是平面连杆机构的基础,它虽然结构简单,但其承载能力大,而且同样能够实现多种运动轨迹曲线和运动规律,因而在工程实践中得到广泛应用。 平面四杆机构的运动分析, 就是对机构上某点的位移、轨迹、速度、加速度进行分析, 根据原动件的运动规律, 求解出从动件的运动规律。平面四杆机构的运动设计方法有很多,传统的有图解法、解析法和实验法。随着计算机技术的飞速发展,机构设计及运动分析已逐渐脱离传统方法,取而代之的是计算机仿真技术。本文在UG NX5环境下对平面四杆机构进行草图建模,通过草图中的尺寸约束、几何约束及动画尺寸等功能确定各连杆的尺寸,之后建立相应的连杆、运动副及运动驱动,对建立的运动模型进行运动学分析,给出构件上某点的运动轨迹及其速度和加速度变化规律曲线,文章最后简要分析几个应用于工程的平面四杆机构实例。 2平面四杆机构的建模 2.1问题的提出 平面四杆机构因其承载能力大,可以满足或近似满足很多的运动规律,所以其应用非常广泛,本文以基于曲柄摇杆机构的物料传送机构为例,讨论其建模及运动分析。 如图1所示,ABCD为曲柄摇杆机构,曲柄AB为主动件,机构在运动中要求连杆BC的延伸线上E点保持近似直线运动,其中直线轨迹为工作行程,圆弧轨迹为回程或空程,从而实现物料传送的功能。

2.2平面四杆机构的建模 由于物料传送机构为曲柄摇杆机构,所以它符合曲柄存在条件。根据机械原理课程中的应用实例[1],选取AB=100,BC=CD=CE=250,AD=200,单位均为毫米。 在UG NX5的Sketch环境里,创建如图2所示的草图,并作相应的尺寸约束和几何约束,其中EE'为通过E点的水平轨迹参考线,用以检验E点的工作行程运动轨迹。现通过草图里的尺寸动画功能,令AB与AD的夹角从0°到360°变化,可看到E点的变化轨迹为直线和圆弧,如图3所示为尺寸动画的四个截图,其中图3(a)中的E点为水平轨迹的起点,图3(b)中的E点为水平轨迹的中点,图3(c)中的E点为水平轨迹的终点,而图3(d)中的E点为圆弧轨迹(图中未画出)即回程的中点。 如E点轨迹不符合设计要求,则可适当调整各杆件的尺寸,再通过尺寸动画功能检验。

(完整版)平面四杆机构的基本类型及其演化

第三讲 课题:§3-1 平面四杆机构的基本类型及其演化 教学目的:理解平面四杆机构的各种类型及其应用。 教学重点:铰链四杆机构类型及其演化,理解曲柄存在条件。 教学难点:导杆机构 教学方法:课堂演示、多媒体 教学互动:每个知识点后提问或讨论。 教学安排: §3-1 平面四杆机构的基本类型及其演化 复习旧课:机构组成,运动副,运动简图等。 平面连杆机构是常用的低副机构,其中以由四个构件组成的四杆机构应用最广泛,而且是组成多杆机构的基础。因此本章着重讨论四杆机构的基本类型、性质及常用设计方法。 一、四杆机构的类型 1.曲柄摇杆机构 两连架杆一为曲柄,一为摇杆。 功能:将等速转动转换为变速摆动或将摆动转换为连续转动。 应用:雷达天线机构、缝纫机踏板机构。 2.双曲柄机构 两连架杆都为曲柄 功能:将等速转动转换为等速同向、不等速同向、不等速反向转动。 应用:惯性筛机构 若两曲柄的长度相等,连杆与机架的长度也相等,则该机构称为平行双曲柄机构。如铲斗机构

还有反平行四边形机构,例:公共汽车车门启闭机构。3.双摇杆机构 两连架杆都为摇杆 功能:一种摆动转换为另一种摆动。 应用:鹤式起重机、飞机起落架 二、铰链四杆机构的曲柄存在条件 证明: 结论:铰链四杆机构存在一个曲柄的条件是: 1.最短杆与最长杆长度之和小于或等于其余两杆长度之和。2.曲柄为最短杆。 铰链四杆机构存在曲柄的条件是: 1.最短杆与最长杆长度之和小于或等于其余两杆长度之和。2.机架或连架杆为最短杆。 三、四杆机构类型判别 否Lmax+Lmin≤L′+L″是 不可能有曲柄可能有曲柄 最短杆对边最短杆 最短杆邻边 双摇杆机构曲柄摇杆机构双曲柄机构 四、铰链四杆机构的演化 1.曲柄滑块机构 2.偏心轮机构 3.导杆机构 ①摆动导杆机构(牛头刨床)

平面机构的运动分析答案

1.速度瞬心是两刚体上瞬时速度相等的重合点。 2.若瞬心的绝对速度为零,则该瞬心称为绝对瞬心; 若瞬心的绝对速度不为零,则该瞬心称为相对瞬心。 3.当两个构件组成移动副时,其瞬心位于垂直于导路方向的无穷远处。当两构件组成高副时,两个高副元素作纯滚动,则其瞬心就在接触点处;若两个高副元素间有相对滑动时,则其瞬心在过接触点两高副元素的公法线上。 4.当求机构的不互相直接联接各构件间的瞬心时,可应用三心定理来求。 5.3个彼此作平面平行运动的构件间共有 3 个速度瞬心,这几个瞬心必定位于一条直线上。 6.机构瞬心的数目K与机构的构件数N的关系是K=N(N-1)/2 。 7.铰链四杆机构共有 6 个速度瞬心,其中 3 个是绝对瞬心。 8.速度比例尺μ ν 表示图上每单位长度所代表的速度大小,单位为: (m/s)/mm 。 加速度比例尺μa表示图上每单位长度所代表的加速度大小,单位为 (m/s2)/mm。 9.速度影像的相似原理只能应用于构件,而不能应用于整个机构。 10.在摆动导杆机构中,当导杆和滑块的相对运动为平动,牵连运动为转动时(以上两空格填转动或平动),两构件的重合点之间将有哥氏加速度。哥氏加速度的大小为2×相对速度×牵连角速度;方向为相对速度沿牵连角速度的方向转过90°之后的方向。 二、试求出图示各机构在图示位置时全部瞬心的位置(用符号 ij P直接标注在图上)。 P 24)

12 三、 在图a 所示的四杆机构中, l AB =60mm,l CD =90mm ,l AD =l BC =120mm ,ω2=10rad/s ,试用瞬心法求: 1)当φ=165°时,点C 的速度v C ; 2)当φ=165°时,构件3的BC 线上速度最小的一点E 的位置及速度的大小; 3)当v C =0时,φ角之值(有两个解); 解:1)以选定的比例尺μl 作机构运动简图(图b )。 2)求v C ,定出瞬心P 13的位置(图b ) a ) (P 13) P P 23→∞

平面六杆机构的运动分析

机械原理大作业(一)平面六杆机构的运动分析 班级: 学号: 姓名: 同组者: 完成时间:

一.题目 1.1 说明 如图所示为一片面六杆机构各构件尺寸如表格1所示,又知原动件1以等角速度ω=1rad/s沿逆时针方向回转,试求各从动件的角位移、角加速度以及E点的位移、速度及加速度的变化情况。1.2 数据 组号L1L2L’2L3L4L5L6 x G y G 1-A 26.5 105.6 65.0 67.5 87.5 34.4 25.0 600 153.5 41.7 表格1 条件数据 1.3 要求 三人一组,编程计算出原动件从0~360o时(计算点数N=36)所要求各运动变量的大小,并绘制运动线图及点的轨迹曲线。

二.解题步骤 由封闭图形ABCD可得: 由封闭图形AGFECD可得 于是有: 112233 1122433 sin sin sin1 cos cos sin2 l l l l l l l θθθ θθθ +=-------- +=+----- / 1122225566 / 1122225566 cos cos sin cos cos153.53 sin sin cos sin sin41.74 l l l l l l l l l l θθθθθ θθθθθ +++=+---- +-+=+----- 对以上1到4导可得- 222333111 222333111 / 55566611122222 / 55566611122222 cos cos cos sin sin sin sin sin sin(sin cos) cos cos cos(cos sin) l l l l l l l l l l l l l l l l θωθωθω θωθωθω θωθωθωωθθ θωθωθωωθθ-+= -=- -=--- -=--+

平面机构的运动分析习题和答案

2 平面机构的运动分析 1.图 示 平 面 六 杆 机 构 的 速 度 多 边 形 中 矢 量 ed → 代 表 , 杆4 角 速 度 ω4的 方 向 为 时 针 方 向。 2.当 两 个 构 件 组 成 移 动 副 时 ,其 瞬 心 位 于 处 。当 两 构 件 组 成 纯 滚 动 的 高 副 时, 其 瞬 心 就 在 。当 求 机 构 的 不 互 相 直 接 联 接 各 构 件 间 的 瞬 心 时, 可 应 用 来 求。 3.3 个 彼 此 作 平 面 平 行 运 动 的 构 件 间 共 有 个 速 度 瞬 心, 这 几 个 瞬 心 必 定 位 于 上。 含 有6 个 构 件 的 平 面 机 构, 其 速 度 瞬 心 共 有 个, 其 中 有 个 是 绝 对 瞬 心, 有 个 是 相 对 瞬 心。 4.相 对 瞬 心 与 绝 对 瞬 心 的 相 同 点 是 ,不 同 点 是 。 5.速 度 比 例 尺 的 定 义 是 , 在 比 例 尺 单 位 相 同 的 条 件 下, 它 的 绝 对 值 愈 大, 绘 制 出 的 速 度 多 边 形 图 形 愈 小。 6.图 示 为 六 杆 机 构 的 机 构 运 动 简 图 及 速 度 多 边 形, 图 中 矢 量 cb → 代 表 , 杆3 角 速 度ω3 的 方 向 为 时 针 方 向。 7.机 构 瞬 心 的 数 目N 与 机 构 的 构 件 数 k 的 关 系 是 。 8.在 机 构 运 动 分 析 图 解 法 中, 影 像 原 理 只 适 用 于 。

9.当 两 构 件 组 成 转 动 副 时, 其 速 度 瞬 心 在 处; 组 成 移 动 副 时, 其 速 度 瞬 心 在 处; 组 成 兼 有 相 对 滚 动 和 滑 动 的 平 面 高 副 时, 其 速 度 瞬 心 在 上。 10..速 度 瞬 心 是 两 刚 体 上 为 零 的 重 合 点。 11.铰 链 四 杆 机 构 共 有 个 速 度 瞬 心,其 中 个 是 绝 对 瞬 心, 个 是 相 对 瞬 心。 12.速 度 影 像 的 相 似 原 理 只 能 应 用 于 的 各 点, 而 不 能 应 用 于 机 构 的 的 各 点。 13.作 相 对 运 动 的3 个 构 件 的3 个 瞬 心 必 。 14.当 两 构 件 组 成 转 动 副 时, 其 瞬 心 就 是 。 15.在 摆 动 导 杆 机 构 中, 当 导 杆 和 滑 块 的 相 对 运 动 为 动, 牵 连 运 动 为 动 时, 两 构 件 的 重 合 点 之 间 将 有 哥 氏 加 速 度。 哥 氏 加 速 度 的 大 小 为 ; 方 向 与 的 方 向 一 致。 16.相 对 运 动 瞬 心 是 相 对 运 动 两 构 件 上 为 零 的 重 合 点。 17.车 轮 在 地 面 上 纯 滚 动 并 以 常 速 v 前 进, 则 轮缘 上 K 点 的 绝 对 加 速 度 a a v l K K K KP ==n /2 。 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -( ) 18.高 副 两 元 素 之 间 相 对 运 动 有 滚 动 和 滑 动 时, 其 瞬 心 就 在 两 元 素 的 接 触 点。- - - ( ) 19.在 图 示 机 构 中, 已 知ω1 及 机 构 尺 寸, 为 求 解C 2 点 的 加 速 度, 只 要 列 出 一 个 矢 量 方 程 r r r r a a a a C B C B C B 222222=++n t 就 可 以 用 图 解 法 将 a C 2求 出。- - - - - - - - - - - - - - - - - - ( ) 20.在 讨 论 杆2 和 杆3 上 的 瞬 时 重 合 点 的 速 度 和 加 速 度 关 系 时, 可 以 选 择 任 意 点 作 为 瞬 时 重 合 点。- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ( )

平面四杆机构的基础知识

平面四杆机构的基础知识 曲柄 杆长条件:最短杆与最长杆这和小于其他两杆长度之和 最短杆为机架时----双曲柄 最短杆为连架杆-----曲柄摇杆机构 最短杆为连杆-------双摇杆机构 行程速比系数=180+A/180-A A位极位夹角 K值越大,机构的急回特性越显著。 曲柄与机架共线时曲柄摇杆机构中传动角最小 压力角和传动角 存在曲柄的必要条件:满足感长条件最短杆为机架或连架杆死点压力角=90度 存在死点的条件是 尖顶实际轮廓=理论轮廓 滚子互为法向等距曲线 基圆:中心到理论轮廓的最小距离 压力角:从动件受力方向与速度方向的夹角 压力角越小越好 基圆半径越小,压力角越大 凸轮机构中等速运动规律(刚性冲击) 等加速运动等减速运动(柔性冲击) 余弦加速运动(柔性冲击) 凸轮轮廓曲线设计:1、基圆 2、偏心圆

3、做偏心圆的切线 4、在切线自基圆量取从动件的位移量 看压力角的标注从动件受力方向与速度方向的夹角 斜齿轮正确啮合的条件、模数压力角螺旋角匹配标准参数取在法面上几何尺寸计算在端面 渐开线齿轮切制分为仿形法和展成法 齿形系数YFa只与齿数有关与修正系数P89 小齿轮的弯曲应力大于大齿轮的弯曲应力 大齿轮的弯曲强度大于小齿轮的弯曲强度 一对齿轮的接触应力是相等的(作用力与反作用力),小齿轮的分度圆直径和中心距决定齿面接触疲劳强度 不发生跟切得最少齿数p81

渐开线曲率半径(渐开线离基圆越近,曲率半径越小,渐开线月弯曲 渐开线离基圆越近,压力角越小 轮齿折断一般发生在齿根 疲劳点蚀首先出现在节线附近的齿根面上(闭式软齿面齿轮传动中)齿面磨损是开式齿轮传动的主要失效形式 齿面胶合出现在高速重仔的闭式齿轮传动中 齿面塑性变形出现在低速重载或濒繁起动的软齿面齿轮传动中 斜齿轮弯曲强度计算应按当量齿数查修正系数和齿形系数 分度圆和节圆半径在标准圆柱齿轮中相等 啮合角就是齿轮在节圆处的压力角 避免因装配误差使齿轮产生轴向错位导致实际齿宽减小

第3章 平面机构的运动分析答案

一、填空题: 1.速度瞬心是两刚体上瞬时速度相等的重合点。 2.若瞬心的绝对速度为零,则该瞬心称为绝对瞬心; 若瞬心的绝对速度不为零,则该瞬心称为相对瞬心。 3.当两个构件组成移动副时,其瞬心位于垂直于导路方向的无穷远处。当两构件组成高副时,两个高副元素作纯滚动,则其瞬心就在接触点处;若两个高副元素间有相对滑动时,则其瞬心在过接触点两高副元素的公法线上。 4.当求机构的不互相直接联接各构件间的瞬心时,可应用三心定理来求。 5.3个彼此作平面平行运动的构件间共有 3 个速度瞬心,这几个瞬心必定位于一条直线上。 6.机构瞬心的数目K与机构的构件数N的关系是K=N(N-1)/2 。 7.铰链四杆机构共有6个速度瞬心,其中3个是绝对瞬心。 8.速度比例尺μν表示图上每单位长度所代表的速度大小,单位为:(m/s)/mm 。 加速度比例尺μa表示图上每单位长度所代表的加速度大小,单位为(m/s2)/mm。 9.速度影像的相似原理只能应用于构件,而不能应用于整个机构。 10.在摆动导杆机构中,当导杆和滑块的相对运动为平动,牵连运动为转动时(以上两空格填转动或平动),两构件的重合点之间将有哥氏加速度。哥氏加速度的大小为2×相对速度×牵连角速度;方向为相对速度沿牵连角速度的方向转过90°之后的方向。 P直接标注在图上)。 二、试求出图示各机构在图示位置时全部瞬心的位置(用符号 ij

12 三、 在图a 所示的四杆机构中,l AB =60mm,l CD =90mm ,l AD =l BC =120mm ,ω2=10rad/s ,试用瞬心法求: 1)当φ=165°时,点C 的速度v C ; 2)当φ=165°时,构件3的BC 线上速度 a ) 24) 14(P 13) P 24 P 23→∞

死点位置

铰链四杆机构的基本性质 一、教材分析 1、教学对象分析 学生在前面章节中已经学习了典型的机械传动知识,对机械基础课程有一定的认识,具备基本的分析机构特性的能力。技工学校的学生由于知识基础较差,对知识的理解、转移和迁徙的能力还不够强,我们的培养目标是技能的培养,学生重操作技能轻理论学习,导致对理论学习的兴趣不够浓厚。 2、教学内容 “铰链四杆机构的基本性质”是全国中等职业技术学校机械类专业通用教材《机械基础》第五章第二节的内容。 3、教学内容的分析处理

《机械基础》课程主要内容包括常用机械传动、常用机构、轴系零件及液压传动。第五章“平面四杆机构”是学生在学完机械传动后学习的第一中常用机构,而铰链四杆机构在实际生产和生活中应用广泛,它的学习将对今后的生产实践与创新产生很大影响。本次课学习的“铰链四杆机构的基本性质”是本章的重点内容,既是第一节内容的归纳总结,又是后续章节的基础,是培养学生推理分析问题、解决实际问题的工作能力过程。 机械基础这门课的教学要求之一是:能作简单的有关设计计算和创新。这一节的内容在教材中起承上启下的作用,其教学的成败,将对后续内容的掌握起到决定性作用。为了激发学生的学习热情,提高学生注意力集中程度,充分发挥学生的主动性和创新意识,我的做法是: 1)通过上一次课的学习,让学生自己动手制作一个铰链四杆机构模型,增加学生的学习兴趣和动手能力; 2)利用课件形式增加动画欣赏,起到丰富教学内容、理论联系实际、加强专业知识素养,使学生明确学习目的,从而使学习兴趣和主动性增强。 3)针对学生基础知识薄弱,理解能力不够强的特点,对“曲柄存在条件”、“急回特性”、“死点位置”进行动画演示和公式推导,增加对应的例题讲解和相应的课堂学习。 4、教学目标 知识目标:1.理解铰链四杆机构的基本特性; 2.能够利用曲柄存在条件判断机构类型; 3.掌握急回特性系数、急回特性、死点位置等概念。 能力目标: 1.知识的获取、消化、吸收的能力; 2.分析、判断、解决问题的能力; 3.动手能力,创新能力。 情感目标: 1. 通过理论教学,再联系实际,有效的激发学生的学习兴趣,做到理论联系实际,充分调动学生的学习积极性和主动性。 2.通过对基本性质的分析,锻炼学生自我分析问题的能力,调动其主观能动性。

平面四杆机构知识整理

《平面四杆机构》知识整理 1.平面连杆机构:由一些刚性构件用转动副和移动副相互连接而组成的在同一平面或相互平行平面内运动的机构。 平面连杆机构:实现较为复杂的平面运动,用于动力的传递或改变运动形式。 最常用的平面连杆机构是具有四个构件(包括机架)的低副机构,称为四杆机构。 2.铰链四杆机构:构件间用四个转动副相连的平面四杆机构。铰链四杆机构是四杆机构的基本形式。 3.铰链四杆机构的基本类型有曲柄摇杆机构、双曲柄机构和双摇杆机构。 4. 曲柄摇杆机构能将主动件(曲柄)整周的回转运动转换为从动件(摇杆)的往复摆动,也可以将主动件(摇杆)的往复摆动转换为从动件 (曲柄)整周的回转运动。其的应用有牛头刨床横向进给机构、剪板机、颚式破碎机、搅拌机和雷达俯仰角度的摆动装置等。 5.双曲柄机构的运动特点:主动曲柄匀速回转一周,从动曲柄随之变速回转一周。双曲柄机构有不等长双曲柄机构、平行四边形机构和反向双曲柄机构, 平行四边形机构的运动特点是:两曲柄的回转方向相同,角速度相等。 反向平行双曲柄机构的运动特点是:两曲柄的回转方向相反,角速度不等。 平行四边形机构中,主动曲柄每回转一周,曲柄与连杆两次共线,从动曲柄会产生运动的不确定现象。 6.双摇杆机构的应用有自卸翻斗装置、港口用起重机和飞机起落架收放机构等。 7.曲柄存在的条件:1)连架杆与机架中必有一个是最短杆;2)最短杆与最长杆之和必小于或等于其余两杆长度之和。 8.铰链四杆机构三种基本类型的判别方法: (1)若铰链四杆机构中最短杆与最长杆长度之和小于或等于其余两杆长度之和,则:①、取最短杆为连架杆时,构成曲柄摇杆机构;②、取最短杆为机架时,构成双曲柄机构; ③、取最短杆为连杆时,构成双摇杆机构。 (2)若铰链四杆机构中最短杆与最长杆长度之和大于其余两杆长度之和,则无曲柄存在,只能构成双摇杆机构。 9.急回特性:曲柄AB作等速转动时,摇杆在摆角为ψ的极限位置间往复摆动,摇杆的空回行程的平均速度大于工作行程平均速度。 机构的急回特性用急回特性系数表示 K=从动件空回行程平均速度/从动件工作行程平均速度=180°+θ/180°-θ;θ——极位夹角,摇杆位于两极限位置时,曲柄所夹的锐角θ=180°(K-1)/K+1 。机构有无急回特性,取

平面四杆机构分析报告

工业设计机械设计基础大作业 一、序言 平面连杆机构是若干个刚性构件通过低副(转动副、移动副)联接,且各构件上各点的运动平面均相互平行的机构。虽然与高副机构相比,它难以准确实现预期运动,设计计算复杂,但是因为低副具有压强小、磨损轻、易于加工和几何形状能保证本身封闭等优点,故平面连杆机构广泛用于各种机械和仪器。对连杆机构进入深入透彻的研究,有助于工业设计的学生在今后的产品设计中对其进行灵活应用或创新改进。 二、平面连杆机构优缺点的介绍 连杆机构应用十分广泛,它是由许多刚性构件用低副连接而成的机构,故称为低副机构,这类机构常常应用于各种原动机、工作机和仪器中。例如,抽水机、空气压缩机中的曲柄连杆机构,牛头刨床机构中的导杆机构,机械手的传动机构,折叠伞的收放机构等。这其中铰链四杆机构,曲柄滑块机构和导杆机构是最常见的连杆机构形式。 它们的共同特点是:第一,它们的运动副元素是面接触,所以所受的压力较高副机构小,磨损轻;第二,低副表面为平面和圆柱面,所以制造容易,并且可获得较高的加工精度;第三,低副元素的接触是依靠本身的几何约束来实现的,因此不需要高副机构中的弹簧等保证运动副的封闭装置。 连杆机构也存在如下一些缺点:为了满足设计的要求,往往要增加构件和运动副数目,使机构构造复杂,有可能会产生自锁;制造的不精确所产生的累积误差也会使运动规律发生偏差;设计与计算比高副机构复杂;在连杆机构运动过程中,连杆及滑块的质心都在作变速运动,所产生的惯性力难以用一般方法方法加以消除,因而会增加机构的动载荷,所以连杆机构不宜用于高速运动。此外,虽然可以利用连杆机构来满足一些运动规律和运动轨迹的设计要求,但其设计却是十分困难的,且一般只能近似地得以满足。 正因如此,所以如何根据最优化方法来设计连杆机构,使其能最佳地满足设计要求,一直是连杆机构研究的一个重要课题。 三、平面四杆机构的基本类型与应用实例。 连杆机构是由若干刚性构件用低副连接所组成的。在连杆机构中,若各运动构件均在相互平行的平面内运动,则称为平面连杆机构。平面四杆机构是平面连杆机构的最基本形式,这其中所有运动副均为转动副的四杆机构称为铰链四杆机构。 在铰链四杆机构中,按连架杆能否作整周转动,可将四杆机构分为三种基本形式。即曲柄摇杆机构、双曲柄机构和双摇杆机构。其中: 1.曲柄摇杆机构 在铰链四杆机构中,若两连架杆中有一个为曲柄(整周回转),另一个为摇杆(一定范围内摆动),则称为曲柄摇杆机构。 在这种机构中,当曲柄为原动件时,可将原动件的连续转动,转变为摇杆的反复摆动。如飞剪、间歇传送机构、传送带送料机构等。

16 平面四杆机构特点及应用

课题:平面连杆机构应用及特点 教材分析: 本课题选自李世维主编、高等教育出版社出版的中等职业教育国家规划教材《机械基础》(机械类)第6章“常用机构”中“§6-1 平面连杆机构”的内容。本节课内容主要介绍的铰链四杆机构的实际应用及特点。 学情分析: 中职生文化基础差、学习能力较弱、学习的主动性不强,这是一个不争的事实,也是一个普遍的现实问题,但他们对新事物有较强的好奇心,善于联想,从这一现状出发,教学中应以调动学生学习积极性为出发点,以生活中的实例为教学模型,扩散思维,归纳总结来组织教学,让学生在发现问题,解释问题的思索中提高对本课程的学习兴趣,不断积累专业知识,并能活学活用,理论联系实践。教学目标: 1. 知识目标 (1)掌握铰链四杆机构的特点和应用实例; (2)了解铰链四杆机构的急回特性及应用实例; (3)掌握铰链四杆机构的死点位置及应用实例。 2. 能力目标 培养学生理论联系实际的能力,从生活中,从身边去挖掘教学模型,学以致用。 3. 情感目标 培养学生口头表达能力,如何去欣赏别人的优点,如何去肯定别人,从而培养团队意识,合作意识。 教学重点:1.铰链四杆机构的急回特性 2.铰链四杆机构的死点位置。 教学难点:极位夹角和摆角的画法。 课时安排:2课时 教学手段:利用多媒体辅助教学

教学方法:情景教学、启发引导、讲练结合 学法指导:教法与学法室相辅相成的,教法直接影响学生对知识点掌握和能力的提高,而学法指导是学生智力发展目标得以实现的重要途径。 教学过程: (一)新课导入教学模型实物展示,多媒体展示汽车雨刮器动画,雷达天线俯仰机构动画,引出新课 (二)新课讲授: 一、铰链四杆机构的应用 1、曲柄摇杆机构 两连架杆中一为曲柄、一为摇杆的铰链四杆机构称为曲柄摇杆机构,如图所示,曲柄AB为主动件,并作等速运动。从动摇杆CD将在弧C1C2范围内作变速 往复摆动,C1、C2两个位置是摇杆摇摆的两个极限位置。 (1)曲柄摇杆机构能将曲柄的整周回转运动转换成摇杆的往复摆动。 曲柄主动,摇杆从动。如剪刀机、筛砂机、搅拌机以及碎石机等,都可以连

第二章平面机构的运动分析

1、试求出下列机构中的所有速度瞬心。 (a) (b) (c) (d) 2、图示的凸轮机构中,凸轮的角速度ω1=10s-1,R=50mm,l A0=20mm,试求当φ=0°、45°及90°时,构件2的速度v。 题2图凸轮机构题3图组合机构 3、图示机构,由曲柄1、连杆2、摇杆3及机架6组成铰链四杆机构,轮1′与曲柄1

固接,其轴心为B,轮4分别与轮1′和轮5相切,轮5活套于轴D上。各相切轮之间作纯滚动。试用速度瞬心法确定曲柄1与轮5的角速比ω1/ω5。 4、在图示的颚式破碎机中,已知:x D=260mm,y D=480mm,x G=400mm,y G=200mm,l AB=l CE=100mm,l BC=l BE=500mm,l CD=300mm,l EF=400mm,l GF=685mm,?1=45°,ω1=30rad/s逆时针。求ω 5、ε5。 题4图破碎机题5图曲柄摇块机构 5、图示的曲柄摇块机构, l AB=30mm,l AC=100mm,l BD=50mm,l DE=40mm,?1=45°,等角速度ω1=10rad/s,求点E、D的速度和加速度,构件3的角速度和角加速度。 6、图示正弦机构,曲柄1长度l1=,角速度ω1=20rad/s(常数),试分别用图解法和解析法确定该机构在?1=45°时导杆3的速度v3与加速度a3。 题6图正弦机构题7图六杆机构 7、在图示机构中,已知l AE=70mm,l AB=40mm,l EF=70mm,l DE=35mm,l CD=75mm,l BC=50mm,?1=60°,构件1以等角速度ω1=10rad/s逆时针方向转动,试求点C的速度和加速度。

平面四杆机构的运动仿真模型分析

平面四杆机构的运动仿真模型分析1前言 平面四杆机构是是平面连杆机构的基础,它虽然结构简单,但其承载能力大,而且同样能够实现多种运动轨迹曲线和运动规律,因而在工程实践中得到广泛应用。 平面四杆机构的运动分析, 就是对机构上某点的位移、轨迹、速度、加速度进行分析, 根据原动件的运动规律, 求解出从动件的运动规律。平面四杆机构的运动设计方法有很多,传统的有图解法、解析法和实验法。随着计算机技术的飞速发展,机构设计及运动分析已逐渐脱离传统方法,取而代之的是计算机仿真技术。本文在UG NX5环境下对平面四杆机构进行草图建模,通过草图中的尺寸约束、几何约束及动画尺寸等功能确定各连杆的尺寸,之后建立相应的连杆、运动副及运动驱动,对建立的运动模型进行运动学分析,给出构件上某点的运动轨迹及其速度和加速度变化规律曲线,文章最后简要分析几个应用于工程的平面四杆机构实例。 2平面四杆机构的建模 问题的提出 平面四杆机构因其承载能力大,可以满足或近似满足很多的运动规律,所以其应用非常广泛,本文以基于曲柄摇杆机构的物料传送机构为例,讨论其建模及运动分析。 如图1所示,ABCD为曲柄摇杆机构,曲柄AB为主动件,机构在运动中要求连杆BC的延伸线上E 点保持近似直线运动,其中直线轨迹为工作行程,圆弧轨迹为回程或空程,从而实现物料传送的功能。

平面四杆机构的建模 由于物料传送机构为曲柄摇杆机构,所以它符合曲柄存在条件。根据机械原理课程中的应用实例[1],选取AB=100,BC=CD=CE=250,AD=200,单位均为毫米。 在UG NX5的Sketch环境里,创建如图2所示的草图,并作相应的尺寸约束和几何约束,其中EE'为通过E点的水平轨迹参考线,用以检验E点的工作行程运动轨迹。现通过草图里的尺寸动画功能,令AB与AD 的夹角从0°到360°变化,可看到E点的变化轨迹为直线和圆弧,如图3所示为尺寸动画的四个截图,其中图3(a)中的E点为水平轨迹的起点,图3(b)中的E点为水平轨迹的中点,图3(c)中的E点为水平轨迹的终点,而图3(d)中的E点为圆弧轨迹(图中未画出)即回程的中点。

图解法设计平面四杆机构

图解法设计平面四杆机构 3.4.1按连杆位置设计四杆机构 1.给定连杆的三个位置 给定连杆的三个位置设计四杆机构时,往往是已知连杆B C的长度L B C和连杆的三个位置B1C1和B2C2和B3C3时,怎样设计四杆机构呐图解过程。 ::1::::2:: 2.给定连杆的两个位置 给定连杆的两个位置B1C1和B2C2时与给定连杆的三个位置相似,设计四杆机构图解过程如下。 ①选定长度比例尺绘出连杆的两个位置B1C1、B2C2。 ②连接B1B2、C1C2,分别作线段B1B2和C1C2的垂直平分线B12和C12,分别在B12和C12上任意取A,D两点,A,D两点即是两个连架杆的固定铰链中心。连接A B1、C1D、B1C1、 A D,A B1C1D即为所求的四杆机构。 ③测量A B1、C1D、A D计算l A B、L C D L A D的长度, 由于A点可任意选取,所以有无穷解。在实际设计中可根据其他辅助条件,例如限制最小传动角或者A、D的安装位置来确定铰链A、D的安装位置。 例设计一振实造型机的反转机构,要求反转台8位于位置Ⅰ(实线位置)时,在砂箱7内填砂造型振实,反转台8反转至位置Ⅱ(虚线线位置)时起模,已知连杆B C长和两个位置B1C1、B2C2.。要求固定铰链中心A、D在同一水平线上并且A D=B C。自己可以试着在纸上按比例作出图形,再求出各杆长度。若想对答案请点击例题祥解 3.4.2 按行程速度变化系数设计四杆机构 1.设计曲柄摇杆机构 按行程速度变化系数K设计曲柄摇杆机构往往是已知曲柄机构摇杆L3的长度及摇杆摆角ψ和速度变化系数K。怎样用作图法设计曲柄摇杆机构? 2.设计曲柄摆动导杆机构

基于matlab GUI的平面四杆机构的运动分析

基于matlab GUI的平面四杆机构的运动分析 一、目的 通过matlab对平面四杆机构进行运动仿真,并以GUI界面方式实现输入输出的参数化,对平面四杆机构进行位置分析、速度分析、加速度分析和静力学分析。此外,通过动画演示,更加形象直观地观察机构的运动过程。最后,将程序编译成.exe独立可执行文件,可以在其它没有安装matlab的机器上运行。 二、设计思路 通过matlab的GUI功能模块,创建一个图形用户界面,在自动生成的代码框架中对初始化函数和回调函数等进行编辑,建立与控件相关联的程序:控件属性、位置分析、速度分析、加速度分析、静力学分析、动画演示等。 图1是平面四杆机构的示意图,输入角q的运动规律为q=pi/50*t^2+q0,r1、r2是从动角。对t时刻沿着杆长距离原点A的任意一点进行分析。 注意:输入输出角的单位为度,时间t的取值范围为0:0.05:10,任意点lx的取值范围为0~a1+a2+a3,估算的从动角r1、r2的迭代初始值不能偏离平衡位置太大。 图1、平面四杆机构示意图 三、设计流程 1、通过GUI模块创建图形用户界面

命令方式:在Matlab命令窗口键入>>guide;菜单方式:在Matlab的主窗口中,选择File>New>GUI命令,就会显示GUI的设计模板。如图1所示。 图2、创建图形界面 2、设计图形界面 在创建之后的图形界面中插入坐标轴axes,静态文本框static text,编辑文本框edit text,按钮push button等等。如图所示。 图3、图形界面设计

3、编辑回调函数 1)位置分析:输入角的函数为:q=pi/50*t^2+q0。在时间t=0~10s内,每一个时间点估算两个初始从动角,根据牛顿-拉普森迭代得到准确的机构位置。10s刚好主动角经历了360度,记录每一时刻的位置,便可以动画演示。 2)速度分析:输入角速度为:dq=pi/25*t。选择杆件上的任意一点(坐标表示为质点沿着杆件到原点A的距离)做分析,正确表达出角速度系数和速度系数,便可以求出质点的速度。 3)加速度分析:输入角加速度为:ddq=pi/25。正确表达出向心系数和角加速度系数,便可以求出质点的加速度。 4)静力学分析:由虚功原理可知,当广义力Q(V,H)=0(或近似为零)时机构达到平衡,记录该平衡条件下的位置数据。 四、结果演示 1、机构杆长条件判断 1)不符合杆长条件。如图4所示。 图4、不符合杆长条件

平面机构的运动分析

平面机构的运动分析 (总分:100.00,做题时间:90分钟) 一、{{B}}填空题{{/B}}(总题数:10,分数:20.00) 1.速度瞬心可以定义为互作平面相对运动的两构件上 1的点。 (分数:2.00) 填空项1:__________________ (正确答案:瞬时相对速度为零(或瞬时绝对速度相同)) 解析: 2.相对瞬心与绝对瞬心的相同点是______,不同点是______;在由N个构件组成的机构中,有______个相对瞬心,有______个绝对瞬心。 (分数:2.00) 填空项1:__________________ (正确答案:互作平面相对运动的两构件上瞬时相对速度为零的点后者绝对速度为零,前者不是 (N-1)/(N/2-1) N-1) 解析: 3.作平面相对运动的三个构件的三个瞬心必 1。 (分数:2.00) 填空项1:__________________ (正确答案:在同一直线上) 解析: 4.在矢量方程图解法中,影像原理只适用于求______。 (分数:2.00) 填空项1:__________________ (正确答案:同一构件上不同点的速度加速度) 解析: 5.平面四杆机构共有______个速度瞬心,其中______个是绝对瞬心。 (分数:2.00) 填空项1:__________________ (正确答案:6 2) 解析: 6.当两构件组成回转副时,其瞬心是 1。 (分数:2.00) 填空项1:__________________ (正确答案:回转副中心) 解析: 7.当两构件不直接组成运动副时,瞬心位置用 1确定。 (分数:2.00) 填空项1:__________________ (正确答案:三心定理) 解析: 8.当两构件的相对运动为______动,牵连运动为______动时,两构件的重合点之间将有哥氏加速度。哥氏加速度的大小为______,方向与______的方向一致。 (分数:2.00) 填空项1:__________________ (正确答案:移转 [*] 将v C2C1沿ω1转90°) 解析: 9.当两构件组成转动副时,其相对速度瞬心在______处;组成移动副时,其瞬心在______处;组成兼有滑动和滚动的高副时,其瞬心在______处。 (分数:2.00) 填空项1:__________________ (正确答案:转动副中心移动方向的垂线上无穷远处接触点处公法线上)解析: 10.速度影像的相似原理只能应用于______的各点,而不能应用于______的各点。 (分数:2.00) 填空项1:__________________ (正确答案:同一构件上不同构件上) 解析:

平面机构的运动分析

第三章平面机构的运动分析 教学目的:(1)能用速度瞬心法对平面机构进行速度分析; (2)了解矢量方程图解法对Ⅱ级机构进行运动分析; (3)了解解析法对Ⅱ级机构进行运动分析。 课时安排:2h 重点难点:重点—平面机构速度瞬心的求法及应用。 §3-1 机构运动分析的目的和方法 一、机构运动分析的目的 运动分析:就是对机构的位移(包括轨迹)、速度和加速度进行分析。 位移分析:可以确定机构运动时所需的空间;判断各构件之间是否会互相干涉;确定机构中从动件的行程;考察构件上某一点能否实现预定的位置或轨迹要求。 速度分析:可以了解从动件的速度变化规律能否满足工作要求;还是加速度分析的必要前提。 加速度分析:是计算构件惯性力和研究机械动力性能的必要前提。 二、机构运动分析的方法 1.图解法:速度瞬心法、矢量方程图解法 2.解析法: 按所使用的数学工具分:方程矢量法、矩阵法、复数矢量法 按机构运动分析的本质:针对不同机构建立适合该机构的具体数学模型;把机构视为一个质点,以杆长为约束建立非线性方程,进行求解;基于机构组成原理的杆组法。 §3-2 用速度瞬心法作机构的速度分析 一、速度瞬心 速度瞬心:相互作平面相对运动的两构件在任意瞬时其相对运动速度为 零的重合点。 瞬心的分类:按瞬心的绝对速度是否为零可分为两种:绝对瞬心(绝对 速度为零的瞬心)和相对瞬心(绝对速度不为零的瞬心)。 二、机构中瞬心的数目 每两个构件存在一个瞬心,设由n个构件组成的机构总的瞬心数为N, 根据排列组合可得:2(1) 2 n n n N C - == 三、机构中瞬心位置的确定 1.通过运动副直接相联的两构件的瞬心1)以转动副相联接的两构件的瞬心 2)以移动副相联接的两构件的瞬心 3)以平面高副相联接的两构件的瞬心

(完整版)图解法设计平面四杆机构

3.4 图解法设计平面四杆机构 3.4.1按连杆位置设计四杆机构 1.给定连杆的三个位置 给定连杆的三个位置设计四杆机构时,往往是已知连杆B C的长度L B C和连杆的三个位置B1C1和B2C2和B3C3时,怎样设计四杆机构呐?图解过程。 ::1:: 2.给定连杆的两个位置 给定连杆的两个位置B1C1和B2C2时与给定连杆的三个位置相似,设计四杆机构图解过程如下。 ①选定长度比例尺绘出连杆的两个位置B1C1、B2C2。 ②连接B1B2、C1C2,分别作线段B1B2和C1C2的垂直平分线B12和C12,分别在B12和C12上任意取A,D两点,A,D两点即是两个连架杆的固定铰链中心。连接A B1、C1D、B1C1、A D,A B1C1D即为所求的四杆机构。 ③测量A B1、C1D、A D计算l A B、L C D L A D的长度, 由于A点可任意选取,所以有无穷解。在实际设计中可根据其他辅助条件,例如限制最小传动角或者A、D的安装位置来确定铰链A、D的安装位置。 例设计一振实造型机的反转机构,要求反转台8位于位置Ⅰ(实线位置)时,在砂箱7内填砂造型振实,反转台8反转至位置Ⅱ(虚线线位置)时起模,已知连杆B C长0.5m和两个位置B1C1、B2C2.。要求固定铰链中心A、D在同一水平线上并且A D=B C。自己可以试着在纸上按比例作出图形,再求出各杆长度。若想对答案请点击例题祥解 3.4.2 按行程速度变化系数设计四杆机构 1.设计曲柄摇杆机构 按行程速度变化系数K设计曲柄摇杆机构往往是已知曲柄机构摇杆L3的长度及摇杆摆角ψ和速度变化系数K。怎样用作图法设计曲柄摇杆机构? 2.设计曲柄摆动导杆机构 已知机架长度l4和速度变化系数K,设计曲柄导杆机构。 ①求出极位夹角 ②根据导杆摆角ψ等于曲柄极位夹角θ,任选一点C后可找出导杆两极限C m、C n。 ③作∠M C N的角评分线,取C A=,得到A点,过A点作C m和C n的垂线B1和B2两点, A B1(或A B2)即为曲柄。测量A B1。求出曲柄长度。 例设计一偏置曲柄滑块机构,已知滑块行程H=88m m,偏心距e=44m m,速度变化系数K=1.4。 自己可以试着在纸上按比例作出图形,再求出各杆长度。

平面四杆机构的设计与运动分析Matlab代码

平面四杆机构的设计与运动分析M代码平面四杆机构的设计M代码---- A=[cos(50*pi/180),cos((50-35)*pi/180),1;cos(75*pi/180),cos((75-80)*pi/180),1;cos(105*pi/180), cos((105-125)*pi/180),1]; B=[cos(35*pi/180);cos(80*pi/180);cos(125*pi/180)]; P=A\B m= P(1) n=-m/ P(2) l=sqrt(m^2+n^2+1-2*n*P(3)) 运行设计结果显示:

平面四杆机构的运动分析M代码---- %参数赋值 clc,clear l0=1.2512; l1=1.0; l2=1.5829; l3=1.5815; M=-1; Omiga1=10; Theta1=0:0.01:360; Theta1=Theta1*pi/180; %求解各个构件位移、速度、加速度 A=2*l1*l2*sin(Theta1); B=2*l2*(l1*cos(Theta1)-l0); C=l1^2+l2^2+l0^2-l3^2-2*l1*l0*cos(Theta1); E=2*l1*l3*sin(Theta1); F=2*l3*(l1*cos(Theta1)-l0); G=l2^2-l1^2-l3^2-l0^2+2*l1*l0*cos(Theta1); Theta3=2*atan((E+M*sqrt(E.^2+ F.^2- G.^2))./(F-G)); Theta2=2*atan((A+M*sqrt(A.^2+B.^2-C.^2))./(B-C)); Omiga2=Omiga1*l1*sin(Theta1-Theta3)./(l2*sin(Theta3-Theta2)); Omiga3=Omiga1*l1*sin(Theta1-Theta2)./(l3*sin(Theta3-Theta2)); Alfa3=(Omiga1^2*l1*cos(Theta1-Theta2)+Omiga2.^2*l2-Omiga3.^2*l3.*cos(Theta3-Theta2))./ (l3*sin(Theta3-Theta2)); Alfa2=(-Omiga1^2*l1*cos(Theta1-Theta3)+Omiga3.^2*l3-Omiga2.^2*l2.*cos(Theta2-Theta3))./ (l2*sin(Theta2-Theta3)); %绘图 Theta1=Theta1*180/pi; Subplot(3,1,1) plot(Theta1,Theta3*180/pi),grid on xlabel('曲柄转角(^。) ');ylabel('CD杆角位移(^。) '); Subplot(3,1,2) plot(Theta1,Omiga3),grid on xlabel('曲柄转角(^。) ');ylabel('CD杆角速度(rad/s) '); Subplot(3,1,3) plot(Theta1,Alfa3),grid on xlabel('曲柄转角(^。) ');ylabel('CD杆角加速度(rad/s^2) '); by Xu jianping

相关主题
文本预览
相关文档 最新文档