当前位置:文档之家› 汽轮机回热系统

汽轮机回热系统

汽轮机回热系统
汽轮机回热系统

汽机抽汽回热系统

1、概述:回热抽气系统指与汽轮机回热抽汽有关的管道及设备,在蒸汽热力循环中,通常是从汽轮机数个中间级抽出一部分蒸汽,送到给水加热器中用于锅炉给水的加热(即抽汽回热系统)及各种厂用汽等。采用回热循环的主要目的是:提高工质在锅炉内吸热过程的平均温度,以提高级组的热经济性。

2、抽汽回热系统作用:抽汽回热系统是原则性热力系统最基本的组成部分,采用蒸汽加热锅炉给水的目的在于减少冷源损失,一定量的蒸汽作了部分功后不再至凝汽器中向空气放热,即避免了蒸汽的热量被空气带走,使蒸汽热量得到充分利用,热好率下降,同时由于利用了在汽轮机作过部分功的蒸汽加热给水,提高了给水温度,减少了锅炉受热面的传热温差,从而减少了给水加热工程中不可逆损失,在锅炉中的吸热量也相应减少。综合以上原因说明抽汽回热系提高了机组循环热效率。因此,抽汽回热系的正常投运对提高机组的热经济性具有决定性的影响。

3、影响抽汽回热系统经济型地主要参数:影响给水回热加热经济性的主要参数为回热加热分配、相应的最佳给水温度和回热级数,三者紧密联系,互有影响。

在求解最佳回热分配的计算分析中,以Z级理想回热循环的循环效率最大值求其最佳回热分配,(所谓理想回热循环,即假定为混合式加热器,端差为零,不计新蒸汽,抽汽压损和泵功、忽略散热损失)求得理想回热循环的最佳回热分配通式后,根据忽略一些次要因素,进一步简化,即可获得其它近似的最佳回热分配通式。如“焓降分配法”,这种分配方法是将每一级加热器的焓升取作等于前一级至本级的蒸汽在汽轮机中的焓降;又如“平均分配法”,这种回热分配方法的原则是每一级加热器的焓升相等;其他还有“等焓降分配法”等。可见给水回热总加热量在各级中的分配是在一定的给水温度和一定级数的条件下,使循环热效率最高为原则,由此对应的各级抽汽回热参数,即为最有利分配的参数。

4、提高系统循环热效率的措施:将给水加热到多少温度,才能使循环热效率达到最高值?以单级抽汽回热为例,回热时给水温度从汽轮机排汽压力下的饱和温度开始逐渐增加,热效率也逐渐增加,热效率达最大值时的给水温度称为最佳给水温度,再提高给水加热温度时,热效率反会减小,热经济性就降低。这是因为给水加热温度提高后,相应的抽汽压力也提高,对该部分的抽汽而言,每千克抽汽在汽轮机中热变功的量减少了,若发电量不变,则要增加进入汽轮机中的新蒸汽量,以弥补因抽汽而减少的发电量,抽汽压力愈高,增加的新蒸汽量就愈多,因而汽耗率也愈大,相应的排向低温热源的热量也就越大,锅炉加热的数值虽不断降低,但汽耗率增加较快,以致使热耗率相应增大,从而使循环热效率降低。理论上,加热级数愈多,最佳给水温度愈高。

在实际应用中,给水温度并非加热到最佳给水温度,这是因为还必须要全盘考虑技术经济性,一方面,给水温度的提高,使排烟温度升高,锅炉效率降低,或需增大锅炉尾部受热面,使锅炉投资增加;另一方面,由于回热使得锅炉的蒸发量和汽轮机高压端的通流量都要增加,而汽轮机的低压端的通流量和蒸汽流量相应减少,因而不同程度地影响锅炉、汽轮机以及各相关辅助系统的投资、拆旧费和厂用电。通过技术经济比较确定的最佳给水温度,称为经济最佳给水温度。

理论上,给水回热的级数越多,汽轮机的热循环过程就越接近卡诺循环,汽热循环效率就越高,但加热级数增加时,热效率的增长逐渐放慢,相对得益不多,运行也更加复杂,同时回热抽汽的级数受投资和场地的制约,因此不可能设置的很多。在实际中,600MW机组的加热级数一般为7~8级。

5、抽汽系统组成:本汽轮机共设七段非调整抽汽,第一段抽汽引自高压缸,供1高加;第二段抽汽引自高压缸排汽,供给2高加;第三段抽汽引自中压缸,供3高加;第四段抽汽引自中压缸,供给除氧器和辅助蒸汽系统;第五、六、七段抽汽均引自低压缸,分别供给三台低压加热器。

6、抽汽逆止门:除第七级抽汽外,一、二、三、五、六级抽汽管道上分别装设具有快关功能的电动门和气动逆止门各一个。气动门止阀布置在电动门之后。电动门作为汽轮机防进水的第一级保护,气动逆止门作为防止汽轮机突然甩负荷后的超速保护,兼防止汽轮机进水事故的第二级保护。

在四级抽汽管道上,在电动门后装设二只串联的气动逆止门,装设二只逆止门的原因是:在四级抽汽管道上连接有众多的设备,这些设备或者接有高压汽源,或者接有辅助蒸汽汽源(如除氧器等),在机组起动低负荷运行,汽轮机突然甩负荷或停机时,其它汽源的蒸汽有可能串入四级抽汽管道,造成汽轮机超速的危险性最大,所以串联二个逆止门可以起到双重的保护作用。

在四级抽汽管道接除氧器的管道上还装设一只电动门和一只逆止门。除氧器还接有从辅助蒸汽系统来的起动加热用汽和低负荷切换用汽。

在抽汽系统的各级抽汽管道的电动隔离阀前后和逆止门后,以及管道的最低点,分别设置疏水点,以防在机组起动,停机和加热器发生故障时,在系统中有水的积聚。各疏水管道通过疏水集管接至本体疏水扩容器后导至凝汽器。

抽气逆止门控制气管路上所装的电磁阀与汽轮机的危急遮断联动。当主汽阀关闭时,空气引导阀关闭,抽汽阀控制汽管路被切断。当主汽阀关闭或甩负荷时,电磁阀线圈断电,电磁阀动作,切断气源,将抽汽阀操纵座内的空气排空,抽汽逆止门的阀碟在自重和操纵座弹簧作用下关闭。

机组挂闸后,如抽汽逆止门气控电磁阀故障,应及时开启其旁路,将抽汽逆止门控制气缸开启。机组运行过程中抽汽逆止门需定期进行活动试验,其目的是为防止或及早发现阀门的卡死、失灵。抽汽管路上的手动滑阀,旁路门等可供试验和维修的使用。抽汽逆止门气控管道上设置液气分离器,当其液位高时,应及时切换,联系检修处理,以防止油液进入抽汽逆止门控制气缸。

抽汽逆止门定期活动试验要求:

1)机组每次启动前,均应进行系统的联动试验及抽汽逆止门的活动试验。

2)机组正常运行期间,必须每周一次进行抽汽逆止门的活动试验,以检查其灵活性。

3)定期活动试验必须逐一进行,待做完一组。并复位后方能进行下一组的试验。

4) 活动试验时应注意动作行程不宜太大,以免影响机组正常运行。

张吉培300MW汽轮机热力系统方案

N300MW汽轮机组热力系统分析- TMCR 专科生毕业设计开题报告 2011 年 09 月 24 日

摘要 节能是我国能源战略和政策的核心。火电厂既是能源供应的中心也是资源消耗及环境污染和温室气体排放的大户,提高电厂设备运行的经济性和可靠性,减少污染物的排放,已经成为世人关注的重大课题。 热经济性代表了火电厂的能量利用、热功能转换技术的先进性和运行的经济性,是火电厂经济性评价的基础。合理的计算和分析火电厂的热经济性是在保证机组安全运行的基础上,提高运行操作及科学管理水平的有效手段。火电厂的设计、技术改造、运行优化以及目前国外对大型火电厂性能监测的研究、运行偏差的分析等均需对火电厂的热力系统作详细的热平衡计算,求出热经济指标作为决策的依据。因此电厂的热力系统计算是实现上述任务的重要技术基础,直接反映出全厂的经济效益,对电厂的节能具有重要意义。 本文主要设计的是300MW凝汽式汽轮机。先了解了汽轮机及其各部件的工作原理。再设计了该汽轮机的各热力系统,并用手绘了各系统图。最后对所设计的热力系统进行

经济性指标计算,分析温度压力等参数如何影响效率。本设计采用了三种计算方法—— 常规计算方法、简捷计算、等效热降法。 关键词:节能、热经济性分析、热力系统 目录 N300MW汽轮机组热力系统分析- TMCR (1) 专科生毕业设计开题报告 (1) 摘要 (4) 关键词 (4) 第一章绪论 (9) 1.1 毕业设计的目的 (9) 1.2国外研究综述 (9) 第二章 300MW汽轮机组的结构与性能 (11) 2.1汽轮机工作的基本原理 (11) 第三章热力系统的设计 (14) 3.1主、再热蒸汽系统 (14) 3.1.1主蒸汽系统 (15) 3.1.2再热蒸汽系统 (15) 3.2主给水系统 (16) 3.2.1除氧器 (16) 3.2.2高压加热器 (16) 3.2.3其他 (17) 3.3凝结水系统 (17) 3.3.1凝结水用户 (17) 3.3.2凝结水泵及轴封加热器 (18) 3.4抽汽及加热器疏水系统 (18) 3.5轴封系统 (19) 3.6高压抗燃油系统 (20) 3.6.1磁性过滤器 (20) 3.6.2自循环滤油系统 (21) 3.7润滑油系统 (21) 3.8本体疏水系统 (21) 3.9发电机水冷系统 (22)

背压式、抽背式及凝汽式汽轮机的区别

背压式、抽背式及凝汽式汽轮机的区别 1、背压式汽轮机 背压式汽轮机是将汽轮机的排汽供热用户运用的汽轮机。其排汽压力(背压)高于大气压力。背压式汽轮机排汽压力高,通流局部的级数少,构造简略,同时不用要巨大的凝汽器和冷却水编制,机组轻小,造价低。当它的排汽用于供热时,热能可得到充足使用,但这时汽轮机的功率与供热所需蒸汽量直接联系,因此不或许同时餍足热负荷和电(或动力)负荷变更的必要,这是背压式汽轮机用于供热时的部分性。 这种机组的主要特点是打算工况下的经济性好,节能结果昭着。其它,它的构造简略,投资省,运行可靠。主要缺点是发电量取决于供热量,不克独立调理来同时餍足热用户和电用户的必要。因此,背压式汽轮机多用于热负荷整年安稳的企业自备电厂或有安稳的根本热负荷的地区性热电厂。 2、抽汽背压式汽轮机 抽汽背压式汽轮机是从汽轮机的中间级抽取局部蒸汽,供必要较高压力品级的热用户,同时保留必定背压的排汽,供必要较低压力品级的热用户运用的汽轮机。这种机组的经济性与背压式机组相似,打算工况下的经济性较好,但对负荷改变的合适性差。 3、抽汽凝汽式汽轮机 抽汽凝汽式汽轮机是从汽轮机中间抽出局部蒸汽,供热用户运用的凝汽式汽轮机。抽汽凝汽式汽轮机从汽轮机中间级抽出具有必定压力的蒸汽提供热用户,平常又分为单抽汽和双抽汽两种。此中双抽汽汽轮机可提供热用户两种分别压力的蒸汽。 这种机组的主要特点是当热用户所需的蒸汽负荷猛然下降时,多余蒸汽可以通过汽轮机抽汽点以后的级持续扩张发电。这种机组的长处是灵敏性较大,也许在较大范畴内同时餍足热负荷和电负荷的必要。因此选用于负荷改变幅度较大,改变屡次的地区性热电厂中。它的缺点是热经济性比背压式机组的差,并且辅机较多,价钱较贵,编制也较庞杂。 背压式机组没有凝固器,凝气式汽轮机平常在复速机后设有抽气管道,用于产业用户运用。另一局部蒸汽持续做工,最后劳动完的乏汽排入凝固器、被冷却凝固成水然后使用凝固水泵把凝固水打到除氧器,除氧后提供汽锅用水。两者区别很大啊!凝气式的由于尚有真空,因此监盘时还要注意真空的境况。背压式的排气高于大气压。趁便简略说一下凝固器设置的作用:成立并维持汽轮机排气口的高度真空,使蒸汽在汽轮机内扩张到很低的压力,增大蒸汽的可用热焓降,从而使汽轮机有更多的热能转换为机械功,抬高热效果,收回汽轮机排气凝固水

汽轮机抽汽回热系统运行

汽轮机抽汽回热系统运行 抽汽回热系统的正常投运与否,对电厂的安全、负荷率、经济性影响很大。在实际运行中,必须进行严格的管理,正确的操作方法和维护方法对保证该系统的正常运行起重要作用。除氧器的运行和维护将在第六章中详细介绍,本节只介绍高、低压加热器的运行和维护。 1、启动 高、低加启动前必须先投入加热器水位保护,放尽加热器内积水,各抽汽管道上各疏水阀处于开启状态。启动时先投水侧,再投汽侧。低加汽侧的投入一般采用随机启动的方式;当机组负荷达20%-30%额定负荷时,按3号、2号、1号的顺序投入高加汽侧运行。在投入初期应注意预暖加热器,控制出口水的温升速度。若低加因故不能随机启动,而是在机组达到某负荷后逐个投入,应按由低到高的顺序依次投入,抽汽管道应预先进行充分疏水暖管。 投入加热器运行时应先对水侧注水,待给水缓慢地充满加热器以后,将所有放气门和启动排气门关闭,然后缓慢投入蒸汽,同时开启连续排气阀,疏水品质经检验合格后可排回凝汽器(除氧器)。应该注意的是,在加热器刚启动时参数低,不能克服疏水系统阻力(包括疏水冷却段的阻力、上下级加热器的级间压差、管道阻力等),此时若打开正常疏水门进行疏水逐级自流是困难的,故当机组低负荷运行时需用事故疏水门来疏水,以保证疏水的畅通。 加热器投运基本操作过程如下: 1)启动前的检查和操作已完成。 2)关闭加热器水侧放水门,打开水侧所有排气门。 3)投入加热器的水位保护(疏水调门投自动),缓慢打开水侧进口阀向加热器注水。 注水的目的,一是排净水室侧的空气,二是使加热器金属温度缓慢加热到水温。注 水速度取决于水温和限定的升温率(≤2℃/min)。由于进入低压加热器的水来自凝 结水泵的低温水,因此启动时可直接投入低压加热器的水侧,但仍须缓慢投入,以 免造成较大的冲击,损坏换热管。 4)当水侧排气阀有水连续排出后,即可认为加热器水侧的气体已经排尽,关闭水侧的排气阀,完全打开给水进口阀。待压力升高稳定后观察汽侧水位是否上升,以判断 水侧与汽侧间是否存在泄漏。 5)检查抽汽逆止阀在自由状态,确认加热器已经具备投运条件。稍开抽汽电动阀,蒸汽逐渐进入管道和加热器,抽汽逆止阀自动开启,这时应进行充分的暖管、疏水; 逐渐开启抽汽电动阀,注意给水出口升温率在限制范围内。启动后,为了防止U 形管腐蚀,保证加热器的传热效果,须打开蒸汽侧的连续排气阀,连续不断将不凝 结气体排出。 6)当加热器水位上升后,加热器的正常疏水阀和紧急疏水阀动作情况应正常。 2、运行 正常运行中运行人员须随时对设备上的人孔法兰、管道法兰的密封状况及设备外观和阀门等进行检查,如发现泄漏、变形、异常声响等现象,须立即采取措施或检修。同时还应监视加热器、除氧器系统的各项参数,如除氧器的水位、工作水温及压力是否正常;加热器的水位、进出水温度和流量、蒸汽压力、端差、疏水阀自动控制是否正常,通过与相同负荷下运行工况的比较,判断加热器内部管束是否存在泄漏或其他缺陷,尽早发现问题,及时处理。

汽轮机组热力系统..

第二节汽轮机组热力系统 汽轮机组热力系统主要是由新蒸汽管道及其疏水系统、汽轮机本体疏水系统、汽封系统、主凝结水系统、回热加热系统、真空抽气系统、循环水系统等组成。 一、新蒸汽管道及其疏水系统 由锅炉到汽轮机的全部新蒸汽管道,称为发电厂的新蒸汽管道,其中从隔离汽门到汽轮机的这一段管道成为汽轮机的进汽管道。在汽轮机的进汽管道上通常还连接有供给汽动油泵、抽气器和汽轮机端部轴封等处新蒸汽的管道,汽轮机的进汽管道和这些分支管道以及它们的疏水管构成了汽轮机的新蒸汽管道及其疏水系统。3)在机组启动和低负荷运行时,为了保证除氧器的用汽,必须装设有饱和蒸汽或新蒸汽经减压后供除氧器用的备用汽源。 5)在机组启动、停止和正常运行中,要及时地迅速地把新蒸汽管道及其分支管路中的疏水排走,否则将会引起用汽设备和管道发生故障。这些疏水是: ①隔离汽门前、后的疏水和汽轮机进汽管道疏水。这两处疏水在机组启动暖管和停机时,都是排向地沟的,正常运行中经疏水器可疏至疏水扩容器或疏水箱。 ②汽动油泵用汽排汽管路的凝结水。由于废汽是排入大气的,它的凝结水接触了大气,水质较差,且在机组启、停时才用,运行时间不长,故一般都排入地沟。 ③汽轮机本体疏水。我们通常把汽轮机高压缸疏水、抽汽口疏水、低压缸疏水、抽汽管路上逆止门前后疏水以及轴封管路疏水等,统称为汽轮机本体疏水。这些疏水,由于压力的不同,而引向不同的容器中。高压疏水一般都是汇集在疏水膨胀箱内,在疏水膨胀箱内进行扩容,扩容后的蒸汽由导汽管送至凝汽器的喉部,而凝结水则由注水器(水力喷射器)送入凝汽器的热水井中。低压疏水可直接排入凝汽器。 6)一般中、低压汽轮机的自动主汽门前必须装设汽水分离器。汽水分离器的作用是分离蒸汽中所含的水分,提高进入汽轮机的蒸汽品质。21-1.5型机组的汽水分离器是与隔离汽门装置在一起的,N3-24型机组的汽水分离器是和自动主汽门装置在一起的。 二、凝结水管道系统 蒸汽器热水井中的凝结水,由凝结水泵升压,经过抽气器的冷却器、轴封加热器、低压加热器,然后进入除氧器,其间的所有设备和管道组成了凝结水系统。 凝结水系统的任务是不间断地把凝汽器内的凝结水排出和使主抽气器能够正常地工作,从而保证凝汽器所必须的真空,并尽量收回凝结水,以减少工质损失。 2)汽轮机组在启动和低负荷运行时,为了保证有足够的凝结水量通过抽器冷却器,以保证抽气器的冷却和维持凝汽器热水井水位,在抽气器后的主凝结水管道上装设了一根在循环管,使一部分凝结水可以在凝汽器到抽气器这一段管路内循环。再循环水量的多少,由再循环管上的再循环门来调节。 3)汽轮机在第一次启动及大修后启动时,凝汽器内还无水,这时首先应通过专设的补充水管向凝汽器充水,一般电厂都补充化学软水。机组启动运转正常后,应化验凝结水水质是否合格,若不合格则应通过放水管将凝结水

C25_4.90.49_3_25MW抽汽式汽轮机(南汽)

Z50403.01/01 C25-4.9/0.49-3 25MW抽汽式汽轮机 产品说明书 汽轮电机(集团)有限责任公司

汽轮电机(集团)有限责任公司代号Z50403.01/01 代替 C25-4.9/0.49-3型 25MW 抽汽式汽轮机说明书共21 页第 1 页 编制朱明明 校对蔡绍瑞 审核方明 会签 标准审查郝思军 审定 批准 标记数量页次文件代号简要说明签名磁盘(带号) 底图号旧底图号归档

目次 1 汽轮机的应用围及主要技术规 2 汽轮机结构及系统的一般说明 3 汽轮机的安装 4 汽轮机的运行及维护

1 汽轮机的应用围及主要技术规 1.1 汽轮机的应用围 本汽轮机为中压、单缸、单抽汽、冲动式汽轮机,与锅炉、发电机及其附属设备组成一个成套供热发电设备,用于联片供热或炼油、化工、轻纺、造纸等行业的大中型企业中自备热电站,以提供电力和提高供热系统的经济性。 汽轮机在一定围,电负荷与热负荷能够调整以满足企业对电负荷与热负荷变化时的不同要求。本汽轮机的设计转速为3000r/min,不能用于拖动不同转 速或变转速机械。 1.2 汽轮机技术规 序号名称单位数值 1 主汽门前蒸汽压力 MPa(a) 4.90 最高5.10 最低4.60 2 主汽门前蒸汽温度℃ 435 最高445 最低420 3 汽轮机额定功率 MW 25 4 汽轮机最大功率 MW 30 5 汽轮机额定工业抽汽压力 MPa(a) 0.49 6 汽轮机工业抽汽压力围 MPa(a) 0.39~0.69 7 汽轮机额定抽汽量 t/h 70 8 汽轮机最大抽汽量 t/h 130 9 额定工况时工业抽汽 压力/温度 MPa(a)/℃ 0.490/200.2 10 额定工况排汽压力 kPa(a) 4..04 11 锅炉给水温度℃ 143.5 12 额定工况汽轮机汽耗(计算值) kg/kW.h 5.702 13 额定工况汽轮机热耗(计算值) kJ/kW.h 8214 14 纯冷凝工况汽轮机汽耗(计算值) kg/kW.h 4.157

联合循环汽轮机的热力设计探讨

联合循环汽轮机的热力设计探讨 发表时间:2018-01-28T21:43:09.497Z 来源:《基层建设》2017年第32期作者:徐承浩1 鉴小宝2 [导读] 摘要:本文对综合气化联合循环(IGCC)系统优化研究的集体设计进行了研究:归纳IGCC系统的主要热特性、两级、组合周期和IGCC系统,提出了大型交叉迭代设计优化的新思路;采用模块化建模方法建立系统设计优化模型。 1.青岛特温暖多能生态科技有限公司山东 266000; 2.山东金诺建设项目管理有限公司山东 266000 摘要:本文对综合气化联合循环(IGCC)系统优化研究的集体设计进行了研究:归纳IGCC系统的主要热特性、两级、组合周期和IGCC系统,提出了大型交叉迭代设计优化的新思路;采用模块化建模方法建立系统设计优化模型。介绍了联合循环汽轮机的热设计和设计特点。 关键词:联合循环;汽轮机;热力设计 1前言 燃料和燃气联合循环电厂,在80年代后期发展迅速,因为它可以快速启动,越来越多的熊峰剃须,因此,在联合循环中为汽轮机提出了许多新的要求,主要体现在以下几个方面:(1)由于燃气轮机的启动速度非常快,相应的涡轮可快速启动; (2)为了提高整个循环的效率,需要汽轮机运行; (3)根据燃气轮机、废热锅炉和蒸汽轮机启动时间的不同步,可以配备旁路系统; (4)燃气轮机进口单位或国外技术生产,数字电液控制系统的控制系统,为了使整个电厂控制水平一致,要求涡轮也可以采用数字电液控制系统。 综合煤气化联合循环(IGCC)是一种先进的动力系统,结合高效的联合循环和清洁煤技术,提供了最有前景的洁净煤发电技术。IGCC是一种集热发电、煤化工、环境技术、多学科、多设备组合为一体的复杂能源动力系统,与许多高新技术相结合。很长一段时间,IGCC系统的优化设计研究是围绕提高热性能为主要目标,以提高整体性能的IGCC系统,一方面,继续完善关键设备技术,寻求新的突破,另一方面,每个设备全面优化匹配的规则的深入研究,找到一个系统作为一个整体解决方案。 2热力设计 2.1热力设计主要过程见图1 图1热力设计主要过程 2.2热力设计原则 与传统的汽轮机相比,组合式循环汽轮机有很大的不同。主要特点:(1)无调节水平,节流调整的蒸汽分配方式; (2)汽轮机排汽流量比常规蒸汽流量高出30%。 (3)最后阶段的特殊设计需要特别考虑热应力对结构设计的影响。 (4)采用东旗厂的成熟模式和最先进的现代设计技术,确保运行的可靠性和最先进的经济; (5)结构和辅助系统的设计是为了满足两班换班和快速起动的需要。 2.3热力设计特点 (1)没有热量返回系统。为了尽可能多地使用燃气轮机的废气,增加汽轮机的输出功率,蒸汽轮机在联合循环中一般不购买给水加热器,热水和由废热锅炉承担的氧气,有时是由冷凝器氧。 (2)优化蒸汽参数。在热锅炉的合理传热区域内选择最优的蒸汽循环系统和蒸汽初始参数,使联合循环机组达到最佳的供电效率。 (3)优化流程设计。常规汽轮机流动优化技术可用于联合循环汽轮机。 (4)汽轮机由滑动压操作,调整阶段不再设置,汽轮机的所有级别都使用汽轮机。在这种情况下,滑动压力达到50%的负载情况:一方面,锅炉在可变工况下产生相对较多的蒸汽。另一方面,在变工况下,温度变化引起的热应力减小。 (5)由于无抽汽热水平,对于双压力、三中压汽轮机和注气量,因此,常规热电式汽轮机总发电容量的组合式循环汽轮机排汽量比为30%左右。因此,与常规机组相比,低压水位的流动区域应该增加30%左右。 (6)除了排汽,冷凝器也有各种形式,如轴向蒸汽排气和侧向排气。其中,轴向流阻力小;该单元的对称性很好,所以该单元不能设置两层操作平台,这样可以降低工厂成本。但单缸轴向排气的体积流量是有限的,只能在较小的动力涡轮中使用。 3汽轮机的通流及本体部分设计

330MW汽轮机主要热力系统

2. 热力系统 2.1 330MW汽轮机本体抽汽及疏水系统 2.1.1 抽汽系统的作用 汽轮机有七级非调节抽汽,一、二、三、四级抽汽分别供四台低压加热器,五级抽汽供汽至除氧器及辅助蒸汽用汽系统,六、七级抽汽供两台高压加热器及一台外置式蒸汽冷却器(六级抽汽经蒸汽冷却器至六号高加)。 抽汽系统具有以下作用: a)加热给水、凝结水以提高循环热效率。 b)提高给水、凝结水温度,降低给水和锅炉管壁之间金属的温度差,减少热冲击。 c)在除氧器内通过加热除氧,除去给水中的氧气和其它不凝结气体。 d)提供辅助蒸汽汽源。 2.1.2 抽汽系统介绍 一段抽汽是从低压缸第4级后引出,穿经凝汽器至#1低压加热器的抽汽管道; 二段抽汽是从低压缸第3级后引出,穿经凝汽器至#2低压加热器的抽汽管道; 三段抽汽是从低压缸第2级后引出,穿经凝汽器至#3低压加热器的抽汽管道; 四段抽汽是从中压缸排汽口引出,至#4低压加热器的抽汽管道; 二、三、四级抽汽管道各装设一个电动隔离阀和一个气动逆止阀。气动逆止阀布置在电动隔离阀之后。电动隔离阀作为防止汽机进水的一级保护,气动逆止阀作为汽机的超速保护并兼作防止汽机进水的二级保护。 五段抽汽是从中压缸第9级后引出,至五级抽汽总管,然后再由总管上引出两路,分别接至除氧器和辅助蒸汽系统; 在五段抽汽至除氧器管道上装设一个电动隔离阀和两个串联的气动逆止阀。装设两个逆止阀是因为除氧器还接有其他汽源,在机组启动、低负荷运行、甩负荷或停机时,其它汽源的蒸汽有可能窜入五段抽汽管道,造成汽机超速的危险性较大。串联装设两个气动逆止阀可起到双重保护作用。

五段抽汽至辅助蒸汽联箱管道上装设一个电动隔离阀和一个气动逆止阀,气动逆止阀亦布置在电动隔离阀之后。电动隔离阀作为防止汽机进水的一级保护,气动逆止阀作为汽机的超速保护并兼作防止汽机进水的二级保护。 正常运行时,除氧器加热蒸汽来自于五段抽汽。辅助蒸汽系统来汽作为启动和备用加热蒸汽。 六段抽汽是从中压缸第5级后引出,先经#6高加外置式蒸汽冷却器(副#6高加)冷却后再至#6高压加热器;六级抽汽管道上各装设一个电动闸阀和两个气动逆止阀。 七段抽汽是从再热冷段引出一路至#7高压加热器的抽汽管道,装设一个电动闸阀和一个气动逆止阀,电动隔离阀作为防止汽机进水的一级保护,气动逆止阀作为汽机的超速保护并兼作防止汽机进水的二级保护。 电动隔离阀和气动逆止阀的布置位置一般尽量靠近汽机抽汽口,以减少在汽机甩负荷时阀前抽汽管道上贮存的蒸汽能量,有利于防止汽机超速。 本系统四台低加、两台高加及六号高加外置式蒸汽冷却器均为立式加热器。七台立式加热器从扩建端至固定端按编号从1号至7号再至蒸汽冷却器顺列布置。七台加热器均布置在A—B框架内,其水室中心线距B排柱中心线6.9米。 除氧器及给水箱布置在运转层12.00米层。 汽轮机各抽汽管道连接储有大量饱和水的各级加热器和除氧器。汽轮机一旦跳闸,其内部压力将衰减,各加热器和除氧器内饱和水将闪蒸,使蒸汽返回汽轮机;此外,五级抽汽管道支管上还接有备用汽源——辅助蒸汽,遇到工况变化或误操作,外来蒸汽将通过五级抽汽管道进入汽轮机;还有,各抽汽管道内滞留的蒸汽也可能因汽轮机内部压力降低返回汽轮机;各种返回汽轮机的蒸汽有可能造成汽轮机超速。 为防止上述蒸汽的返回,除一级抽汽外,其它各级抽汽管道上均串联安装有电动隔离阀和气动逆止阀。一旦汽机跳闸,气动逆止阀和电动隔离阀都关闭。 由于汽轮机上有许多抽汽口,而有可能有水的地方离各抽汽口又很近,各抽汽管道上还接有储水容器——高、低压加热器和除氧器,汽轮机负荷突然变化、给水或凝结水管束破裂以及其他设备故障,误操作等因素,可组合

汽轮机抽汽回热系统组成

汽轮机抽汽回热系统组成 二期机组汽轮机共设7段非调整抽汽(一期机组抽汽为8段)。第一段抽汽引自高压缸,在全机第6级后,供#1高加;第二段抽汽引自高压缸排汽,在全机第8级后,供给#2高加;第三段抽汽引自中压缸,在全机第11级后,供给#3高加;第四段抽汽引自中压缸排汽,在全机第14级后,供给除氧器、辅汽系统;第五至第七段抽汽均引自低压缸A和低压缸B,第五段抽汽引自全机第16级后,供给#5低加;第六段抽汽引自全机第17级后,供#6低加;第七段抽汽引自全机第18级后,引自低压缸A的抽汽供给#7A低加,引自低压缸B 的抽汽供给#7B低加。 除第七段抽汽外,各抽汽管道均装设有气动逆止阀和电动截止阀,前者作为防止汽轮机超速的一级保护,同时也作为防止汽轮机进水的辅助保护措施;后者是作为防止汽轮机进水的隔离措施。由于四抽连接到辅汽联箱、除氧器、小机等,用户多且管道容积大,管道上设置两道逆止阀。四段抽汽各用汽点的管道上亦设置了一个气动逆止阀和电动截止阀。 抽汽在表面式加热器中放热后的疏水,采用逐级自流方式。#1高加疏水借压力差自流入#2高加,#2高加的疏水自流入#3高加,#3高加的疏水流向除氧器。低压加热器逐级自流后,最后由#7低加流向汽轮机本体疏水扩容器。由于各

级加热器均设有疏水冷却段,可将抽汽的凝结水在疏水冷却段内进一步冷却,使疏水的温度低于其饱和温度,故可以防止疏水的汽化对下级加热器抽汽的排挤。 为防止因加热器故障引起事故扩大,每一加热器均设有保护系统,其基本功能是防止因加热器原因引起的汽轮机进水、加热器爆破和锅炉断水事故,具有异常水位保护、超压保护和给水旁路联动操作的功能。 加热器的保护装置一般有如下几个:水位计,事故疏水门,给水自动旁路,抽汽电动截止门、抽汽逆止门联动关闭装置,汽侧及水侧安全门等。对于7号低加,蒸汽入口处设置防闪蒸的挡板。 各级设计抽汽参数 抽汽项目THA工况T-MCR工况 抽汽级数流量 kg/h 压力 MPa 温 度℃ 流量 kg/h 压力 MPa 温 度℃ 第一级(至1号高加)13968 6 7.217 380. 8 15386 6 7.67 5 388. 2 第二级(至2号高加)16541 9 4.703 324. 3 17943 6 4.98 2 330. 5 第三级(至3号高加)78073 2.291 470. 8 84564 2.42 4 470. 5

600MW机组抽汽回热系统

600MW机组抽汽回热系统 一、综述 对于加热器的性能要求,可归结为尽可能地缩小进入加热器的蒸汽饱和温度与加热器出口给水温度之间的差值,我们称之为加热器端差。为实现这一目的,目前主要通过两种途径。一种途径是采用混合式加热器,从汽轮机抽来的蒸汽在加热器内和进入加热器的给水直接混合,蒸汽凝结成水,其汽化潜热释放到水中,压力温度相同,端差为0,但这种方式需设置水泵为给水提供压力,使其与相应段的抽汽压力一致,这就会消耗一定的能源,除氧器即是一种混合式加热器。另一种途径是采用表面式加热器,在结构上采取必要措施,尽量提高加热器的效果。 某600MW机组汽轮机共设八段非调整抽汽。 第一段抽汽引自高压缸,在全机第6级后,供1号高加;第二段抽汽引自高压缸排汽,在全机第8级后,供给2号高加、给水泵汽轮机及辅汽系统的备用汽源;第三段抽汽引自中压缸,在全机第11级后,供给3号高加;第四段抽汽引自中压缸排汽,在全机第14级后,供给除氧器、给水泵汽轮机、辅汽系统;第五至第八段抽汽均引自低压缸A和低压缸B, 第五段抽汽引自全机第16级后,供给5号低加;第六段抽汽引自全机第17级后,供6号低加;第七段抽汽引自全机第18级后,引自低压缸A的抽汽供给 7A号低加,引自低压缸B 的抽汽供给7B号低加;第八段抽汽引自全机第19级后,引自低压缸A的抽汽供给供给8A 号,引自低压缸B的抽汽供给8B号低加。 除第七、八段抽汽外,各抽汽管道均装设有气动逆止阀和电动截止阀,前者作为防止汽轮机超速的一级保护,同时也作为防止汽轮机进水的辅助保护措施;后者是作为防止汽轮机进水的隔离措施。由于四抽连接到辅汽联箱、除氧器和给水泵汽轮机等,用户多且管道容积大,管道上设置两道逆止阀。四段抽汽各用汽点的管道上亦设置了一个气动逆止阀和电动截止阀。抽汽在表面式加热器中放热后的疏水,采用逐级自流方式。1号高加疏水借压力差自流入2号高加,2号高加的疏水自流入3号高加,3号高加的疏水流向除氧器。低压加热器逐级 自流后,最后由8号低加流向凝汽器。由于各级加热器均设有疏水冷却段,可将抽汽的凝结水在疏水冷却段内进一步冷却,使疏水的温度低于其饱和温度,故可以防止疏水的汽化对下级加热器抽汽的排挤。 二、高加系统 为了减小端差,提高表面式加热器的热经济性,现代大型机组的高压加热器和少量低压加热器采用了联合式表面加热器。 某600MW机组高加为卧式、表面凝结、U型换热器,采用三台高压加热器大旁路配置。此类加热器一般由过热蒸汽冷却段、凝结段、疏水冷却段三部分组成:

汽轮机组效率及热力系统节能降耗定量分析计算

汽轮机组主要经济技术指标的计算 为了统一汽轮机组主要经济技术指标的计算方法及过程,本章节计算公式选自中华人民国电力行业标准DL/T904—2004《火力发电厂技术经济指标计算方法》和GB/T8117—87《电站汽轮机热力性能验收规程》。 1 凝汽式汽轮机组主要经济技术指标计算 1.1 汽轮机组热耗率及功率计算 a. 非再热机组 试验热耗率: G 0H G H HR0 fw fw N t kJ/kWh 式中G ─主蒸汽流量,kg/h;G fw ─给水流量,kg/h;H ─ 主蒸汽焓值,kJ/kg ;H fw─ 给水焓值,kJ/kg; N t ─实测发电机端功率,kW。 修正后(经二类)的热耗率: HQ HR C Q kJ/kWh 式中C Q─主蒸汽压力、主蒸汽温度、汽机背压对热耗的综合修正系数。修正后的功率: N N t kW p Q 式中K Q ─主蒸汽压力、主蒸汽温度、汽机背压对功率的综合修正系数。 b. 再热机组 试验热耗率:: G 0H G fw H fw G R (H r H 1 ) G J (H r H J) HR N t kJ/kWh 式中G R─高压缸排汽流量,kg/h; G J ─再热减温水流量,kg/h; H r ─再热蒸汽焓值,kJ/kg; K

p c ?υ0 p 0?υc k H k H 1─ 高压缸排汽焓值,kJ/kg ; H J ─ 再热减温水焓值,kJ/kg 。 修正后(经二类)的热耗率: HQ HR C Q kJ/kWh 式中 C Q ─ 主蒸汽压力、主蒸汽温度、再热蒸汽温度、再热压损、再热减温水流量及汽 机背压对热耗的综合修正系数。 修正后的功率: N N t kW p Q 式中 K Q ─主蒸汽压力、主蒸汽温度、再热蒸汽温度、再热压损、再热减温水流量及 汽机背压对功率的综合修正系数。 1.2 汽轮机汽耗率计算 a. 试验汽耗率: SR G 0 N t kg/kWh b. 修正后的汽耗率: SR G c kg/kWh c p 式中G c ─修正后的主蒸汽流量,G c G 0 ,kg/h ; p c 、c ─设计主蒸汽压力、主蒸汽比容; p 0、 ─实测主蒸汽压力、主蒸汽比容。 1.3 汽轮机相对效率计算 a. 非再热机组 汽轮机相对效率: H 0 H k 100% oi 0 - H ' 式中 ' H k ─ 汽轮机等熵排汽焓,kJ/kg ; ─ 汽轮机排汽焓,kJ/kg 。 K N H

汽轮机抽气系统

汽机抽汽回热系统 1、概述:回热抽气系统指与汽轮机回热抽汽有关的管道及设备,在蒸汽热力循环中,通常是从汽轮机数个中间级抽出一部分蒸汽,送到给水加热器中用于锅炉给水的加热(即抽汽回热系统)及各种厂用汽等。采用回热循环的主要目的是:提高工质在锅炉内吸热过程的平均温度,以提高级组的热经济性。 2、抽汽回热系统作用:抽汽回热系统是原则性热力系统最基本的组成部分,采用蒸汽加热锅炉给水的目的在于减少冷源损失,一定量的蒸汽作了部分功后不再至凝汽器中向空气放热,即避免了蒸汽的热量被空气带走,使蒸汽热量得到充分利用,热好率下降,同时由于利用了在汽轮机作过部分功的蒸汽加热给水,提高了给水温度,减少了锅炉受热面的传热温差,从而减少了给水加热工程中不可逆损失,在锅炉中的吸热量也相应减少。综合以上原因说明抽汽回热系提高了机组循环热效率。因此,抽汽回热系的正常投运对提高机组的热经济性具有决定性的影响。 3、影响抽汽回热系统经济型地主要参数:影响给水回热加热经济性的主要参数为回热加热分配、相应的最佳给水温度和回热级数,三者紧密联系,互有影响。 在求解最佳回热分配的计算分析中,以Z级理想回热循环的循环效率最大值求其最佳回热分配,(所谓理想回热循环,即假定为混合式加热器,端差为零,不计新蒸汽,抽汽压损和泵功、忽略散热损失)求得理想回热循环的最佳回热分配通式后,根据忽略一些次要因素,进一步简化,即可获得其它近似的最佳回热分配通式。如“焓降分配法”,这种分配方法是将每一级加热器的焓升取作等于前一级至本级的蒸汽在汽轮机中的焓降;又如“平均分配法”,这种回热分配方法的原则是每一级加热器的焓升相等;其他还有“等焓降分配法”等。可见给水回热总加热量在各级中的分配是在一定的给水温度和一定级数的条件下,使循环热效率最高为原则,由此对应的各级抽汽回热参数,即为最有利分配的参数。 4、提高系统循环热效率的措施:将给水加热到多少温度,才能使循环热效率达到最高值?以单级抽汽回热为例,回热时给水温度从汽轮机排汽压力下的饱和温度开始逐渐增加,热效率也逐渐增加,热效率达最大值时的给水温度称为最佳给水温度,再提高给水加热温度时,热效率反会减小,热经济性就降低。这是因为给水加热温度提高后,相应的抽汽压力也提高,对该部分的抽汽而言,每千克抽汽在汽轮机中热变功的量减少了,若发电量不变,则要增加进入汽轮机中的新蒸汽量,以弥补因抽汽而减少的发电量,抽汽压力愈高,增加的新蒸汽量就愈多,因而汽耗率也愈大,相应的排向低温热源的热量也就越大,锅炉加热的数值虽不断降低,但汽耗率增加较快,以致使热耗率相应增大,从而使循环热效率降低。理论上,加热级数愈多,最佳给水温度愈高。

国外燃气_蒸汽联合循环汽轮机

国外燃气-蒸汽联合循环汽轮机 郑云之 (上海汽轮机有限公司,上海200240) 摘 要: 结合介绍国外燃气-蒸汽联合循环汽轮机的实绩和发展,综合联合循环汽轮机在蒸汽参数、总体布置、快速启动和两班制运行、结构设计等方面的特点以及典型的应用实例,对联合循环汽轮机的总体及其特色有较全面的分析。 关键词: 燃气-蒸汽联合循环汽轮机; 蒸汽参数; 总体布置; 快速启动; 两班制运行; 结构设计特点; 应用实例 中图分类号: T K26 文献标识码:A Steam Turbines for Gas-Steam Combined-Cycle Power Plant Abroad ZH EN G Yun-z hi (Shanghai Turbine Co.Ltd.,Shanghai200240) Abstract: T his paper makes al-l around analysi s for the features of combine-cycle steam turbine by introduc-ing the ex periences and development of g as-steam turbine combined cycle,integrating the characteristics and typically applied actual ex amples of its steam condition,general layout,fast start-up,daily start and stop and structure design etc. Key words: steam turbine of g as-steam combine cycle; steam condition; general layout; fast startup; daily start and stop; structure design featur es; applied actual examples 1 发展业绩实例 燃气轮机及燃气 蒸汽联合循环的发展十分迅速,仅以Siemens KWU1999年的统计为例,KWU公司的实绩如下: 投入运行的燃气轮机:287台 运行小时总数:850万小时 启动总次数:24万次 至1999年的燃气轮机总数: 360台 (包括订单)4300万千瓦 其中:燃气 蒸汽联合循环机组: >192套、3932万千瓦 联合循环3932万千瓦中燃机和汽机均由KWU制造:2804万千瓦 燃机由KWU制造、汽机由别的厂家生产:1128万千瓦 联合循环3932万千瓦中: 收稿日期:2000-07-18 作者简介:郑云之(1937-),男,上海汽轮机有限公司副总工程师,教授级高级工程师,中国动力工程学会透平专委会委员兼秘书长,先后发表论文40余篇。

汽轮机原则性热力系统资料

汽轮机原则性热力系统 根据热力循环的特征,以安全和经济为原则,将汽轮机与锅炉本体由管道、阀门及其辅助设备连接起来,组成发电厂的热力系统。汽轮机热力系统是指主蒸汽、再热蒸汽系统,旁路系统,轴封系统,辅助蒸汽系统和回热抽汽系统等。下面着重介绍主蒸汽系统及旁路系统。 第一节主蒸汽及再热蒸汽系统 锅炉与汽轮机之间的蒸汽管道与通往各用汽点的支管及其附件称为主、再热蒸汽系统。本机组的主蒸汽及再热蒸汽采用单元制连接方式,即一机一炉相配合的连接系统,如图3-1所示。该连接方式结构简单、阀门少、管道短而阻力小,便于自动化的集中控制。 一、主蒸汽系统 主、再热蒸汽管道均为单元双—单—双管制系统,主蒸汽管道上不装设隔断阀,主蒸汽可作为汽动给水泵及轴封在机组启动或低负荷时备用汽源。 主蒸汽从锅炉过热器的两个出口由两根蒸汽管道引出后汇合成一根主蒸汽管道送至汽轮机,再分成两根蒸汽管道进入2只高压自动主汽阀、4只调节阀,然后借助4根导汽管进入高压缸,在高压缸内做功后的蒸汽经过2只高压排汽逆止阀,再经过蒸汽管道(冷段管)回到锅炉的再热器重新加热。经过再热后的蒸汽温度由335℃升高到538℃,压力由3.483MPa 降至3.135MPa,由于主、再热蒸汽流量变化不多蒸汽比容增加将近一倍。再热后蒸汽由两根蒸汽管道引出后汇合成一根再蒸汽管道送至汽轮机,再分成两根蒸汽管道经过2只再热联合汽阀(中压自动主汽阀及中压调节阀的组合)进入中压缸。 它设有两级旁路,I级旁路从高压自动主汽阀前引出,蒸汽经减压减温后排至再热器冷段管,采用给水作为减温水。II级旁路从中压缸自动主汽阀前引出,蒸汽经减压减温后送至凝汽器,用凝结水泵出口的凝结水作为减温水。 带动给水泵的小汽轮机是利用中压缸排汽作为工作汽源(第4段抽汽,下称低压蒸汽)。由于低压蒸汽的参数随主机的负荷降低而降低,当负荷下降至额定负荷的40%时,该汽源已不能满足要求,所以需采用新蒸汽(下称高压蒸汽)作为低负荷的补充汽源或独立汽源。当低压蒸汽的调节阀开足后,高压蒸汽的调节阀才逐步开启,使功率达到新的平衡。 主蒸汽管道上还接出轴封备用及启动供汽管道。 主蒸汽管道设计有通畅的疏水系统,在主蒸汽管道主管末端最低点,去驱动给水泵的小汽轮机的新蒸汽管道的低位点,以及靠近给水泵汽轮机高压主汽阀前,均设有疏水点,每一根疏水管道分别引至凝汽器的热水井。 主蒸汽管道主管及支管的疏水管道上各安装一只疏水阀,不再装设其它隔离阀。疏水阀在机组启动时开启,排除主蒸汽管道内暖管时产生的凝结水,避免汽轮机进水,并可加速暖管时的温升。待机组负荷达到10%时,疏水阀自动关闭;当汽轮机负荷降至10%时或跳闸时,疏水阀自动开启,也可以在单元控制室手动操作。 冷再热蒸汽管道从汽轮机高压缸排汽接出,先由单管引至靠近锅炉再热器处,再分为两根支管接到再热器入口联箱的两个接口上。在再热蒸汽冷段管道上接出2号高压加热器抽汽管道。汽轮机主汽阀及调节汽阀的阀杆漏汽、高压旁路的排汽均送入本系统。

汽轮机三段抽汽系统的问题

汽轮机三级抽汽系统的问题 一简要说明 汽轮机的抽汽回热加热系统,共有六级管道及阀门等组成,其中,第三级抽汽,取自汽轮机中压缸的低部,主要作用是加热除氧器中的锅炉给水;在其进入除氧器之前,和来自机组辅助蒸汽加热系统中,用于机组启动初期使用的加热除氧器给水的管道合并,共用一根管道进入除氧器系统。 二存在的问题 1)机组运行期间,三级抽汽出口压力经常小于或者等于除氧器压力,此时,三级抽汽系统不能正常供汽。 2)机组运行期间,控制机组辅助蒸汽加热系统中的辅助联箱压力偏高,经常大于三级抽汽出口的压力,此时,三级抽汽系统不 能正常供汽。 三潜在危害 1)三段抽汽系统不能正常供汽,造成管道内蒸汽滞留,容易凝结形成积水,特别是机组在低负荷下长期运行时,蒸汽滞留加聚, 形成的积水也会更严重。 2)三段抽汽管道位于中压蒸汽进口处的中压缸低部,管道内的滞留蒸汽很容易反流进入中压缸低部,造成中压缸下部/上部的温 差增大,如果存在积水,温差将会更大,其结果必会造成机组 受力不均匀,引起机组振动,甚至跳机。

四采取的措施 1)虽然三段抽汽系统有自动检测管道积水打开疏水阀组的功能,但是,按照运行实践经验,这些是有滞后的。也就是说,不能 等到其自动打开,最好是要提前采取措施,比如,机组低负荷 下运行时间较长时,手动开启相应的疏水阀组减少积水现象。2)严密监视三级抽汽压力,除氧器压力,以及辅助蒸汽联箱的压力,保证压差,确保三段抽汽系统正常供汽。 3)改变辅助蒸汽加热系统的供汽汽源,把目前使用的锅炉低温过热器出口蒸汽汽源,切换为再热蒸汽冷段蒸汽汽源,降低辅助 联箱的供汽压力。如不能满足汽轮机轴封供汽系统的压力温度 时,退入辅助蒸汽加热除氧器系统运行。 4)机组低负荷(35%额定负荷以下)下长期运行时,要求锅炉增加热负荷,强化燃烧,提高锅炉出口蒸汽压力和温度等参数,尽量保证机组接近额定参数运行,保证三级抽汽压力正常。 刘大力 2017年3月7日星期二

抽气回热系统五六段抽气

课程设计报告 ( 2012-- 2013 年度第 1 学期) 名称:过程参数检测及仪表课程设计题目:抽气回热系统的五,六段 院系:控制与计算机工程 班级:测控1001班 学号:1101160119 学生姓名:王亚为 指导教师:邱天 设计天数:一天半 成绩: 日期:2013 年 6 月27 日

一、课程设计的目的与要求 本课程设计为检测技术与仪器、自动化专业《过程参数检测及仪表》专业课的综合实践环节。通过本课程设计,使学生加深对抽气回热系统基本概念的理解,以及掌握一定关于抽气回热系统创新与改进的基本能力。 二、设计正文 抽气回热系统的五六段抽气回热 1.抽气回热系统的现代背景 2. 简述系统的工作原理 3.介绍设备及参数 4.画出热工检测图 5.列出仪表设备清册 具体解答过程 1. 抽气回热系统的背景 抽气回热系统指与汽轮机回热抽汽有关的管道及设备,在蒸汽热力循环中,通常是从汽轮机数个中间级抽出一部分蒸汽,送到给水加热器中用于锅炉给水的加热(即抽汽回热系统)及各种厂用汽等。抽汽回热系统是原则性热力系统最基本的组成部分,采用蒸汽加热锅炉给水的目的在于减少冷源损失,一定量的蒸汽作了部分功后不再至凝汽器中向空气放热,即避免了蒸汽的热量被空气带走,使蒸汽热量得到充分利用,热好率下降,同时由于利用了在汽轮机作过部分功的蒸汽加热给水,提高了给水温度,减少了锅炉受热面的传热温差,从而减少了给水加热工程中不可逆损失,在锅炉中的吸热量也相应减少提高工质在锅炉内吸热过程的平均温度。综合以上原因说明,抽汽回热系的正常投运对提高机组的热经济性具有决定性的影响。 2. 简介系统的基本工作原理 图7-1 原则性热力系统图 如图所示,在汽轮机高中低压气缸做完功的蒸汽凝结为水进入凝汽器,然后凝结水从凝汽器

汽轮机火用分析方法的热力系统计算

汽轮机火用分析方法的热力系统计算 前言 在把整个汽轮机装置系统划分成若干个单元的过程中,任何一个单元由于某些因素而引起的微弱变化,都会影响到其它单元。这种引起某单元变化的因素叫做“扰动”。也就是说,某单元局部参量的微小变化(即扰动),会引起整个系统的“反弹”,但是它不会引起系统所有参数的“反弹”。就汽轮机装置系统而言,系统产生的任何变化,都可归结为扰动后本级或邻近级抽汽量的变化,从而引起汽轮机装置系统及各单元的火用损变化。因此,在对电厂热力系统进行经济性分析时,仅计算出某一工况下各单元火用损失分布还是不够的,还应计算出当某局部参量变化时整个热力系统火用效率变化情况。 1、火用分析方法 与热力系统的能量分析法一样,可以把热力系统中的回热加热器分为疏水放流式和汇集式两类(参见图1和图2),并把热力系统的参数整理为3类:其一是蒸汽在加热器中的放热火用,用q’表示;其二是疏水在加热器中的放热火用,用y 表示;其三是给水在加热器中的火用升,以r’表示。其计算方法与能量分析法类似。

对疏水式加热器: 对疏水汇集式加热器: 式中,e f、e dj、e sj分别为j级抽汽比火用、加热器疏水比火用和加热器出口水比火用。1.1 抽汽有效火用降的引入 对于抽汽回热系统,某级回热抽汽减少或某小流量进入某加热器“排挤”抽汽量,诸如此类原因使某级加热器抽汽产生变化(一般是抽汽量减少),如果认为此变化很小而不致引起加热器及热力系统参数变化,那么便可基于等效焓降理论引入放热火用效率来求取某段抽汽量变化时对整个系统火用效率的影响。 为便于分析,定义抽汽的有效火用降,在抽汽减少的情况下表示1kg排挤抽汽做功的增加值;在抽汽量增加时,则表示做功的减少值;用符号Ej来表示。当从靠近凝汽器侧开始,

回热抽汽系统

回热抽汽系统 回热抽汽系统指与汽轮机回热抽汽有关的管道及设备。汽轮机采用回热循环的主要目的是提高工质在锅炉内吸热过程的平均温度以提高机组的热经济性。 本机组具有八级非调整抽汽。一段抽汽从高压缸的一段抽汽口抽汽至#1高加;二段抽汽从再热蒸汽冷段引出,为#2高加供汽;三段抽汽从中压缸三段抽汽口抽出,供给#3高加;四段抽汽从中压缸四段抽汽口至抽汽总管,然后再由总管上引出三路,分别供给除氧器、两台给水泵驱动汽轮机和辅助蒸汽系统;五、六、七、八段抽汽分别供汽至四台低压加热器。 除回热抽汽及给水泵汽轮机用汽外,机组能供给厂用蒸汽量: 低温再热蒸汽抽汽量暂按20t/h,四级抽汽量暂按50t/h,五级抽汽量暂按30t/h,此工况下汽轮机能带额定负荷(600MW)。汽轮机在带额定负荷(600MW)、平均背压0.0049MPa(a)时,单抽冷段最大值115t/h、单抽四段最大值170t/h、单抽五段最大值70t/h、抽四段和五段最大值分别为110t/h和70t/h。 一、系统的保护措施 汽轮机各段抽汽管道将汽机与各级加热器或除氧器相连。当汽轮机突降负荷或甩负荷时,蒸汽压力急剧降低,这些加热器和除氧器内的饱和水将闪蒸成蒸汽,与各抽汽管道内滞留的蒸汽一同返回汽机。

这些返回汽机的蒸汽可能在汽轮机内继续做功而造成汽机超速。另外,加热器管束破裂,管子与管板或联箱连接处泄漏,以及加热器疏水不畅造成水位过高等情况,都会使水倒入汽轮机,发生事故。 因此回热抽汽系统必须满足汽轮机超速保护、汽轮机进水保护和除氧器水箱及加热器水位过高的要求。 为防止汽机超速,除了最后两级抽汽管道外,其余的抽汽管上均装设气动控制逆止阀和电动隔离阀。四级抽汽管道上靠近汽轮机处装设一个电动隔离阀和两个气动控制逆止阀。由于除氧器水箱热容量大,一旦汽机甩负荷或除氧器满水事故时,防止汽水倒流入抽汽管道再灌入汽轮机。其它凡是从抽汽系统接出的管道去加热设备都装有逆止阀。抽汽逆止阀尽可能靠近汽轮机的抽汽口安装,以便当汽轮机跳闸时,可以降低抽汽系统能量的贮存,为防汽机超速保护。同时抽汽逆止阀亦作为防止汽轮机进水的二级保护。 具有快关功能的电动隔离阀的安装位置靠近加热器,作为防止汽轮机进水的一级保护,另一个作用是在加热器切除时,切断加热器的汽源。 在各抽汽管道的顶部和底部分别装有热电偶,作为防进水保护的预报警,便于运行人员预先判断事故的可能性。 给水泵汽轮机的正常工作汽源从四段抽汽管道上引出,装设有流量测量喷嘴、电动隔离阀和止回阀。逆止阀是为了防止高压汽源切换时,高压蒸汽串入抽汽系统。当给水泵汽轮机在低负荷运行使用高压汽源时,该管道亦将处于热备用状态。

相关主题
文本预览
相关文档 最新文档